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SOLVING MATRIX INEQUALITIES WHOSE UNKNOWNS ARE
MATRICES∗

JUAN F. CAMINO† , J. WILLIAM HELTON‡ , AND ROBERT E. SKELTON§

Abstract. This paper provides algorithms for numerical solution of convex matrix inequalities
in which the variables naturally appear as matrices. This includes, for instance, many systems and
control problems. To use these algorithms, no knowledge of linear matrix inequalities is required.
However, as tools, they preserve many advantages of the linear matrix inequality framework. Our
method has two components: (1) a numerical algorithm that solves a large class of matrix optimiza-
tion problems and (2) a symbolic “convexity checker” that automatically provides a region which, if
convex, guarantees that the solution from (1) is a global optimum on that region. The algorithms
are partly numerical and partly symbolic and since they aim at exploiting the matrix structure of
the unknowns, the symbolic part requires the development of new computer techniques for treating
noncommutative algebra.
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1. The basic idea. Since the early 1990s, matrix inequalities (MIs) have become
very important in engineering, particularly in control theory. If one has the ability to
convert the MIs arising in a particular problem to a linear matrix inequality (LMI),
then the problem can be solved up to substantial size. The wide acceptance of LMIs
stems from the following advantages:

1. If a control problem is posed as an LMI, then any local solution is a global
optimum.

2. Efficient numerical LMI solvers are readily available.
3. Once a control problem is posed as an LMI, adding constraints in the form

of LMIs results in a LMI problem.

On the other hand, the LMI framework has the following disadvantages:

1. There is no systematic way to produce LMIs for general classes of problems.
2. There is no way of knowing whether it is possible to reduce a system problem

to an LMI without actually doing it.
3. The user must possess the knowledge of manipulating LMIs, which takes

considerable training. Indeed, if one does not have the ability to deal with
LMIs, then it is not clear what one should do.

4. Transformations via Schur complements can lead to a large LMI representa-
tion.
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1.1. Our method. The main objective for this paper is to provide a method
for solving MIs that possesses similar advantages to the LMI framework but without
its main disadvantages. Our method has two components:

1. a numerical algorithm, called NCSDP, that solves a large class of matrix
optimization problems;

2. a symbolic “convexity checker” that automatically provides a region G. If G is
convex, then the solution from (1) is a global optimum on G. Also, convexity
ensures good numerical behavior of NCSDP on G.

1.2. The convexity region algorithm. The symbolic convexity region algo-
rithm receives as input a function F (x) and gives as output a family of inequalities
that determine a region G of x on which F (x) is “matrix convex.” Often, we just
refer to matrix convexity as convexity and it is defined precisely in section 4.5. This
algorithm produces sufficient conditions, which with some very weak hypotheses are
necessary conditions for convexity. A concern is that the output might produce a
“region of convexity G” with several connected components, in which case the user
must select one of them. (See section 3.1 for an example.)

1.3. The numerical solver for matrix inequalities. Our NCSDP solver can
be used to solve optimization problems involving matrix inequalities. It is designed
for situations where there are only a few unknown matrices and it attempts with
symbolic manipulation (as well as numerics) to use the matrix structure to advantage.
The solver has very reliable behavior in convex situations. The novel features of our
algorithm that allow us to view the matrices as unknowns, rather than the entries of
these matrices as unknowns, are discussed in sections 4.4, 7.2, and 8.

1.4. Combining the tools. Putting together the convexity checker and the
NCSDP solver, we have a set of tools to solve many engineering problems that can
be posed as matrix inequalities with matrix unknowns. Section 3 gives an example of
these tools. Our method is effective on problems with few unknowns, but we reiterate
that we can take each unknown to be a matrix. This is not a serious restriction for
many system problems (e.g., most of the classics [23]).

1.5. LMI analogues. In some sense, there is a parallel between the conventional
LMI approach and our approach. In the former, one needs to be able to convert
the optimization problem over matrix functions into an equivalent LMI problem, so
that some available LMI solver can be used. In our approach, the convexity checker
provides a region G which, if convex, guarantees reliable behavior of our NCSDP
solver and that a solution is a global optimum on G.

1.6. Matrix unknowns. The advantage of dealing with matrices as single let-
ters is that one letter z can stand for a matrix Z with n2 commuting variables. In
typical engineering situations, most problems have few matrix unknowns, often two
or three, and few (not exceedingly complicated) constraints (usually fewer than 10).
This contrasts with treating matrices in terms of their entries where one often has
several thousand variables. A disadvantage is that matrix multiplication is not com-
mutative and so we must develop computer tools for performing algebraic operations
on noncommuting variables. The major focus of this research is how to use the matrix
structure of the unknowns to advantage, and this will come out as the article unfolds.
Our algorithms, including the NCSDP solver, combine symbolic and numerical ma-
nipulations and lead to several very natural open questions.
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1.7. Software availability. The user interface of our NCSDP code is not pol-
ished and we do not yet distribute NCSDP. However, the convexity checker algorithm
is well documented and available through NCAlgebra, a noncommutative algebra
package that runs under Mathematica. This package provides a large number of use-
ful commands and functions for symbolic computation. It can be downloaded from
http://math.ucsd.edu/∼ncalg.

2. Nomenclature. We use uppercase letters (e.g., X) for matrices and lower-
case letters (e.g., x) for symbolic variables. The notation Q,H stands for the sym-
bolic gradient and Hessian maps, and the notation Q,H is used to indicate we have
substituted matrices of compatible size for the symbolic variables in Q,H. The n-
dimensional Euclidean space is denoted by R

n. The space of n × m real matrices
is denoted by R

n×m. The space of n × n symmetric matrices with real entries is
denoted by S

n. Let (Sn)g stand for the direct product Sn × Sn × · · · × Sn of order g.
The expression A ≥ B (A > B) means that A−B is a positive semidefinite (positive
definite) matrix. The associated spaces are respectively denoted by S+ and S++. The
usual Kronecker product of two matrices A and B is denoted by A⊗B and the trace
of A is Tr {A}. To define the vec operation, let us associate the vector vec(X) ∈ R

nm

with each matrix X ∈ R
n×m by listing the entries of the columns, column by column,

that is, vec(X) = [X11, X21, . . . , Xn1, X12, . . . , Xn2, . . . , X1m, . . . , Xnm]
T
.

3. Introducing our approach by an example. Suppose one is given two ma-
trices1 A and S, where S is symmetric, and one needs to solve the following problem:

(P1) max {Tr {X} : (X,Y,A, S) ∈ closure(S)} ,

where the domain S is given by

S =
{

(X,Y,A, S) ∈ V : F (X,Y,A, S) < 0, X2 < I, Y > 0, Y 2 < I
}

with V = S
n × S

n × R
n×n × S

n and

F (X,Y,A, S) := −AX(XATY −1AX − Y )−1XAT

− (Y −1(XATY −1AXY −1 − Y )Y −1)−1 −AX(Y −1(XATY −1AX − Y ))−1

− ((XATY −1AX − Y )Y −1)−1XAT + XATY −1AX − S.

To solve this problem, we apply our two-step methodology:
1. Determine a domain G on which the above problem is convex.
2. Solve numerically the optimization problem on G using NCSDP.

3.1. Step 1. Determining a region of convexity in problem (P1). This
step is purely symbolic and we do not use the particular numerical values of A and
S given in (3.1). We describe this step using standard TEX notation rather than
displaying actual computer runs.

The problem (P1) is to maximize Tr {X} over the domain

S := S1 ∩ S2

1Ultimately, in our example we shall take the matrices A and S to be

A =

[
1 −1
0 2

]
, S =

[
2 0
0 1

]
.(3.1)

The matrices are chosen small to save space.
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with

S1 :=
{
(X,Y,A, S) ∈ V : Y 2 < I, X2 < I

}
and

S2 :=
{
(X,Y,A, S) ∈ V : F (X,Y,A, S) < 0, Y > 0

}
.

This optimization problem will be convex whenever S is a convex domain, since
the objective function Tr {X} is linear in X. It is clear that S1 is convex; we wish to
show that S2 is convex so that we can conclude that S is convex. For this purpose,
we use our symbolic package to find the region where F (X,Y,A, S) is convex with
respect to X,Y in the domain S2.

Since matrix multiplication is not commutative, we must treat the matrices X, Y ,
A, and S symbolically as noncommutative variables. Thus, we load the Mathematica
package NCAlgebra, which contains our convexity checker software. We type in the
function F just as we see it in the definition of F and apply the convexity checker al-
gorithm NCConvexityRegion[] (see section 5) using its default set of permutations.
One of the outputs is the list

{2y−1, −2(xaT y−1ax− y)−1, 2y−1, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

The interpretation of the output is that F (X,Y,A, S) will be a convex function on
the region consisting of all matrices that make each nonzero entry in the output list
a positive definite expression, which, in this case, is the region given by

2Y −1 > 0 and − 2(XATY −1AX − Y )−1 > 0.

Thus, we conclude from this output that F (X,Y,A, S) is simultaneously convex in X
and Y whenever A, S, X, and Y are matrices of compatible dimension in the region
GS2

given by

(3.2) GS2 := {(X,Y,A, S) ∈ V : Y > 0, XATY −1AX < Y }.

To find if the above region GS2 is itself simultaneously convex in X and Y , we run
the convexity checker once more on the function G(X,Y,A) := XATY −1AX − Y ,

NCConvexityRegion[xaT y−1ax− y, {x, y}].
This command outputs the list {2y−1, 0}. Thus, the region G is convex on matrices
Y satisfying Y > 0. Thus, the region where the function G is convex consists of
matrices Y satisfying Y > 0; consequently the region GS2 in (3.2) is convex. Thus, we
can conclude that the optimization problem (P1) is convex inside the convex region

G := {(X,Y,A, S) ∈ V : (X,Y,A, S) ∈ S ∩ GS2}.

Equivalently

G := {(X,Y,A, S) ∈ V : F (X,Y,A, S) < 0, XATY −1AX < Y,

Y > 0, Y 2 < I, X2 < I}.

Note that the region of convexity G for the optimization problem (P1) was deter-
mined without considering any specific numerical values for A and S. Thus, the set
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of inequalities G characterizes a convex region for any arbitrary choice of two n × n
matrices A and symmetric S no matter what value n is. Whether G is the biggest
such region we have not said. In fact, the algorithm addresses this, requiring an in-
terpretation, for which we refer to [5], or see section 5 for an abbreviated account.
For the example above this gives that the largest subregion of matrix tuples (of large
enough size) on which the Hessian is positive is the closure of G.

3.2. Step 2. Invoking the NCSDP solver. Until this point, all calculations
were symbolic. Now, we make the particular numerical choice for the matrices A, S
given in (3.1). The optimization problem (P1) can now be solved with the NCSDP
solver reliably and globally on the convex region of 2× 2 matrices satisfying the con-
straints G. We emphasize that this amounts to adding the following convex constraint

(3.3) XATY −1AX < Y

to the constraints defining S. Thus, we are not solving exactly the original problem,
and the user must decide if this constraint meets his or her engineering needs. Beware
that declining to add the constraint (3.3) subjects one to the difficulties found in
nonconvex situations, but one can still run numerical optimization routines.

To use NCSDP, we define the objective for this optimization problem as

obj := −Tr {X} ,

subject to the constraint Gi < 0, where

G1 := F (X,Y,A, S), G2 := XATY −1AX − Y,

G3 := −Y, G4 := Y Y − I, G5 := XX − I,

with

A =

[
1 −1
0 2

]
, S =

[
2 0
0 1

]
.

Using this input, namely, (obj, {G1, G2, G3, G4, G5}, {X,Y }), we run NCSDP.
The solver finds the global optimizers over G to be

X∗ =

[
0.3421 0.0263
0.0263 0.0788

]
, Y ∗ =

[
0.8107 0.0016
0.0016 0.4255

]
.

The optimal cost is therefore Tr {−X∗} = −0.4208. We repeat that X∗, Y ∗ is a global
optimum over the region

S ∩ {(X,Y,A, S) ∈ S
2×2 : XATY −1AX < Y, Y > 0}

with the matrices A and S as given above.
We emphasize there is no need to know much Mathematica to use NCSDP, unless

one desires to use the convexity checker, and related symbolic algorithms, as we did
in this example.

3.3. Scope of our methods. The method we shall describe here applies to
problems of the form

min
Xi

{Tr {X1} : Xi ∈ closure(G)} ,
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where the feasibility region G is given by

G =
{

(Xi, Aj) : F1(Xi, Aj) > 0, . . . , F�(Xi, Aj) > 0
}

with F1(Xi, Aj), . . . , F�(Xi, Aj) rational expressions of noncommutative variables Aj ,
Xi, XT

i . We assume the closure of the set G is compact. We can take some of
the variables to be formally symmetric, like X7 = XT

7 . The methods also apply to
the feasibility problem, namely, determining if G is empty. We expect that (once
refined) such methods will have advantages when the Fk are not highly complicated
expressions.

An example of a problem we do not treat here is

min Tr {X} subject to Tr
{
X2
}
≤ 1.

However, we think our methods extend to such situations.
Space and expository considerations forced us to consider a single function F (X)

of a single symmetric variable X = XT . The extension to the multivariate case stated
above, found in [4], follows similar ideas, but it is too long to present here.

3.4. Comparing to the LMI approach. The optimization problem (P1) was
actually selected to correspond to an LMI problem, so that we could compare ap-
proaches. There is not enough space to describe this in detail. (The corresponding
LMI system has dimension 4 × 4.) We found that our approach produced exactly
what was obtained using the LMI. Indeed our “extra condition” XATY −1AX < Y
was a necessary condition for the LMI to be positive definite. Thus, from the LMI
point of view, it is an essential constraint.

Since transformations via Schur complements can lead to an LMI representation
with large constraint block matrices, the NCSDP solver has the potential to reduce
the optimization time significantly compared to primal-dual solvers (see section 9).

3.5. Comparing to optimization over functions of commutative vari-
ables. If one has a complicated polynomial or rational function F , then there are
typically many isolated regions on which the Hessian of F is positive definite. In
our terminology, there are many “regions of convexity” for F . Thus, our technique
requires selecting those convexity regions of interest and finding optima on them.

To those whose experience is with classical rational optimization, this seems odd,
because there are many regions of convexity for F . However, our motivation comes
from systems engineering problems, where we reemphasize that the number of ma-
trix unknowns is small and that the rational functions are not terribly complicated;
consequently F has a few connected regions of convexity. Moreover, the inequality
constraints in a problem (e.g., Y > 0, X2 < I) often select one convexity region.

4. Background on NC rational functions and convexity.

4.1. NC polynomials. We work with noncommutative (NC) polynomials with
real numbers as coefficients in variables x = {x1, . . . xg}. They cause little confusion,
so a few examples suffice for an introduction:

p(x) = x1x2x1 + x1x2 + x2x1, xT
1 = x1, xT

2 = x2,

where the variables xj are formally symmetric. In this next expression

p(x) = xT
1 x2x1 + xT

1 x2 + x2x1, xT
2 = x2,
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the variable x2 is formally symmetric but x1 is not. Often, the term indeterminant is
used instead of the term variable.

An NC polynomial p is symmetric provided that it is formally symmetric with
respect to the involution T . Often, we shall substitute n × n matrices X1, . . . , Xg

into p for the variables x1, . . . , xg. For a symmetric p, if the xj are designated as
symmetric variables, then the matrices Xj must be taken to be symmetric, and the
resulting matrix p(X1, . . . , Xg) is symmetric. The variables xj which are not declared
symmetric, if substituted by the matrix Xj , also result in the variables xT

j being

substituted by XT
j .

4.2. NC rational functions. We shall discuss the notion of an NC rational
function in terms of rational expressions. There is a technicality, “analytic at 0,”
which we include, since it makes formal definitions simpler. Casual readers can ignore
it, since assuming analyticity elsewhere suffices.

An NC rational expression analytic at 0 is defined recursively. NC polynomials
are NC rational expressions as are all sums and products of NC rational expressions.
If r is a NC rational expression and r(0) �= 0, then the inverse of r is a rational
expression.

The notion of the formal domain of a rational expression r, denoted Fr,formal,
very roughly speaking, is

Fr,formal := {X : r(X) is defined (is not infinite)} .

More precisely, the formal domain and the evaluation r(X) of the rational expression
at a tuple X ∈ (Sn)g

⋂
Fr,formal are both defined recursively.2

The following example illustrates it conveniently.
Example 4.1. Let the symmetric NC rational expressions r(x) be given by

r(x1, x2) = (1 + x1 − (3 + x2)
−1

)−1

with x1 = xT
1 and x2 = xT

2 . The domain Fr,formal is⋃
n>0

{
X1, X2 ∈ Sn : I + X1 − (3I + X2)

−1
and 3I + X2 are invertible

}
.

A difficulty is two different expressions, such as

r1 = x1(1 − x2x1)
−1 and r2 = (1 − x1x2)

−1x1,

that can be converted into each other with algebraic manipulation. Thus they repre-
sent the same function and one needs to specify an equivalence relation on rational
expressions to arrive at what are typically called NC rational functions. (This is
standard and simple for commutative (ordinary) rational functions.) There are many
alternate ways to describe NC rational functions and they go back 50 years or so in
the algebra literature; cf. [17]. For engineering purposes, one need not be too con-
cerned, since what happens is that two expressions r1 and r2 are equivalent whenever
the usual manipulations one is accustomed to with matrix expressions convert r1 to
r2. We say more on this in section 4.3.

2The formal domain of a polynomial p is all of (Sn)g and p(X) is defined as before. The formal
domain of sums and products of rational expressions is the intersection of their respective formal
domains. If r is an invertible rational expression analytic at 0 and r(X) is invertible, then X is in
the formal domain of r−1.
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For r a rational function, that is, an “equivalence class of rational expressions r,”
we define its domain by

Fr :=
⋃

{r represents r}
Fr,formal.

Henceforth we do not distinguish between rational functions r and rational expressions
r, since this causes no confusion.

4.3. Partial fraction expansion of an NC rational. A computer algebra
package must have a way to put functions into a canonical form. For example, if two
rational expressions r1 and r2 represent the same rational function, then the canonical
form of r1−r2 would be 0. In NCAlgebra we have the command NCSimplifyRational,
which in principle, when applied to a rational expression r, outputs what one might
think of as a noncommutative partial fraction expansion of r; in practice, our com-
mand gives the true canonical form on a broad class of NC rational expressions but
not all, since doing all of them is an infinite process. The theory behind producing
this kind of canonical form is found in [11] and [24]. The idea is to generate what is
called a Gröbner basis (GB) from the defining equations for inverses and store key
elements of the GB as replacement rules in NCSimplifyRational. This is well suited
to systems whose input operators B are left invertible, output operators C are right
invertible, and state operators are generically invertible. Indeed they naturally lie in
what is called a path algebra. It is not hard (for a GB expert) to prove that GB
production respects the path algebra structure; thus, for example, the right inverse
of B will never occur. See [10] for an extensive treatment of GBs in a path algebra.

4.4. Symbolic differentiation of noncommutative functions. Since our
goal is to use symbolic computation to determine the gradient and the Hessian of
functions in our optimization problems and to preserve the matrix structure of the
unknowns, we need the notion of derivatives of function of variables which are symbolic
noncommutative elements.

Noncommutative rational functions of x are polynomials in x and in inverses of
polynomials in x. An example of a symmetric noncommutative function is

(4.1) F (a, b, x) = ax + xaT − 3

4
xbbTx, x = xT .

It is also assumed there is an involution on these rational functions which is denoted
by the superscript T and which will play the role of transpose later when we substitute
matrices for the indeterminates.

The first directional derivative of a noncommutative rational function F (x) with
respect to x in the direction δx is defined in the usual way

DF (x)[δx] := lim
t→0

1

t
(F (x + tδx) − F (x)) =

d

dt
F (x + tδx)

∣∣∣∣
t=0

.

For example, with F in (4.1),

DF (x)[δx] = aδx + δxa
T − 3

4
δxbb

Tx− 3

4
xbbT δx,

and if p(x) = x4,

Dp(x)[δx] = δxxxx + xδxxx + xxδxx + xxxδx.
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It is easy to check that derivatives of symmetric noncommutative rational func-
tions always have the form

(4.2) DF (x)[δx] = sym

{
k∑

i=1

aiδxbi

}
.

The sym operator is defined as sym {M} = M + MT .
The second directional derivative of a noncommutative rational function F (x)

with respect to x in the direction δx is defined by

D2F (x) [δx, δx] =
d2

dt2
F (x + tδx)

∣∣∣∣∣
t=0

.

For example, if p(x) = x4, then

D2p(x) [δx, δx] = 2(δxδxxx + δxxδxx + δxxxδx + xδxδxx + xδxxδx + xxδxδx).

One can easily show that the second directional derivative of a symmetric non-
commutative rational functions has the form

(4.3) D2F (x) [δx, δx] = sym

{
w1∑
j=1

mjδxnjδxtj

+

w2∑
j=1+w1

mjδx
Tnjδxtj +

w3∑
j=1+w2

mjδxnjδx
T tj

}
.

For r(x) given by r(x1, x2) = (1 + x1 − (3 + x2)
−1

)−1, we have

Dr(x)[δx1 ] = −(1 + x1 − (3 + x2)
−1

)−1δx1(1 + x1 − (3 + x2)
−1

)−1

and

D2r(x) [δx1 , δx1 ] = 2(1 + x1 − (3 + x2)
−1

)−1 · · ·
δx1(1 + x1 − (3 + x2)

−1
)−1δx1(1 + x1 − (3 + x2)

−1
)−1.

4.4.1. Symbolic NC differentiator algorithm. Derivatives of rational ex-
pressions can be defined recursively from the following rules:

1. If r(x) is a polynomial, use the standard formula.
2. The product rule is, if r(x) = r1(x)r2(x), then Dr(x)[δx] = Dr1(x)[δx]r2(x)+

r1(x)Dr2(x)[δx].
3. The sum rule is, if r(x) = r1(x) + r2(x), then Dr(x)[δx] = Dr1(x)[δx] +

Dr2(x)[δx].
4. If r(x) is the inverse r(x) = f−1(x) of an NC rational expression satisfying

f(0) �= 0, then Dr(x)[δx] := −f−1(x)Df(x)[δx]f−1(x).
Our differentiation algorithm applies these rules (in a natural order) to an NC

rational expression r(x) and gives a new NC rational expression Dr(x)[δx], the di-
rectional derivative of the rational expression r(x) in direction δx. Similarly, there
are the natural formulas for the second directional derivative D2r(x) [δx, δx], for sums
products and inverses. Our algorithm uses these recursively to compute our symbolic
Hessian of r(x).
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4.5. Matrix convex functions. It will be shown that the definition just pre-
sented for the Hessian of a symmetric noncommutative rational function F is the key
to determine the region of convexity for F . Therefore, it is the main ingredient of
our NCConvexityRegion algorithm. There are several (almost equivalent) notions of
noncommutative convexity; thus we define matrix convex functions as it is the defini-
tion used throughout the paper. For formal definitions, a detailed presentation, and
an substantial theory behind the algorithm, see [5].

Let us suppose that F is the symmetric noncommutative rational function to be
analyzed. Say F is a function of the noncommutative variables x1, . . . , xk. Then, the
function F is said to be matrix convex with respect to the variables x1, . . . , xk on a
certain domain G provided its Hessian, denoted by D2F (X1, . . . , Xk)[δX

2
1, . . . , δX

2
k],

is a positive semidefinite matrix for all X1, . . . , Xk in3 G and all δX1, . . . , δXk.
It is known (cf. [5]) that if G is a convex set, then this definition is equivalent to

the usual notion of convexity, the geometrically matrix convex functions, which states
that

F (αX + (1 − α)Y ) ≤ αF (X) + (1 − α)F (Y )

with X := {X1, . . . , Xk} and Y := {Y1, . . . , Yk} tuples of matrices of compatible
dimensions, and 0 ≤ α ≤ 1 a scalar. Of course, G might have separate components;
then one often can focus on the component of primary interest with convexity on that
component alone.

5. How the convexity checker algorithm works. With these notions of
convexity, we now briefly introduce the algorithm underlying the command

NCConvexityRegion[F , {x}]

that provides a region G on which F (X) is matrix convex. The main steps of the
algorithm are as follows:

1. The second directional derivative with respect to x1, . . . , xk, called the Hes-
sian D2F [δx, δx] of the function F , is computed.

2. As the Hessian is always a quadratic function of the δx directions, it can be
associated with a symmetric matrix MD2F [δx,δx] with entries which are NC
rational functions of x but not δx.

3. The noncommutative LDLT factorization is applied to the coefficient matrix
MD2F [δx,δx].

4. And finally specifying positive definiteness of the resulting diagonal matrix
D(x1, . . . , xk) gives inequalities describing a region G of variables on which
F is matrix convex.

5. If a linear independence condition which is usually true holds and if the region
G is nonempty for matrices of large enough size, then the closure of G is the
largest domain on which D2F [δx, δx] is positive semidefinite. (See [5] for
details on this rather complicated fact.)

Our implementation assumes that each pivot in the LDLT decomposition is in-
vertible. Possibly the most informative thing that could be done briefly is to give a
simple example, presented in [5].

Example 5.1. Define the function F (x) by

F (x) = gTxTaxg + xT bx + gTxT cx + xT cTxg,

where b = bT and a = aT .

3More precisely, for all X in the set G that intersect the domain of the rational function F .
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1. The Hessian of F (x) is given by

D2F (X) [δx, δx] = 2(δx
T bδx + δx

T cT δxG + gT δx
Taδxg + gT δx

T cδx).

2. Equivalently, this quadratic expression takes the form

D2F (X) [δx, δx] = V [δx]TMD2FV [δx] = 2(δx
T , gT δx

T )

(
b cT

c a

)(
δx
δxg

)
.

3. The LDLT decomposition with no permutation applied to MD2F is(
1 0

cb−1 1

)(
b 0
0 a− cb−1cT

)(
1 b−1cT

0 1

)
,

provided that b is invertible.4

4. Therefore, when b is invertible, sufficient conditions for the Hessian to be
positive semidefinite are

b > 0 and a− cb−1cT > 0.

5. If the Hessian is “positive,” then for large enough dimension, a, b, c are in the
closure of the set described in step 4.

A finer property of our algorithm (and implementation) is that it includes the
possibility of permutations. Thus, if we know that a (instead of b) in the example
above is invertible, then a permutation can be applied before applying the LDLT

decomposition. This makes NCConvexityRegion[] somewhat delicate. In practice,
the runs will finish with some choices of permutation and not with others. Also, the
expressions that appear in the outputs from successful runs using different permuta-
tions can be different; however, the theory behind NCConvexityRegion tells us that
the sets they describe are all the same.

Example 5.2. Let p(x) be given by p(x) = aTx2b + bTx2a with x = xT . Its
Hessian is aT δx

2b + bT δx
2a. Represent this as vTMv with

vT :=
(
aT δx bT δx

)
and M =

(
0 1
1 0

)
,

whose eigenvalues are 1 and −1. Thus, we conclude from steps 4 and 5 that (for large
enough n) there is no set G of matrices a and b, open in the set of pairs of n × n
matrices, on which the Hessian is positive definite.

A related example is p(x) = aTx2a+ aTx2a. Its Hessian is aT δx
2a+ aT δx

2a; the
representation above still works with vT := (aT δx, a

T δx). However, the linear indepen-
dence condition of step 4 on vT := (aT δx, a

T δx) does not hold, that is, the condition
aT δx and aT δx are linearly independent fails, and thus no definitive conclusion is pos-
sible. Another (more natural) representation is aT δx

2a + aT δx
2a = 2aT δx1δxa, that

is, M is the 1 × 1 matrix 1. Thus step 4 implies, the Hessian of p(x) is everywhere
positive; note that in this case, linear independence holds. NCConvexityRegion does
the later not the former calculation.

Our convexity region algorithm was new with [5], where it is described in detail,
together with the proofs of its properties. The guarantee it produces for the nonnega-
tivity of the NC Hessian (as in step 4) is straightforward to prove, while the converse
(as in step 5) is quite surprising and not at all easy to prove.

4The list returned by NCConvexityRegion is {b, a− cb−1cT }.
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5.1. Noncommutativity is essential. A great advantage of our framework
is that treating matrices as single letters is likely the only practical necessary and
sufficient approach available for checking convexity of rational functions on matrices
of large dimension. For a commutative rational function F , one might imagine a
Parrilo type of sum of squares algorithm [22], which could affirm positivity of the
Hessian of F , and thus convexity of F . Unfortunately, it would be practical with
only a few dozen variables. If the unknown X and Y were symmetric matrices on
even a 10-dimensional state-space, the entrywise representation would give about 100
commuting variables. This is prohibitive. On the other hand, our convexity checking
method is insensitive to the dimension of the state-space.

6. Convex optimization over matrix functions. In this paper, the presen-
tation of the numerical NCSDP optimization solver for matrix functions is limited
to the single variable case. The extension to the multivariate case, found in [4], fol-
lows similar ideas, but it is too long to present here. This solver is based on an
implementation of the method of centers.

There are in the literature few papers on solving nonlinear matrix inequalities.
In [15], the authors presented and analyzed a numerical interior point trust region
algorithm that can be used for solving a class of nonlinear (nonconvex) semidefinite
programming problem. For MI problems that concern the minimization of the largest
eigenvalue of a matrix (this is a convex but highly nonsmooth problem), the work by
[21, 16] is a good source. See [1, 26, 6, 27, 28, 29] for general SDP problems and [3]
for a comprehensive introduction to convex optimization.

The main distinctions between these approaches and ours is that our method
focus on unknowns which themselves are treated as matrices. In our research, we
deal with the entire matrix structure instead of dealing with the individual entries
of the matrix unknowns. Also, the user does not need to calculate first and second
derivatives by hand, since this is done automatically in our method.

The outline of our method is as follows. We compute the first and second deriva-
tives of a potential function noncommutatively (symbolically) in a way that keeps the
matrix structure and does not split up the matrices (see section 4.4). This step pro-
vides the Hessian map H(δx) and the gradient map Q. It is this step whose efficiency
is improved by our MinimumSylvesterIndex algorithm for symbolically obtaining an
efficient form for H(δx) (this is described in section 8). After this, our algorithm
turns numerical (by substituting matrices for the indeterminate that appears in the
expressions for H(δx) and Q) and the code aims to solve the respective numerical
linear system of equations H(δX) = Q in the direction δX . We find that the numer-
ical linear subproblem has an elegant form, and it is an interesting open question
how to fully exploit this form. We numerically solve this linear system for δX in a
conventional way. The method successively iterates, at the numerical level, until the
algorithm converges to an optimal solution.

As described above, one needs to compute derivatives of an auxiliary potential
function. The formula for this potential function depends on which member of the
family of penalty/barrier methods one wishes to adhere to. The approach we have
selected is known as the analytic method of centers. Before describing this method in
section 6.2, we characterize the optimization problem we are interested in section 6.1.

6.1. Constrained optimization problem. Throughout the paper, we shall be
primarily concerned with the convex optimization problem

fopt = min {Tr {X} : X ∈ closure(G)}(COP)
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with the feasibility domain G given by

G =
{
X ∈ V : F (X) > 0

}
,

where we assume the closure of G is compact, the set V is a subspace of R
p×q, and

F : V → S
n is a concave function. This type of problem incorporates the eigenvalue

minimization problem as a particular case.

6.2. Review of the method of centers. The idea behind the method of cen-
ters ([2, 19] and references therein) is to replace the above constrained problem by a
sequence of unconstrained minimization problems whose solutions eventually tend to
the set of optimal solutions of (COP). This occurs in the context of interior penalty
methods. It follows therefore, that under certain hypotheses, the original problem
(COP) can be approximated by a sequence of unconstrained convex optimization
problems of the form

(UOP) X∗(γ) = argmin {φγ(X) : X ∈ Gγ}

with the auxiliary potential function φγ : Gγ → R given by

φγ(X) = ζ log (1/(γ − Tr {X})) − log detF (X),

where ζ is a scalar satisfying ζ ≥ 1 and Gγ is the domain given by

Gγ =
{
X ∈ G : Tr {X} < γ

}
.

The decrease of the parameter γ has to be done in such a way that the method
maintains feasibility at each iteration and that the sequence {γk} is guaranteed to
converge to fopt (the minimum values of the objective function). The formula for
updating γ at some iteration k is given by

(6.1) γk+1 = (1 − θ) Tr
{
Xk
}

+ θγk, 0 < θ < 1,

where Xk denotes X∗(γk). Under mild conditions, the solution X∗(γ) of (UOP)
approaches the set of optimal solutions of (COP) for an appropriate sequence of
decreasing centralization parameter γ (see [2, 7, 19]).

Using these facts, one possible algorithm based on the method of centers can be
described by the following algorithm.

Algorithm 6.1. Method of centers.

Fix θ such that 0 < θ < 1;
Choose X0 and γ0 such that X0 ∈ Gγ0 ;
k ← 0;
while not converged do

γk+1 ← (1 − θ) Tr
{
Xk
}

+ θγk;
Xk+1 ← argmin

{
φγk+1(Xk) : Xk ∈ Gγk+1

}
;

k ← k + 1;
end while

There are some important comments concerning this algorithm:
1. The bound γk+1 from (6.1), used in the determination of the analytic center of

the potential φγk+1(Xk), never produces infeasible starting points Xk, γk+1.
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2. It will be necessary to find feasible starting points X0 and γ0 to be used in
Algorithm 6.1. This is a feasibility problem that can be solved by the same
method of centers.

3. Evidently, the expensive part of the algorithm is the inner loop, the part that
computes the analytic center.

6.3. An algorithm to solve the inner loop. This section sketches briefly
a standard algorithm to solve the inner loop. The algorithm implemented in the
NCSDP code to find the analytic center

Xk+1 = argmin
{
φγ(Xk) : Xk ∈ Gγ

}
for fixed scalar γ is based on a conventional modified Newton’s method [19, 3, 20], as
follows:

while not converged do
Xk+1 ← Xk + σδX

k;
end while

where δX
k is the Newton direction (see section 7.1). The step length used in this

algorithm [19] is given by

σ =

{
1/(1 + τ) if τ > 1/4,
1 otherwise

for τ =
√
gTH−1g with g and H, respectively, the gradient and the Hessian of φγ(Xk).

The stopping criteria used in our experiments was, stop as soon as σ = 1. In practice
Newton’s method works better with a line search instead of the above fixed step
length. Certainly, we shall consider implementing a line search in a more elaborate
version of the code.

7. Solving for the analytic center. In sections 7.1, 7.2, and 7.3 we discuss
in depth the linear subproblem that provides the update direction δX , which is the
core of the modified Newton’s algorithm presented in section 6.3. Therefore, in these
sections we show how to exploit the matrix structure of the unknowns to find an
elegant formula for the linear subproblem.

7.1. Describing the main steps. The original convex optimization problem
(COP) has now been replaced by a sequence of unconstrained convex minimization
problems of the form (UOP) for a decreasing sequence of scalars {γk} provided by
formula (6.1). To find the update directions which lead toward the central path for
fixed values of γ, Newton’s method is applied by minimizing an approximation, the
second-order Taylor series expansion, of the potential function φγ(X). In a vague
sense, these procedures can be summarized as follows:

1. Compute symbolically the second-order Taylor expansion of the potential
function φγ(x + δx) in some direction δx

φγ(x) + Dφγ(x) [δx] +
1

2
D2φγ(x) [δx, δx] .

2. The Newton step δx
∗ must satisfy the necessary optimality conditions for the

following quadratic minimization problem:

min
δx

Dφγ(x) [δx] +
1

2
D2φγ(x) [δx, δx] .
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3. This first-order necessary optimality condition is algebraically5 given by

(7.1) 0 = D

[
Dφγ(x) [δx] +

1

2
D2φγ(x) [δx, δx]

] [
δv

]
for all symmetric δv.

Which will be shown (in Theorem 7.1) to be equivalently6 written as

(7.2) Tr
{
δv(H(δx) − Q)T + (H(δx) − Q)δv

T
}

= 0 for all symmetric δv.

4. Finally, find a Newton update δX
∗ satisfying (7.1) or (7.2) for all δv.

Section 7.2 concerns steps 1 through 3, which are performed symbolically. On the
other hand, step 4, presented in section 7.3, is completely numerical.

7.2. Obtaining the formulas for the linear subproblem. The main ingre-
dient of our approach is how we use symbolic computation to determine the algebraic
linear system of equations that provides the update direction δX toward the central
paths. At the outset of this work, it was not obvious that we could find a clean
symbolic formula for the linear subproblem which treated both known and unknown
matrices as a whole and did not break them into entries. Fortunately, this is possible,
as the next theorem shows.

Theorem 7.1. Let V be a subspace of R
p×q, and let the map F : V → S be

concave. Consider the unconstrained auxiliary potential function φγ : Gγ → R given
by

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log detF (X),

where ζ is a scalar satisfying ζ ≥ 1 and the feasibility domains G and Gγ are respec-
tively given by

G =
{
X ∈ V : F (X) > 0

}
and Gγ =

{
X ∈ G : Tr {X} < γ

}
,

where we assume the closure of G is compact. Then, the update direction δX
∗ toward

the central path for the above potential is the solution of the following symbolically7

computable algebraic linear equation:

(7.3) Tr
{
δv(H(δx) − Q)T + (H(δx) − Q)δv

T
}

= 0 for all δv ∈ V,

where H(δx) is linear as regarded as a function of δx. Moreover, Q and H(δx) are
given by

Q =

k∑
i=1

aTi F (x)−1bTi − 1

2
ζ (γ − Tr {x})−1

Id

5Assuming that all x belong to some space V, then δx, δv ∈ V. Cf. footnotes 6, 7.
6When we say Tr {x}, we mean that the operation Tr {} is to be performed after x has been

replaced by a matrix. Cf. footnote 7.
7When we say δv ∈ V, we mean that we will substitute matrices in V for the indeterminate δv .

The same is true for Tr {x}. Cf. footnote 6.
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and

H(δx) =

k∑
i=1

k∑
j=1

aTi F (x)−1ajδxbjF (x)−1bTi +

k∑
i=1

k∑
j=1

aTi F (x)−1bTj δ
T
x a

T
j F (x)−1bTi

− 1

2

w1∑
j=1

nT
j δ

T
x m

T
j F (x)−1tTj + mT

j F (x)−1tTj δ
T
x n

T
j

− 1

2

w2∑
j=1+w1

njδxtjF (x)−1mj + nT
j δxm

T
j F (x)−1tTj

− 1

2

w3∑
j=1+w2

tjF (x)−1mjδxnj + mT
j F (x)−1tTj δxn

T
j

+
1

2
ζ (γ − Tr {x})−2

Tr {δx} Id,

where the terms ai, bi, mi, ni, ti are obtained from the first and second directional
derivatives of F (x) as given by (4.2) and (4.3). The term Id stands for the symbolic
analogue of the identity matrix.

Proof. The theorem follows from manipulations of (7.1). For a detailed presen-
tation see [4].

The result of Theorem 7.1, the algebraic linear equation (7.3), can be further
specialized depending upon the structure of the underlying subspace V; in other words,
if there is or is not some restriction imposed on X. Specifying various structures for
the underlying subspace V is the subject of Corollary 7.2 which is the main result of
this section.

Corollary 7.2. Let V be a subspace of R
p×q and C be a convex domain in V.

Let the map F : C → S be concave. Consider the unconstrained auxiliary potential
function φγ : Gγ → R given by

φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log detF (X),

where ζ is a scalar satisfying ζ ≥ 1 and the feasibility domains G and Gγ are respec-
tively given by

G =
{
X ∈ C ⊂ V : F (X) > 0

}
and Gγ =

{
X ∈ G : Tr {X} < γ

}
.

Then, depending upon the structure of the underlying subspace V, the update direction
δx

∗ toward the central path for the above potential is the solution of one of the following
symbolically computable algebraic linear equations:

1. The subspace V equals R
p×q so that the unknown X can be any matrix in

R
p×q:

c1∑
i=1

aiδxbi +

c2∑
j=c1+1

ajδ
T
x bj + 
Tr {δx} = Q.

2. The subspace V equals S
p so that the unknown X is restricted to being sym-

metric:

c2∑
i=1

b
T
i δxa

T
i + aiδxbi + 
Tr {δx} = Q + QT .
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3. The unknown X is restricted to being a scalar multiple of the identity, that
is, X = σI, for some scalar σ:

Tr

{
c2∑
i=1

aibi + 
Tr {Id}
}
δσ = Tr {Q} , δx = δσId, δσ ∈ R.

For these expressions, Q is the gradient term given by

Q =

k∑
i=1

aTi F (x)−1bTi − 1

2
ζ (γ − Tr {x})−1

Id.

The term 
 is the cost term given by 
 = 1
2ζ(γ−Tr {x})−2Id. And, by an appropriate

relabeling, the terms ai and bi are obtained from the Hessian map H(δx) presented in
Theorem 7.1.

Proof. The corollary follows from Theorem 7.1 by expressing the linear sys-
tem of equations (7.3) considering the structure of the underlying subspace V. (See
[4].)

The above results provide the necessary conditions that the update δX must
satisfy in order to be a Newton direction toward the central path of the unconstrained
auxiliary potential function φγ(X).

We provide a tutorial example in appendix A to illustrate Theorem 7.1 and Corol-
lary 7.2 and to give an idea of how they are proved.

7.3. Solving the linear subproblem. The algebraic linear subproblem8 pro-
vided in Corollary 7.2 always has the form

(7.4)
N∑
i

aiδxbi + 
Tr {δx} = Q̄,

where the ai, bi, and Q̄ are rational functions of the known noncommutative vari-
ables given in the problem formulation and δx is the unknown variable (the update
direction). The notation ai, bi stands for symbolic Sylvester terms, and the notation
Ai,Bi will indicate we have substituted matrices of compatible size for the symbolic
variables in ai, bi.

The integer N has been called the Sylvester index in [14]. A key point is that
the same linear system can have several representations of the form (7.4), that is, the
representation of the Hessian map H(δx) in Theorem 7.1 is not unique. We will see
later in section 8 that there is a substantial advantage to obtaining a representation
with a small Sylvester index.

There are two main costs in treating the linear subproblem (7.4):

FE: evaluating the matrices ai, bi, and Q̄ at each iteration, that is, converting
them from symbols to numeric matrices whose entries are numbers is time-
consuming (see section 8);

NLS: solving numerically the resulting linear system for δX .

8(a) Depending upon the structure of the underlying subspace V, the term Q̄ will be either Q̄ = Q

or Q̄ = Q+QT . (b) The third case in Corollary 7.2 behaves in a similar way, so we do not go through
it.
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After the evaluation step FE has been performed, we rewrite the linear subprob-
lem (7.4) as

(7.5)

N∑
i

AiδXBi + 
Tr {δX} = Q,

indicating that the indeterminate have already been substituted by matrices of com-
patible dimension. Then, using the vec operation (see [12]), the matrix system (7.5)
can be transformed into the equivalent vector form

(7.6) Hv = g,

where H is the Hessian matrix given by

H =

N∑
i

BT
i ⊗Ai + vec(
) vec(I)T ,

where the vector g is given by g = vec(Q), and v is the vector of unknowns given by
v = vec(δX). The symbol ⊗ denotes the Kronecker product.

Therefore, the cost of numerically solving the linear subproblem can be split into
two distinct costs:

KP: applying Kronecker products to build the Hessian matrix H;
LS: numerically solving Hv = g for the unknown vector v.

The above “brute force” procedure does not take advantage of the particular
structure of H(δx). Of course, Lyapunov equations are very special cases for which
there are extremely fast algorithms (see [9, 14]). Naturally, an open question highly
motivated by this research is how one uses this special Sylvester structure to solve
efficiently (7.5).

Iterative methods are attractive for solving Sylvester-type linear equations. Re-
lated to this is [13] and references therein. However, in our paper, we do not investigate
numerical linear solvers special to Sylvester forms. It is a separate topic and our focus
was on our new noncommutative symbolic methodology. Consequently, we just used
our brute force Kronecker product approach since it is reliable. However, in order to
speed up the implementation of our linear solver, we plan a careful study of iterative
methods like conjugate gradient in a separate project.

8. Improving the evaluation time for the linear subproblem. In this
section, we illustrate by examples that for a system of linear equations, the Sylvester
form (7.4) is not unique. Moreover, we show that the Sylvester index has a great
influence on the evaluation cost given in Step FE of section 7.3.

Consider an expression in the Sylvester form

(8.1) H(δx) = aδxa
T + xT δxx + bδxb

T − aδxx− xT δxa
T + bδxa

T + aδxb
T .

The Sylvester index in this case is seven. This expression can be written in at least
two different ways, having the same number of terms. One possibility is

H(δx) = (a− xT )δx(a− xT )T + (a + b)δx(a + b)T − aδxa
T =

N=3∑
i=1

aiδxbi
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for ai and bi given by

a1 = (a− xT ), a2 = (a + b), a3 = −a,

b1 = (a− xT )T , b2 = (a + b)T , b3 = aT .

Another one is

H(δx) = (a + b− xT )δx(a + b− xT )T + bδxx + xT δxb
T =

N=3∑
i=1

aiδxbi

for ai and bi given by

a1 = (a + b− xT ), a2 = b, a3 = xT ,

b1 = (a + b− xT )T , b2 = x, b3 = bT .

In both cases, the Sylvester index is now three, going down by over one half. Thus,
for a given Hessian map H(δx), the Sylvester index is not unique. Moreover, the H(δx)
may have different representations for a specific Sylvester index (as illustrated above).
It is also easy to see that a significant reduction in the Sylvester index might happen
for an expression which contains a large number of Sylvester terms. Based on those
ideas, a few natural questions can be formulated:

1. Given an expression for the Hessian map H(δx), what is the minimum Syl-
vester index associated with this expression?

2. Is there a symbolic algorithm to compute a minimum Sylvester index repre-
sentation?

3. How many different expressions which achieve this minimal Sylvester index
are possible?

4. Does the evaluation time in Step FE vary substantially for small versus large
Sylvester index N?

This section addresses the first two questions. We describe preliminarily a symbolic
algorithm which is fast and which often reduces the Sylvester index N dramatically.
Later, we describe a more powerful (but slower) symbolic algorithm which gives the
minimal Sylvester index when the coefficients aj and bj are polynomials. For our
problems, the coefficients are not polynomials, but this algorithm applies with no re-
strictions. However, we can no longer guarantee that we obtain the minimal Sylvester
index.

As to question 4, we have found through examples (see section 8.3.1) that the
overall computational time spent on numerically solving an optimization problem
using our NCSDP code dramatically reduces when the Sylvester index of the Hessian
map H(δx) is reduced by one of these two algorithms. However, we should consider
the time consumed at the symbolic level by the algorithm itself. We found that the
first algorithm to be presented is faster than the second algorithm. (The second
provides the minimal Sylvester index).

8.1. A Sylvester index reducing algorithm. We now describe our first Syl-
vester index reducing algorithm, which is denoted by

NCCollectSylvester[exp, var].

The implementation used in our NCSDP optimization code is a command that se-
quentially applies two commands, called NCRightSylvester[] and NCLeftSylvester[],
to the expression. These two “sided” commands have analogous implementation,
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which uses a pattern match that collects similar terms on the right (respectively, on
the left) side of the expression. We now present the idea behind these commands.

Algorithm 8.1 (NCRightSylvester Algorithm).

1. Identify the terms in which the expression should be collected.

In the example given by expression (8.1), this term is δx.
2. Build a right list. This list contains the terms that multiplies δx from

the right side (including δx itself). For the expression (8.1), we would obtain

RightList = {δxaT , δxx, δxb
T }.

3. Build a CollectList. For each element inside RightList, we add together
all the terms that multiply this element from the left side. For our example
we obtain

CollectList = {(a + b− xT ), (xT − a), (a + b)}.

4. Combine the CollectList and the RightList. This gives the answer.
For our example it is

H(δx) = (a + b− xT )δxa
T + (xT − a)δxx + (a + b)δxb

T .

The above right-sided implementation of the collecting algorithm begins by build-
ing a list of multipliers from the right side of δx. Clearly, a similar implementation
can also be done by obtaining a left list of terms that multiplies δx from the left side,
instead of the right side. In this way, we can implement two collect commands that
differ only by the side in which the process of collecting begins; thus, we can have an
NCRightSylvester[] command (described above) and an NCLeftSylvester[] com-
mand. As already mentioned, our implementation encompasses these two commands
into a single command

NCCollectSylvester[exp, var]

:= NCRightSylvester[NCLeftSylvester[exp, vars], vars].

These algorithms, when applied to an expression in the Sylvester form, in practice
provide a large reduction on the Sylvester index. However, these algorithms do not
guarantee that one can obtain the lowest possible Sylvester index. On the other hand,
in the next section, we provide an algorithm which under some hypothesis provides
the lowest possible Sylvester index.

8.2. The minimum Sylvester index algorithm. Consider a function L(δ )
of a noncommutative variable δ in the Sylvester form

L(δ ) :=

N∑
j=1

aj δbj ,

with the terms aj and bj polynomials in noncommutative variables. The algorithm
proposed in this section has property that if the aj and bj are restricted to be polyno-
mials, then it always gives the lowest possible Sylvester index. This fact is presented
in Theorem 8.3. We now present the steps of the algorithm and give an example. For
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this purpose, consider the following expression:

(8.2) L(δ ) = (xb + axb)δ (−2axb + bxb) + (xb + axb)δ (xb− axb + bxb)

− (xb + axb)δ (xb− axb + 2xax) + (xb + axb)δ (xb− 2axb + bxb + xax)

+ (c− xb− bxb + xax)δ (−axb + xax) + (c + axb− bxb + xax)δ (xb + xax)

+ (c + xb + 2axb− bxb + xax)δ (2xb + bxb).

The Sylvester index associated with this expression is N = 7. Using our algorithm,
we will see that the minimum Sylvester index is N∗ = 2.

Algorithm 8.2 (MinimumSylvesterIndex Algorithm).

1. Identify the terms in which the expression should be collected.

In the example given by expression (8.2), this term is δ .
2. Build a right list. This list contains the terms that multiplies δ from the

right side in L(δ ). Denote this list by b. For our example, this list is

b = {(−2axb + bxb), (xb− axb + bxb), (xb− axb + 2xax),

(xb− 2axb + bxb + xax), (−axb + xax), (xb + xax), (2xb + bxb)}.

3. Build a monomial list. This list contains the terms that appears in b. This
list, denoted by m, contains only monomial that are linearly independents:

m = {xb, axb, bxb, xax}.

4. Find a matrix G such that b = Gm. For our example, G is given by

GT =

⎡⎢⎢⎣
1 0 1 1 0 1 2

−1 −2 −1 −2 −1 0 0
0 1 1 1 0 0 1
2 0 0 1 1 1 0

⎤⎥⎥⎦ .
5. Build a left list. This list contains the terms that multiplies δ from the

left side in L(δ ). Denote this list by a:

a = {(xb + axb), (xb + axb), (xb + axb), −(xb + axb),

(c− xb− bxb+ xax), (c+ axb− bxb+ xax), (c+ xb+ 2axb− bxb+ xax)}.

6. The expression L(δ ) can now be rewritten as

L(δ ) =

4∑
j=1

cj δmj

with c = GT a given by

c = {3(c + xb + 2axb− bxb + xax), (−c− 3xb− 4axb + bxb− xax),

(c + 4xb + 5axb− bxb + xax), 2(c− xb− bxb + xax)}.

7. Build a monomial list from c. For the above example:

m̄ = {c, xb, axb, bxb, xax}.
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8. Find a transformation matrix Ḡ such that c = Ḡm̄:

Ḡ =

⎡⎢⎢⎣
3 3 6 −3 3

−1 −3 −4 1 −1
1 4 5 −1 1
2 −2 0 −2 2

⎤⎥⎥⎦ .
9. Decompose matrix Ḡ as Ḡ = QR, with Q and R full rank matrices:

QT =
1

5

[
15 −5 5 10

3 −11 16 −18

]
, R =

1

5

[
5 4 9 −5 5

0 5 5 0 0

]
.

10. The minimal Sylvester index N∗ is the rank of Ḡ. Thus, the final ex-
pression is

(8.3) L(δ ) =
N∗∑
j

[Rm̄]j δ [QT
m]j .

For our example (8.2), the result is

L(δ ) =
1

5
(5 c + 4xb + 9 axb− 5 bxb + 5xax)δ (3xb− axb + bxb + 2xax)

+
1

5
(xb + axb)δ (3xb− 11 axb + 16 bxb− 18xax)

with the minimum Sylvester index guaranteed to be N∗ = 2.
The implementation of our MinimumSylvesterIndex[L(δ ), δ ] command is de-

scribed by these steps. When the original expression L(δ ) contains a large number
of Sylvester terms, the time spent on generating the matrix G in step 4 might be
long. However, we emphasize that the expression L(δ ) provided in step 6 can al-
ternatively be provided by NCRightSylvester[], which is significantly faster than
steps 1 through 6. In fact, this is how the MinimumSylvesterIndex command was
implemented.

Theorem 8.3. Provided that the aj and bj are polynomials, the lowest Sylvester
index for L(δ ) is given by N∗, which is the dimension of the span of cj for j =
1, . . . , db, i.e., the rank of Ḡ.

Proof. This theorem follows immediately from Lemmas 8.4 and 8.6.
Lemma 8.4. The representation (8.3) produced by the MinimumSylvesterIndex

algorithm has the property that the polynomials [Rm̄]1, . . . , [Rm̄]N∗ are linearly inde-
pendent and that the polynomials [QTm]1, . . . , [Q

Tm]N∗ are also linearly independent.
Proof. Since the vectors mj are linearly independent and Q has full rank, the

vectors [QTm]j for j = 1, . . . , N∗ are linearly independent. Similarly, since the vectors
m̄j are linearly independent and R has full rank, the vectors [Rm̄]j for j = 1, . . . , N∗

are linearly independent.
Definition 8.5. We call a dependence free Sylvester representation any Syl-

vester expression L(δ ) =
∑

aj δbj with aj linearly independent and bj also linearly
independent.

Lemma 8.6. Let L(δ ) and L̃(δ ) be Sylvester representations such that

L(δ ) :=

N∑
j=1

aj δbj =

Ñ∑
k=1

ãk δ b̃k =: L̃(δ ).
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If the polynomials aj are linearly independent, and if the polynomials bj are linearly

independent, then for each k = 1, . . . , Ñ we have

aj ∈ span {ãk}Ñ1 and bj ∈ span
{

b̃k

}Ñ
1
.

Consequently N ≤ Ñ , and if L̃(δ ) is also a dependence free Sylvester representation,

then their Sylvester indexes are the same, Ñ = N .
Proof. Let β denote the maximum of the degrees of all of the polynomials

aj , bj , ãk, b̃k for j = 1, . . . , N and k = 1, . . . , Ñ . Let P(y) denote the space of all
polynomials of degree less than or equal to β in y = {y1, . . . , yg}. Let P(y)δ denote
all polynomials in the variables {y1, y2, . . . , yg, δ} of the form p(y)δ for p ∈ P(y).
Since {bj} for j = 1, . . . , N is a linearly independent subset of the finite dimensional
vector space P(y), there is an inner product ( , ) defined on P(y) satisfying

(8.4) (bi, bj) =

{
0, i �= j,
1, i = j .

For each p ∈ P(y), let us define a map E : P(y) → P(y)δ for any Sylvester form by

E(L(δ ), p) :=

N∑
j=1

aj δ (bj , p) =

N∑
j=1

(bj , p)aj δ .

With this notation, for each � ≤ N we obtain

E(L(δ ), b�) =

N∑
j=1

aj δ (bj , b�) = a� δ .

Since L(δ ) = L̃(δ ) we have

E(L(δ ), b�) = E(L̃(δ ), b�) −→ a� δ =

Ñ∑
k=1

(b̃k, b�)ãk δ .

Thus, the polynomial a� is a linear combination of the polynomials ãk, i.e., a� ∈
span{ãk}. In a similar way, we can define an inner product (ai, aj) satisfying property

(8.4) and apply it to L(δ ) to obtain that b� ∈ span{b̃k}.
8.2.1. Rational coefficients. We have presented an algorithm which has the

property that if the aj and bj are polynomials, then it always gives the lowest possible
Sylvester index. However, in our optimization application the aj and bj may be
rational functions. Thus, we shall describe how one can extend the algorithm to
rational functions rather than polynomials.

The conceptual idea is to think of inverses of expressions as new variables, say, wj .
Then any rational expression is a polynomial in the original variables together with
the new letters wj . In this way, one can apply directly the Sylvester index minimizing
algorithm. As an example, suppose that L(δ ) is given by

(8.5) L(δ ) = x(1 − x)−1 δx− (1 − x)−1 δx + δx.

Using the change of variable

(8.6) w = (1 − x)−1
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this expression can be written as

L(δ ) = xwδx− wδx + δx.

Now, one can apply the MinimumSylvesterIndex command to obtain

L(δ ) = (xw − w + 1)δx.

In this way, the Sylvester index for L(δ ) was reduced to N = 1.
That is how the MinimumSylvesterIndex command is used in NCSDP. Unpleas-

antly, the algorithm did not take into account the “side relationships” that wj and
the other variables might satisfy, which for the above example is

(1 − x)−1 ≡ x(1 − x)−1 + 1

or in terms of w

xw − w + 1 = 0.

Consequently L(δ ) is identically zero. Thus, our algorithm when applied to rational
functions fails to produce a minimal Sylvester representation.

To some extent, we are not optimistic about finding a practical exact algorithm for
L(δ ) having rational coefficients, because noncommutative Gröbner basis algorithms
are very time-consuming. However, we are looking into more empirical methods. One
effective test for linear dependence is as follows. Suppose that

L(δ ) =
N∑
j=1

aj δbj

has already been reduced with the command MinimumSylvesterIndex. Then we re-
place the symbols appearing in the expressions for aj and for bj by matrices of large
dimensions generated randomly. In this way, we obtain random large matrices Aj

and Bj . After, we build numerically the matrices A and B as follows:

A=
[
vec(A1) vec(A2) · · · vec(AN )

]
,

B =
[
vec(B1) vec(B2) · · · vec(BN )

]
.

Naturally, N is the number of columns of A and B. Denoting by rA the rank of the
matrix A (respectively, rB for the rank of B), then the minimum Sylvester index for
L(δ ) will be min(rA, rB). If the Aj and Bj are polynomials, then we know that rA
and rB remains N . However, when the Aj and Bj are rational functions rather than
polynomial, this might not be the case, as described by the example (8.5).

An optimization problem will be presented in section 8.3.1 in which the Sylvester
index of the Hessian map is N = 1043. After applying the MinimumSylvesterIndex
command, the Sylvester index was reduced to N = 26. However, N = 26 is not the
lowest possible index for this Hessian map. When we apply the empirical procedure
just described, we found that rA = 22 and rB = 22. Therefore, we know that the
minimum Sylvester index is less than or equal to N = 22. An empirical algorithm
along these lines for actually computing the dependences is under investigation.

Remark 8.7. Another step is taken in order to improve the overall timing, and it is
not related to the idea of simplifying expressions by collecting terms, but it is valuable.
At the symbolic level we look for inverses of matrices which appear repeatedly inside
the symbolic expressions for the Hessian map and we replace each occurrence of an
inverse by a new variable. In this way, all numerical inverses are evaluated only once
at the beginning of the linear subproblem. This can considerably improve the overall
run times.
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8.3. Experiments with MinimumSylvesterIndex. The previous examples
were presented to illustrate methods for reducing the Sylvester index. Now, we present
numerical evidence validating the usefulness of these ideas. For this purpose, let us
consider the following eigenvalue minimization problem, whose numerical behavior is
to be presented in section 9:

inf λmax(CXCT )

subject to
(P2)

0 < X,

0 < G(X) := A3X + XAT
3 −XR−1

3 X + S3,

0 < F (X) := A1X + XAT
1 −XR−1

1 X + S1 − (AT
2 X + XA2)G(X)−1(AT

2 X + XA2)

with all the matrices having dimension n× n.
As already described, we need to compute symbolically the Hessian and the gradi-

ent of an auxiliary potential function. For the above example, this potential function
is given by the symbolic formula

φγ(x) = − log detx− log detF (x) − log detG(x) − log det(γId − cxcT ),

where Id stand for the symbolic analogue of the identity matrix and γ is a scalar
which is not relevant here. The expression φγ(x) is a function of the unknown x. If
the update direction is taken to be δx, the Hessian map H(δx) as a function of δx will
have a structure of the form

H(δx) =

N∑
i

aiδxbi,

where the ai and bi are noncommutative rational functions of the variables c, a1,
a2, a3, r1, r3, s1, s3, x. At this stage, one can apply the MinimumSylvesterIndex
command to reduce the Sylvester index N . The gradient map Q is obtained from the
first directional derivative of φγ(x) along the direction δx. Thus, for this symmetric
case, one obtains a “symbolic” system given by

(8.7) H(δx) = Q + QT .

The next step is to substitute for matrices of compatible dimensions the symbols
appearing in H(δx) and Q. Thus, the code becomes numerical, and to find numerically
the update direction δX , we must be able to solve the linear system of equations given
by

H(δX) = Q + QT .

Using the vec operation, the above system can be equivalently written as

(8.8) Hv = g,

where H =
∑N

i BT
i ⊗Ai, g = vec(Q + QT ), and v = vec(δX).

Therefore, in order to solve numerically the linear system given in (8.7), one needs
FE: to substitute matrices for the symbols appearing in H(δx) and Q;
KP: to evaluate the Hessian matrix H by applying N Kronecker products;
LS: to solve the system Hv = g for the update direction v.
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Table 8.1

Timing (seconds): formulas evaluation, Kronecker products, and linear solver.

SIZE 16 32 64

MSI CS UNT MSI CS UNT MSI CS UNT

FE 0.071 0.096 0.409 0.258 0.287 1.09 1.47 1.74 6.1

KP 0.039 0.061 1.341 0.603 0.974 21.47 9.74 15.71 344.3

LS 0.029 0.028 0.029 0.397 0.410 0.41 9.65 9.87 9.8

TOT 0.139 0.185 1.779 1.258 1.671 22.96 20.85 27.31 360.1

Ratio UNT / MSI UNT / MSI UNT / MSI

FE 5.8 4.2 4.1

KP 34.4 35.6 35.3

TOT 12.8 18.3 17.3

The first two steps, namely, FE (formula evaluations) and KP (Kronecker prod-
ucts), are the two main steps where reducing the Sylvester index N of the expression
for H(δx) can significantly affect the evaluation time. We do not show the formulas for
H(δx) and Q, since these expressions are quite large and would consume several pages.
What is important is the fact that the formula for H(δx) as computed originally, be-
fore applying any simplification rule, has N = 1014 Sylvester terms. However, after
applying the NCCollectSylvester command to the original expression, the Sylvester
index decreases to N = 43, and after applying our MinimumSylvesterIndex command
to the original expression, we obtain the index N = 26 for this Hessian.

8.3.1. Time saved by applying MinimumSylvesterIndex. To find out how
much time is actually saved at the numerical level, the NCSDP code is executed using
the collected formulas for H(δx) with N = 26 (MinimumSylvesterIndex command)
and with N = 43 (NCCollectSylvester command) and the not collected formula for
H(δx) with N = 1014. For this set of experiments, the size n of the matrices involved
assume the values n = 16, 32, 64. For each case, we execute the inner loop where
the linear system (8.8) is numerically solved 20 times. Thus, we measure the CPU
time per call (average over 20 iterations) spent on the above items, FE, KP, and LS
(linear solver). In this way, we can analyze how the time spent on formula evaluations
behaves as a function of the size of the matrices involved in the expressions, as well
as the Sylvester index N .

The results are presented in Table 8.1, where MSI stands for the Hessian simplified
by MinimumSylvesterIndex (the Sylvester index is N = 26), CS stands for the Hessian
simplified by NCCollectSylvester (the Sylvester index is N = 43), and UNT stands for
the untreated Hessian (the Sylvester index is N = 1014). In this table, the row labeled
Ratio is the ratio between the untreated column and the MSI column. The time spent
on solving the linear system, presented in the row labeled LS, is not affected by the
expression being or not being collected. SIZE stands for matrix size, and TOT for
the total time FE+KP+LS.

The results provided in Table 8.1 show that collecting terms in the expression
for the Hessian map H(δx) represents a huge saving, since the average time spent on
substituting matrices for the symbols that appear in the expressions for the ai and bi

when the expressions are not collected (UNT case) is approximately four to five times
longer than the time for the MSI collected case (row FE in Ratio). Moreover, col-
lecting the expressions significantly improved the time spent on evaluating Kronecker
products, as seen from row KP under Ratio, where this timing improved by a factor
ranging from 34.4 to 35.6.
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For matrices of dimension 16 and 32, the time per call spent (over 20 iterations)
on numerically solving the equation Hv = g for the unknown v was relatively small,
as seen from row LS. On the other hand, for matrices of dimension 64, the (LS) cost
becomes significantly large. To understand this fact better, suppose the dimension of
the matrices involved is chosen to be n = 64. Thus, the symmetric unknown matrix
X having size 64× 64 implies that the unknown vector v and the system to be solved
will have size approximately 642/2 = 2048.

Kronecker products are also extremely expensive, as seen from row KP for size 64.
In fact, if we did not have a theory for decreasing the Sylvester index, our approach
using Kronecker products would be intractable for matrices of large dimensions. If
one could solve the linear system of equations for δX in its original structured form
H(δX) = Q, without applying Kronecker products and keeping the dimension of the
linear system low, a huge saving on the numerical linear solver would probably be
attained. This is an open area which we hope members of the community will pursue.

8.4. Some more experiments using MinimumSylvesterIndex. Another
interesting experiment is to analyze how the Sylvester index behaves by applying our
MinimumSylvesterIndex command to a variety of matrix inequalities which appear in
control design. The example just presented, taken from section 9, has shown a great
improvement since the Sylvester index reduced from N = 1014 to N = 26. Now, we
present two more examples.

Example 8.8. For the standard Riccati inequality

AX + XAT −XRX + S > 0

the Hessian map H(δx) for the untreated case has a Sylvester index of N = 20,
while our MinimumSylvesterIndex algorithm applied to it provides a Sylvester index
of N = 4.

Example 8.9. Now, a more realistic example is used: a mixed H2/H∞ control
problem

inf Tr {W}
subject to

(P3)

0 < X,

0 < W − (C2X + D2uF )X−1(C2X + D2uF )T ,

0 > AX + XAT + BuF + FTBT
u + BwB

T
w

+
[
XCT

1 + FTDT
1u + BwD

T
1w

]
R−1
[
XCT

1 + FTDT
1u + BwD

T
1w

]T
with R = η2I −D1wD

T
1w > 0.

For the above control problem, there are three unknowns denoted by W = WT ,
X = XT , and F (not symmetric). Thus, the linear subproblem to be solved will have
dimension 3 × 3, and consequently each entry on this system will contain a Sylvester
operator. For instance, the (1,1) entry will be an expression of the form

N11∑
i

a
11
i δwb

11
i +

N̂11∑
i

â
11
i δw

T
b̂
11
i .

The (1,2) entry will have the form
∑N12

i a12
i δxb

12
i +
∑N̂12

i â12
i δTx b̂12

i . The (1,3) entry

will have the form
∑N13

i a13
i δfb13

i +
∑N̂13

i â13
i δTf b̂13

i . The (2,1) entry is the adjoint case



28 J. F. CAMINO, J. W. HELTON, AND R. E. SKELTON

Table 8.2

Sylvester index N and N̂ for the MSI Hessian H(δw, δx, δf ).

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 1 2 1 0 0 1

2 2 10 4 0 0 4

3 1 4 2 1 4 4

Table 8.3

Sylvester index N and N̂ for the UNT Hessian H(δw, δx, δf ).

Sylv. index Nij Sylv. index N̂ij

i,j 1 2 3 1 2 3

1 1 2 2 0 0 2

2 2 73 38 0 0 38

3 2 38 42 2 38 38

of the (1,2) entry. The (2,2) entry will have the form
∑N22

i a22
i δxb

22
i +
∑N̂22

i â22
i δTx b̂22

i

and so forth. It should be noticed that the Sylvester index N̂11, N̂12, N̂21, and N̂22

are zero, since the corresponding variables w and x are symmetric.
For the matrix inequalities given in problem (P3), the set of Sylvester indexes

N and N̂ for the Hessian map H(δw, δx, δf ) simplified by MinimumSylvesterIndex
(MSI case) and for the untreated Hessian (UNT case) are respectively presented in
Table 8.2 and Table 8.3.

In Tables 8.2 and 8.3, the variables x and f are associated with the entries

(i,j) ∈ {(2, 2) (2, 3) (3, 2) (3, 3)}

for each one of the subtables. If we only pay attention to the Sylvester index N , we
see that the submatrix associated with x and f for the

UNT case
73 38

38 42
reduces to only

10 4

4 2
in the MSI case.

Similarly, a large reduction is also obtained for the Sylvester index N̂ . Thus, for the
variables x and f , we found that a large reduction on the Sylvester index N and N̂
are obtained after applying our MinimumSylvesterIndex command. Naturally, this
will represent a considerable saving on the evaluation time for the numerical linear
solver.

It is also true that the process of simplifying rational functions, at the symbolic
level of Mathematica, can consume a considerable amount of time. However, this
computation is performed only once at the beginning of the run. This is in contrast
with the numerical part, where solving the linear system to provide the update direc-
tion takes place at each inner iteration (which occurs several times). Therefore, the
ability to collect factors in an expression (decreasing the Sylvester index) plays a very
important role.

9. Numerical experiment: Timing of NCSDP. In this section, our NCSDP
code is numerically compared to some available semidefinite programming solvers.
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Table 9.1

Total CPU time in seconds.

Matrix Size

8 16 32 64

SDPT3 2.59 12.94 163.77 3132.68

LMI-Lab 0.43 2.58 66.03 2124.54

SeDuMi 0.79 2.20 33.63 1254.30

NCSDP 7.73 12.57 81.40 1224.49

Table 9.2

CPU time per iteration in seconds.

Matrix Size

16 32 64

CPI IT CPI IT CPI IT

SDPT3 1.62 8 18.20 9 348.08 9

SeDuMi 0.20 11 2.59 13 89.59 14

NCSDP 0.60 21 4.28 19 72.03 17

For this purpose, the optimization problem to be used is the following eigenvalue
minimization problem (stated earlier in section 8.3.1):

inf λmax(CXCT )

subject to
(P2)

10−1I < X,

0 < G(X) := A3X + XAT
3 −XR−1

3 X + S3,

0 < F (X) := A1X + XAT
1 −XR−1

1 X + S1 − (AT
2 X + XA2)G(X)−1(AT

2 X + XA2).

The matrices C, A1, A2, and A3 belong to R
n×n, the invertible matrices R1, R3

belong to S
n
++ and the matrices S1, S3, and X belong to S

n. We do not present
the numerical values of those matrices since it would take considerable space. Note
that by Schur complement techniques problem (P2) can be equivalently restated as
an LMI problem.

The results of this experiment (shown in Table 9.1) show the overall CPU time
spent by the solvers SDPT3, LMI-Lab, SeDuMi, and NCSDP to solve the above
optimization problem (P2) within the required accuracy of 10−4 for the objective
value. The LMI-Lab toolbox (Version 1.0.8) is based on the projective method of
[8]. The SeDuMi solver (Version 1.02) from [25] implements the self-dual embedding
technique for optimization over self-dual homogeneous cones. The SDPT3 solver
(Version 3.0) from [28] implements an infeasible path-following algorithm that employs
a predictor-corrector method. The starting feasible points were the same for all the
solvers.

From Table 9.1, one sees that for matrices of size 64, the solvers SeDuMi and
NCSDP were the fastest code for the eigenvalue minimization problem (P2). The
CPU times per iteration (CPI) and number of (outer) iterations (IT) are presented
in Table 9.2. We believe that NCSDP might be significantly faster than SeDuMi for
matrices of dimensions larger than 64× 64. However, we did not run this experiment



30 J. F. CAMINO, J. W. HELTON, AND R. E. SKELTON

Table 9.3

Numerical behavior of NCSDP.

SIZE IT/NeNe FE KP LS g λmin(H) λmax(H)

8 25/94 2.32 0.07 0.14 1.14E + 04 6.74E + 03 2.59E + 10

16 21/75 3.05 2.88 2.16 8.94E + 03 1.62E + 03 2.41E + 10

32 19/69 8.24 41.9 26.7 7.38E + 03 1.14E + 03 2.24E + 10

64 17/61 43.4 595 580 5.84E + 03 9.81E + 02 2.76E + 10

since the overall elapsed time would be extremely long and because of the requirement
of large RAM memory availability. The computer used for our experiments was an
Intel Celeron at 2800 MHz CPU clock, 512MB of RAM, 1GB of swap, running Linux
(kernel 2.4.20-31.9), MATLAB Version 6.5.0 R13, Mathematica 4.0, and NCAlgebra
Version 3.7.

We believe our NCSDP code, even in its raw stage, has been competitive mainly
because it allows nonlinear matrix inequalities, so it avoids the increase in dimensions
when converting to LMIs using Schur complements. Also, we think that the techniques
in the paper allow the numerical Newton equations to be derived more efficiently.
However, we did not take advantage of the special structure of the linear subproblem
when solving it.

For these experiments, we installed the codes listed above using their default
installer. However, since these codes are for general SDP problems, where the input
data should be expressed in a “standard” SDP form, which is not the standard LMI
form (like the input from LMILab), we make use of the package LMILab Translator
(LMITrans) that translates from LMILab form to the SeDuMi and SDPT3 form.
The timing presented in Table 9.1 did not incorporate the (modest amount of) time
consumed by this interface.

We do not know if LMITrans does nearly the “optimal” conversion for each solver;
this adds uncertainty to the experiments. It might be the case that there exists an
optimal conversion for a particular solver, in this case, the solver would perform better
than for the default options used in LMITrans. However, we also used YALMIP as a
front-end for SeDuMi and SDPT3 at the suggestion of a referee after the paper was
complete. In a few tests, we found that it did not affect the timings significantly: the
timing was approximately the same as the timing obtained using LMITrans.

9.1. Numerical behavior of NCSDP. We now provide the numerical details
of the results from NCSDP presented in Table 9.1. The trade-off between the number
of inner iterations, NeNe, and the number of outer iterations, Iter (as seen from
Table 9.3), is a characteristic of Barrier methods, in particular, the method of centers
[2], and depends mainly on the centralization parameter θ, given in (6.1) from section
6.2. In practice, a smaller θ induces a higher number of inner iterations, NeNe. For
all the experiments, θ was set to θ = 0.2.

For matrices of small size, the most expensive part is the time spent on evaluating
the Sylvester terms ai, bi, and Q, presented in column FE. However, when the size
of the matrices increases above 8, the time spent on Kronecker products, column KP,
and the time spent on solving the linear system, column LS, begins to dominate.

In Table 9.3, the column g stands for the gradient, and columns λmin(H) and
λmax(H) stand, respectively, for the minimum and the maximum eigenvalues of the
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Hessian matrix H at the optimum. Those values show that the condition number of
the Hessian is large at the optimal solution. This ill-conditioning in the Hessian is a
well-known fact for classical barrier methods [30, 18], where it has been shown that
this behavior is highly influenced by the set of constraints that are or are not active
(binding) at the solution. However, it is not an immediate task to determine the set
of active constraints in the semidefinite programming framework.

9.2. Implementation speed-ups. At this stage, the numeric part of our NCSDP
code is “completely” implemented using MATLAB functions (not compiled). The
only compiled part of our code is the Kronecker product, since the MATLAB func-
tion kron.m was extremely slow for our needs. On the other hand, most of the other
solvers have their core subroutines written in either Fortran or C, which significantly
improve their overall performance.

To make the experiment transparent, the stopping criteria for the inner loop in
NCSDP is kept constant throughout all the iterations. We stop as soon as σ = 1
(see section 6.3). Changing dynamically this stopping criteria might also improve the
timing of the solver.

Although in this paper we have focused on convex optimization problems over
matrix inequalities, the extension of our numerical ideas to finding local solutions in
nonconvex situations is immediate; however, reliability has not been tested [4].

We reiterate that fast methods for solving numerical linear equations of Sylvester
form have not been investigated and are the main open question motivated by this
paper. A big advance here would translate directly into a big reduction in run times.

Appendix A. Illustrating our methodology by an example. In this sec-
tion we explain the ideas behind Theorem 7.1 and Corollary 7.2 through a simple
optimization problem. The extrapolation to a more general case is straightforward,
but it gives messy formulas. Let us consider the optimization problem

min {Tr {X} : X ∈ closure(G)}(A.1)

with F (X) := AX + XAT −XRX + Q, and the domain G given by

G = {X ∈ Sn : F (X) > 0} .

We assume (1) all matrices have dimension n × n; (2) the matrices X, R, Q are
symmetric; (3) the closure of the set G is compact.

A.1. Describing the central path. Let us define the unconstrained auxiliary
potential function φγ(X) as described in Theorem 7.1 as

(A.2) φγ(X) = ζ log
(
1/(γ − Tr {X})

)
− log detF (X).

The analytic center for the potential φγ(X) is the path given by

(A.3) X∗(γk) = argminφγk(X).

A.2. Solving for the analytic center. The above optimization problem (A.1)
has now been replaced by a sequence of unconstrained minimization problems in
the form (A.3). In this way, we are interested in finding update directions which lead
toward the central path of (A.3). To find those directions, Newton’s method is applied
to minimize the second-order Taylor series expansion of the potential function φ(x).
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These procedures are summarized in section 7.1. Here, we go through each step
precisely. For clarity of notation, we omit the subscript γ in φγ(x). To compute the
quadratic approximation of φ(x), we take δx to be the update direction for x. Thus,
assuming x∗ = x+ δx, the series expansion of φ(x) up to the second term is given by

(A.4) φ̃(δx) := φ(x∗) − φ(x) = Dφ(x) [δx] +
1

2
D2φ(x) [δx, δx] .

A.3. Directional eerivatives of F (x). In order to compute the derivatives in
(A.4), we need to have at hand the first and second directional derivatives of F (x).
Recalling that x is symmetric, and therefore so is the update direction δx, the first
directional derivative of F (x) in the direction δx is given by

DF (x) [δx] = (a− xr)δx + δx(aT − rx) = sym {(a− xr)δx}

and the second directional derivative is

D2F (x) [δx, δx] = − sym {δxrδx}

A.4. Connection with Theorem 7.1. Comparing the above derivatives of
F (x) with the formulas (4.2) and (4.3), one readily verifies that k = 1, a1 = (a− xr),
and b1 = 1, for the first directional derivative, and that w1 = 1, w2 = 0, w3 = 0,
m1 = 1, n1 = −r, and t1 = 1, for the second directional derivative. With this
notation, we can directly apply Theorem 7.1 to obtain the algebraic linear system of
equations. For the gradient term Q we have

Q =
k∑

i=1

aTi F (x)−1bTi − 1

2
ζ (γ − Tr {x})−1

Id

= (a− xr)TF (x)−1 − 1

2
ζ(γ − Tr {x})−1

Id.

For the Hessian H(δx) we calculate

1.
∑k

i=1

∑k
j=1 a

T
i F (x)−1ajδxbjF (x)−1bTi = (a− xr)TF (x)−1(a− xr)δxF (x)−1;

2.
∑k

i=1

∑k
j=1 a

T
i F (x)−1bTj δ

T
x a

T
j F (x)−1bTi = (a−xr)TF (x)−1δx(a−xr)F (x)−1;

3. −
∑w1

j=1 n
T
j δ

T
x m

T
j F (x)−1tTj + mT

j F (x)−1tTj δ
T
x n

T
j = rδxF (x)−1 + F (x)−1δxr.

Thus H(δx) becomes

H(δx) =
1

2
F (x)−1δxr +

1

2
rδxF (x)−1 + (a− xr)TF (x)−1(a− xr)δxF (x)−1

+ (a− xr)TF (x)−1δx(a− xr)TF (x)−1 +
1

2
ζ(γ − Tr {x})−2 Tr {δx} Id.

Consequently, the algebraic linear system of equations is described by

(A.5) Tr
{
δV (H(δx) − Q)T + (H(δx) − Q)δV

}
= 0

with H(δX) and Q as given above
These are the steps someone would need in order to apply Theorem 7.1 directly.

However, we shall go through the details of the manipulation that leads to this main
result.
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A.5. Directional derivatives of the barrier function. Having the above di-
rectional derivatives of F (x) available, we are ready to take the directional derivatives
needed in (A.4). However, to clarify the exposition, we split the potential function
into two parts:

φ1(x) = − log detF (x) and φ2(x) = ζ log
(
1/(γ − Tr {x})

)
.

A.6. Symbolic directional derivatives of φ1(x) = − log det F (x). The
first and second directional derivative of φ1(x) in the direction δx are given by

Dφ1(x) [δx] = −Tr
{
F (x)−1DF (x) [δx]

}
= −Tr

{
F (x)−1 sym {(a− xr)δx}

}
,

D2φ1(x) [δx, δx] = Tr
{(

F (x)−1DF (x) [δx]
)2}− Tr

{
F (x)−1D2F (x) [δx, δx]

}
= Tr

{(
F (x)−1 sym {(a− xr)δx}

)2}
+ Tr

{
F (x)−1 sym {δxrδx}

}
.

A.7. Symbolic directional derivatives of φ2(x) = ζ log (1/(γ − Tr {x})).
The first derivative is given by

Dφ2(x) [δx] = ζ (γ − Tr {x})−1
Tr {δx}

and the second by

D2φ2(x) [δx, δx] = ζ
(
(γ − Tr {x})−1

Tr {δx}
)2

.

A.8. Optimality conditions. Now we are ready to write the optimality con-
ditions which will provide the update direction. These conditions are the first-order
necessary optimality conditions for problem (A.3), obtained by taking directional
derivatives of the Taylor expansion φ(x + δx), given by (A.4), as a function of δx in
the direction δV . To accomplish this step, we should compute Dφ̃(δx) [δV ] or equiva-
lently

(A.6) D

(
Dφ(x) [δx] +

1

2
D2φ(x) [δx, δx]

)
[δV ] = 0.

Using the directional derivatives just computed in the previous sections, the ex-
pression for the second-order approximation φ̃(δx) is given

(A.7)

φ̃(δx) = −Tr
{
F (x)−1 sym {(a− xr)δx}

}
+

1

2
Tr

{(
F (x)−1 sym {(a− xr)δx}

)2}
+

1

2
Tr
{
F (x)−1 sym {δxrδx}

}
+ ζ (γ − Tr {x})−1

Tr {δx}

+
1

2
ζ
(
(γ − Tr {x})−1

Tr {δx}
)2

.
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To proceed, we now set to zero the directional derivative of φ̃(δx) as a function of
δx in the direction δV . After a few manipulations, the term Dφ̃(δx) [δV ] is given by

Dφ̃(δx) [δV ] = Tr

{
δV

(
F (x)−1δx(a− xr)TF (x)−1(a− xr) − F (x)−1(a− xr)

+
1

2
rδxF (x)−1 +

1

2
F (x)−1δxr

+ F (x)−1(a− xr)δxF (x)−1(a− xr)

+
1

2
ζ(γ − Tr {x})−1

Id +
1

2
ζ(γ − Tr {x})−2 Tr {δx} Id

)
+

(
(a− xr)TF (x)−1(a− xr)δxF (x)−1 − (a− xr)TF (x)−1

+
1

2
F (x)−1δxr +

1

2
rδxF (x)−1

+ (a− xr)TF (x)−1δx(a− xr)TF (x)−1

+
1

2
ζ(γ − Tr {x})−1

Id +
1

2
ζ(γ − Tr {x})−2 Tr {δx} Id

)
δV

}
.

Therefore, the algebraic linear system of equations is described by

(A.8) Tr
{
δV (H(δx) − Q)T + (H(δx) − Q)δV

}
= 0

with H(δX) and Q respectively given by

Q = (a− xr)TF (x)−1 − 1

2
ζ(γ − Tr {x})−1

Id,

H(δx) =
1

2
F (x)−1δxr +

1

2
rδxF (x)−1 + (a− xr)TF (x)−1(a− xr)δxF (x)−1

+ (a− xr)TF (x)−1δx(a− xr)TF (x)−1 +
1

2
ζ(γ − Tr {x})−2 Tr {δx} Id.

A.9. Connection with Theorem 7.1. We shall emphasize that this illustra-
tive example gives a reasonable idea of how the proof of Theorem 7.1 was constructed,
since it follows very similar steps.

A.10. The algebraic linear system of equations. Since the unknown x is
restricted to being symmetric (so is δx) the subspace V equals the space of symmetric
matrices. Consequently, its orthogonal complement V⊥ is the set of all skew symmetric
matrices. Therefore, we obtain the following linear system in δx:

H(δx) + H(δx)T = Q + QT .

We can rewrite this equation using a suitable choice of variables ai and bi as follows:

(A.9) sym

{
4∑

i=1

(
aiδxbi

)}
+ 
Tr {δx} = Q + QT
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with

a1 = F (x)−1(a− xr), b1 = F (x)−1(a− xr),

a2 = F (x)−1, b2 = (a− xr)TF (x)−1(a− xr),

a3 =
1

2
F (x)−1, b3 = r,

a4 = r, b4 =
1

2
F (x)−1,

and

Q = (a− xr)TF (x)−1 − 1

2
ζ(γ − Tr {x})−1

Id, 
 =
1

2
ζ(γ − Tr {x})−2

Id.

A.11. Connection with Corollary 7.2. These are the ai and bi described in
the corollary for the specific case where the subspace V equals the space of symmetric
matrices Sn. The proof of Corollary 7.2 is illustrated by our example, since the proof
mainly consists in determining the orthogonal complement of the subspace V.
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CONSTRUCTING GENERALIZED MEAN FUNCTIONS USING
CONVEX FUNCTIONS WITH REGULARITY CONDITIONS∗
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Abstract. The generalized mean function has been widely used in convex analysis and math-
ematical programming. This paper studies a further generalization of such a function. A necessary
and sufficient condition is obtained for the convexity of a generalized function. Additional sufficient
conditions that can be easily checked are derived for the purpose of identifying some classes of func-
tions which guarantee the convexity of the generalized functions. We show that some new classes
of convex functions with certain regularity (such as S∗-regularity) can be used as building blocks to
construct such generalized functions.

Key words. convexity, mathematical programming, generalized mean function, self-concordant
functions, S∗-regular functions
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1. Introduction. In this paper, we denote the n-dimensional Euclidean space
by Rn, its nonnegative orthant by Rn

+, and its positive orthant by Rn
++.

In 1934, Hardy, Littlewood, and Pólya [13] considered the following function under
the name of generalized mean:

Υw(x) = φ−1

(
n∑

i=1

wiφ(xi)

)
,(1.1)

where φ(·) is a real, strictly increasing, convex function defined on a subset of R and
w = (w1, w2, . . . , wn)T is a given vector in Rn

+. Assuming that φ > 0, φ′ > 0, and
φ′′ > 0, they showed an equivalent condition for the convexity of Υw. When φ is three
times differentiable, Ben-Tal and Teboulle [2] established another equivalent condition
for Υw being convex (see section 2 for details).

The generalized mean function (1.1) has many applications in optimization. Ben-
Tal and Teboulle [2] demonstrated an interesting application of (1.1) (in a continuous
form) on penalty functions and duality formulation of stochastic nonlinear program-
ming problems. However, the most widely used generalized means are the logorithmic-
exponentional and p-norm functions:

fw(x) = log

(
n∑

i=1

wie
xi

)
, pw(x) =

(
n∑

i=1

wix
p
i

)1/p

for x = (x1, . . . , xn)T ∈ Rn.

∗Received by the editors February 4, 2004; accepted for publication (in revised form) November
11, 2005; published electronically April 21, 2006.

http://www.siam.org/journals/siopt/17-1/60383.html
†Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100080, China

(ybzhao@amss.ac.cn). This author’s work was partially supported by the National Natural Science
Foundation of China under grants 10201032 and 70221001.

‡Industrial Engineering and Operations Research, North Carolina State University, Raleigh, NC
26695-7906 (fang@eos.ncsu.edu). Also with the Departments of Mathematical Sciences and Industrial
Engineering, Tsinghua University, Beijing, China. This author’s work was partially supported by
the U.S. Army Research Office grant W911NF-04-D-0003-0002.

§Department of Systems Engineering and Engineering Management, Chinese University of Hong
Kong, Shatin, NT, Hong Kong (dli@se.cuhk.edu.hk). This author’s work was partially supported by
grant CUHK4180/03E, Research Grant Council, Hong Kong.

37



38 YUN-BIN ZHAO, SHU-CHERNG FANG, AND DUAN LI

They correspond to the special cases of Υw with φ(t) = et and φ(t) = tp, respectively.
Needless to say, the log-exp function has been widely used in convex analysis

and mathematical programming. For example, a geometric program (see Duffin,
Peterson, and Zener [8] and Boyd and Vandenberghe [6]) can be converted into a
convex programming problem by using the log-exp function so that the interior-point
algorithms can be developed to solve geometric programs with great efficiency (see
Kortanek, Xu, and Ye [14]). Another example is concerned with the nondifferentiable
minimax problem

min
y∈D

max
1≤i≤n

gi(y),

where gi(·), i = 1, . . . , n, are real functions defined on a convex set D in Rm. Since
the recession function of the log-exp function is the “max-function”(see Rockafellar
[20]), i.e., max1≤i≤n xi = limε→0+ εf(xε ) where f(·) = fw(·) and w = (1, 1, . . . , 1),
the above nondifferential optimization problem can be approximated by solving the
following optimization problem:

min
y∈D

ε log

(
n∑

i=1

e
gi(y)

ε

)
.

The objective function is differentiable and convex if every gi(y) is. Other applications
of the log-exp function in optimization can be found in Ben-Tal [1], Ben-Tal and
Teboulle [3], Zang [25], Bertsekas [4], Polyak [19], Fang [9], Fang and Tsao [10], Li
and Fang [15], Peng and Lin [17], Birbil et al. [5], and Sun and Li [22, 23, 24].

It is worth mentioning that the conjugate function of the log-exp function happens
to be the well-known Shannon entropy function [21] which plays a vital role in so many
fields ranging from image enhancement to economics and from statistical mechanics
to nuclear physics (see Buck and Macaulay [7] and Fang, Rajasekera, and Tsao [11]).

We consider in this paper a further generalization of (1.1) in the form

Γw(x) = Ψ−1

(
n∑

i=1

wiφi(xi)

)
,(1.2)

where φi : Ω → R, i = 1, . . . , n, are convex, twice differentiable (but not necessarily
strictly increasing) functions defined on an open convex set Ω ⊂ R, Ψ : Ω → R is
convex, twice differentiable, and strictly increasing, and w ∈ Rn

+ is a given vector.
Clearly, Υw(·) is a special case of Γw(·) with φ1 = φ2 = · · · = φn = Ψ = φ. For
convenience, in this paper, we still call Γw given by (1.2) a generalized mean function,
and we call φi the inner function and Ψ the outer function of Γw.

To ensure the well-definedness of Γw, we naturally require that
∑n

i=1 Cone[φi(Ω)] ⊆
Ψ(Ω), where Cone[φi(Ω)] denotes the cone generated by the set φi(Ω).

As in the case of Υw, we would like to derive certain sufficient and necessary
conditions for the function Γw to be convex. Moreover, we hope to find a systematic
way to explicitly construct some classes of convex Γw.

It is interesting to point out that Γw is by no means a new research subject. In fact,
it was essentially studied by Fenchel in his lecture notes on Convex Cones, Sets and
Functions in 1953 [12]. Based on the properties of level sets and characteristic roots of
Hessian matrices of functions involved, Fenchel derived some sufficient and necessary
conditions for the convexity of the generalized mean function Γw. The conditions he
derived, however, are rather complicated, and there is no simple test to decide what
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kind of functions may admit these complicated properties. Unlike Fenchel’s approach,
our analysis in this paper depends only on the function value, its first derivative, and
its second derivative to provide a sufficient and necessary condition for Γw being
convex. The necessary and sufficient condition we derive in this paper can be viewed
as a generalization of that in [13] concerning the function (1.1). We can also use
related sufficient conditions to explicitly construct concrete examples of convex Γw.
Moreover, we show how the so-called S∗-regular functions (to be defined in this paper)
can be used to construct convex generalized mean functions.

The rest of the paper is organized as follows. In section 2, we investigate the
conditions that ensure the convexity of the generalized mean function Γw. In section
3, we identify some classes of functions that satisfy the conditions derived in section
2 and illustrate how the generalized mean function Γw can be explicitly constructed.
Conclusions are given in the last section.

2. Necessary and sufficient conditions for the convexity of Γw. Let us
start with a simple lemma (proof omitted) that shows that the inverse of an increasing
convex function is concave and increasing.

Lemma 2.1. Let Ω be an open convex subset of R and Ψ : Ω → R be a real
function defined on Ω. Then Ψ is (strictly) convex and strictly increasing if and only
if its inverse Ψ−1 : R → Ω is (strictly) concave and strictly increasing.

Notice that if wi = 0 for some i, then the term wiφi(x) can be removed from the
expression of Γw(x), and it suffices to consider Γw defined on Rn−1. Thus, without
loss of generality, we may assume that the vector w ∈ Rn

++ throughout the rest of the
paper.

To study the convexity of Γw, when assuming that φi, i = 1, . . . , n, and Ψ−1 are
twice differentiable, we need to check the properties of its Hessian matrix. Let

xw =

n∑
i=1

wiφi(xi).

Since ∂xw

∂xi
= wiφ

′
i(xi), we have

∂Γw

∂xi
= (Ψ−1)′(xw)wiφ

′
i(xi).

Moreover,

∂2Γw

∂x2
i

= (Ψ−1)′′(xw)(wiφ
′
i(xi))

2 + (Ψ−1)′(xw)wiφ
′′
i (xi),

∂2Γw

∂xi∂xj
= (Ψ−1)′′(xw)wiwjφ

′
i(xi)φ

′
j(xj) for i �= j.

Consequently, the Hessian matrix of Γw becomes

∂2Γw

∂x2
= (Ψ−1)′(xw)

⎡⎢⎢⎣
w1φ

′′
1(x1) 0 . . . 0
0 w2φ

′′
2(x2) . . . 0

. . . . . . . . . . . .
0 0 . . . wnφ

′′
n(xn)

⎤⎥⎥⎦

+ (Ψ−1)′′(xw)

⎡⎢⎢⎣
w1φ

′
1(x1)

w2φ
′
2(x2)
. . .

wnφ
′
n(xn)

⎤⎥⎥⎦ [w1φ
′
1(x1), w2φ

′
2(x2), . . . , wnφ

′
n(xn)].(2.1)
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Note that when φi, i = 1, . . . , n, is convex and Ψ is convex and increasing, by Lemma
2.1, we see that the first term on the right-hand side of (2.1) is a positive semidefinite
matrix multiplied by a positive coefficient (Ψ−1)′(xw), while the second is a rank one
matrix multiplied by a negative coefficient (Ψ−1)′′(xw).

Some conditions for convexity of the function Υw(x) have already been studied
in [13] and [2]. We summarize their results here.

Theorem 2.2 (see [13]). Under the conditions of φ > 0, φ′ > 0, and φ′′ > 0, the
function Υw(x) defined by (1.1) is convex if and only if the following condition holds:

n∑
i=1

wi
[φ′(xi)]

2

φ′′(xi)
≤ [φ′(y)]2

φ′′(y)
for y = Υw(x).

Ben-Tal and Teboulle [2] also provided a different sufficient and necessary condi-
tion, under certain assumptions, for the convexity of the function Υw(x).

Theorem 2.3 (see [2]). Let φ(t) ∈ C3. Υw(x) is convex if and only if 1/ρ(t) is
convex, where ρ(t) = −φ′′/φ′.

It is possible to extend the analysis in [2] for deriving sufficient conditions for
the convexity of Γw(x) defined by (1.2). For example, the following result is actually
implied in [2] and can be proved along the line of the proof of “Lemma 1” and
“Theorem 1” therein.

Theorem 2.4 (see [2]). Let Ψ(t) ∈ C3 and φi(t) ∈ C3 be strictly increasing and
ρ(t) = −Ψ′′(t)/Ψ′(t). If 1/ρ(t) is convex and Ψ−1(φi(t)) is convex for i = 1, . . . , n,
then Γw(x) given by (1.2) is convex.

Note that if φ is sufficiently smooth, 1/ρ(t) is convex, where ρ(t) = −φ′′(t)/φ′(t),
if and only if its second derivative is nonnegative; i.e.,(

1

ρ

)′′
=

(φ′′)3φ′′′ − 2φ′φ′′(φ′′′)2 + φ′(φ′′)2φ′′′′

(φ′′)2
≥ 0.

Thus, to check the convexity of 1/ρ(t), it is usually needed to check the above in-
equality involving the third and forth derivative of the function φ. Theorem 2.2 does
not require the third or fourth differentiability of the function φ.

In what follows, we generalize the above Theorem 2.2 to the function Γw(x).
Although the basic idea of our proof is essentially tied to that of [13], the proof is not
straightforward. For completeness, we give a detailed proof for the result.

Theorem 2.5. Let Ω ⊂ R be open and convex, Ψ : Ω → R be convex, twice
differentiable, and strictly increasing, φi : Ω → R, i = 1, . . . , n, be strictly convex
and twice differentiable, and w ∈ Rn

++ be a given vector. Then the generalized mean
function

Γw(x) = Ψ−1

(
n∑

i=1

wiφi(xi)

)

is convex on Ωn :=

n︷ ︸︸ ︷
Ω × · · · × Ω if and only if

Ψ′′(y)

(
n∑

i=1

wi
[φ′

i(xi)]
2

φ′′
i (xi)

)
≤ [Ψ′(y)]2 for x ∈ Ωn and y = Γw(x).(2.2)

Moreover, Γw(x) is strictly convex if and only if the inequality in (2.2) holds strictly.
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Proof. Let y = Γw(x) = Ψ−1(xw). Then xw = Ψ(y) and

(Ψ−1)′(xw)Ψ′(y) = 1.(2.3)

Differentiating both sides with respect to y and using the above relations, we have

0 = (Ψ−1)′′(xw)[Ψ′(y)]2 + (Ψ−1)′(xw)Ψ′′(y)

= (Ψ−1)′′(xw)[Ψ′(y)]2 +
Ψ′′(y)

Ψ′(y)
.

Therefore,

(Ψ−1)′′(xw) = − Ψ′′(y)

[Ψ′(y)]3
.(2.4)

Combining (2.3) and (2.4) yields

(Ψ−1)′(xw) + (Ψ−1)′′(xw)

n∑
i=1

wi
[φ′

i(xi)]
2

φ′′
i (xi)

=
[Ψ′(y)]2 −

(∑n

i=1
wi

[φ′
i(xi)]

2

φ′′
i
(xi)

)
Ψ′′(y)

[Ψ′(y)]3
.(2.5)

First we prove that Γw(x) is convex if (2.2) holds. It suffices to show that the Hessian
matrix of Γw(x) is positive semidefinite.

For any d ∈ Rn and x ∈ Ωn, the Cauchy–Schwarz inequality implies that(
n∑

i=1

wiφ
′
i(xi)di

)2

=

(
n∑

i=1

[√
wiφ′′

i (xi)di

]
·
√

wi

φ′′
i (xi)

φ′
i(xi)

)2

≤
(

n∑
i=1

wiφ
′′
i (xi)d

2
i

)(
n∑

i=1

wi
[φ′

i(xi)]
2

φ′′
i (xi)

)
.

By Lemma 2.1, we know Ψ−1 is concave and hence (Ψ−1)′′(xw) ≤ 0 for all xw.
Combining this fact with the above inequality, we see that, for any d ∈ Rn,

dT
∂2Γw

∂x2
d

= (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′
i(xi)di

)2

≥ (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)(
n∑

i=1

wi
[φ′

i(xi)]
2

φ′′
i (xi)

)

=

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)[
(Ψ−1)′(xw) + (Ψ−1)′′(xw)

(
n∑

i=1

wi[φ
′
i(xi)]

2

φ′′
i (xi)

)]

=

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)
[Ψ′(y)]2 −

(∑n
i=1 wi

[φ′
i(xi)]

2

φ′′
i
(xi)

)
Ψ′′(y)

[Ψ′(y)]3

≥ 0.

The last equality follows from (2.5) and the last inequality follows from the fact that
the first quantity on the right-hand side, i.e.,

∑n
i=1 wiφ

′′
i (xi)d

2
i , is nonnegative, and
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the second quantity is also nonnegative due to our assumption. Consequently, we

have proven that the Hessian matrix ∂2Γw

∂x2 is positive semidefinite, as desired.
Conversely, we would like to show that inequality (2.2) holds if Γw(x) is convex.

For any vector 0 �= d ∈ Rn, knowing (2.3), (2.4), and the convexity of Γw(x), we have

0 ≤ dT
∂2Γw

∂x2
d = (Ψ−1)′(xw)

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)
+ (Ψ−1)′′(xw)

(
n∑

i=1

wiφ
′
i(xi)di

)2

=
1

Ψ′(y)

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)
− Ψ′′(y)

Ψ′(y)3

(
n∑

i=1

wiφ
′
i(xi)di

)2

=

(
n∑

i=1

wiφ
′′
i (xi)d

2
i

)[
1

Ψ′(y)
− Ψ′′(y)

Ψ′(y)3
[
∑n

i=1 wiφ
′
i(xi)di]

2∑n
i=1 wiφ′′

i (xi)d2
i

]
.(2.6)

Notice that the above inequality holds for any vector d ∈ Rn. In particular, let

di =
φ′
i(xi)

φ′′
i (xi)

∑n
k=1 wk

[φ′
k
(xk)]2

φ′′
k
(xk)

, i = 1, . . . , n.

Then, we have

n∑
i=1

wiφ
′
i(xi)di = 1,

n∑
i=1

wiφ
′′
i (xi)d

2
i =

1∑n
i=1 wi

[φ′
i
(xi)]2

φ′′
i
(xi)

.

As a result, the inequality (2.6) reduces to

0 ≤

⎛⎝ 1∑n
i=1 wi

[φ′
i
(xi)]2

φ′′
i
(xi)

⎞⎠[
1

Ψ′(y)
− Ψ′′(y)

Ψ′(y)3

(
n∑

i=1

wi
[φ′

i(xi)]
2

φ′′
i (xi)

)]
.

We see that inequality (2.2) indeed holds. The result about strict convexity can be
easily checked out.

Theorem 2.5 generalizes the result of Theorem 2.2 (concerning Υw(x)) to the
more general function Γw(x), while Theorem 2.4 generalizes the sufficient condition
of Theorem 2.3 (concerning Υw(x)) to the function Γw(x). Except for some very
simple cases, like et or xp, these results do not give us the concrete class of functions
which can be used to construct of the examples of generalized mean functions. The
purpose of the remainder of this paper is to provide a way to identify the desired class
of functions. Our analysis here is based only on the result of Theorem 2.5 instead
of Theorem 2.4. We believe that there are also some systematic ways to identify the
desired class of function based on Theorem 2.4.

To this end, two related sufficiency results of Theorem 2.5 are derived below for
convenient usage in constructing convex Γw (see section 3).

Theorem 2.6. Let Ω be an open convex subset of R, Ψ : Ω → R be strictly
increasing, twice differentiable, and convex, φi : Ω → R, i = 1, . . . , n, be strictly
convex and twice differentiable, and w ∈ Rn

++ be a given vector. Assume that there
exists a scalar α ∈ R such that

αΨ(t)Ψ′′(t) ≤ [Ψ′(t)]2 for t ∈ Ω.(2.7)
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Then the function Γw is convex on Ωn if

n∑
i=1

wi[φ
′
i(xi)]

2

φ′′
i (xi)

≤ αΨ(y) for x ∈ Ωn,(2.8)

where y = Γw(x).
Proof. Multiplying both sides of (2.8) by Ψ′′(y) and applying (2.7), we see that

condition (2.2) holds. The result follows from Theorem 2.5 immediately.
Theorem 2.7. Let Ω be an open convex subset of R, Ψ : Ω → R be strictly

increasing, twice differentiable, and convex, φi : Ω → R, i = 1, . . . , n, be strictly
convex and twice differentiable, and w ∈ Rn

++ be a given vector. Assume that there
exist 0 �= αi ∈ R, i = 1, . . . , n, holding the same sign such that

αiφi(t)φ
′′
i (t) ≥ [φ′

i(t)]
2 for t ∈ Ω,(2.9)

and there exists an α ∈ R such that the inequality (2.7) holds. Then the function Γw

is convex if

α ≥ max
1≤i≤n

αi (when αi > 0 for all i),(2.10)

or

α ≤ min
1≤i≤n

αi (when αi < 0 for all i).(2.11)

Proof. Taking y = Γw(x), we see two cases.
Case 1. αi > 0 for i = 1, . . . , n. In this case, (2.9) implies that φi(t) ≥ 0 for t ∈ Ω

and (2.10) implies that

n∑
i=1

wi
[φ′

i(t)]
2

φ′′
i (xi)

≤
n∑

i=1

wiαiφi(xi) ≤
(

max
1≤i≤n

αi

) n∑
i=1

wiφi(xi) ≤ αΨ(y).

Case 2. αi < 0 for i = 1, . . . , n. In this case, (2.9) implies that φi(t) ≤ 0 for t ∈ Ω
and (2.11) implies that

n∑
i=1

wi
[φ′

i(t)]
2

φ′′
i (xi)

≤
n∑

i=1

wiαiφi(xi) ≤
(

min
1≤i≤n

αi

) n∑
i=1

wiφi(xi) ≤ αΨ(y).

Both cases yield (2.8) and the desired result follows from Theorem 2.2.
A special case of φ1(t) = φ2(t) = · · · = Ψ(t) immediately leads to the next result.
Corollary 2.8. Let Ω be an open convex set in R, φ : Ω → R be a convex,

twice differentiable, and strictly increasing function, and w ∈ Rn
++ be a given vector.

If there exists an α �= 0 such that

[φ′(t)]2 = αφ(t)φ′′(t) for t ∈ Ω,(2.12)

then the function Υw(x) = φ−1(
∑n

i=1 wiφ(xi)) is convex on Ωn.
This result can also follow directly from the aforementioned Theorem 2.3 (due to

Ben-Tal and Teboulle [2]). In fact, it is easy to verify that the relation (2.12) implies
that the second derivative of φ′/φ′′ is equal to zero, and thus by Theorem 2.3 the
function Υw(x) is convex.
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Remark 2.1. The functions satisfying a differential inequality such as (2.7) are
related to the so-called self-concordant barrier function introduced by Nesterov and
Nemirovskii [16]. Recall that a C3 function ξ : (0,∞) → R is said to be self-concordant
if ξ is convex and there exists a constant μ1 > 0 such that

|ξ′′′(t)| ≤ μ1(ξ
′′(t))

3
2 for t ∈ (0,∞).(2.13)

Moreover, the self-concordant function ξ is called a self-concordant barrier function if
there exists a constant μ2 > 0 such that

|ξ′(t)| ≤ μ2[ξ
′′(t)]

1
2 for t ∈ (0,∞).(2.14)

Combining (2.13) and (2.14) yields

ξ′(t)ξ′′′(t) ≤ μ[ξ′′(t)]2.

This indicates that the first-order derivative function of a self-concordant barrier func-
tion, i.e., g(t) := ξ′(t), satisfies the inequality (2.7). A self-concordant function ξ(·)
itself may also satisfy an inequality like (2.7) or (2.9).

Remark 2.2. The functions satisfying a differential inequality such as (2.7) also
appear in convexity theory. Given a twice differentiable function φ(t) > 0 on its
domain Ω, we consider the convexity of the function h(t) := 1

φ(t) on Ω. Notice that

h′′(t) =
2[φ′(t)]2 − φ(t)φ′′(t)

[φ(t)]3
for t ∈ Ω.

Hence the function h(t) = 1
φ(t) is convex if and only if the inequality φ(t)φ′′(t) ≤

2[φ′(t)]2 holds on Ω. Moreover, if φ(t)φ′′(t) ≤ [φ′(t)]2, the convex function h(t)
satisfies a reverse inequality, i.e., h(t)h′′(t) ≥ [h′(t)]2 on Ω.

From this observation, a related question arises. Given a function φ(t) > 0 on Ω
and a constant r > 0, when will the function h(t) := 1

φ(t)r become convex and satisfy

an inequality such as (2.9)? A straightforward analysis leads to the next result.
Theorem 2.9. (i) Let Ω be a convex subset of R and φ : Ω → (0,∞) be a function.

If φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then, for any r > 0, the function h(t) := 1
φ(t)r is

convex and h(t)h′′(t) ≥ [h′(t)]2 for t ∈ Ω. Conversely, if there exists an r > 0 such
that h(t) := 1

φ(t)r is convex and h(t)h′′(t) ≥ [h′(t)]2 for t ∈ Ω, then φ(t)φ′′(t) ≤ [φ′(t)]2

for t ∈ Ω.
(ii) Let Ω be a convex subset of R, τ > 0, and φ : Ω → (τ,∞) be a function. If

φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then, for any scalar r > 0 and T > 0, the function
hT (t) := T + 1

φ(t)r is convex and αhT (t)h′′
T (t) ≥ [h′

T (t)]2 for t ∈ Ω, where α = 1
Tτr+1 .

Proof. For case (i), it is sufficient to see that

h′′(t) =
r2(φ′(t))2 + r[(φ′(t))2 − φ(t)φ′′(t)]

φ(t)r+2
,

and

h(t)h′′(t) − [h′(t)]2 =
r[(φ′(t))2 − φ(t)φ′′(t)]

φ(t)2(r+1)
.

For case (ii), it is easy to verify that h′′
T (t) = h′′(t) and(

1

Tφ(t)r + 1

)
hT (t)h′′

T (t) − [h′
T (t)]2 =

r[(φ′(t))2 − φ(t)φ′′(t)]

φ(t)2(r+1)
.

Then the desired result follows.
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The above results indicate that if we have a function φ satisfying the inequality
(2.7) with α = 1, then we may construct a function h from φ such that h satisfies the
converse differentiable inequality αh(t)h′′(t) ≥ [h′(t)]2 for some constant α. Moreover,
if we take a T-translation of the value of the function h, then the resulting function
satisfies the converse differentiable inequality with an α that can be reduced to be
smaller than any threshold given in (0,1) provided a suitable choice of T > 0. This
fact will be used near the end of section 3.

3. Constructing convex generalized mean functions Γw. In this section,
we try to identify some classes of functions that satisfy inequality (2.7) and/or inequal-
ity (2.9) so that we have building blocks for constructing the concrete convex function
Γw(x). First, we give a result that identifies functions satisfying (2.12). Obviously,
this class of functions satisfies both inequalities (2.7) and (2.9).

Theorem 3.1. Let Ω be an open set in R and φ : Ω → R be a convex, twice
differentiable, and strictly increasing function satisfying (2.12) with a constant α �= 0.
Then, the following hold:

(i) When α = 1, φ is in the form of φ(t) = γe
t
β for some γ > 0 and β > 0.

(ii) When 0 < α �= 1 with v∗ := supt∈Ω
1−α
α t being finite, φ is in the form of

φ(t) = γ

(
α− 1

α
t + β

) α
α−1

for some γ > 0 and β ≥ v∗.
(iii) When α < 0 with u∗ := supt∈Ω

α−1
α t being finite, φ is in the form of

φ(t) = −γ

(
β − α− 1

α
t

) α
α−1

for some γ > 0 and β ≥ u∗.
Note that results (i) and (ii) were pointed out in [2] and [13] and result (iii) can

be easily derived. The above result leads to the following consequence related to Υw.
Corollary 3.2. The following functions can be used to explicitly construct a

convex generalized mean function Υw(x) = φ−1(
∑n

i=1 wiφ(xi)) over Ωn:

(i) φ(t) = γe
t
β over Ω = R with γ > 0 and β > 0.

(ii) φ(t) = γ
(

1
p t + β

)p
over Ω = (η,∞) with p > 1, γ > 0, and β ≥ −η

p .

(iii) φ(t) = γ

(β− 1
p t)

p over Ω = (−∞, η) with p > 0, γ > 0, and β ≥ −η
p .

(iv) φ(t) = −γ(β − 1
p t)

p over Ω = (−∞, η) with 0 < p < 1, γ > 0, and β ≥ η
p .

Again, results (i) and (ii) were given in [2] and [13] and results (iii) and (iv) can
be easily derived. The functions listed in Corollary 3.2 actually form a complete basis
in the sense that the function φ in case (i) satisfies condition (2.12) with α = 1; the
function φ in case (ii) satisfies condition (2.12) with α = p

p−1 > 1; the function φ in

case (iii) satisfies condition (2.12) with α = p
p+1 ∈ (0, 1); and the function φ in (iv)

satisfies condition (2.12) with α = p
p−1 < 0.

We now try to identify some class of functions that satisfies inequalities (2.7)
and/or (2.9). For simplicity, we consider only convex, twice differentiable, strictly
increasing functions ϑ on Ω = (0,∞). Let us first define the following four categories
of such functions:

U1 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) ≥ [ϑ′(t)]2 for t ∈ Ω};
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U2 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) ≤ [ϑ′(t)]2 for t ∈ Ω};
U3 = {ϑ : There exist α1 ≤ α2 such that α1ϑ(t)ϑ′′(t) ≤ [ϑ′(t)]2 ≤ α2ϑ(t)ϑ′′(t)

for t ∈ Ω};
U4 = {ϑ : There exists α ∈ R such that αϑ(t)ϑ′′(t) = [ϑ′(t)]2 for all t ∈ Ω}.

It is evident that

U4 ⊂ U3 ⊂ (U2 ∩ U1).

As pointed out in Theorem 3.1, the class U4 can be given explicitly. By allowing
α1 �= α2, we show that U3 is much broader than U4. In fact, many convex functions
with certain regularities fall into the category U3. To start, we introduce a new class
of functions with certain regularity properties.

Definition 3.3. A convex, twice differentiable, strictly increasing function δ(t) :
(0,∞) → R is called an S∗-regular function if (i) δ(t) vanishes at t = 0 in the sense
of

lim
t→0+

δ(t) = lim
t→0+

δ′(t) = lim
t→0+

δ′′(t) = 0;

and (ii) there exist positive constants 0 < β1 ≤ β2, p ≥ 1, and q ≥ 1 such that

β1[(t + 1)p−1 − (t + 1)−1−q] ≤ δ′′(t) ≤ β2[(t + 1)p−1 − (t + 1)−1−q], t > 0.(3.1)

Note that condition (3.1) actually implies the strict convexity of an S∗-regular
function on (0,∞). In particular, setting β1 = β2, condition (3.1) reduces to an
equation

δ′′(t) = (t + 1)p−1 − (t + 1)−1−q.(3.2)

Taking integration twice and noting that limt→0+ δ(t) = limt→0+ δ′(t) = 0, the unique
solution to (3.2) is

Δp,q(t) =
(t + 1)p+1 − 1

p(p + 1)
− (t + 1)1−q − 1

q(q − 1)
− p + q

pq
t for p ≥ 1 and q > 1.(3.3)

In addition, since limq→1+
[1 − (t + 1)1−q]/(q − 1) = ln(t + 1), we have

Δp,1(t) =
(t + 1)p+1 − 1

p(p + 1)
+ ln(t + 1) − p + 1

p
t for p ≥ 1.(3.4)

Taking p = 1 in (3.4), we have

Δ1,1(t) =
(t + 1)2 − 1

2
+ ln(t + 1) − 2t =

1

2
t2 − t + ln(t + 1).(3.5)

Moreover, taking p = 1 and q = 2 in (3.3) yields

Δ1,2(t) =
1

2

[
(t + 1)2 − (t + 1)−1 − 3t

]
.(3.6)

In terms of this particular solution Δp,q(t), condition (3.1) can be written as

β1Δ
′′
p,q(t) ≤ δ′′(t) ≤ β2Δ

′′
p,q(t).(3.7)
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By integrating and noting that limt→0+
δ′(t) = limt→0+

δ(t) = 0, we further have

β1Δ
′
p,q(t) ≤ δ′(t) ≤ β2Δ

′
p,q(t)(3.8)

and

β1Δp,q(t) ≤ δ(t) ≤ β2Δp,q(t).(3.9)

Therefore, we can see that the class of S∗-regular functions is quite broad. Later, by
using (3.7)–(3.9), we show that S∗-regular functions fall into the category U3.

It is worth mentioning that for any p ≥ 1, q > 1 (including the case of q → 1+)
the S∗-regular function Δp,q(t) is not self-concordant. In fact, the function Δp,q(t)
does not satisfy the inequality (2.13) since δ′′(t) → 0 and δ′′′(t) → p + q as t → 0+.

S∗-regular functions are somewhat analogous to (but different from) the self-
regular functions defined in [18]. As we have mentioned above, S∗-regular functions
are not self-concordant; however, the class of self-regular functions has a large overlap
with self-concordant functions. In what follows, we display the relation among the
first and second derivatives of S∗-regular functions, which shows that any S∗-regular
function belongs to the category U3. It should be mentioned that the relations among
the first and second derivative for the self-regular function have been studied in [18].

Theorem 3.4. Let δ(t) : (0,∞) → R be S∗-regular on (0,∞). Then there exist
c2 ≥ c1 > 0 such that

c1 ≤ δ(t)δ′′(t)

[δ′(t)]2
≤ c2 for all t ∈ (0,∞),(3.10)

i.e., the function δ(t) ∈ U3.
Proof. We show only that an S∗-regular function Δp,q(t) satisfies the property

(3.10). Actually, we have

Δp,q(t)Δ
′′
p,q(t)

[Δ′
p,q(t)]

2
=

(
(t+1)p+1−1

p(p+1) − (t+1)1−q−1
q(q−1) − p+q

pq t
)

[(t + 1)p−1 − (t + 1)−1−q](
(t+1)p

p + (t+1)−q

q − p+q
pq

)2 .

Dividing the numerator and denominator of the right-hand side of the above equation
by (t + 1)2p = (t + 1)p+1(t + 1)p−1, we have

Δp,q(t)Δ
′′
p,q(t)

[Δ′
p,q(t)]2

=

(
1−(t+1)−(p+1)

p(p+1)
+ (t+1)−(p+1)−(t+1)−(p+q)

q(q−1)
− (p+q)t

pq(t+1)(p+1)

)(
1 − 1

(t+1)(p+q)

)
(

1
p

+ 1

q(t+1)(p+q) − p+q
pq(t+1)p

)2
.

Therefore,

lim
t→∞

Δp,q(t)Δ
′′
p,q(t)

[Δ′
p,q(t)]

2
=

p

p + 1
.(3.11)

Since Δ′′
p,q(t) = (t + 1)p−1 − (t + 1)−1−q, we have limt→0+ Δ′′′

p,q(t) = p + q. Since
Δ′′

p,q(t) → 0, Δ′
p,q(t) → 0, and Δp,q(t) → 0 as t → 0+, we have

lim
t→0+

(Δ′′
p,q(t))

2

Δ′
p,q(t)

= lim
t→0+

[(Δ′′
p,q(t))

2]′

[Δ′
p,q(t)]

′ = lim
t→0+

2Δ′′
p,q(t)Δ

′′′
p,q(t)

Δ′′
p,q(t)

= 2(p + q).
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Hence, we have

lim
t→0+

Δp,q(t)

2Δ′
p,q(t)Δ

′′
p,q(t)

= lim
t→0+

Δ′
p,q(t)

2[Δ′′
p,q(t)]

2 + 2Δ′
p,q(t)Δ

′′′
p,q(t)

=
1

6(p + q)
.

Using the above relations, we further have

lim
t→0+

Δp,q(t)Δ
′′
p,q(t)

[Δ′
p,q(t)]

2
= lim

t→0+

Δ′
p,q(t)Δ

′′
p,q(t) + Δp,q(t)Δ

′′′
p,q(t)

2Δ′
p,q(t)Δ

′′
p,q(t)

=
1

2
+ lim

t→0+

Δp,q(t)

2Δ′
p,q(t)Δ

′′
p,q(t)

lim
t→0+

Δ′′′
p,q(t) =

2

3
.(3.12)

Notice that Δp,q(t) > 0,Δ′′
p,q(t) > 0, and Δ′

p,q(t) > 0 in (0,∞). From (3.11) and
(3.12), we can see by continuity that there exist two constants μ2 ≥ μ1 > 0 such that

μ1 ≤
Δp,q(t)Δ

′′
p,q(t)

[Δ′
p,q(t)]

2
≤ μ2 for t ∈ (0,∞).

Together with (3.7) through (3.9), this implies that an S∗-regular function δ(t) satisfies
the following inequality:

0 < μ1β1 ≤ δ(t)δ′′(t)

[δ′(t)]2
≤ β2μ2.

Therefore, (3.10) holds with c1 := μ1β1 and c2 := μ2β2.
A fact that should be pointed out here is that new functions in U1 or U2 can

be constructed by using the basic operations (addition, multiplication, division, and
composition) on known functions. The proof of the following fact is omitted.

Lemma 3.5. (i) If φ : (0,∞) → (0,∞), φ ∈ U1 with α = α1, and ϕ : (0,∞) →
(0,∞), ϕ ∈ U1 with α = α2, then φ + ϕ ∈ U1 with α = 2 max{α1, α2}.

(ii) If φ : (0,∞) → (0,∞), φ ∈ U1 with α1 ∈ (0, 1], and ϕ : (0,∞) → (0,∞),
ϕ ∈ U1 with α2 ∈ (0, 1], then the multiplicative function φ(t) · ϕ(t) ∈ U1 with α = 1.
Similarly, if φ ∈ U2 with α1 ≥ 1 and ϕ ∈ U2 with α2 ≥ 1, then φ(t) · ϕ(t) ∈ U2 with
α = 1.

(iii) If φ : (0,∞) → (0,∞), φ ∈ U2 with α1 ≥ 1, and ϕ : (0,∞) → (0,∞), ϕ ∈ U1

with α2 ∈ (0, 1], then the function φ
ϕ ∈ U2 with α = 1. Similarly, if φ ∈ U1 with

α1 ∈ (0, 1] and ϕ ∈ U2 with α2 ≥ 1, then φ
ϕ ∈ U1 with α = 1.

(iv) Let ϕ : (0,∞) → Ω1 ⊂ R and φ : Ω1 → (0,∞) be two convex functions. If
φ ∈ U1 with α > 0, then the composite function (φ ◦ ϕ)(t) = φ(ϕ(t)) ∈ U1 with the
same constant α.

The next result shows that the composite functions of et belong to U3.
Lemma 3.6. Denote the exponential function et by exp(t) and the composition of

m (m ≥ 1) exponential functions by

θm(t) :=

m︷ ︸︸ ︷
(exp ◦ exp ◦ · · · ◦ exp)(t).

Then

1

m
θm(t)θ′′m(t) ≤ [θ′m(t)]2 ≤ θm(t)θ′′m(t) for t ∈ R.(3.13)
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Proof. Let αm(t) := [θ′m(t)]2/(θm(t)θ′′m(t)) for t ∈ R. Since α1(t) ≡ 1, we can prove
the right-hand side inequality of (3.13) using (iv) of Lemma 3.5 and mathematical
induction. For the left-hand side inequality, notice that

θ′m(t) = θm(t)θ′m−1(t), θ′′m(t) = θm(t)(θ′m−1(t))
2 + θm(t)θ′′m−1(t) for t ∈ R.

This indicates that

αm(t) =
1

1 + 1
αm−1(t)θm−1(t)

>
1

1 + 1
αm−1(t)

for t ∈ R.

It is easy to check that α2(t) ∈ ( 1
2 , 1). The desired result follows by induction.

To construct examples of the convex function Γw, Theorem 2.7 tells us that it
suffices to find functions satisfying the inequalities (2.7) and (2.9) and compare their
α values. The next result is to estimate the α values, or, equivalently, to estimate
the values of c1 and c2 in (3.10). For simplicity, we use the S∗-regular functions with
p = 1 and q = 1, 2 to estimate the required c1 and c2. In fact, we have the following
result. Its proof was omitted here.

Lemma 3.7. The S∗-regular functions Δ1,1(t) and Δ1,2(t) given by (3.5) and
(3.6), respectively, satisfy condition (3.10) with c1 = 1

2 and c2 = 2
3 ; that is,

3

2
Δ1,1(t)Δ

′′
1,1(t) ≤ [Δ′

1,1(t)]
2 ≤ 2Δ1,1(t)Δ

′′
1,1(t),(3.14)

3

2
Δ1,2(t)Δ

′′
1,2(t) ≤ [Δ′

1,2(t)]
2 ≤ 2Δ1,2(t)Δ

′′
1,2(t)(3.15)

for t ∈ (0,∞).
We now give the last result on how to construct some convex functions Γw.
Theorem 3.8. Let Ω be an open convex subset of R.
(i) Let φ : Ω → (0,∞) be a convex, twice differentiable, strictly increasing function

on Ω. If φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω, then the generalized mean function

Γ(1)
w (x) := φ−1

(
n∑

i=1

wi

φ(xi)r

)

is convex on Ωn for any given w ∈ Rn
++ and r > 0.

(ii) Let κ > 0 be a constant and φ : Ω → (κ,∞) be a convex, twice differentiable,
strictly increasing function satisfying the inequality φ(t)φ′′(t) ≤ [φ′(t)]2 for t ∈ Ω.
Then, for any given w ∈ Rn

++ and T > 0, r > 0, the function

Γ(2)
w (x) :=

�︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

(
n∑

i=1

wi

(
T +

1

φ(xi)r

))

is convex on Ωn for any positive integer � ≤ Tκr + 1.
In fact, result (i) comes from part (i) of Theorem 2.9 and Theorem 2.7. Result

(ii) follows from Lemma 3.6, Theorem 2.7, and part (ii) of Theorem 2.9. In fact, it
suffices to take the inner function hT (t) = T + 1

φ(t)r and outer function θm(t), as

defined in Lemma 3.6, whose inverse function is given by

m︷ ︸︸ ︷
ln ◦ ln · · · ◦ ln(t).
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The above result partially answers the following interesting question: Given a
convex function, how many times can log-transformations be applied while retaining
the convexity?

Using Theorems 2.7, 2.9, and 3.8 and Lemma 3.7, we have the following examples
of convex Γw.

Example 3.1.

(i) Δ−1
1,j

[
n∑

i=1

1

Δ1,j(xi)r

]
,

(ii) ln

(
n∑

i=1

1

Δ1,j(xi)r

)
,

(iii)

�≤m+1︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

(
n∑

i=1

(
m + e−rxi

))
, x ∈ (0,∞)n.

(iv)

�︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln

[
n∑

i=1

(
m +

1

Δ1,1(xi)r

)]
, x ∈ (τ,∞)n, � ≤ mΔ1,1(τ)r + 1, τ > 0.

It follows from Corollary 3.2 that the function xp over (0,∞) satisfies (2.12) with
α = p

p−1 . Hence, when 1 < p ≤ 2, we have α ≥ 2, and when 1 < p ≤ 29
17 , we have

α ≥ 29
12 ≥ 9

4 . By Lemma 3.7, both Δ1,2(t) and Δ1,1(t) satisfy condition (2.9) with
α = 2. From Theorem 2.7, we see that the functions below are examples of convex Γw.

Example 3.2. Let 1 < p ≤ 2 and δi(t) = Δ1,2(t) orΔ1,1(t) for t ∈ (0,∞) and

i = 1, . . . , n. Then Γw(x) = (
∑n

i=1 wiδi(xi))
1
p is convex on (0,∞)n.

Before closing this section, we briefly illustrate a possible application of involv-
ing function Γw in the regularization method for solving a nonlinear programming
problem:

min{f0(x) : x ∈ C}.

For simplicity, we assume that C is a convex set and f0 is a convex function. Let
μ > 0 be a positive parameter. Given a strictly convex function Γw, we consider the
following problem:

min{f0(x) + μΓw(x) : x ∈ C}.

This problem becomes a strictly convex programming problem with a unique solution,
denoted by x(μ), which comprises a continuation trajectory {x(μ) : μ > 0}. Under
suitable conditions of f0,Φ, and φ, this trajectory becomes bounded. In this case,
by setting μ → 0, any accumulation point of x(μ), as μ → 0, is a solution to the
original problem. Thus, a path-following algorithm can be designed to follow this
trajectory to achieve the solution of the original problem. The performance of such
a path-following algorithm certainly depends on the choice of the function Γw with
regularity conditions.

4. Conclusions. In this paper, we have further extended the theoretical founda-
tion for the generalized mean function. We have established a necessary and sufficient
condition for such a generalization to be convex. Moreover, a systematic way to explic-
itly construct convex Γw has been illustrated. To this end, the concept of S∗-regular
functions has been introduced. It should be noted that any S∗-regular function is not
self-concordant [16].
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Abstract. This paper studies theoretical and practical properties of interior-penalty methods
for mathematical programs with complementarity constraints. A framework for implementing these
methods is presented, and the need for adaptive penalty update strategies is motivated with exam-
ples. The algorithm is shown to be globally convergent to strongly stationary points, under standard
assumptions. These results are then extended to an interior-relaxation approach. Superlinear con-
vergence to strongly stationary points is also established. Two strategies for updating the penalty
parameter are proposed, and their efficiency and robustness are studied on an extensive collection of
test problems.
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1. Introduction. In this paper we study the numerical solution of mathematical
programs with complementarity constraints (MPCCs) of the form

minimize f(x)(1.1a)

subject to ci(x) = 0, i ∈ E ,(1.1b)

ci(x) ≥ 0, i ∈ I,(1.1c)

0 ≤ x1 ⊥ x2 ≥ 0.(1.1d)

The variables have been divided as x = (x0, x1, x2), with x0 ∈ Rn, x1, x2 ∈ Rp. The
complementarity condition (1.1d) stands for

x1 ≥ 0, x2 ≥ 0 and either x1i = 0 or x2i = 0 for i = 1, . . . , p,(1.2)

where x1i, x2i are the ith components of vectors x1 and x2, respectively.
Complementarity (1.2) represents a logical condition (a disjunction) and must be

expressed in analytic form if we wish to solve the MPCC using nonlinear programming

∗Received by the editors December 17, 2004; accepted for publication (in revised form) November
14, 2005; published electronically April 21, 2006. This work was supported in part by National
Science Foundation grant CCR-0219438 and Department of Energy grant DE-FG02-87ER25047-
A004. Support was also provided by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract W-31-109-ENG-38. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government. Copyright is owned by SIAM to the extent
not limited by these rights.

http://www.siam.org/journals/siopt/17-1/62106.html
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

(leyffer@mcs.anl.gov).
‡Industrial Engineering and Management Sciences Department, Northwestern University,

Evanston, IL 60208 (g-lopez-calva@northwestern.edu).
§Electrical Engineering and Computer Science Department, Northwestern University, Evanston,

IL 60208 (nocedal@ece.northwestern.edu).

52



INTERIOR METHODS FOR MPCC 53

methods. A popular reformulation of the MPCC is

minimize f(x)(1.3a)

subject to ci(x) = 0, i ∈ E ,(1.3b)

ci(x) ≥ 0, i ∈ I,(1.3c)

x1 ≥ 0, x2 ≥ 0,(1.3d)

x1ix2i ≤ 0, i = 1, . . . , p.(1.3e)

This formulation preserves the solution set of the MPCC but is not totally adequate
because it violates the Mangasarian–Fromowitz constraint qualification (MFCQ) at
any feasible point. This lack of regularity can create problems when applying classical
nonlinear programming algorithms. For example, sequential quadratic programming
(SQP) methods can give rise to inconsistent constraint linearizations. Interior meth-
ods exhibit inefficiencies caused by the conflicting goals of enforcing complementarity
while keeping the variables x1, x2 away from their bounds.

Modern nonlinear programming algorithms include, however, regularization tech-
niques and other safeguards to deal with degeneracy, and one cannot rule out the
possibility that they can cope with the difficulties created by the formulation (1.3)
without having to exploit the special structure of MPCCs. If this level of robustness
could be attained (and this is a laudable goal) there might be no need to develop
algorithms specifically for MPCCs.

Numerical experiments by Fletcher and Leyffer [12] suggest that this goal is almost
achieved by modern active-set SQP methods. In [12], filterSQP [11] was used to
solve the problems in the MacMPEC collection [18], which contains more than a
hundred MPCCs, and fast convergence was almost always observed. The reason for
this practical success is that, even though the formulation (1.3) fails to satisfy MFCQ,
it is locally equivalent to a nonlinear program that satisfies MFCQ, and a robust SQP
solver is able to identify the right set of active constraints in the well-behaved program
and converge to a solution. Failures, however, are still possible for the SQP approach.
Fletcher et al. [13] give several examples that illustrate ways in which an SQP method
may fail to converge.

Interior methods are less successful when applied directly to the nonlinear pro-
gramming formulation (1.3). Fletcher and Leyffer [12] tested loqo [25] and knitro

[4] and observed that they were slower and less reliable than the SQP solvers filter-

SQP and snopt [15] (all codes as of 2002). This result contrasts starkly with the
experience in nonlinear programming, where interior methods compete well with SQP
methods. These studies have stimulated considerable interest in developing interior
methods for MPCCs that guarantee both global convergence and efficient practical
performance. The approaches can be broadly grouped into two categories.

The first category comprises relaxation approaches, where (1.3) is replaced by a
family of problems in which (1.3e) is changed to

x1ix2i ≤ θ, i = 1, . . . , p,(1.4)

and the relaxation parameter θ > 0 is driven to zero. This type of approach has been
studied from a theoretical perspective by Scholtes [24] and Ralph and Wright [22].
Interior methods based on the relaxation (1.4) have been proposed by Liu and Sun [19]
and Raghunathan and Biegler [21]. In both studies, the parameter θ is proportional
to the barrier parameter μ and is updated only at the end of each barrier problem.
Raghunathan and Biegler focus on local analysis and report very good numerical
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results on the MacMPEC collection. Liu and Sun analyze global convergence of their
algorithm and report limited numerical results. Numerical difficulties may arise when
the relaxation parameter gets small, since the interior of the regularized problem
shrinks toward the empty set.

DeMiguel et al. [8] address this problem by proposing a different relaxation scheme
where, in addition to (1.4), the nonnegativity bounds on the variables are relaxed to

x1i ≥ −δ, x2i ≥ −δ.(1.5)

Under fairly general assumptions, their algorithm drives either θ or δ, but not both,
to zero. This provides the resulting family of problems with a strict interior, even
when the appropriate relaxation parameters are approaching zero, which is a practical
advantage over the previous relaxation approach. The drawback is that the algorithm
has to correctly identify the parameters that must be driven to zero, a requirement
that can be difficult to meet in some cases.

The second category involves a regularization technique based on an exact-penalty
reformulation of the MPCC. Here, (1.3e) is moved to the objective function in the
form of an �1-penalty term, so that the objective becomes

f(x) + πxT
1 x2,(1.6)

where π > 0 is a penalty parameter. If π is chosen large enough, the solution of the
MPCC can be recast as the minimization of a single penalty function. The appropriate
value of π is, however, unknown in advance and must be estimated during the course
of the minimization.

This approach was first studied by Anitescu [1] in the context of active-set SQP
methods, although it had been used before to solve engineering problems (see, e.g.,
[10]). It has been adopted as a heuristic to solve MPCCs with interior methods in
loqo by Benson et al. [3], who present very good numerical results on the MacMPEC
set. A more general class of exact penalty functions was analyzed by Hu and Ralph
[17], who derive global convergence results for a sequence of penalty problems that
are solved exactly. Anitescu [2] derives similar global results in the context of inexact
subproblem solves.

In this paper, we focus on the penalization approach, because we view it as
a general tool for handling degenerate nonlinear programs. Our goal is to study
global and local convergence properties of interior-penalty methods for MPCCs and
to propose efficient and robust practical implementations.

In section 2 we present the interior-penalty framework; some examples motivate
the need for proper updating strategies for the penalty parameter. Section 3 shows
that the proposed interior-penalty method converges globally to strongly stationary
points, under standard assumptions. These results are then extended to the interior-
relaxation approaches considered in [19] and [21]. In section 4 we show that, near a
solution that satisfies some standard regularity properties, the penalty parameter is
not updated and the iterates converge superlinearly to the solution. Section 5 presents
two practical implementations of the interior-penalty method with different updating
strategies for the penalty parameter. Our numerical experiments, reported in the
same section, favor a dynamic strategy that assesses the magnitude of the penalty
parameter at every iteration.
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2. An interior-penalty method for MPCCs. To circumvent the difficulties
caused by the complementarity constraints, we replace (1.3) by the �1-penalty problem

minimize f(x) + πxT
1 x2,(2.1)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0,

where π > 0 is a penalty parameter. In principle, the �1-penalty term should have the
form

∑
i max{0, x1ix2i}, but we can write it as xT

1 x2 if we enforce the nonnegativity
of x1, x2. This exact penalty reformulation of MPCCs has been studied in [1, 2, 3,
17, 22, 23]. Since problem (2.1) is smooth, we can safely apply standard nonlinear
programming algorithms, such as interior methods, to solve it. The barrier problem
associated to (2.1) is

minimize f(x) + πxT
1 x2 − μ

∑
i∈I

log si − μ

p∑
i=1

log x1i − μ

p∑
i=1

log x2i(2.2)

subject to ci(x) = 0, i ∈ E ,
ci(x) − si = 0, i ∈ I,

where μ > 0 is the barrier parameter and si > 0, i ∈ I, are slack variables. The
Lagrangian of this barrier problem is given by

Lμ,π(x, s, λ) = f(x) + πxT
1 x2 − μ

∑
i∈I

log si − μ

p∑
i=1

log x1i − μ

p∑
i=1

log x2i

−
∑
i∈E

λici(x) −
∑
i∈I

λi(ci(x) − si),(2.3)

and the first-order Karush–Kuhn–Tucker (KKT) conditions of (2.2) can be written
as

∇f(x) −∇cE(x)TλE −∇cI(x)TλI −

⎛⎝ 0
μX−1

1 e− πx2

μX−1
2 e− πx1

⎞⎠ = 0,(2.4)

siλi − μ = 0, i ∈ I,
ci(x) = 0, i ∈ E ,

ci(x) − si = 0, i ∈ I,

where we have grouped the components ci(x), i ∈ E , into the vector cE(x), and simi-
larly for cI(x), λE , λI . We also define λ = (λE , λI). X1 denotes the diagonal matrix
containing the elements of x1 on the diagonal (the same convention is used for X2

and S), and e is a vector of ones of appropriate dimension.
The KKT conditions (2.4) can be expressed more compactly as

∇xLμ,π(x, s, λ) = 0,(2.5a)

SλI − μe = 0,(2.5b)

c(x, s) = 0,(2.5c)
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where we define

c(x, s) =

(
cE(x)

cI(x) − s

)
.(2.6)

In Figure 1, we describe an interior method for MPCCs based on the �1-penalty
formulation. Here, and in the rest of the paper, ‖ · ‖ denotes the infinity norm.
This is consistent with our implementation; it also simplifies the exposition, without
compromising the generality of our results.

In addition to requiring that the optimality conditions (2.7) of the barrier problem
are satisfied approximately, we impose a reduction in the complementarity term by
means of (2.8). For now, the only requirement on the sequence of barrier parameters
{μk} and the stopping tolerances {εkpen}, {εkcomp} is that they all converge to 0 as
k → ∞. Later, in the local analysis of section 4, we impose further conditions on the
relative rate of convergence of these sequences.

Algorithm I: Interior-Penalty Method for MPCCs

Initialization: Let x0, s0, λ0 be the initial primal and dual variables. Set k = 1.

repeat
1. Choose a barrier parameter μk, stopping tolerances εkpen and εkcomp

2. Find πk and an approximate solution (xk, sk, λk) of problem (2.2) with
parameters μk and πk that satisfy xk

1 > 0, xk
2 > 0, sk > 0, λk

I > 0 and the
following conditions:

‖∇xLμk,πk(xk, sk, λk)‖ ≤ εkpen,(2.7a)

‖Skλk
I − μke‖ ≤ εkpen,(2.7b)

‖c(xk, sk)‖ ≤ εkpen,(2.7c)

and

‖min{xk
1 , x

k
2}‖ ≤ εkcomp(2.8)

3. Let k ← k + 1
until a stopping test for the MPCC is satisfied.

Fig. 1. An interior-penalty method for MPCCs.

We use ‖min{xk
1 , x

k
2}‖ in (2.8) as a measure of complementarity, rather than

xkT
1 xk

2 , because it is less sensitive to the scaling of the problem and is independent of
the number of variables. Moreover, this measure is accurate even when both xk

1i and
xk

2i converge to zero.
Our formulation of Algorithm I is sufficiently general to permit various updating

strategies for the penalty parameter in step 2. One option is to choose μk and solve
(2.2) with πk = πk−1, until conditions (2.7) are satisfied. If condition (2.8) also holds,
then we proceed to step 3. Otherwise, we increase πk and solve (2.2) again using
the same barrier parameter μk. The process is repeated, if necessary, until (2.8) is
satisfied. We show in section 5 that Algorithm I with this penalty update strategy
is much more robust and efficient than the direct application of an interior method
to (1.3). Nevertheless, there are some flaws in a strategy that holds the penalty



INTERIOR METHODS FOR MPCC 57

parameter fixed throughout the minimization of a barrier problem, as illustrated by
the following examples.

The results reported next were obtained with an implementation of Algorithm I
that uses the penalty update strategy described in the previous paragraph. The
initial parameters are π1 = 1, μ1 = 0.1, and we set εkcomp = (μk)0.4 for all k. When
the penalty parameter is increased, it is multiplied by 10. The other details of the
implementation are discussed in section 5 and are not relevant to the discussion that
follows.

Example 1 (ralph2). Consider the MPCC

minimize x2
1 + x2

2 − 4x1x2(2.9)

subject to 0 ≤ x1 ⊥ x2 ≥ 0,

whose solution is (0, 0). The associated penalty problem is

minimize (x1 − x2)
2 + (π − 2)x1x2(2.10)

subject to x1 ≥ 0, x2 ≥ 0,

which is unbounded for any π < 2. Starting with π1 = 1, the first barrier problem is
never solved. The iterates increase monotonically because, by doing so, the objective
function is reduced and feasibility is maintained for problem (2.10). Eventually, the
iterates diverge. Table 1 shows the values of x1x2 during the first eight iterations of
the inner algorithm in step 2.

Table 1

Complementarity values for problem ralph2.

Iterate 1 2 3 4 5 6 7 8

Complementarity 0.0264 0.0916 0.1480 51.70 63.90 79.00 97.50 120.0

The upward trend in complementarity should be taken as a warning sign that the
penalty parameter is not large enough, since no progress is made toward satisfaction
of (2.8). This suggests that we should be prepared to increase the penalty parameter
dynamically. How to do so, in a robust manner, is not a simple question because
complementarity can oscillate. We return to this issue in section 5, where we describe
a dynamic strategy for updating the penalty parameter.

Example 2 (scale1). Even if the penalty problem is bounded, there are cases
where efficiency can be improved with a more flexible strategy for updating πk. For
example, consider the MPCC

minimize (100x1 − 1)2 + (x2 − 1)2(2.11)

subject to 0 ≤ x1 ⊥ x2 ≥ 0,

which has two local solutions: (0.01, 0) and (0, 1). Table 2 shows the first seven values
of xk satisfying (2.7) and (2.8), and the corresponding values of μk.

We observe that complementarity, as measured by min{xk
1 , x

k
2}, stagnates. This

result is not surprising because the minimum penalty parameter required to recover
the solution (0, 1) is π∗ = 200 and we have used the value π1 = 1. In fact, for any
π < 200, there is a saddle point close to (0, 1), and the iterates approach that saddle
point. Seven barrier problems must be solved before the test (2.8) is violated for the
first time, triggering the first update of πk.
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Table 2

Solutions of 7 consecutive barrier-penalty problems for scale1.

k 1 2 3 4 5 6 7

μk 0.1 0.02 0.004 0.0008 0.00016 0.000032 0.0000064

xk
1 0.010423 0.010061 0.009971 0.009954 0.009951 0.009950 0.009950

xk
2 1.125463 1.024466 0.999634 0.995841 0.995186 0.995057 0.995031

εkcomp 0.398107 0.209128 0.109856 0.057708 0.030314 0.015924 0.008365

(a) Complementarity gap. (b) Solution path.

Fig. 2. A numerical solution of problem scale1.

The behavior of the algorithm is illustrated in Figure 2(a), which plots three
quantities as a function of the inner iterations. Complementarity (continuous line)
stalls at a nonzero value during the first 10 iterations, while μk (dashed line) decreases
monotonically. The penalty parameter (dashed-dotted line) is increased for the first
time at iteration 9. It must be increased three times to surpass the threshold value
π∗ = 200, which finally forces complementarity down to zero. Figure 2(b) shows the
path of the iterates up to the solution of the seventh barrier problem. There is a
clear pattern of convergence to the stationary point where none of the variables is
zero. If this convergence pattern can be identified early, the penalty parameter can
be increased sooner, saving some iterations in the solution of the MPCC.

One could ask whether the penalty parameter needs to be updated at all, or
whether choosing a very large value of π and holding it fixed during the execution
of Algorithm I could prove to be an effective strategy. In section 5 we show that
excessively large penalty parameters can result in substantial loss of efficiency. More
important, no matter how large π is, for some problems the penalty function is un-
bounded outside a small neighborhood of the solution, and a bad initial point makes
the algorithm diverge if π is kept fixed (see [20] for an example).

In section 5, we describe a dynamic strategy for updating the penalty parameter.
We show that it is able to promptly identify the undesirable behavior described in
these examples and to react accordingly.

3. Global convergence analysis. In this section, we present the global con-
vergence analysis of an interior-penalty method. We start by reviewing an MPCC
constraint qualification that suffices to derive first-order optimality conditions for
MPCCs. We then review stationarity concepts.
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Definition 3.1. We say that the MPCC linear independence constraint quali-
fication (MPCC-LICQ) holds at a feasible point x for the MPCC (1.1) if and only if
the standard LICQ holds at x for the set of constraints

ci(x) = 0, i ∈ E ,(3.1)

ci(x) ≥ 0, i ∈ I,
x1 ≥ 0, x2 ≥ 0.

We denote indices of the active constraints at a feasible point x by

Ac(x) = {i ∈ I : ci(x) = 0},(3.2)

A1(x) = {i ∈ {1, . . . , p} : x1i = 0},
A2(x) = {i ∈ {1, . . . , p} : x2i = 0}.

For ease of notation, we use i �∈ A1(x) as shorthand for i ∈ {1, . . . , p}\A1(x) (likewise
for A2,Ac). We sometimes refer to variables satisfying x1i + x2i > 0 as branch
variables; those for which x1i + x2i = 0, that is, variables indexed by A1(x) ∩ A2(x),
are called corner variables.

The next theorem establishes the existence of multipliers for minimizers that
satisfy MPCC-LICQ. It can be viewed as a counterpart for MPCCs of the first-order
KKT theorem for nonlinear programs.

Theorem 3.2. Let x∗ be a minimizer of the MPCC (1.1), and suppose MPCC-
LICQ holds at x∗. Then, there exist multipliers λ∗, σ∗

1 , σ
∗
2 that, together with x∗,

satisfy the system

∇f(x) −∇cE(x)TλE −∇cI(x)TλI −

⎛⎝ 0
σ1

σ2

⎞⎠ = 0,(3.3a)

ci(x) = 0, i ∈ E ,(3.3b)

ci(x) ≥ 0, i ∈ I,(3.3c)

x1 ≥ 0, x2 ≥ 0,(3.3d)

x1i = 0 or x2i = 0, i = 1, . . . , p,(3.3e)

ci(x)λi = 0, i ∈ I,(3.3f)

λi ≥ 0, i ∈ I,(3.3g)

x1iσ1i = 0 and x2iσ2i = 0, i = 1, . . . , p,(3.3h)

σ1i ≥ 0, σ2i ≥ 0, i ∈ A1(x) ∩ A2(x).(3.3i)

For a proof of this theorem, see [23] or an alternative proof in [20].
We note that the multipliers σ1, σ2 are required to be nonnegative only for corner

variables. This requirement reflects the geometry of the feasible set: If x1i > 0, then
x2i = 0 acts like an equality constraint, and the corresponding multiplier can be
positive or negative. Theorem 3.2 motivates the following definition.

Definition 3.3. (a) A point x∗ is called a strongly stationary point of the MPCC
(1.1) if there exist multipliers λ∗, σ∗

1 , σ
∗
2 such that (3.3) is satisfied. (b) A point x∗

is called a C-stationary point of the MPCC (1.1) if there exist multipliers λ∗, σ∗
1 , σ

∗
2

such that conditions (3.3a)–(3.3h) hold and

σ∗
1iσ

∗
2i ≥ 0, i ∈ A1(x

∗) ∩ A2(x
∗).(3.4)
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Strong stationarity implies the absence of first-order feasible descent directions.
These are the points that the algorithms should aim for. Although C-stationarity
does not characterize the solutions of an MPCC, since it allows descent directions
if σ1i < 0 or σ2i < 0, we consider C-stationary points because they are attractors
of iterates generated by Algorithm I. One can find examples in which a sequence
of stationary points of the penalty problem converge to a C-stationary point where
descent directions exist, and this phenomenon can actually be observed in practice
(see case 1 of Example 3.1 in [17] and the comments on problem scale4 in section 5).
The reader further interested in stationarity for MPCCs is referred to [23].

3.1. Global convergence of the interior-penalty algorithm. Many algo-
rithms have been proposed to solve the barrier problem in step 2; see, for example,
[7, 14] and the references therein. As is well known, these inner algorithms may fail
to satisfy (2.7), and therefore Algorithm I can fail to complete step 2. The analysis of
the inner algorithm is beyond the scope of this paper, and we concentrate only on the
analysis of the outer iterations in Algorithm I. We assume that the inner algorithm
is always successful and that Algorithm I generates an infinite sequence of iterates
{xk, sk, λk} that satisfies conditions (2.7) and (2.8).

We present the following result in the slightly more general setting in which a
vector of penalties π = (π1, . . . , πp) is used, with the objective function as

f(x) + πTX1x2,(3.5)

and with minor changes in the Lagrangian of the problem. This allows us to extend
the global convergence result to the relaxation approach in the next subsection. For
the implementation, however, we use a uniform (i.e., scalar-valued) penalty.

Theorem 3.4. Suppose that Algorithm I generates an infinite sequence of iterates
{xk, sk, λk} and parameters {πk, μk} that satisfies conditions (2.7) and (2.8), for se-
quences {εkpen}, {εkcomp}, {μk} converging to zero. If x∗ is a limit point of the sequence

{xk}, and f and c are continuously differentiable in an open neighborhood N (x∗) of
x∗, then x∗ is feasible for the MPCC (1.1). If, in addition, MPCC-LICQ holds at
x∗, then x∗ is a C-stationary point of (1.1). Moreover, if πk

i x
k
ji → 0 for j = 1, 2 and

i ∈ A1(x
∗) ∩ A2(x

∗), then x∗ is a strongly stationary point of (1.1).

Proof. Let x∗ be a limit point of the sequence {xk} generated by Algorithm I,
and let K be an infinite index set such that {xk}k∈K → x∗. Then, xk ∈ N (x∗) for
all k sufficiently large; from the assumption of continuous differentiability on N (x∗),
and {xk}k∈K → x∗, we conclude that the sequences {f(xk)}, {c(xk)}, {∇f(xk)},
{∇cE(xk)}, {∇cI(xk)}, k ∈ K, have limit points and are therefore bounded.

Since the inner algorithm used in Step 2 enforces positivity of the slacks sk, by
continuity of c and the condition εkpen → 0 we have

ci(x
∗) = 0, i ∈ E ,

ci(x
∗) = s∗i ≥ 0, i ∈ I,

where s∗i = limk∈K ski . Therefore x∗ satisfies (3.3b) and (3.3c), and it also satisfies
(3.3d) because the inner algorithm enforces the positivity of xk. The complementarity
condition (3.3e) follows directly from (2.8) and εkcomp → 0. Therefore, x∗ is feasible
for the MPCC (1.1).
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Existence of multipliers. Let us define

σk
1i =

μk

xk
1i

− πk
i x

k
2i, σk

2i =
μk

xk
2i

− πk
i x

k
1i(3.6)

and

αk = ‖(λk, σk
1 , σ

k
2 )‖.(3.7)

(Recall ‖ · ‖ denotes the infinity norm.) We first show that {αk}k∈K is bounded,
a result that implies that the sequence of multipliers (λk, σk

1 , σ
k
2 ) has a limit point.

Then we show that any limit point satisfies C-stationarity at x∗.
We can assume, without loss of generality, that αk ≥ τ > 0 for all k ∈ K. Indeed,

if there were a further subsequence {αk}k∈K′ converging to 0, this subsequence would
be trivially bounded, and we would apply the analysis below to {αk}k∈K\K′ , which is
bounded away from 0, to prove the boundedness of the entire sequence {αk}k∈K.

Let us define the “normalized multipliers”

λ̂k =
λk

αk
, σ̂k

1 =
σk

1

αk
, σ̂k

2 =
σk

2

αk
.(3.8)

We now show that the normalized multipliers corresponding to inactive constraints
converge to 0 for k ∈ K. Consider an index i �∈ Ac(x

∗), where Ac is defined by (3.2).
Since ski → ci(x

∗) > 0 and ski λ
k
i → 0 by (2.7b), we have that λk

i converges to 0, and

so does λ̂k
i .

Next consider an index i �∈ A1(x
∗). We want to show that σ̂k

1i → 0. If i �∈ A1(x
∗),

then xk
1i → x∗

1i > 0, which implies that xk
2i → 0, by (2.8) and εkcomp → 0. We also

have, from (3.6), that for any k ∈ K,

σk
1i �= 0 ⇒ μk

xk
1i

− πk
i x

k
2i �= 0 ⇒ μk

xk
2i

− πk
i x

k
1i �= 0 ⇒ σk

2i �= 0.(3.9)

Using this and the fact that |σk
2i| ≤ αk, we have that, if there is any subsequence of

indices k for which σk
1i �= 0, then

|σ̂k
1i| =

|σk
1i|
αk

≤ |σk
1i|

|σk
2i|

=

∣∣∣ μk

xk
1i
− πk

i x
k
2i

∣∣∣∣∣∣ μk

xk
2i
− πk

i x
k
1i

∣∣∣
=

∣∣∣μk−πk
i x

k
1ix

k
2i

xk
1i

∣∣∣∣∣∣μk−πk
i x

k
1ix

k
2i

xk
2i

∣∣∣ =
xk

2i

xk
1i

→ 0.

Since clearly σ̂k
1i → 0 for those indices with σk

1i = 0, we have that the whole sequence
σ̂k

1i converges to zero for i �∈ A1(x
∗). The same argument can be applied to show that

σ̂k
2i → 0 for i �∈ A2(x

∗). Therefore we have shown that the normalized multipliers
(3.8) corresponding to the inactive constraints converge to zero for k ∈ K.

To prove that {αk}k∈K is bounded, we proceed by contradiction and assume
that there exists K′ ⊆ K such that {αk}k∈K′ → ∞. By definition, the sequences of
normalized multipliers (3.8) are bounded, so we restrict K′ further, if necessary, so
that the sequences of normalized multipliers are convergent within K′. Given that
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K′ ⊆ K, all the sequences of gradients {∇f(xk)}, {∇cE(xk)}, {∇cI(xk)}, k ∈ K′, are
convergent. We can then divide both sides of (2.7a) by αk and take limits to get

lim
k→∞,k∈K′

∥∥∥∥ 1

αk
∇xLμk,πk(xk, sk, λk)

∥∥∥∥ ≤ lim
k→∞,k∈K′

εkpen
αk

= 0

or

lim
k→∞,k∈K′

⎡⎣ 1

αk
∇fk −

∑
i∈E∪I

λ̂k
i∇ci(x

k) −

⎛⎝ 0
σ̂k

1

σ̂k
2

⎞⎠⎤⎦ = 0.(3.10)

It is immediate that the first term of (3.10) converges to 0. We showed that the coef-
ficients (the normalized multipliers (3.8)) of the inactive constraints also converge to
zero. Since the corresponding sequences of gradients have limits (hence are bounded),
all the terms corresponding to inactive constraints get cancelled in the limit, and we
have

∑
i∈E∪Ac(x∗)

λ̂∗
i∇ci(x

∗) +
∑

i∈A1(x∗)

σ̂∗
1i

⎛⎝ 0
ei
0

⎞⎠ +
∑

i∈A2(x∗)

σ̂∗
2i

⎛⎝ 0
0
ei

⎞⎠ = 0.

If the limit point x∗ satisfies MPCC-LICQ, then the constraint gradients involved in
this expression are linearly independent, and we get

λ̂∗ = 0, σ̂∗
1 = 0, σ̂∗

2 = 0.

This result, however, contradicts the fact that ‖(λ̂k, σ̂k
1 , σ̂

k
2 )‖ = 1 for all k ∈ K′, which

follows from (3.7), (3.8), and the assumption that limk→∞,k∈K′ αk → ∞. Therefore,
we conclude that no such unbounded subsequence exists, and hence all the sequences
{λk}, {σk

1}, {σk
2}, with k ∈ K, are bounded and have limit points.

C-stationarity. Choose any such limit point (λ∗, σ∗
1 , σ

∗
2) and restrict K, if neces-

sary, so that

(xk, sk, λk, σk
1 , σ

k
2 ) → (x∗, s∗, λ∗, σ∗

1 , σ
∗
2).

By (2.7a) and (2.4) and by continuity of f and c, we have that

∇f(x∗) −∇cE(x∗)Tλ∗
E −∇cI(x∗)Tλ∗

I −

⎛⎝ 0
σ∗

1

σ∗
2

⎞⎠ = 0,

which proves (3.3a). We have already shown that the limit point x∗ satisfies conditions
(3.3b) through (3.3e). The nonnegativity of λ∗

I , condition (3.3g), follows from the fact
that the inner algorithm maintains λk

i > 0 for i ∈ I. Condition (3.3f) holds because,
for any i ∈ I, if ci(x

∗) = s∗i > 0, then since ski λ
k
i → 0, we must have λ∗

i = 0.
We now establish that conditions (3.3h) hold at the limit point (x∗, s∗, λ∗, σ∗

1 , σ
∗
2).

They are clearly satisfied when i ∈ A1(x
∗) and i ∈ A2(x

∗). Consider an index
i �∈ A1(x

∗). If there is any infinite subset K′′ ⊆ K with σk
1i �= 0 for all k ∈ K′′, then,

as argued in (3.9), σk
1i �= 0 ⇒ σk

2i �= 0 for all k ∈ K′′ and

lim
k→∞,k∈K′′

|σk
1i|

|σk
2i|

= lim
k→∞,k∈K′′

∣∣∣ μk

πk
i x

k
1i
− xk

2i

∣∣∣∣∣∣ μk

πk
i x

k
2i
− xk

1i

∣∣∣ = lim
k→∞,k∈K′′

xk
2i

xk
1i

= 0,(3.11)
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where the limit follows from the fact that x∗
1i > 0, which implies that xk

2i → 0. {σk
2i}

has a limit and is therefore bounded. Hence, (3.11) can hold only if limk→∞,k∈K′′ σk
1i =

0 and, by definition, σk
1i = 0 for all k ∈ K \ K′′. We conclude that σ∗

1i = 0 for
i �∈ A1(x

∗). A similar argument can be used to get σ∗
2i = 0 if i �∈ A2(x

∗).
To prove (3.4), we consider an index i ∈ A1(x

∗) ∩ A2(x
∗). If σ∗

1i = 0, we im-
mediately have σ∗

1iσ
∗
2i = 0. If σ∗

1i > 0, then for all k ∈ K large enough, σk
1i > 0.

Then

μk

xk
1i

> πk
i x

k
2i ⇒ μk

xk
2i

> πk
i x

k
1i,

or σk
2i > 0. Hence, σ∗

1iσ
∗
2i ≥ 0, as desired. The same argument can be used to show

that if σ∗
1i < 0, then σ∗

2i < 0, and hence σ∗
1iσ

∗
2i ≥ 0. Therefore, condition (3.4) holds,

and x∗ is a C-stationary point of the MPCC.
Strong stationarity. Let i ∈ A1(x

∗) ∩ A2(x
∗). If πk

i x
k
2i → 0, then

σ∗
1i = lim

k∈K
σk

1i = lim
k∈K

(
μk

xk
1i

− πk
i x

k
2i

)
= lim

k∈K

μk

xk
1i

≥ 0.(3.12)

A similar argument shows that σ∗
2i ≥ 0. Therefore, condition (3.3i) holds, and x∗ is a

strongly stationary point for the MPCC (1.1).
The proof of Theorem 3.4 builds on a similar proof in [17], where an analogous

result is derived for exact subproblem solves. Our result is related to the analysis
in [2] (derived independently), except that we explicitly work within an interior-
method framework and we do not analyze the convergence of the inner algorithm. In
[2], stronger assumptions are required (e.g., that the lower-level problem satisfies a
mixed-P property) to guarantee that the inner iteration always terminates.

For strong stationarity, we require a condition on the behavior of the penalty
parameter, relative to the sequences converging to the corners. This is the same
condition that Scholtes required for strong stationarity in [24]. A simpler, though
stronger, assumption on the penalties is a boundedness condition, which we use for
the following corollary that corresponds to the particular case of our implementations.

Corollary 3.5. Suppose Algorithm I is applied with a uniform (i.e., scalar-
valued) penalty parameter, and let the assumptions of Theorem 3.4 hold. Then, if the
sequence of penalty parameters {πk} is bounded, x∗ is a strongly stationary point for
(1.1).

In our algorithmic framework, the sequence of penalty parameters does not have to
be monotone, although practical algorithms usually generate nondecreasing sequences.
Monotonicity is required neither in the description of the algorithm nor in the proof.
This flexibility could be exploited to correct unnecessarily large penalty parameters in
practice. For theoretical purposes, on the other hand, this nonmonotonicity property
is important for the derivation of Theorem 3.6 in the next subsection.

3.2. Relationship to interior-relaxation methods. An alternative to exact
penalization for regularizing the complementarity constraints of an MPCC is to relax
the complementarity constraints. This approach has been combined with interior
methods in [19, 21]; we refer to it as the “interior-relaxation” method. The objective
of this subsection is to show that there is a correspondence between interior-penalty
and interior-relaxation approaches and that this correspondence can be exploited to
give an alternative global convergence proof for an interior-relaxation method, based
on Theorem 3.4.



64 SVEN LEYFFER, GABRIEL LÓPEZ-CALVA, AND JORGE NOCEDAL

Interior-relaxation methods solve a sequence of barrier subproblems associated
with (1.3) with one modification; namely, the complementarity constraints (1.3e) are
relaxed by introducing a parameter θk > 0 that goes to 0 as the barrier parameter μk

approaches 0. Effectively, a sequence of problems

minimize f(x) − μk
∑
i∈I

log si − μk

p∑
i=1

log sci − μk

p∑
i=1

log x1i − μk

p∑
i=1

log x2i

subject to
ci(x) = 0, i ∈ E ,

ci(x) − si = 0, i ∈ I,
θk − x1ix2i − sci = 0, i = 1, . . . , p,

(3.13)

has to be solved, where sc are the slacks for the relaxed complementarity constraints,
the multipliers of which are denoted by ξ. Let Lμk,θk denote the Lagrangian of (3.13).

An approximate solution of (3.13), for some μk and θk, is given by variables
xk, sk, skc , λ

k, ξk, with xk
1 > 0, xk

2 > 0, sk > 0, skc > 0, λk
I > 0, ξk > 0, satisfying the

following inexact KKT system, where εkrel > 0 is some tolerance

‖∇xLμk,θk(xk, sk, λk, ξk)‖ ≤ εkrel,(3.14a)

‖Skλk
I − μke‖ ≤ εkrel,(3.14b)

‖Sk
c ξ

k − μke‖ ≤ εkrel,(3.14c)

‖c(xk, sk)‖ ≤ εkrel,(3.14d)

‖θke−Xk
1 x

k
2 − skc‖ ≤ εkrel.(3.14e)

Theorem 3.6. Suppose an interior-relaxation method generates an infinite se-
quence of solutions {xk, sk, skc , λ

k, ξk} and parameters {μk, θk} that satisfies conditions
(3.14) for sequences {μk}, {θk}, and {εkrel}, all converging to 0. If x∗ is a limit point of
the sequence {xk}, and f and c are continuously differentiable in an open neighborhood
N (x∗) of x∗, then x∗ is feasible for the MPCC (1.1). If, in addition, MPCC-LICQ
holds at x∗, then x∗ is a C-stationary point of (1.1). Moreover, if ξki x

k
ji → 0 for

j = 1, 2 and i ∈ A1(x
∗) ∩ A2(x

∗), then x∗ is a strongly stationary point of (1.1).
Proof. We provide an indirect proof. Given sequences of variables {xk, sk, skc ,

λk, ξk}, parameters {μk, θk}, and tolerances {εkrel} satisfying the assumptions, we
define sequences of parameters {μk, πk := ξk} and tolerances {εkpen := εkrel, ε

k
comp :=

(θk + εkrel)
1/2}; for the variables, we keep {xk, sk, λk} only. Note that we have not

changed the sequence of decision variables {xk}, so the limit points are unchanged.
We show that the sequences that we just defined satisfy the assumptions of Theo-
rem 3.4. Observe that there is no reason why the sequence of multipliers {ξk} should
be monotone. This is not a problem, however, because there is no monotonicity
requirement for the sequence {πk} in Theorem 3.4, as noted earlier.

First, {μk}, {εkpen}, {εkcomp} all converge to 0, by construction. Next, it is easy to
see that

∇xLμk,πk(xk, sk, λk) = ∇xLμk,θk(xk, sk, λk, ξk).

This, together with conditions (3.14a), (3.14b), and (3.14d), yields (2.7).
Recall that the infinity norm is used for (2.8) (without loss of generality). Com-

bining (3.14e) with min{xk
1 , x

k
2} ≤ xk

1 and min{xk
1 , x

k
2} ≤ xk

2 , we get

0 ≤ min{xk
1i, x

k
2i} ≤ (xk

1ix
k
2i)

1/2

≤ (xk
1ix

k
2i + skci)

1/2 ≤ (θk + εkrel)
1/2 = εkcomp.
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Therefore, the sequence {xk, sk, λk}, with corresponding parameters {μk, πk},
satisfies conditions (2.7) and (2.8) for all k. The conclusions follow from a direct
application of Theorem 3.4.

A similar global result is proved directly in [19], under somewhat different as-
sumptions. The key for the proof presented here is that there exists a one-to-one
correspondence between KKT points of problems (2.2) and (3.13), which is easily
seen by comparing the corresponding first-order conditions. In fact, this one-to-one
relation between KKT points of relaxation and penalization schemes can be extended
to general nonlinear programs. Such an extension is useful because some conver-
gence results can be derived directly for one approach only and then extended to the
alternative regularization scheme in a simple way.

4. Local convergence analysis. In this section, we show that if the iterates
generated by Algorithm I approach a solution x∗ of the MPCC that satisfies cer-
tain regularity conditions and if the penalty parameter is sufficiently large, then this
parameter is never updated and the iterates converge to x∗ at a superlinear rate.

We start by defining a second-order sufficient condition (SOSC) for MPCCs (see
[23]). For this purpose, we define the Lagrangian

L(x, λ, σ1, σ2) = f(x) − λT
E cE(x) − λT

I cI(x) − σT
1 x1 − σT

2 x2.(4.1)

Definition 4.1. The MPCC second-order sufficient condition (MPCC-SOSC)
holds at x∗ if x∗ is a strongly stationary point of (1.1) with multipliers λ∗, σ∗

1 , σ
∗
2 and

dT∇2
xxL(x∗, λ∗, σ∗

1 , σ
∗
2) d > 0(4.2)

for all critical directions d, with ‖d‖ = 1, satisfying

∇f(x)T d = 0,(4.3a)

∇ci(x)T d = 0 for all i ∈ E ,(4.3b)

∇ci(x)T d ≥ 0 for all i ∈ Ac(x),(4.3c)

min
{j:xji=0}

{dji} = 0 for all i = 1, . . . , p.(4.3d)

Notice that (4.3d) is a convenient way to summarize the following conditions,
which characterize the set of feasible directions with respect to the complementarity
constraints: If x1i = 0, x2i > 0, then d1i = 0 and d2i is free; if x2i = 0, x1i > 0, then
d2i = 0 and d1i is free; and if x1i = x2i = 0, then 0 ≤ d1i ⊥ d2i ≥ 0.

For the local analysis, we make the following assumptions.
Assumptions 4.2. There exists a strongly stationary point x∗ of the MPCC (1.1),

with multipliers λ∗, σ∗
1 , σ

∗
2 , satisfying the following conditions:

1. f and c are twice Lipschitz continuously differentiable in an open neighbor-
hood of x∗.

2. MPCC-LICQ holds at x∗.
3. The following primal-dual strict complementarity holds at x∗: λ∗

i �= 0 for all
i ∈ E ∪ Ac(x

∗), and σ∗
ji > 0 for all i ∈ A1(x

∗) ∩ A2(x
∗), for j = 1, 2.

4. MPCC-SOSC holds at x∗.
The following lemma shows that the penalty formulation inherits the desirable

properties of the MPCC for a sufficiently large penalty parameter. The multipliers
for the bound constraints x1 ≥ 0, x2 ≥ 0 of the penalty problem (2.1) are denoted by
ν1 ≥ 0, ν2 ≥ 0, respectively.
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Lemma 4.3. If Assumptions 4.2 hold at x∗ and π > π∗, where

π∗ = π∗(x∗, σ∗
1 , σ

∗
2) = max

{
0, max

{i:x∗
1i>0}

−σ∗
2i

x∗
1i

, max
{i:x∗

2i>0}

−σ∗
1i

x∗
2i

}
,(4.4)

then it follows that
1. LICQ holds at x∗ for (2.1);
2. x∗ is a KKT point of (2.1);
3. primal-dual strict complementarity holds at x∗ for (2.1); that is, λ∗

i �= 0 for
all i ∈ E ∪ Ac(x

∗) and ν∗ji > 0 for all i ∈ Aj(x
∗), for j = 1, 2;

4. SOSC holds at x∗ for (2.1).
Proof. LICQ at x∗ for (2.1) follows from the definition of MPCC-LICQ.
The proof of part 2 is similar to the proof of Proposition 4.1 in [13]. The key for

the proof is the relationship between the multipliers σ∗
1 , σ

∗
2 of (1.1) and ν∗1 ≥ 0, ν∗2 ≥ 0

of (2.1), given by

ν∗1 = σ∗
1 + πx∗

2 and ν∗2 = σ∗
2 + πx∗

1.(4.5)

The result is evident when the strong stationarity conditions (3.3) and the first-order
KKT conditions of (2.1) are compared, except for the nonnegativity of ν∗1 and ν∗2 . To
see that ν∗1 , ν

∗
2 ≥ 0, suppose first that i ∈ A1(x

∗) ∩ A2(x
∗). In that case, from (4.5),

we have νji = σji, j = 1, 2, and the nonnegativity follows directly from (3.3i). If, on
the other hand, i �∈ A2(x

∗), then (4.5) and π > π∗ imply

ν∗1i = σ∗
1i + πx∗

2i > σ∗
1i +

−σ∗
1i

x∗
2i

x∗
2i = 0.(4.6)

The same argument applies for i �∈ A1(x
∗), which completes the proof of part 2.

Note that π ≥ π∗ suffices for the nonnegativity of ν1, ν2. The strict inequality
π > π∗ is required for part 3; that is, we need it for primal-dual strict complementarity
at x∗ for (2.1). In fact, (4.6) yields primal-dual strict complementarity for i �∈ A2(x

∗)
(and a similar argument works for i �∈ A1(x

∗)). For i ∈ E ∪Ac(x
∗), strict complemen-

tarity comes directly from the assumptions. For i ∈ A2(x
∗) ∩ A1(x

∗), relation (4.5)
shows that ν∗ji = σ∗

ji, j = 1, 2, which is positive by Assumption 4.2(3).
For part 4, Assumption 4.2(3) implies that the multipliers of the complementarity

variables satisfy ν∗1i+ν∗2i > 0 for all i ∈ A1(x
∗)∩A2(x

∗), which, together with π > π∗,
constitutes a sufficient condition for SOSC of the penalty problem (2.1); see [20] for
details. Therefore, SOSC holds at x∗ for (2.1).

We note that Assumption 4.2(3) can be weakened and still get SOSC for the
penalized problem (2.1). In [20], two alternative sufficient conditions for SOSC of
(2.1) are given. The first involves ν∗1i + ν∗2i > 0 for all i ∈ A1(x

∗) ∩ A2(x
∗) (which

is called partial strict complementarity in [22]) and π > π∗. The second condition
involves a possibly larger penalty parameter and shows how the curvature term of the
complementarity constraint xT

1 x2 can be exploited to ensure the penalized problem
satisfies a second-order condition. We state the result here for completeness (the proof
can be found in [20]).

Lemma 4.4. Let MPCC-SOSC hold at x∗. If either
1. π > π∗ and ν∗1i + ν∗2i > 0 for all i ∈ A1(x

∗) ∩ A2(x
∗), or

2. π > max{π∗, πSO}, for a (possibly higher) value πSO defined in [20],
then SOSC holds at x∗ for (2.1).

We now show that an adequate penalty parameter stabilizes near a regular solu-
tion and superlinear convergence takes place.
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We group primal and dual variables in a single vector z = (x, s, λ). Given a
strongly stationary point x∗ with multipliers λ∗, σ∗

1 , σ
∗
2 , we associate to it the triplet

z∗ = (x∗, s∗, λ∗), where s∗ = cI(x∗). We also group the left-hand side of (2.5) in the
function

Fμ(z;π) =

⎛⎝ ∇xLμ,π(x, λ)
SλI − μe
c(x, s)

⎞⎠.(4.7)

At every inner iteration in step 2 of Algorithm I, a step d is computed by solving a
system of the form

∇Fμ(z;π)d = −Fμ(z;π).(4.8)

Note that (2.7) is equivalent to ‖Fμ(z;π)‖ ≤ εpen.
The following theorem shows that there are practical implementations of Algo-

rithm I that, near a regular solution x∗ of the MPCC and for a sufficiently large
penalty parameter, satisfy the stopping tests (2.7) and (2.8) at every iteration, with
no backtracking and no updating of the penalty parameter. Using this fact, one can
easily show that the iterates converge to x∗ superlinearly. To state this result, we
introduce the following notation. Let z be an iterate satisfying ‖Fμ(z;π)‖ ≤ εpen and
‖min{x1, x2}‖ ≤ εcomp. We define z+ to be the new iterate computed using a barrier
parameter μ+ < μ, namely,

z+ = z + d, with Fμ+(z;π)d = −Fμ+(z;π).(4.9)

Theorem 4.5. Suppose that Assumptions 4.2 hold at a strongly stationary point
x∗. Assume that π > π∗, with π∗ given by (4.4), and that the tolerances εpen, εcomp

in Algorithm I are functions of μ that converge to 0 as μ → 0. Furthermore, assume
that the barrier parameter and these tolerances are updated so that the following limits
hold as μ → 0:

(εpen + μ)2

ε+pen
→ 0,(4.10a)

(εpen + μ)2

μ+
→ 0,(4.10b)

μ+

ε+comp
→ 0.(4.10c)

Assume also that

μ+

‖F0(z;π)‖ → 0 as ‖F0(z;π)‖ → 0.(4.11)

Then, if μ is sufficiently small and z is sufficiently close to z∗, the following conditions
hold:

1. The stopping criteria (2.7) and (2.8), with parameters μ+, ε+pen, ε
+
comp and π,

are satisfied at z+.
2. ‖z+ − z∗‖ = o(‖z − z∗‖).

Proof. By the implicit function theorem, Assumptions 4.2, the condition π > π∗,
and Lemma 4.3, it follows that, for all sufficiently small μ, there exists a solution
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z∗(μ) of problem (2.2); see, for example, [14]. If, in addition, z is close to z∗, then

L1μ ≤‖z∗ − z∗(μ)‖≤ U1μ,(4.12)

L2‖Fμ(z;π)‖ ≤ ‖z − z∗(μ)‖ ≤ U2‖Fμ(z;π)‖.(4.13)

(Condition (4.12) is Corollary 3.14 in [14], and (4.13) is Lemma 2.4 in [5].) Here and
in the rest of the proof Li and Ui denote positive constants; recall that ‖ · ‖ denotes
the infinity norm (without loss of generality). By standard Newton analysis (see, e.g.,
Theorem 2.3 in [5]) we have that

‖z+ − z∗(μ+)‖ ≤ U3‖z − z∗(μ+)‖2.(4.14)

We also use the inequality

‖z+ − z∗(μ+)‖ ≤ U4(εpen + μ)2,(4.15)

which is proved as follows:

‖z+ − z∗(μ+)‖ ≤ U3‖z − z∗(μ+)‖2 (from (4.14))

≤ U3

(
‖z − z∗(μ)‖ + ‖z∗(μ) − z∗‖ + ‖z∗ − z∗(μ+)‖

)2
≤ U3

(
U2‖Fμ(z;π)‖ + U1μ + U1μ

+
)2

(from (4.13) and (4.12))

≤ U4 (εpen + μ)
2
,

where the last inequality holds because z satisfies (2.7) with μ, εpen, π and because
μ+ < μ.

We now show that (2.7) holds at z+, with parameters μ+, ε+pen, π, as follows:

‖Fμ+(z+;π)‖ ≤ L−1
2 ‖z+ − z∗(μ+)‖ (from (4.13))

≤ L−1
2 U4(εpen + μ)2 (from (4.15))

= L−1
2 U4

(εpen + μ)2

ε+pen
ε+pen

≤ ε+pen (from (4.10a)).

To see that x+
1 > 0, we can apply (4.15) componentwise to get

|x+
1i − x∗

1i(μ
+)| ≤ U4(εpen + μ)2,

from which we have that

x+
1i ≥ x∗

1i(μ
+) − U4(εpen + μ)2.(4.16)

If x∗
1i = 0, we have by (4.12) and the positivity of x∗

1i(μ
+) that x∗

1i(μ
+) ≥ L1μ

+.
Therefore

x+
1i ≥ L1μ

+ − U4
(εpen + μ)2

μ+
μ+ (from (4.12))

≥ L5μ
+ (from (4.10b)).

If, on the other hand, x∗
1i > 0, then from (4.12) and (4.16), we get

x+
1i ≥ x∗

1i − U1μ
+ − U4(εpen + μ)2

= x∗
1i − U1μ

+ − U4
(εpen + μ)2

μ+
μ+

> 0 (from (4.10b)).
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Similar arguments can be applied to get x+
2 > 0, s+ > 0, λ+

I > 0.
To prove that x+ satisfies (2.8), we first observe that

‖z+ − z∗‖ ≤ ‖z+ − z∗(μ+)‖ + ‖z∗(μ+) − z∗‖
≤ U4(εpen + μ)2 + U1μ

+ (from (4.15) and (4.12))

= U4
(εpen + μ)2

μ+
μ+ + U1μ

+

≤ U5μ
+ (from (4.10b)).(4.17)

Let i ∈ {1, . . . , p}, and assume, without loss of generality, that x∗
1i = 0. Then,

|min{x+
1i, x

+
2i}| = min{x+

1i, x
+
2i} (because x+

1 > 0, x+
2 > 0)

≤ x+
1i = |x+

1i − x∗
1i|

≤ U5μ
+ (from (4.17))

= U5
μ+

ε+comp
ε+comp ≤ ε+comp,

where the last inequality follows from (4.10c). Since this argument applies to all
i ∈ {1, . . . , p}, we have that (2.8) is satisfied. This concludes the proof of part 1 of
the theorem.

For part 2, we have that

‖z+ − z∗‖ ≤ ‖z+ − z∗(μ+)‖ + ‖z∗(μ+) − z∗‖
≤ U3‖z − z∗(μ+)‖2 + U1μ

+ (from (4.14) and (4.12))

≤ U3

(
‖z − z∗‖ + ‖z∗ − z∗(μ+)‖

)2
+ U1μ

+

≤ U3

(
2‖z − z∗‖2 + 2‖z∗ − z∗(μ+)‖2

)
+ U1μ

+

≤ 2U3‖z − z∗‖2 + 2U3(U1μ
+)2 + U1μ

+ (from (4.14))

≤ U6

(
‖z − z∗‖2 + μ+

)
.

This implies that

‖z+ − z∗‖
‖z − z∗‖ ≤ U6

(
‖z − z∗‖ +

μ+

‖z − z∗‖

)
.

We apply the left-hand inequality in (4.13), evaluated at z and with barrier parameter
0, to get

‖z+ − z∗‖
‖z − z∗‖ ≤ U6

(
‖z − z∗‖ +

1

L2

μ+

‖F0(z;π)‖

)
.(4.18)

Note that, from (4.13), if ‖z − z∗‖ is sufficiently small, so is ‖F0(z;π)‖, which
in turn, by (4.11), implies that the second term in the right-hand side is also close
to 0. Hence, if ‖z− z∗‖ is sufficiently small, it follows that the new iterate z+ is even
closer to z∗. Moreover, by applying (4.18) recursively, we conclude that the iterates
converge to z∗. From the same relation, it is clear that this convergence happens at
a superlinear rate, which concludes the proof.

Many practical updating rules for μ and εpen satisfy conditions (4.10a)–(4.11).

For example, we can define εpen = θμ with θ ∈ [0,
√
| I | ). In this case, it is not
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difficult to show [5] that (4.10a), (4.10b), and (4.11) are satisfied if we update μ by
the rule

μ+ = μ1+δ, 0 < δ < 1.

The same is true for the rule

μ+ = ‖Fμ(z;π)‖1+δ, 0 < δ < 1.

A simple choice for εcomp that ensures (4.10c) is μγ , with 0 < γ < 1.

5. Implementation and numerical results. We begin by describing two prac-
tical implementations of Algorithm I that use different strategies for updating the
penalty parameter. The first algorithm, Classic, is described in Figure 3; it updates
the penalty parameter only after the barrier problem is solved, and provided the com-
plementarity value has decreased sufficiently as stipulated in step 3. We index by k
the major iterates that satisfy (2.7) and (2.8); this notation is consistent with that
of section 2. We use j to index the sequence of all minor iterates generated by the
algorithm Classic. Since γ ∈ (0, 1), the tolerance εkcomp defined in step 1 converges to

0 more slowly than does {μk}; this is condition (4.10c) in Theorem 4.5.
In the numerical experiments, we use γ = 0.4 for the following reason: The

distance between iterates xk and the solution x∗ is proportional to
√

μk, if primal-
dual strict complementarity does not hold at x∗. By choosing the complementarity
tolerance to be εkcomp = (μk)0.4, we ensure that the test (2.8) can be satisfied in this
case. All other details of the interior method are described below.

Algorithm Classic: A Practical Interior-Penalty Method for MPCCs

Initialization: Let z0 = (x0, s0, λ0) be the initial primal and dual variables.
Choose an initial penalty π0 and a parameter γ ∈ (0, 1). Set j = 0, k = 1.

repeat (barrier loop)
1. Choose a barrier parameter μk, a stopping tolerance εkpen, let εkcomp =

(μk)γ and let πk = πk−1.
2. repeat (inner iteration)

(a) Let j ← j + 1 and let the current point be zc = zj−1.
(b) Using a globally convergent method, compute a primal-dual step dj

based on the KKT system (2.4), with μ = μk, π = πk and z = zc.
(c) Let zj = zc + dj .

until conditions (2.7) are satisfied for εkpen.

3. If ‖min{xj
1, x

j
2}‖ ≤ εkcomp, let zk = zj , set k ← k + 1;

else set πk ← 10πk and go to Step 2
until a stopping test for the MPCC is satisfied.

Fig. 3. Description of the algorithm Classic.

The second algorithm we implemented, Dynamic, is described in Figure 4. It is
more flexible than Classic in that it allows changes in the penalty parameter at every
iteration of the inner algorithm. The strategy of step 2(c) is based on the following
considerations: If the complementarity pair is relatively small according to the preset
tolerance εkcomp, then there is no need to increase π. Otherwise, we check whether

the current complementarity value, xjT
1 xj

2, is less than a fraction of the maximum
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value attained in the m previous iterations (in our tests, we use m = 3 and η = 0.9).
If not, we increase the penalty parameter. We believe that it is appropriate to look
back at several previous steps, and not require decrease at every iteration, because
the sequence {xjT

1 xj
2} is frequently nonmonotone, especially for problems in which

primal-dual strict complementarity is violated (see, e.g., Figure 6(a)). Note that the
algorithms Classic and Dynamic are both special cases of Algorithm I of section 2.

Algorithm Dynamic: A Practical Interior-Penalty Method for MPCCs

Initialization: Let z0 = (x0, s0, λ0) be the initial primal and dual variables.
Choose an initial penalty π0, parameters γ, η ∈ (0, 1), and an integer m ≥ 1.
Set j = 0, k = 1.

repeat (barrier loop)
1. Choose a barrier parameter μk, a stopping tolerance εkpen and let εkcomp =

(μk)γ .
2. repeat (inner iteration)

(a) Set j←j + 1, let the current point be zc= zj−1, and let πj = πj−1.
(b) Using a globally convergent method, compute a primal-dual step dj

based on the KKT system (2.4), with μ = μk, π = πj and z = zc.
(c) If ‖min{xj

1, x
j
2}‖ > εkcomp and

xjT
1 xj

2 > ηmax
{
xjT

1 xj
2, . . . , x

(j−m+1)T
1 x

(j−m+1)
2

}
,(5.1)

then set πj ← 10πj , adjust λj and go to Step 2.
until conditions (2.7) are satisfied for εkpen.

3. If ‖min{xj
1, x

j
2}‖ ≤ εkcomp, let zk = zj and k = k + 1

else set πk ← 10πk and go to Step 2
until a stopping test for the MPCC is satisfied.

Fig. 4. Description of the algorithm Dynamic.

We implemented these two algorithms as an extension of our MATLAB solver ipm-

d. This solver is based on the interior algorithm for nonlinear programming described
in [26], with one change: ipm-d handles negative curvature by adding a multiple
of the identity to the Hessian of the Lagrangian, as in [25], instead of switching to
conjugate-gradient iterations. We chose to work with ipm-d because it is a simple
interior solver that does not employ the regularizations, scalings, and other heuristics
used in production packages that alter the MPCC, making it harder to assess the
impact of the approach proposed in this paper.

In our implementation, all details of the interior-point iteration, such as the up-
date of the barrier parameter, the step selection, and the choice of merit function, are
handled by imp-d. The main point of this section is to demonstrate how to adapt an
existing interior-point method to solve MPCCs efficiently and reliably.

We tested the algorithms on a collection of 74 problems, listed in Table 3, where
we report the number of variables n (excluding slacks), the number of constraints m
(excluding complementarity constraints), and the number of complementarity con-
straints p. These problems are taken from the MacMPEC collection [18]; we added
a few problems to test the sensitivity of our implementations to bad scalings in the
MPCC. All the methods tested were implemented in ipm-d, and since this MATLAB
program is not suitable for very large problems, we restricted our test set to a sample
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Table 3

Test problem characteristics.

Name n m p Name n m p

bar-truss-3 29 22 6 bard1 5 1 3
bard3 6 3 2 bilevel1 10 9 6
bilevel3 12 7 4 bilin 8 1 6
dempe 4 2 2 design-cent-1 12 9 3
design-cent-4 22 9 12 desilva 6 2 2
df1 2 2 1 ex9.1.1 13 12 5
ex9.1.3 23 21 6 ex9.1.5 13 12 5
ex9.1.6 14 13 6 ex9.1.7 17 15 6
ex9.1.8 14 12 5 ex9.1.9 12 11 5
ex9.1.10 14 12 5 ex9.2.1 10 9 4
ex9.2.2 10 11 4 ex9.2.4 8 7 2
ex9.2.5 8 7 3 ex9.2.6 16 12 6
ex9.2.7 10 9 4 ex9.2.8 6 5 2
ex9.2.9 9 8 3 flp2 4 2 2
flp4-1 80 60 30 gauvin 3 0 2
gnash10 13 4 8 gnash11 13 4 8
gnash12 13 4 8 gnash13 13 4 8
gnash14 13 4 8 gnash15 13 4 8
gnash16 13 4 8 gnash17 13 4 8
gnash18 13 4 8 gnash19 13 4 8
hakonsen 9 8 4 hs044-i 20 14 10
incid-set1-16 485 491 225 incid-set2c-16 485 506 225
kth1 2 0 1 kth2 2 0 1
kth3 2 0 1 liswet1-050 152 103 50
outrata31 5 0 4 outrata32 5 0 4
outrata33 5 0 4 outrata34 5 0 4
pack-comp1-16 332 151 315 pack-comp2c-16 332 166 315
pack-rig1c-16 209 148 192 pack-rig2-16 209 99 192
pack-rig3-16 209 99 192 portfl-i-2 87 25 12
portfl-i-6 87 25 12 qpec-100-1 105 102 100
ralph1 2 0 1 ralph2 2 0 1
ralphmod 104 0 100 scale1 2 0 2
scale2 2 0 2 scale3 2 0 2
scale4 2 0 2 scale5 2 0 2
scholtes1 3 1 1 scholtes2 3 1 1
scholtes3 2 0 2 scholtes4 3 2 2
scholtes5 3 2 2 tap-09 86 68 32

of problems with fewer than 1,000 variables. We report results for four methods,
which are labeled in the figures as follows:

NLP is the direct application of the interior code ipm-d to the non-
linear programming formulation (1.3) of the MPCC.

Fixed is a penalty method in which ipm-d is applied to (2.1) with a
fixed penalty of 104. The penalty parameter is not changed.

Classic is the algorithm given in Figure 3, implemented in the ipm-d

solver.
Dynamic is the algorithm given in Figure 4, implemented in the ipm-

d solver.

In Figure 5 we report results for these four methods in terms of total number
of iterations (indexed by j). The figures use the logarithmic performance profiles
described in [9]. An important choice in the algorithms Classic and Dynamic is the
initial value of π. In Figure 5(a) we show results for π0 = 1, and in Figure 5(b)
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(a) π = 1, initially. (b) Initial π based on gradient norm.

Fig. 5. Performance profiles.

for π0 = ‖∇f(x0)‖ (the latter rule is also used, for example, in the elastic phase of
snopt [15]). Note that every time π is updated, a new barrier subproblem has to be
solved, where the initial point is the current iterate and the barrier parameter is the
current value of μ. The discrepancy in initial conditions when π is reset explains the
difference in performance of the choices π0 = 1 and π0 = ‖∇f(x0)‖, for both Classic
and Dynamic.

Comparing the results in Figure 5, we note that the direct application of the
interior method, option nlp, gives the poorest results. Option Fixed (dashed curve in
Figure 5(a)) is significantly more robust and efficient than option nlp, but it is clearly
surpassed by the Classic and Dynamic methods. Option Fixed fails more often than
Classic and Dynamic and it requires, in general, more iterations to solve each barrier
problem. In extreme cases, such as bar-truss-3, Dynamic (with π0 = 1) solves the
first barrier problem in 15 iterations, whereas Fixed needs 43 iterations. Moreover,
we frequently find that, near a solution, the algorithms Classic and Dynamic take one
iteration per barrier problem, as expected, whereas Fixed keeps taking several steps
to find a solution every time μ is updated.

Classic and Dynamic perform remarkably well with the seemingly naive initial
value π0 = 1 (Figure 5(a)). Both algorithms adjust π efficiently, especially Dynamic.
The choice π0 = ‖∇f(x0)‖, on the other hand, attempts to estimate the norm of
the multipliers and can certainly be unreliable. Nonetheless, it performed very well
on this test set. We note from Figure 5(b) that the performance of both algorithms
improves for π0 = ‖∇f(x0)‖.

The MacMPEC collection is composed almost exclusively of well-scaled problems,
and ralph2 is the only problem that becomes unbounded for the initial penalty (with
either initialization of π). As a result, Dynamic does not differ significantly from
Classic on this test set. We therefore take a closer look at the performance of these
methods on problems ralph2 and scale1 discussed in section 2. We believe that the
results for these examples support the choice of Dynamic over Classic for practical
implementations.

Example 1 (ralph2), revisited. Figure 6(a) plots the complementarity measure

(xjT
1 xj

2) (continuous line) and the value of the penalty parameter πj (dashed line)
for problem (2.9) (using a log10 scale). The top figure corresponds to Classic and
the bottom figure to Dynamic; both used an initial penalty parameter of 1. Recall
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(a) ralph2. (b) scale1.

Fig. 6. Evolution of penalty and complementarity values ( log10 scale). Classic (top) versus
Dynamic (bottom).

that π = 1 gives rise to an unbounded penalty problem. The two algorithms perform
identically up to iteration 4. Then, the Dynamic algorithm increases π, whereas the
Classic algorithm never changes π, because it never solves the first barrier problem.
Classic fails on this problem, and complementarity grows without bound.

Example 2 (scale1), revisited. Problem (2.11) requires π ≥ 200 so that the
penalty problem recovers the solution of the MPCC. We again initialize Dynamic
and Classic with π = 1. Figure 6(b) plots the complementarity measure and the
penalty parameter values for both implementations. The two algorithms increase π
three times (from 1 to 10, to 100, to 1000). While the Classic implementation (top
figure) is performing the third update of π, the Dynamic implementation (bottom
figure) has converged to the solution. The Dynamic algorithm detects earlier that
complementarity has stagnated (and is not sufficiently small) and takes corrective
action by increasing π. Not all plateaus mean that π needs to be changed, however,
as we discuss next.

To study in more detail the algorithm Dynamic, we consider two other problems,
bard3 and bilin, from the MacMPEC collection (we initialize the penalty parameter
to 1, as before).

Example 3 (bard3). Figure 7(a) shows the results for problem bard3. The con-

tinuous line plots xjT
1 xj

2, and the dashed-dotted line plots 0.9 times the maximum
value of xiT

1 xi
2 over the last three iterations. Note that the complementarity mea-

sure increases at the beginning and does not decrease during the first 20 iterations.
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(a) Problem bard3. (b) Problem bilin.

Fig. 7. Illustration of the Dynamic updating strategy.

However, Dynamic does not increase the value of π (dashed line) because the value of
complementarity is small enough, compared to the threshold μ0.4 (dotted line). This
is the correct action; if the algorithm increased π simply because the maximum value
of complementarity over the last three iterations is not decreasing, π would take on
large values that would slow the iteration and could even cause failure.

Example 4 (bilin). A different behavior is observed for problem bilin; see
Figure 7(b). The value of complementarity (continuous line) not only lies above the
line that plots 0.9 times the maximum complementarity over the last three iterations
(dashed-dotted line), but is also above the line plotting (μj)0.4. Thus the penalty
parameter is increased quickly (dashed line). The sufficient reduction condition is
satisfied at iteration 3 but is then again violated, so π is increased again, until com-
plementarity finally starts converging to zero.

These results suggest that Dynamic constitutes an effective technique for handling
the penalty parameter in interior-penalty methods for MPCCs.

We conclude this section by commenting on some of the failures of our algorithms.
All implementations converge to a C-stationary point for problem scale4 (which is
a rescaling of problem scholtes3). We find it interesting that convergence to C-
stationary points is possible in practice and is not simply allowed by the theory. We
note that convergence to C-stationary points cannot be ruled out for SQP methods,
and in this sense interior-point methods are no less robust than SQP methods applied
to MPCCs. Another failure, discussed already, is problem ralph2 for the algorithm
Classic.

The rest of the failures can be attributed to various forms of problem deficiencies
beyond the MPCC structure. All implementations have difficulties solving problems
for which the minimizer is not a strongly stationary point, that is, problems for
which there are no multipliers at the solution. This is the case in ex9.2.2, where
our algorithms obtain good approximations of the solution but the penalty parameter
diverges, and for ralphmod, where our algorithms fail to find a stationary point. These
difficulties are not surprising because the algorithms strongly rely upon the existence
of multipliers at the solution. SQP methods also fail to find strongly stationary
solutions to these problems, and generate a sequence of multipliers that diverge to
infinity.

Test problems in the groups incid-set∗, pack-rig∗, and pack-comp∗ include
degenerate constraints other than those defining complementarity. Our implementa-
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tions are able to solve most of these problems, but the number of iterations is high,
and the performance is very sensitive to changes in the implementation. In some
of these problems our algorithms have difficulty making progress near the solution.
Problem tap-09 has a rank-deficient constraint Jacobian that causes difficulties for
our algorithms. All of these point to the need for more general regularization schemes
for interior methods that can cope with both MPCCs and with other forms of degen-
eracy. This topic is the subject of current investigation [6, 16].

6. Conclusions. Interior methods can be an efficient and robust tool for solving
MPCCs, when appropriately combined with a regularization scheme. In this article,
we have studied an interior-penalty approach and have carefully addressed issues re-
lated to efficiency and robustness. We have provided global and local convergence
analysis to support the interior-penalty methods proposed here. We have also shown
how to extend our global convergence results to interior methods based on the relax-
ation approach described by [19, 21].

We have presented two practical implementations. The first algorithm, Classic, is
more flexible than the approach studied in [2, 17], which solves the penalty problem
(2.1) with a fixed penalty parameter and then updates π if necessary. The approach
in [2, 17] has the advantage that it can be used in combination with any off-the-shelf
nonlinear programming solver; the disadvantage is that it can be very wasteful in terms
of iterations if the initial penalty parameter is not appropriate. The second algorithm,
Dynamic, improves on Classic by providing a more adaptive penalty update strategy.
This can be particularly important in dealing with unbounded penalty problems and
also yields an improvement in efficiency when the scaling of the problem complicates
the detection of complementarity violation. The numerical results presented in this
paper are highly encouraging. We plan to implement the penalty method for MPCCs
in the knitro package, which will allow us to solve large-scale MPCCs.

The penalty methods considered here are designed specifically for MPCCs. How-
ever, lack of regularity other than that caused by complementarity constraints often
occurs in practice, and a more general class of interior-penalty methods for degenerate
nonlinear programs is the subject of current research [6, 16]. Some of the techniques
proposed here may be useful in that more general context.

Acknowledgment. The authors are grateful to two anonymous referees for their
helpful comments on this paper.
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Abstract. A general discrete optimization problem is investigated that includes integer poly-
nomial programs as special cases. To exploit the discrete monotonic structure of these problems, a
special class of cuts called monotonicity cuts are developed and then adjusted according to a suitable
procedure to accommodate discrete requirements. As illustration, the method is applied to solve a
discrete location problem which is also a variant of the well known engineering problem of design
centering. Computational results are reported for instances of the latter problem with up to 100
variables and 500 constraints.
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1. Introduction. Throughout this paper, for any two vectors x, y ∈ Rn we write
x ≤ y (x < y, resp.) to mean xi ≤ yi (xi < yi, resp.) for every i = 1, . . . , n. If a ≤ b
then the box [a, b] ((a, b], resp.) is the set of all x ∈ Rn satisfying a ≤ x ≤ b (a < x ≤ b,
resp.).

A function f : [a, b] → R is said to be increasing (decreasing, resp.) if

a ≤ x ≤ y ≤ b ⇒ f(x) ≤ f(y) (f(x) ≥ f(y), resp.).

Monotonic functions, i.e., functions which are either increasing or decreasing, and
more generally, d.m. functions, i.e., functions which are differences of monotonic func-
tions, abound in economics and engineering: production function, cost function, profit
function, performance function, etc. As can easily be proved (see [10]) the set of d.m.
functions is dense in the space C([a, b]) of continuous functions with the supnorm
topology. Recently a general mathematical framework has been developed [10], [11],
for the numerical study of monotonic optimization problems, i.e., mathematical pro-
gramming problems described by means of monotonic or d.m. functions.

Since any generalized polynomial P (x) =
∑

α∈I cαx
α, where cα ∈ R, α = (α1,

. . . , αn) ∈ Rn
+, and xα := xα1

1 xα2
2 · · ·xαn

n , can be written as a difference of two gener-
alized polynomials with positive coefficients,

P (x) =
∑
α∈I+

cαx
α −

∑
α∈I−

(−cα)xα,

where I+ = {α ∈ I|cα > 0}, I− = {α ∈ I| cα < 0}, and each generalized polyno-
mial with positive coefficients is obviously increasing on Rn

+, the class of monotonic
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optimization problems includes as special cases generalized polynomial mathemati-
cal programs which have received increasing attention in recent years due to their
applications in various fields (see, e.g., [7], [2], [15]).

It has been shown in [10] that any mathematical programming problem dealing
with differences of increasing functions on a box [a, b] ⊂ Rn can be reduced to an
equivalent constrained monotonic optimization problem of the following canonical
form:

(MO) max{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ [a, b]},

where f, g, h : [a, b] → R are given increasing functions on [a, b]. (Without loss of
generality we may assume, as we will do in what follows, that [a, b] ⊂ Rn

+.) An easily
implementable cutting algorithm called the polyblock algorithm has been proposed for
solving (MO). Applications of this approach to certain classes of difficult nonconvex
optimization problems have demonstrated its efficiency when these problems, origi-
nally of large scale, can be converted into problems (MO) in low-dimensional space
by a suitable change of variables [5], [12], [13], [15]. For larger problems a branch and
bound approach, using polyblock approximation for bounding, has also been proposed
and recently extended to a branch-reduce-and-bound method [11].

If a problem involves discrete constraints, e.g., boolean constraints like xi ∈
{0, 1}, i = 1, . . . , s (s ≤ n), then these constraints can be written as

∑s
i=1 xi(1−xi) ≤

0, 0 ≤ xi ≤ 1 (i = 1, . . . , s), i.e.,
∑s

i=1 xi −
∑s

i=1 x
2
i ≤ 0, 0 ≤ xi ≤ 1 (i = 1, . . . , s),

where the functions
∑s

i=1 xi,
∑s

i=1 x
2
i are increasing on Rn

+. Therefore, a monotonic
optimization problem with discrete constraints can in principle be reformulated and
solved as one with only continuous monotonic constraints. However, so far this ap-
proach has never been implemented; moreover, its potential drawback is that, since
the basic algorithms for continuous monotonic optimization are iterative procedures,
by this approach only an approximate optimal solution can be computed in finitely
many steps.

The aim of the present paper is to suggest an alternative, more practical, approach
to monotonic optimization problems with discrete constraints. Specifically, given a
box [a, b] ⊂ Rn

+ with a < b, a finite set S ⊂ Rs
+, s ≤ n, and increasing functions

f(x), g(x), h(x) on [a, b], we will consider the general optimization problem

max{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ [a, b], (x1, . . . , xs) ∈ S}.

We will refer to this problem as the canonical discrete monotonic optimization problem
(DMO). Setting

G = {x ∈ [a, b]| g(x) ≤ 0}, H = {x ∈ [a, b]| h(x) ≥ 0},(1)

S∗ = {x ∈ [a, b]| (x1, . . . , xs) ∈ S},(2)

we can rewrite it as

(DMO) max{f(x)| x ∈ G ∩H ∩ S∗}.

In what follows we propose to extend the basic algorithm for continuous monotonic
optimization [11] to obtain an algorithm for (DMO) which is finite in the important
special case when s = n (so that S is a finite set in Rn

+). It turns out that in this special
case, by suitable modifications of the basic continuous algorithm, an exact optimal
solution of (DMO) can be computed in finitely many iterations. Furthermore, for
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certain continuous monotonic optimization problems, although the optimum may be
known a priori to be achieved on a certain finite set S, quite often an exact optimal
solution can be obtained only through infinitely many iterations of the basic iterative
algorithm of the continuous approach. The discrete version to be proposed will help
in many cases to turn this infinite procedure into a finite one, thus allowing the exact
optimum in these continuous problems to be found in finitely many iterations, too.

The paper is organized as follows. First, in sections 2 and 3, we review some
necessary concepts and results from monotonic optimization as presented in [10]. In
section 4 two types of cuts exploiting the monotonic structure are described. The first
type, introduced earlier in [10], is based on a special separation property of normal
sets and plays a role very similar to that of convexity cuts in convex maximization.
The second type, to be referred to as reduction cuts, is a further development of a
procedure already used in [10] for reducing the size of the solution set of a system
of monotonic inequalities. After this review of the essentials about continuous mono-
tonic optimization, the next sections present the new theory of discrete monotonic
optimization. A key operation, called S-adjustment, designed to accommodate the
continuous monotonicity cuts to discrete constraints, is described in section 5. Next,
a procedure for discrete optimization, to be referred to as the discrete polyblock al-
gorithm, is presented in section 6. Some implementation issues are discussed, while
the convergence of this algorithm in the general case s ≤ n and its finiteness when
s = n are established. To enhance efficiency for large scale problems, a branch-reduce-
and-bound version of the method is developed in section 7. Finally in section 8, the
method is specialized to solve a discrete maximin problem encountered in location,
design centering, and some other applications. Computational experiments on prob-
lems with up to 100 variables and 500 constraints are reported which demonstrate the
practicability of the method at least for this class of discrete optimization problems.

As a matter of notation, for any two vectors x, y ∈ Rn, we write u = x∨y, to mean
ui = max{xi, yi}, i = 1, . . . , n, and v = x∧ y, to mean vi = min{xi, yi}, i = 1, . . . , n;
ei denotes the ith unit vector of Rn, i.e., a vector such that eii = 1, eij = 0 ∀j �= i,

while e ∈ Rn is a vector of all ones, i.e., e =
∑n

i=1 e
i.

2. Some geometric concepts. In this and the next two sections we review
some basic concepts and essential results of continuous monotonic optimization [10]
which are needed for the development of discrete monotonic optimization. For the
convenience of the reader, most of the proofs will be provided, although they are
rather simple and can be found in [10].

A set G ⊂ [a, b] is said to be normal if x ∈ G ⇒ [a, x] ⊂ G. A set H ⊂ [a, b] is
conormal (reverse normal) if x ∈ H ⇒ [x, b] ⊂ H. Thus the set G = {x ∈ [a, b]| g(x) ≤
0} defined above (with an increasing function g(x)) is normal, whereas the set H =
{x ∈ [a, b]| h(x) ≥ 0} (with an increasing function h(x)) is conormal.

Given a set A ⊂ [a, b], the normal hull of A, written A�, is the smallest normal
set containing A. The conormal hull of A, written A, is the smallest conormal set
containing A.

Proposition 1. (i) The normal hull of a set A ⊂ [a, b] ⊂ Rn
+ is the set A� =

∪z∈A[a, z]. If A is compact, then so is A�.
(ii) The conormal hull of a set A ⊂ [a, b] ⊂ Rn

+ is the set A = ∪z∈A[z, b]. If A is
compact, then so is A.

Proof. It suffices to prove (i), because the proof of (ii) is similar. Let P =
∪z∈A[a, z]. Clearly P is normal and P ⊃ A; hence P ⊃ A�. Conversely, if x ∈ P , then
x ∈ [a, z] for some z ∈ A ⊂ A�; hence x ∈ A� by normality of A�, so that P ⊂ A�
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and therefore, P = A�. If A is compact, then A is contained in a ball B centered at
0, and if xk ∈ A�, k = 1, 2, . . . , then since xk ∈ [a, zk] ⊂ B, there exists a subsequence
{kν} ⊂ {1, 2, . . . } such that zkν → z0 ∈ A, xkν → x0 ∈ [a, z0], and hence x0 ∈ A�,
proving the compactness of A�.

The normal hull of a finite set T ⊂ [a, b] is called a polyblock P, with vertex set T.
By Proposition 1, P = ∪z∈T [a, z]. A vertex z of a polyblock is called proper if there
is no vertex z′ �= z “dominating” z, i.e., such that z′ ≥ z. An improper vertex or
improper element of T is an element of T which is not a proper vertex. Obviously, a
polyblock is fully determined by its proper vertex set; more precisely, a polyblock is
the normal hull of its proper vertices.

Similarly, the conormal hull of a finite set T ⊂ [a, b] is called a copolyblock (reverse
polyblock) Q with vertex set T. By Proposition 1, Q = ∪z∈T [z, b]. A vertex z of a
copolyblock is called proper if there is no vertex z′ �= z “dominated” by z, i.e., such
that z′ ≤ z. An improper vertex or improper element of T is an element of T which is
not a proper vertex. Obviously, a copolyblock is fully determined by its proper vertex
set; more precisely, a copolyblock is the conormal hull of its proper vertices.

Proposition 2. (i) The intersection of finitely many polyblocks is a polyblock.
(ii) The intersection of finitely many copolyblocks is a copolyblock.
Proof. If T1, T2 are the vertex sets of two polybocks P1, P2, respectively, then

P1 ∩P2 = (∪z∈T1
[a, z])∩ (∪y∈T2

[a, y]) = ∪z∈T1,y∈T2
[a, z]∩ [a, y] = ∪z∈T1,y∈T2

[a, z ∧ y].
Thus, P1 ∩ P2 is a polyblock of vertex set {z ∧ y| z ∈ T1, y ∈ T2}. Similarly, if
T1, T2 are the vertex sets of two copolyblocks Q1, Q2, respectively, then Q1 ∩ Q2 =
∪z∈T1,y∈T2 [z, b] ∩ [y, b] = ∪z∈T1,y∈T2 [z ∨ y, b], so Q1 ∩Q2 is a copolyblock with vertex
set {z ∨ y| z ∈ T1, y ∈ T2}.

Proposition 3. (i) The maximum of an increasing function f(x) over a polyblock
is achieved at a proper vertex of this polyblock.

(ii) The minimum of an increasing function f(x) over a copolyblock is achieved
at a proper vertex of this copolyblock.

Proof. We prove (i). Let x̄ be a maximizer of f(x) over a polyblock P. Since a
polyblock is the normal hull of its proper vertices, there exists a proper vertex z of P
such that x̄ ∈ [a, z]. Then f(z) ≥ f(x̄) because z ≥ x̄, so z also must be an optimal
solution. The proof of (ii) is similar.

Lemma 4. (i) If a < x < b, then the set [a, b] \ (x, b] is a polyblock with vertices

ui = b + (xi − bi)e
i, i = 1, . . . , n.(3)

(ii) If a < x < b, then the set [a, b] \ [a, x) is a copolyblock with vertices

vi = a + (xi − ai)e
i, i = 1, . . . , n.

Proof. We prove (i). Let Ki = {z ∈ [a, b]| xi < zi}. Since (x, b] = ∩i=1,...,nKi, we
have [a, b] \ (x, b] = ∪i=1,...,m([a, b] \ Ki), proving the assertion because [a, b] \ Ki =
{z| ai ≤ zi ≤ xi, aj ≤ zj ≤ bj ∀j �= i} = [a, ui]. The proof of (ii) is similar.

Note that u1, . . . , un are the n vertices of the hyperrectangle [x, b] that are adjacent
to b, while v1, . . . , vn are the n vertices of the hyperrectangle [a, x] that are adjacent
to a.

3. Monotonic functions. It has been shown in [10] that by simple transforma-
tions, any optimization problem dealing with d.m. functions can be converted to the
canonical form (MO), where f, g, h are increasing functions. These transformations
are based on the following properties of monotonic functions [10].
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Proposition 5. If fi, i = 1, . . . ,m, are d.m. functions, then their upper and
lower envelopes

max
i=1,...,m

fi(x), min
i=1,...,m

fi(x)

are also d.m.

Proof. Let fi(x) = gi(x)−hi(x), where gi, hi are increasing. It is easily seen that

max
i=1,...,m

{gi − hi} =
∑

k=1,...,m

gk − min
i=1,...,m

{∑
k �=i

gk + hi

}
,

min
i=1,...,m

{gi − hi} =
∑

k=1,...,m

gk − max
i=1,...,m

{∑
k �=i

gk + hi

}
.

The conclusion follows, because the sum and the upper and lower envelopes of finitely
many increasing functions are obviously increasing.

Corollary 6. Any conjunctive or disjunctive system of d.m. inequalities is
equivalent to a single d.m. inequality:

fi(x) ≤ 0 ∀i = 1, . . . ,m ⇔ maxi=1,...,m fi(x) ≤ 0,
fi(x) ≤ 0 for at least one i = 1, . . . ,m ⇔ mini=1,...,m fi(x) ≤ 0.

Proposition 7. Any constrained d.m. optimization problem

max{f0(x)| fi(x) ≤ 0, i = 1, . . . ,m, x ∈ [a, b] ⊂ Rn
+},(4)

with d.m. functions fi : [a, b] → R, i = 0, 1, . . . ,m, can be transformed into a mono-
tonic optimization problem in canonical form.

Proof. Since f0(x) = f01(x) − f02(x), with increasing functions f01(x), f02(x), by
writing the problem (4) as

max{f01(x) + t− f02(b)| t− f02(b) + f02(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . ,m,

0 ≤ t ≤ f02(b) − f02(a), a ≤ x ≤ b}

and changing the notation, one can assume that the objective function, i.e., the func-
tion f0(x) in (4), is increasing. Furthermore, by Corollary 6, the set of d.m. inequalities
fi(x) ≤ 0, i = 1, . . . ,m, can be rewritten as a single inequality g(x) − h(x) ≤ 0, with
increasing functions g, h. In turn, it is easily verified that the inequality g(x)−h(x) ≤ 0
has a solution x ∈ [a, b] if and only if h(b) − g(a) ≥ 0 and there exists xn+1 ∈ R such
that

0 ≤ xn+1 ≤ h(b) − g(a), g(x) + xn+1 ≤ h(b) ≤ h(x) + xn+1.

Therefore, setting z = (x, xn+1), w(z) = f0(x), u(z) = g(x) + xn+1 − h(b), v(z) =
h(x) + xn+1 − h(b), c = (a, 0), and d = (b, h(b) − g(a)), we obtain the problem in z

max{w(z)| u(z) ≤ 0 ≤ v(z), z ∈ [c, d]}

which is identical to (MO) except for the notation.
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4. Monotonicity cuts. A popular method for exploiting special structure in
nonconvex optimization problems is to develop cuts that allow one to successively
remove unfit portions of the region of the feasible set currently of interest.

For the problem (MO), two kinds of cuts can be introduced. Cuts of the first kind
are based on a special separation property of normal sets similar to the separation
property of convex sets and are, therefore, called separation cuts. Cuts of the second
kind aim at tightening the box containing the feasible portion currently still of interest
and are referred to as reduction cuts.

I. Separation cut. This cut was developed earlier in [5] and [10]. For a closed
normal set G in [a, b], a point x̄ ∈ G is called an upper boundary point if the cone
Kx̄ := {x| x > x̄} contains no point x ∈ G. The set of all upper boundary points of G
is called its upper boundary and is denoted by ∂+G. Clearly, if z̄ ∈ [a, b] \G, then the
first point of G in the line segment joining z̄ to a is an upper boundary point of G.

Proposition 8 (see [10]). Let G be a closed normal set in a box [a, b], and
z̄ ∈ [a, b] \G. If x̄ is any point on ∂+G such that x̄ < z̄ then the cone Kx̄ := {x| x >
x̄} contains z̄ but is disjoint from G. (We say that this cone separates strictly z̄
from G.)

Proof. If there were x ∈ G such that x > x̄, then by normality, [x̄, x] ⊂ G; hence
G ∩Kx̄ ⊃ [x̄, x] ∩Kx̄ �= ∅, conflicting with x̄ being an upper boundary point.

We shall refer to the cone Kx̄ as a separation cut with vertex x̄. Since, by Lemma 2,
[a, b]\Kx = [a, b]\(x, b] is a polyblock, Proposition 8 also says that for any z̄ ∈ [a, b]\G,
there exists a polyblock P ⊃ G such that z /∈ P.

The next corollary shows that with respect to compact normal sets, polyblocks
play a role similar to that of polytopes with respect to compact convex sets.

Corollary 9 ([10]). Any compact normal set G ⊂ [a, b] is the intersection of a
family of polyblocks.

Proof. Clearly, P0 := [a, b] is a polyblock containing G. Let {Pi, i ∈ I} be the
family of all polyblocks containing G. We have G = ∩i∈IPi because if there were
z ∈ ∩i∈IPi \G, there would exist, by Proposition 8, a polyblock P ⊃ G (i.e., P = Pi

for some i ∈ I) such that z /∈ P, a contradiction.
Sometimes we need to perform a sequence of conjunctive separation cuts. The

following proposition, which is an improved version of an earlier result ([10, Proposi-
tion 18]) indicates how to compute the proper vertex set of the resulting polyblock.

Proposition 10. Let P be a polyblock with proper vertex set T ⊂ [a, b], let
x ∈ [a, b] be such that T∗ := {z ∈ T | z > x} �= ∅. For every z ∈ T∗ and every
i = 1, . . . , n, define zi = z + (xi − zi)e

i. Then the vertex set of the polyblock P \ (x, b]
is

T ′ = (T \ T∗)
⋃

{zi = z + (xi − zi)e
i| z ∈ T∗, i ∈ {1, . . . , n}}.(5)

The improper elements of T ′ are those zi = z + (xi − zi)e
i, with z ∈ T∗, for which

there exists y ∈ T such that y ≥ x and the set J(z, y) := {j| zj > yj} has i as its
unique element.

Proof. Since [a, z] ∩ (x, b] = ∅ for every z ∈ T \ T∗, it follows that P \ (x, b] =
P1 ∪ P2, where P1 is the polyblock generated by T \ T∗ and P2 = (∪z∈T∗ [a, z]) \
(x, b] = ∪z∈T∗([a, z] \ (x, b]). Noting that [a, b] \ (x, b] is a polyblock with vertices
ui = b + (xi − bi)e

i, i = 1, . . . , n (see (3)), we can then write [a, z] \ (x, b] = [a, z] ∩
([a, b] \ (x, b]) = [a, z] ∩ (∪i=1,...,n[a, ui]) = ∪i=1,...,n[a, z] ∩ [a, ui] = ∪i=1,...,n[a, z ∧ ui];
hence P2 = ∪{[a, z ∧ ui]| z ∈ T∗, i = 1, . . . , n}, which shows that the vertex set of
P \ (x, b] is the set T ′ given by (5).
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It remains to show that every z ∈ T \ T∗ is proper, while a zi = z + (xi − zi)e
i

with z ∈ T∗ is improper if and only if J(z, y) = {i} for some y ∈ T such that y ≥ x.
Since every y ∈ T \T∗ is proper in T, while zi ≤ z ∈ T for every zi = z+(xi−zi)e

i,
it is clear that every y ∈ T \ T∗ is proper in T ′. Therefore, an improper element of
T ′ must be some zi such that zi ≤ y for some y ∈ T ′ \ {zi}. Two cases are possible:
either y ∈ T or y ∈ T ′ \ T. In the former case (y ∈ T ), since obviously x ≤ zi we
must have x ≤ y; furthermore, zj = zij ≤ yj ∀j �= i; hence, since z �≤ y, it follows that

zi > yi, i.e., J(z, y) = {i}. In the latter case (y ∈ T ′ \ T ), zi ≤ yl = y + (xl − yl)e
l for

some y ∈ T∗ and some l ∈ {1, . . . , n}. Then, since yl �= zi, we must have y �= z and
zij ≤ ylj ∀j = 1, . . . , n. If l = i, then this implies that zj = zij ≤ yij = yj ∀j �= i; hence,
since z �≤ y it follows that zi > yi and J(z, y) = {i}. On the other hand, if l �= i, then
from zij ≤ ylj ∀j = 1, . . . , n we have zj ≤ yj ∀j �= i and, again, since z �≤ y, we must

have zi > yi, so J(z, y) = {i}. Thus an improper zi = z + (xi − zi)e
i must satisfy

J(z, y) = {i} for some y ∈ T such that y ≥ x. Conversely, if J(z, y) = {i} for some
y ∈ T such that y ≥ x, then zij = zj ≤ yj ∀j �= i; hence zi ≤ y (because zii = xi ≤ yi)

and so, noting that y ∈ T ′ if y /∈ T∗, while y ≤ yi ∈ T ′ otherwise, we see that zi is
improper in T ′. This completes the proof of the proposition.

II. Reduction cuts. Consider any box [p, q] ⊂ [a, b] and the problem (MO) re-
stricted to [p, q]:

max{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ [p, q]}.(6)

If a feasible solution of (MO) is known with objective function value γ, then we
would like to recognize whether or not the box [p, q] contains a feasible solution to
(MO) with objective function value at least equal to γ. Furthermore, if a feasible
solution x to (MO) satisfies g(x) < 0, then the intersection point x′ of the half-line
{p + λ(x− p)| λ > 0} with the surface g(x) = 0 will give a better feasible solution to
(MO), so we are interested only in feasible solutions satisfying g(x) = 0. Therefore,
we can replace the problem (6) by

max{f(x)| g(x) ≤ 0 ≤ min{h(x), g(x), f(x) − γ}, x ∈ [p, q]}.(7)

Define

hγ(x):= min{h(x), g(x), f(x) − γ},(8)

Hγ := {x ∈ [p, q]| hγ(x) ≥ 0}.(9)

Proposition 11. (i) Let hγ(q) ≥ 0 and p′ = q −
∑n

i=1 αi(qi − pi)e
i, where

αi = sup{α| 0 ≤ α ≤ 1, hγ(q − α(qi − pi)e
i) ≥ 0}, i = 1, . . . , n.(10)

Then the box [p′, q] still contains all feasible solutions of the problem (7).
(ii) Let g(p) ≤ 0 and q′ = p +

∑n
i=1 βi(qi − pi)e

i, where

βi = sup{β| 0 ≤ β ≤ 1, g(p + β(qi − pi)e
i) ≤ 0}, i = 1, . . . , n.(11)

Then the box [p, q′] still contains all feasible solutions of the problem (7).
Proof. It suffices to prove (i) because the proof of (ii) is similar. Since p′i =

αipi + (1 − αi)qi with 0 ≤ αi ≤ 1, it follows that pi ≤ p′i ≤ qi ∀i = 1, . . . , n,
i.e., [p′, q] ⊂ [p, q]. For any x ∈ Hγ ∩ [p, q] we have, by conormality, [x, q] ⊂ Hγ ,
so if we define xi := q − (qi − xi)e

i, then xi ∈ Hγ , i = 1, . . . , n. But xi ≤ qi, so
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xi = q − α(qi − pi)e
i for some α (depending on i) such that 0 ≤ α ≤ 1. This implies

that α ≤ αi, i.e., xi ≥ q − αi(qi − pi)e
i, i = 1, . . . , n, and consequently x ≥ p′, i.e.,

x ∈ [p′, q]. Thus, Hγ ∩ [p, q] ⊂ Hγ ∩ [p′, q], which completes the proof because the
converse inclusion is obvious from the fact that [p′, q] ⊂ [p, q].

Clearly the box [p′, q] defined in (i) is obtained from [p, q] by applying the cut
∪n
i=1{x| xi < p′i}, while the box [p, q′] defined in (ii) is obtained from [p, q] by applying

the cut ∪n
i=1{x| xi > q′i}. The former cut is referred to as a lower cut with vertex p′

and the latter cut as an upper cut with vertex q′.
Given the problem (6) and a box [p, q] satisfying g(p) ≤ 0 ≤ hγ(q), let p′ be the

vertex of the lower cut defined above.
If g(p′) ≤ 0 and q′ is the vertex of the upper cut for [p′, q], i.e., q′ = p′ +∑n

i=1 βi(qi − p′i)e
i, where

βi = sup{β| 0 ≤ β ≤ 1, g(p′ + β(qi − p′i)e
i) ≤ 0}, i = 1, . . . , n,

then the box [p′, q′] is called a γ-reduction of [p, q], written [p′, q′] = redγ [p, q].
If g(p′) > 0, then we set redγ [p, q] = ∅.
By Proposition 11 the set redγ [p, q] still contains all feasible solutions x to (MO)

satisfying x ∈ [p, q], f(x) ≥ γ. In other words, by replacing the box [p, q] with redγ [p, q]
no feasible solution x ∈ [p, q] satisfying f(x) ≥ γ is lost.

5. The S-adjustment operation. The above cuts are valid for the general
monotonic optimization problem (MO). We now extend these cuts to the discrete
optimization problem (DMO).

As we saw by Propositions 8 and 11, a separation cut is determined by the vertex
x̄ ∈ ∂+G of the cone to be removed, while a lower (upper) cut is determined by the
vertex p′ (or q′) of the cone complementary to the part to be removed. Since the
feasible set of (DMO) is smaller than that of (MO), these cuts can be adjusted to
take account of the discrete constraint. The adjustment consists of moving the vertex
of the cut (i.e., x̄, q′, or p′) to a suitable point inside, so that the new cut is deeper
but still leaves unaffected the set of feasible solutions in [p, q] with objective function
value no less than γ.

The following proposition transforms the discrete problem (DMO) into a contin-
uous problem with an implicitly defined monotonic constraint.

Proposition 12. Define G̃ = (G∩S∗)�, the normal hull of the set G∩S∗. Then
problem (DMO) is equivalent to

max{f(x)| x ∈ G̃ ∩H}.(12)

Proof. Since the feasible set of (DMO) is contained in the feasible set of (12),
the optimal value of (DMO) cannot exceed that of problem (12). Conversely, if x̄
solves (12), then x̄ ∈ G̃ ∩ H, but G̃ = ∪z∈G∩S∗ [0, z] by Proposition 1, so x̄ ∈ [0, z]
for some z ∈ G ∩ S∗; furthermore, since x̄ ∈ H and x̄ ≤ z we must also have z ∈ H
by conormality of H. Consequently, x̄ ≤ z ∈ G ∩ S∗ ∩H, and hence f(x̄) ≤ f(z) for
some z feasible to (DMO). This implies that the optimal value of (12) cannot exceed
that of (DMO). Therefore, the two problems (DMO) and (12) have the same optimal
value.

Solving problem (DMO) is thus reduced to solving (12) which is a monotonic op-
timization problem without explicit discrete constraint. The new difficulty, however,
is how to handle the polyblock G̃ which is defined only implicitly as the normal hull
of G ∩ S∗.
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Fortunately, as we will see shortly, the monotonicity cuts developed in the previous
section for the continuous problem (MO) can be adjusted to yield valid cuts for the
problem (12) equivalent to the discrete problem (DMO).

Consider a box [p, q] ⊂ [a, b]. Given any point x ∈ [p, q], we define the lower
S-adjustment of x to be the point

x�S∗ = x̃, with x̃i =

{
max{yi| y ∈ S∗ ∪ {p}, yi ≤ xi}, i = 1, . . . , s,
xi, i = s + 1, . . . , n

(13)

and the upper S-adjustment of x to be the point

�x�S∗ = x̂, with x̂i =

{
min{yi| y ∈ S∗ ∪ {q}, yi ≥ xi}, i = 1, . . . , s,
xi, i = s + 1, . . . , n.

(14)

A frequently encountered special case is when S = S1 × · · · × Ss and every Si is a
finite set of real numbers. In this case

x̃i =

{
max{ξ| ξ ∈ Si ∪ {pi}, ξ ≤ xi}, i = 1, . . . , s,
xi, i = s + 1, . . . , n,

(15)

x̂i =

{
min{ξ| ξ ∈ Si ∪ {qi}, xi ≤ ξ}, i = 1, . . . , s,
xi, i = s + 1, . . . , n.

(16)

(For example, if each Si is the set of integers and pi, qi ∈ Si, then x̃i is the largest
integer no larger than xi while x̂i is the smallest integer no less than xi.)

Proposition 13. (i) If x̄ is the vertex of a separation cut for the problem (MO),
then x̃ := x̄�S∗ is the vertex of a separation cut for the problem (12).

(ii) If q′ is the vertex of an upper cut for (MO), then q′�S∗ is the vertex of an
upper cut for the problem (12).

(iii) If p′ is the vertex of a lower cut for (MO), then �p′�S∗ is the vertex of a lower
cut for the problem (12).

Proof. We prove (i). If x̄ is the vertex of a separation cut for the problem (MO),
then (x̄, b] ∩ G = ∅. For any y ∈ (x̃, b] ∩ G ∩ S∗, since y ∈ (x̃, b] we have yi > x̃i for
every i = 1, . . . , n. But x̃i = x̄i for i = s + 1, . . . , n, so yi > x̄i, i = s + 1, . . . , n. On
the other hand, since y ∈ G ∩ S∗ while (x̄, b] ∩ G = ∅, it follows that y /∈ (x̄, b]; i.e.,
there is at least one i0 ∈ {1, . . . , n} such that yi0 ≤ x̄i0 . Hence i0 ∈ {1, . . . , s}. Since
y ∈ S∗ and yi0 ≤ xi0 , it follows from the definition of x̃ that x̃i0 ≥ yi0 , conflicting
with yi > x̃i ∀i. Therefore (x̃, b] ∩G ∩ S∗ = ∅, as was to be proved. Analogously we
can prove (ii) and (iii).

Thus any monotonicity cut for the continuous problem (MO) can be adjusted to
yield a monotonicity cut for the discrete problem (DMO).

6. The discrete polyblock algorithm. In an earlier paper [10] a polyblock
approximation algorithm was developed for solving continuous monotonic optimiza-
tion problems. Using the S-adjustment operation we now extend this algorithm to
solve the discrete monotonic optimization problem (DMO).

Since the feasible set of (DMO) is obviously contained in the box [a∗, b∗], where
a∗ = �a�S∗ (upper S-adjustment of a), b∗ = b�S∗ (lower S-adjustment of b), we can
assume, without loss of generality, that a = a∗, b = b∗. If g(a) > 0, i.e., a /∈ G,
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then, since g(x) is increasing, it follows that g(x) > 0 ∀x ∈ [a, b], and the problem
is infeasible. Similarly, if h(b) < 0, i.e., b /∈ H, then h(x) < 0 ∀x ∈ [a, b], and the
problem is infeasible. Therefore, we also assume that

a ∈ G, b ∈ H.(17)

Now to solve (DMO) we will construct a sequence of polyblocks P0 ⊃ P1 ⊃ · · · ,
together with a sequence of numbers γ0 ≤ γ1 ≤ · · · , satisfying two conditions:

(C1) γk = f(x̂k) for some x̂k ∈ G̃ ∩H if γk > −∞,
(C2) Pk ⊃ G̃k ∩H,

where G̃k = (G ∩ S∗
k)�, S∗

k = {x ∈ S∗| f(x) > γk}.
Start with an initial polyblock P0 ⊃ G̃ ∩ H, e.g., P0 = [a, b], with vertex set

T0 = {b} and γ0 = −∞. At iteration k = 0, 1, . . . , let Pk be the current polyblock,
Tk its proper vertex set, γk the current best value, and x̂k the current best solution,
satisfying (C1) and (C2). Perform the following transformation (*) of Tk :

(*) For every v ∈ Tk define red∗
γk

[a, v] to be the γk-reduction of the box [a, v],
S-adjusted as indicated above. If red∗

γk
[a, v] = ∅, then drop v (in particular delete

any v /∈ H); if red∗
γk

[a, v] �= ∅, denote the highest vertex of red∗
γk

[a, v] again by v, and
if f(v) ≤ γk, then drop v.

Let T̃k be the set that results from Tk upon the transformation (*) (note that
T̃k ⊂ H). If T̃k = ∅, the procedure terminates: the current best feasible solution is
optimal (if γk > −∞) or the problem is infeasible (if γk = −∞). If T̃k �= ∅, let Pk be
the polyblock with vertex set T̃k and select

vk ∈ argmax{f(x)| x ∈ T̃k}.

Two cases may occur:
Case 1. vk ∈ G ∩ S∗. Since vk ∈ H we have vk ∈ G ∩ H ∩ S∗

k , so vk is a
feasible solution of (DMO) with objective function value no less than γk. We set
x̂k+1 = vk, γk+1 = f(vk), and define Pk+1 to be the polyblock with vertex set Tk+1 =
T̃k \ {vk}. Also in this case we define ṽk = vk.

Case 2. vk /∈ G ∩ S∗. Then we find xk = πG(vk), the first point of G on the line
segment joining vk to a. If xk ∈ S∗

k , then set ṽk = xk; otherwise, set ṽk = xk�S∗
k
.

Perform the cut with vertex at ṽk, yielding a polyblock Pk+1. Compute the proper
vertex set Tk+1 of Pk+1 according to Proposition 10.

If a new feasible solution has appeared with a better objective function value
than γk, then let ẑk+1 be the best among such solutions, and set γk+1 = f(ẑk+1);
otherwise, set ẑk+1 = ẑk, γk+1 = γk.

Proposition 14. Let γk+1 = f(x̂k+1), where x̂k+1 is the new current best feasible
solution. The polyblock Pk+1 still contains G ∩H ∩ S∗

k+1 and Pk+1 ⊂ Pk \ (ṽk, b] (so
conditions (C1), (C2) still hold for k ← k + 1).

Proof. In Case 1, we have Pk+1 ⊃ Pk \ [a, vk], but Pk ⊃ G∩H∩S∗
k , while [0, vk] ⊂

{x ∈ Pk| f(x) ≤ f(vk) = γk+1}, and hence Pk+1 ⊃ G ∩H ∩ S∗
k+1; furthermore, since

vk = ṽk, (vk, b]∩Pk = ∅ (vk is a proper vertex of Pk), we have Pk\(ṽk, b] = Pk ⊃ Pk+1.
In Case 2, if vk ∈ G\S∗, then, since vk is a proper vertex of Pk and vk ∈ G, one must
have vk ∈ ∂+G, i.e., (vk, b] ∩ G = ∅; hence, by Proposition 13, (ṽk, b] ∩ G ∩ S∗

k = ∅,
and consequently, Pk+1 ⊃ G ∩ H ∩ S∗

k ⊃ G ∩ H ∩ S∗
k+1. On the other hand, if

vk /∈ G, then (vk, b] ∩ G = ∅; hence, again by Proposition 13, (ṽk, b] ∩ G ∩ S∗
k = ∅,

and Pk+1 ⊃ G ∩ H ∩ S∗
k ⊃ G ∩ H ∩ S∗

k+1. That Pk+1 ⊂ Pk \ (ṽk, b] follows from
Proposition 10.
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Thus, Pk+1 and γk+1 will still satisfy (C1), (C2) (for k ← k+ 1). We can then go
to iteration k + 1.

In a formal way, assuming that a, b ∈ S∗, we can state the following algorithm.
Algorithm 1 (discrete polyblock algorithm).

Initialization. Take an initial polyblock P0 ⊃ G ∩ H, with proper vertex set
T0. Let x̂0 be the best feasible solution available (the current best feasible solution),
γ0 := f(x̂0). If no feasible solution is available, let γ0 := −∞. Set k := 0.
Step 1. Perform the transformation (*) of Tk. Let T̃k be the resulting set (T̃k ⊂ H).
Reset Tk := T̃k.
Step 2. If Tk = ∅, terminate: if γk = −∞, the problem is infeasible; if γk > −∞, x̂k

is an optimal solution.
Step 3. If Tk �= ∅, select vk ∈ argmax{f(v)| v ∈ Tk}.

If vk ∈ G ∩ S∗, terminate: vk is an optimal solution.
Step 4. If vk ∈ G \ S∗, compute ṽk := vk�S∗

k
(using formula (13) for S∗ := S∗

k).

If vk /∈ G, compute xk := πG(vk) and define ṽk := xk if xk ∈ S∗
k , ṽk := xk�S∗

k
if

xk /∈ S∗
k .

Step 5. Let Tk,∗ := {z ∈ Tk| z > ṽk}. Compute

T ′
k := (Tk \ Tk,∗)

⋃
{zk,i = z + (ṽki − zi)e

i| z ∈ Tk,∗, i = 1, . . . , n}.(18)

Let Tk+1 be the set obtained from T ′
k by removing every zi such that {j| zj > yj} = {i}

for some z ∈ Tk,∗ and y ∈ T+
k,∗.

Step 6. Determine the new current best feasible solution x̂k+1 and γk+1 := f(x̂k+1).
Increment k and return to Step 1.

To prove the convergence of Algorithm 1 assume that either s = n (so that S is
a finite subset of Rn) or there exists a constant α > 0 such that

min
i=s+1,...,n

(xi − ai) ≥ α ∀x ∈ H.(19)

Theorem 15. If s = n, then Algorithm 1 is finite. If s < n and condition (19)
holds, then either Algorithm 1 is finite or it generates an infinite sequence of feasible
solutions converging to an optimal solution.

Proof. At each iteration k a pair vk, ṽk is generated such that vk /∈ (G∩S∗
k)�, ṽk ∈

(G∩S∗
k)� and the rectangle (ṽk, b] contains no point of Pl with l > k and hence no ṽl

with l > k. Therefore, there can be no repetition in the sequence {ṽ0, ṽ1, . . . , ṽk, . . . } ⊂
S∗. This implies finiteness of the algorithm in the case s = n since then S∗ = S is
finite. In the case s < n, if the sequence {vk} is infinite, it follows from the fact
(ṽk1 , . . . , ṽ

k
s ) ∈ S∗ that for some sufficiently large k0,

ṽki = ṽi, i = 1, . . . , s, ∀k ≥ k0.(20)

On the other hand, since vk ∈ H we have from (19) that

min
i=s+1,...,n

(vki − ai) ≥ α ∀k.(21)

We show that vk − xk → 0 as k → ∞. Suppose the contrary, that there exist η > 0
and an infinite sequence kl such that ‖vkl − xkl‖ ≥ η > 0 ∀l. For all μ > l we have
vkμ /∈ (ṽkl , vkl ] because Pkμ ⊂ Pkl

\ (ṽkl , b]. Since ṽki = xk
i ∀i > s, we then derive

‖vkμ − vkl‖ ≥ min
i=s+1,...,n

|vkl
i − ṽkl

i | = min
i=s+1,...,n

|vkl
i − xkl

i |.
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On the other hand, min{vkl
i −ai| i = s+1, . . . , n} ≥ α by (21) because vkl ∈ H, while

xkl lies on the line segment joining a to vkl ; thus

vkl
i − xkl

i =
vkl
i − ai

‖vkl − a‖‖v
kl − xkl‖ ≥ αη

‖b− a‖ ∀i > s.

Therefore,

‖vkμ − vkl‖ ≥ min
i=s+1,...,n

|vkl
i − xkl

i | ≥ αη

‖b− a‖ ,

conflicting with the boundedness of the sequence {vkl} ⊂ [a, b]. Thus, ‖vk − xk‖ → 0
and by boundedness we may assume, by passing to subsequences if necessary, that
xk → x̄, vk → x̄. Then, since vk ∈ H, xk ∈ G ∀k, it follows that x̄ ∈ G ∩ H and
hence, v̄ ∈ G∩H∩S∗ for v̄ defined by v̄i = ṽi (i = 1, . . . , s), v̄i = x̄i (i = s+1, . . . , n).
Furthermore, f(vk) ≥ f(v) ∀v ∈ Pk ⊃ G∩H ∩Sk; hence by letting k → +∞, we have
f(x̄) ≥ f(x) ∀x ∈ G ∩ H ∩ Sγ̄ , for γ̄ = limk→∞ γk. The latter in turn implies that
v̄ ∈ argmax{f(x)| x ∈ G ∩H ∩ S}, i.e., v̄ is an optimal solution.

Remark 1. A discrete monotonic minimization problem

min{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ [a, b] ∩ S∗}

can be reduced, by the change of variables x = b − y, to the discrete maximization
problem

max{f̃(y)| h̃(y) ≤ 0 ≤ g̃(y), y ∈ [0, b− a] ∩ (b− S∗)},

where f̃(y) = −f(b− y), g̃(y) = −g(b− y), h̃(x) = −h(b− y) are increasing functions
on [0, b− a].

7. Branch-reduce-and-bound algorithm. Algorithm 1 can be interpreted as
a branch and bound algorithm in which a node z of the branch and bound tree repre-
sents a box [a, z] and branching is performed by splitting a node into n descendants,
while the bound over a node z is taken to be f(z). An attractive feature of this al-
gorithm is that, though the bounds are rather rough, the convergence is guaranteed
because monotonicity cuts are used in each step to progressively reduce the feasible
portion currently of interest. However, since each node has n descendants, the vertex
set Tk of the polyblock at iteration k may grow rapidly and reach a prohibitively
large size. Furthermore, since this approach requires the problem to be put in the
canonical form (MO), some preliminary transformations are necessary which, as we
saw in section 3, would introduce a number of additional variables and might increase
the dimension of the problem considerably. Therefore, for large scale problems not
necessarily in the canonical form we propose an alternative branch and bound version
of the algorithm in which each node has only a small number of descendants (typically
two descendants).

Consider a discrete d.m. optimization problem in the general form

(DDM), max{f(x)| g(x) − h(x) ≤ 0, x ∈ [a, b] ∩ S∗},

where f(x) = f+(x) − f−(x) and f+, f−, g, h : Rn
+ → R are increasing functions,

while S∗ is defined by (2); i.e., S∗ = {x ∈ Rn
+| (x1, . . . , xs) ∈ S} with S being a given

discrete subset of Rs
+.
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Instead of converting this problem to the canonical form (DMO), we now develop
an alternative version of Algorithm 1 for solving it directly.

This alternative algorithm, to be referred to as a branch-reduce-and-bound algo-
rithm, is a procedure involving in each iteration three basic operations: branching,
reduction, and bounding.

We next describe these operations.
I. Branching. Starting from the initial box M1 = [a, b], we successively bisect it

into smaller and smaller boxes using the following subdivision rule:
Let M = [p, q] be a box candidate for subdivision. Compute the numbers δ(M) =

maxi=1,...,n(qi − pi) = qiM − piM , riM = (piM + qiM )/2 and divide M into two boxes

M+ = {x ∈ M | xiM ≥ (riM )Xi},
M− = {x ∈ M | xiM ≤ (riM )Xi},

where Xi = {ξ ∈ R| ξ = xi, x ∈ S} and rXi , rXi denote, respectively, the smallest
element of Xi ∪ {qi} no less than r and the largest element of Xi ∪ {pi} no larger
than r.

II. Reduction. At each iteration we will have a current best value γ of the objective
function, together with a set of newly generated boxes that remain for exploration.
If M = [p, q] is such a box, to check whether M contains a feasible solution x with
f(x) ≥ γ, we use the following lemma.

Lemma 16. There exists a feasible solution x ∈ [p, q] to (DDM) satisfying f(x) ≥
γ only if

h(q) − g(p) ≥ 0, f+(q) − f−(p) ≥ γ,(22)

and any such x must be contained in the box [p′, q′] ⊂ [p, q] defined by

p′ = q −
n∑

i=1

αi(qi − pi)e
i, q′ = p′ +

n∑
i=1

βi(qi − p′i)e
i,(23)

where, for i = 1, . . . , n,

αi = sup{α| 0 ≤ α ≤ 1, h(q − α(qi − pi)e
i) − g(p) ≥ 0,

f+(q − α(qi − pi)e
i) − γ ≥ f−(p)},(24)

βi = inf{β| 0 ≤ β ≤ 1, g(p′ + β(qi − p′i)e
i) − h(q) ≤ 0,

f−(p′ + β(qi − p′i)e
i) ≤ f+(q) − γ}.(25)

Proof. Consider any x ∈ [p, q] satisfying

g(x) − h(x) ≤ 0, f(x) = f+(x) − f−(x) ≥ γ.(26)

Since f+(.), f−(.), g(.), h(.) are increasing, g(p) ≤ g(x) ≤ h(x) ≤ h(q), f+(q) ≥
f+(x) ≥ f−(x) + γ ≥ f−(p) + γ; hence h(q) ≥ g(p), f+(q) − γ ≥ f−(p), so (22)
holds.

If x �≥ p′, then there is i such that xi < p′i = qi−αi(qi−pi), i.e., xi = qi−α(qi−pi)
with some α > αi. By virtue of the definition of αi, this implies that

either h(q − (qi − xi)e
i) = h(q − α(qi − pi)e

i) < g(p),

or f+(q − (qi − xi)e
i) = f+(q − α(qi − pi)e

i) < γ + f−(p).
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Since x ≤ q−(qi−xi)e
i, in the former case h(x) ≤ h(q−(qi−xi)e

i) < g(p), conflicting
with h(x) ≥ g(x) ≥ g(p), while in the second case f+(x) ≤ f+(q − (qi − xi)e

i) <
γ + f−(p), conflicting with f+(x) − γ ≥ f−(x) ≥ f−(p). Therefore, x ≥ p′. In a
similar way, from x ∈ [p′, q] and (26) we show that x ≤ q′, and thus x ∈ [p′, q′].

We shall denote by red∗
γ [p, q] the box obtained from [p′, q′] by replacing p′, q′ with

their lower and upper S-adjustments, respectively. It follows from the above that by
replacing [p, q] with red∗

γ [p, q] no feasible solution x ∈ [p, q] with f(x) ≥ γ is lost.
Remark 2. When there are more than one d.m. constraint gj(x)−hj(x) ≤ 0, j =

1, . . . ,m, the formulas (23)–(24) should be replaced by the following:

αi = sup{α| 0 < α ≤ 1, hj(q − α(qi − pi)e
i) ≥ gj(p), j = 1, . . . ,m,

f+(q − α(qi − pi)e
i) − γ ≥ f−(p)},(27)

βi = sup{β| 0 < β ≤ 1, gj(p
′ + β(qi − p′i)e

i) ≤ hj(q), j = 1, . . . ,m,

f−(p′ + β(qi − p′i)e
i) ≤ f+(q) − γ}.(28)

III. Bounding. For every given box M = [p, q] compute a number μ(M) such that

μ(M) ≥ γ(M) := max{f(x)| g(x) − h(x) ≤ 0, x ∈ M ∩ S∗}.

To ensure convergence, this upper bound must be consistent in the sense that for any
infinite nested sequence of boxes {Mkν} shrinking to a single point x∗,

lim
ν→+∞

μ(Mkν ) = f(x∗).(29)

Since f(x) = f+(x) − f−(x) with f+(x), f−(x) increasing, an obvious bound is
f+(qkν ) − f−(pkν ), and any bound such that

μ(Mkν
) ≤ f+(qkν

) − f−(pkν
)(30)

will satisfy (29). Therefore, one can always take μ(M) = f+(q)−f−(p) when a better
bound is expensive to compute. In a formal way we can state the following algorithm.

Algorithm 2 (branch-reduce-and-bound algorithm for (DDM)).
Initialization. Let P1 := {M1},M1 := [a, b],R1 := ∅. If some feasible solutions

are available, let CBV denote the value of f(x) at the best of them (current best
value). Otherwise, set CBV := −∞. Set k := 1.
Step 1. Apply S-adjusted reduction to reduce each box [p, q] ∈ Pk. In particular
delete every box [p, q] such that h(q) − g(p) < 0. Let P ′

k := {red∗
γ [p, q]| [p, q] ∈ Pk}

for γ = CBV.
Step 2. For each box M ∈ P ′

k compute a bound μ(M) satisfying (29).
Step 3. Let Sk := Rk∪P ′

k. Update CBV, using the new feasible solutions encountered
in Steps 1 and 2, if any. Delete every M ∈ Sk such that μ(M) < CBV and let Rk+1

be the collection of remaining boxes.
Step 4. If Rk+1 = ∅, then terminate: if CBV = −∞, the problem is infeasible;
otherwise, CBV is the optimal value and the feasible solution x̄ with f(x̄) = CBV is
an optimal solution.
Step 5. If Rk+1 �= ∅, let Mk ∈ argmax{μ(M)| M ∈ Rk+1}. Divide Mk into two
boxes according to the above described rule. Let Pk+1 be the collection of these two
subboxes of Mk.
Step 6. Increment k and return to Step 1.
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Theorem 17. If s = n, Algorithm 2 terminates after finitely many iterations,
yielding an optimal solution or establishing the infeasibility of the problem. If s <
n, either Algorithm 2 terminates after finitely many iterations, yielding an optimal
solution or establishing the infeasibility of the problem, or it generates an infinite
sequence of feasible solutions converging to an optimal solution.

Proof. If s = n, the set S∗ is finite. But due to S-adjustment reduction, every box
M = [p, q] ∈ Sk satisfies p = ∧{x| x ∈ S∗∩M}, q = ∨{x| x ∈ S∗∩M}. Therefore, the
total number of nodes of the branch and bound tree is finite, which implies finiteness
of the algorithm itself.

If s < n, the subdivision rule implies that the algorithm, whenever infinite, gen-
erates a sequence of boxes {Mkν := [pkν , qkν ]} shrinking to a point x∗ = lim qkν ∈ S∗.
Since the deletion rule in Step 3 implies, by condition (22) in Lemma 16, that
g(pkν ) − h(qkν ) ≤ 0, we must have g(x∗) − h(x∗) ≤ 0; hence x∗ ∈ Ω, the feasible
set of (DDM). On the other hand, by the selection rule in Step 5,

μ(Mkν
) ≥ max{μ(M)| M ∈ Rk} ≥ f(x) ∀x ∈ Ω,

while by (29), μ(Mkν ) → f(x∗), and hence f(x∗) ≥ f(x) ∀x ∈ Ω; i.e., x∗ is an
optimal solution. If x̂k is the current best solution at iteration k, then by passing to
a subsequence if necessary we may assume x̂k → x̂ with f(x̂) = f(x∗); i.e., x̂ is also
an optimal solution.

Remark 3. The above proof shows that Algorithm 2 converges, even if in Step
2 we always take μ(M) = f+(q) − f−(p) for every box M = [p, q] (so that condition
(29) is ensured). Furthermore, in the general case when there are more than one
d.m. constraints, the algorithm can be applied without having to convert a system of
several d.m. constraints into a single one (and accordingly increase the dimension of
the problem). As was mentioned in Remark 2, it suffices in that case to replace, in the
reduction operation, the formulas (23)–(24) by (27)–(28). We thus have an extremely
simple method for solving any discrete optimization problem of the form (DDM).

Remark 4. The performance of Algorithm 2 critically depends on the reduction
operation in Step 1 and also the bounding operation in Step 2. Therefore, although
the bound μ(M) = f+(q)− f−(p) (for a box M = [p, q]) is sufficient for guaranteeing
convergence, tighter bounds are often necessary to achieve reasonable efficiency.

For example, if a polytope D containing the feasible portion in M = [p, q] can be
found together with a linear overestimator L(x) of f(x) such that L(xM ) = f(xM )
at a point xM ∈ M = [p, q], then an upper bound satisfying (29) is provided by the
optimal value of the linear program

max{L(x)| x ∈ D ∩M}.

In any case, if the problem has the form (DMO), then tighter bounds than f(q) can
be computed by either of the following methods based on polyblock approximation.

Method 1: Apply a truncated version of Algorithm 1 (i.e., perform a given number
of k iterations of this algorithm) to problem max{f(x)| x ∈ G∩H∩ [p, q]} (usually
k = 1 or k = 2). If Tk is the vertex set of the last polyblock obtained, then let
μ(M) = max{f(z)| z ∈ Tk}.

Method 2: Consider a grid U = {c0, c1, . . . , cn} ⊂ {x ∈ Rn
+|

∑n
i=1 xi = 1}, for

example, U = {c0, c1, . . . , ck} with

c0 = e/n, ck =
(n + 1)e− nek

n2
, k = 1, . . . , n.
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For each k = 0, 1, . . . , n, let xk = π(ck) := p+λkc
k, with λk = sup{α| p+αck ∈ G}.

Next construct a set T as follows:
Step 0. Let T = {u1, . . . , un} with ui = q + (x0

i − qi)e
i, i = 1, . . . , n. Set k = 1.

Step k. Compute xk = π(ck), let T∗ = {z ∈ T | z > xk}, and compute

T ′ = (T \ T∗)
⋃

{zi = z + (xk
i − zi)e

i| z ∈ T∗, i ∈ {1, . . . , n}}

and from T ′ remove all zi for which there exists y ∈ T+
∗ := {z ∈ T | z ≥ xk} such

that {j| zj > yj} = {i}. Reset T equal to the set of remaining elements of T ′. If
k < n, let k ← k + 1 and go back to Step k. If k = n, stop.

If T is the last set obtained by the above procedure then let μ(M) = max{f(z)|
z ∈ T ∩H}.
8. Application: A discrete location problem. As an application, let us

consider the following discrete location problem:
(DL) Given m balls in Rn of centers ai ∈ Rn

++ and radii αi(i = 1, . . . ,m), and a
bounded discrete set S ⊂ Rn

+, find the largest ball that has center in S and is disjoint
from any of these m balls. In other words,

maximize z subject to
‖x− ai‖ − αi ≥ z, i = 1, . . . ,m,
x ∈ S ⊂ Rn

+, z ∈ R+.
(31)

This problem is encountered in various applications. For example, in location
theory (see, e.g., [4], [1]), it can be interpreted as a “maximin location problem”:
ai, i = 1, . . . ,m, are the locations of m obnoxious facilities, and αi > 0 is the radius
of the polluted region of facility i, while an optimal solution is a location x ∈ S outside
all polluted regions and as far as possible from the nearest of these obnoxious facilities.
In engineering design (DL) appears as a variant of the “design centering problem”
[16], [8], an important special case of which, when αi = 0, i = 1, . . . ,m, is the “largest
empty ball problem” [6]: given m points a1, . . . , am in Rn

++ and a bounded set S, find
the largest ball that has center in S ⊂ Rn

+ and contains none of these points.
As a first step toward solving (DL) one can study the following feasibility problem:
(Q(r)) Given a number r ≥ 0, find a point x(r) ∈ S lying outside any one of the

m balls of centers ai and radii θi = αi + r.
It has been shown in [14] that this problem can be reduced to

max{‖x‖2 − h(x)| x ∈ S},

where h(x) = maxi=1,...,m(2〈ai, x〉+θ2
i−‖ai‖2). Since both ‖x‖2 and h(x) are obviously

increasing functions, this is a discrete d.m. optimization problem that can be solved
by the above presented method.

Clearly if r̄ is the maximal value of r such that (Q(r)) is feasible, then x̄ = x(r̄)
will solve (DL). Noting that r̄ ≥ 0 and for any r > 0 one has r̄ ≥ r or r̄ < r according
to whether (Q(r)) is feasible or not, the value r̄ can be found by a Bolzano binary
search scheme: starting from an interval [0, s] containing r̄, one reduces it by a half
at each step by solving a (Q(r)) with a suitable r. Quite encouraging computational
results with this scheme have been reported in [14], where each subproblem (Q(r)) was
solved by a preliminary version of Algorithm 2 described in [3]. However, it turns out
that more complete and much better results can be obtained by a direct application
of Algorithm 2 to problem (31). Next we describe this method.
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Observe that

‖x− ai‖ − αi ≥ z, i = 1, . . . ,m,

⇔ ‖x‖2 + ‖ai‖2 − 2〈ai, x〉 ≥ (z + αi)
2, i = 1, . . . ,m,

⇔ max
i=1,...,m

{(z + αi)
2 + 2〈ai, x〉 − ‖ai‖2} ≤ ‖x‖2.

Therefore, by setting

ϕ(x, z) = max
i=1,...,m

((z + αi)
2 + 2〈ai, x〉 − ‖ai‖2),(32)

problem (31) can be restated as

max{z| ϕ(x, z) − ‖x‖2 ≤ 0, x ∈ [a, b] ∩ S, z ≥ 0},(33)

where ϕ(x, z) and ‖x‖2 are increasing functions and [a, b] is a box containing S.
To apply Algorithm 2 for solving this problem, observe that the value of z is

determined when x is fixed. Therefore, branching should be performed upon the
variables x only, using the subdivision rule described in section 6.

Another key operation in Algorithm 2 is bounding: given a box [p, q] ⊂ [a, b],
compute an upper bound μ(M) for the optimal value of the subproblem

max{z| ϕ(x, z) − ‖x‖2 ≤ 0, x ∈ S ∩ [p, q], 0 ≤ z}.(34)

If CBV = r > 0 is the largest thus far known value of z at a feasible solution (x, z),
then only feasible points (x, z) with z > r are still of interest. Therefore, to obtain a
tighter value of μ(M) one should consider, instead of (34), the problem

(DL(M, r)) max{z| ϕ(x, z) − ‖x‖2 ≤ 0, x ∈ S ∩ [p, q], z ≥ r}.

Because ϕ(x, z) and ‖x‖2 are both increasing, the constraints of (DL(M, r)) can
be relaxed to ϕ(p, z) − ‖q‖2, so an obvious upper bound is

c(p, q) := max{z| ϕ(p, z) − ‖q‖2 ≤ 0}.(35)

Although this bound is easy to compute (it is the zero of the increasing function z �→
ϕ(p, z)−‖q‖2), it is often not sufficiently efficient. A better bound can be computed by
solving a linear relaxation of (DL(M, r)) obtained by omitting the discrete constraint
x ∈ S and replacing ϕ(x, z) with a linear underestimator. Since

(z + αi)
2 ≥ (r + αi)

2 + 2(r + αi)(z − r),

a linear underestimator of ϕ(x, z) is

ψ(x, z) := max
i=1,...,n

{2(r + αi)(z − r) + (r + αi)
2 + 2〈ai, x〉 − ‖ai‖2}.

On the other hand,

‖x‖2 ≤
n∑

j=1

[(pj + qj)xj − pjqj ] ∀x ∈ [p, q],

so by (32) the constraint ϕ(x, z) − ‖x‖2 ≤ 0 can be relaxed to

ψ(x, z) −
n∑

j=1

[(pj + qj)xj − pjqj ] ≤ 0,
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which is equivalent to the system of linear constraints

max
i=1,...,m

{2(r + αi)(z − r) + (r + αi)
2 + 2〈ai, x〉 − ‖ai‖2} ≤

n∑
j=1

[(pj + qj)xj − pjqj ].

Therefore,

(LP(M, r))

μ(M) = max

{
z| 2(r + αi)(z − r) + (r + αi)

2 + 2〈ai, x〉 − ‖ai‖2

−
n∑

j=1

[(pj + qj)xj − pjqj ] ≤ 0, i = 1, . . . ,m,

z ≥ r, p ≤ x ≤ q

}
.

The bounds can be further improved by using valid reduction operations. For this,
observe that, since ϕ(x, r) ≤ ϕ(x, z) for r ≤ z, the feasible set of (DL(M, r)) is
contained in the set

{x| ϕ(x, r) − ‖x‖2 ≤ 0, x ∈ [p, q]},

so, according to Lemma 16, if p′, q′ are defined by (23)–(25) with

g(x) = ϕ(x, r), h(x) = ‖x‖2,

and p̃ = �p′�S∗ , q̃ = q′�S∗ , then the box [p̃, q̃] ⊂ [p, q] is a valid reduction of [p, q].

Thus, Algorithm 2 specialized to problem (DL) becomes the following algorithm.
Algorithm 3 (branch-reduce-and-bound algorithm for (DL)).
Initialization. Let P1 := {M1},M1 := [a, b],R1 := ∅. If some feasible solution

(x̄, z̄) is available, let r := z̄ be CBV, the current best value. Otherwise, let r := 0.
Set k := 1.
Step 1. Apply S-adjusted reduction cuts to reduce each box M := [p, q] ∈ Pk. In
particular delete any box [p, q] such that ϕ(p, r) − ‖q‖2 ≥ 0. Let P ′

k be the resulting
collection of reduced boxes.
Step 2. For each M := [p, q] ∈ P ′

k compute μ(M) by solving LP(M, r). If LP(M, r) is
infeasible or μ(M) = r, then delete M. Let P∗

k := {M ∈ P ′
k| μ(M) > r}. For every

M ∈ P∗
k if a basic optimal solution of LP(M, r) can be S-adjusted to derive a feasible

solution (xM , zM ) with zM > r, then use it to update CBV.
Step 3. Let Sk := Rk∪P∗

k . Reset r := CBV. Delete every M ∈ Sk such that μ(M) < r
and let Rk+1 be the collection of remaining boxes.
Step 4. If Rk+1 = ∅, then terminate: if r = 0, the problem is infeasible; otherwise, r
is the optimal value and the feasible solution (x̄, z̄) with z̄ = r is an optimal solution.
Step 5. If Rk+1 �= ∅, let Mk ∈ argmax{μ(M)| M ∈ Rk+1}. Divide Mk into two boxes
according to the rule described in section 6. Let Pk+1 be the collection of these two
subboxes of Mk.
Step 6. Increment k and return to Step 1.

Theorem 18. Algorithm 3 solves the problem (DL) in finitely many iterations.
Proof. Although the variable z is not explicitly required to take on discrete values,

this is actually a discrete variable, since the constraint (31) amounts to requiring that
z = mini=1,...,m(‖x − ai‖ − αi) for x ∈ S. The finiteness of Algorithm 3 then follows
from Theorem 17.
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Table 1

Problems n m It Time maxN
1-10 10 200 81 0.683 35
10-20 10 400 118 2.197 52
21-30 20 200 99 1.655 52
31-40 20 400 183 7.383 98
41-50 30 100 178 2.097 86
51-60 30 200 208 5.449 97
61-70 40 100 199 3.155 108
71-80 40 200 298 11.442 163
81-90 40 300 619 40.442 340
91-100 40 400 526 55.911 265
101-110 40 500 504 78.847 297
111-120 50 100 344 6.759 157
121-130 50 200 618 34.077 331
131-140 50 300 711 69.859 432
141-150 50 400 851 123.864 489
151-160 50 500 1089 216.725 529
161-170 100 100 1511 63.520 852
171-180 100 200 5135 642.710 2949

Table 2

Problems n m It Time maxN
A B A B A B

1-10 10 200 324 81 2.4 0.794 27 35
10-20 10 400 450 118 7.9 2.319 44 52
21-30 20 200 332 99 3.7 1.766 42 52
31-40 20 400 685 183 20.7 7.383 80 98
41-50 30 100 567 178 4.8 2.659 84 86

Algorithm 3 was coded in C++ and tested on a number of problem instances of
dimension ranging from 10 to 100 (10 problems for each instance of n). Points aj were
randomly generated in the square 1000 ≤ xi ≤ 90000, i = 1, . . . , n, while S was taken
to be the lattice of points with integral coordinates. The program was run on a PC
Pentium IV (2.53GHz with 256Mb of DDR RAM), with linear subproblems solved by
the LP software CPLEX 8.0.

The computational results (with relative error ≤ 0.01 for the optimal value) are
summarized in Table 1 with the following notation:

n: dimension,
m: number of given points aj ,
It: average number of iterations,
Time: average running time in seconds,
maxN : average maximal number of active nodes of the branch and bound tree.
These results suggest that the method is quite practical for this class of discrete

optimization problems. The computational cost increases much more rapidly with n
(dimension of space or number of variables) than with m (number of balls). Also,
when compared with the results preliminarily reported in [14], they show that the
performance of the method can be drastically improved by using a more suitable
monotonic reformulation. To give a more precise idea of the improvement, Table 2
reports the computational results obtained in the two versions of the method on the
50 first problems tested (the columns A, B refer to performances of the version used
in [14] and the present version, respectively).
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Finally, we note that, although variants of the problem (DL) have been known for
years, the literature on numerical results for this problem appear to be very poor. To
the best of our knowledge, prior to the paper [14], the problem was studied only for
n and/or m very small (see, e.g., [16], [8], where, however, ellipsoids rather than balls
were considered). A d.c. optimization method proposed in [6] for the largest empty
ball problem has never been implemented. It seems that [14] was the first numerical
study for the problem (DL) with fairly large values of n and m.

Acknowledgment. The authors are grateful to the referees for several helpful
comments and suggestions.
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ON THE SOLUTION OF THE TIKHONOV REGULARIZATION OF
THE TOTAL LEAST SQUARES PROBLEM∗

AMIR BECK† AND AHARON BEN-TAL†

Abstract. Total least squares (TLS) is a method for treating an overdetermined system of
linear equations Ax ≈ b, where both the matrix A and the vector b are contaminated by noise.
Tikhonov regularization of the TLS (TRTLS) leads to an optimization problem of minimizing the
sum of fractional quadratic and quadratic functions. As such, the problem is nonconvex. We show
how to reduce the problem to a single variable minimization of a function G over a closed interval.
Computing a value and a derivative of G consists of solving a single trust region subproblem. For the
special case of regularization with a squared Euclidean norm we show that G is unimodal and provide
an alternative algorithm, which requires only one spectral decomposition. A numerical example is
given to illustrate the effectiveness of our method.

Key words. total least squares, Tikhonov regularization, fractional programming, nonconvex
optimization, trust region subproblem
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1. Introduction. Many problems in data fitting and estimation give rise to an
overdetermined system of linear equations Ax ≈ b, where both the matrix A ∈ Rm×n

and the vector b ∈ Rm are contaminated by noise. The total least squares (TLS)
approach to this problem [11, 12, 19] is to seek a perturbation matrix E ∈ Rm×n and
a perturbation vector r ∈ Rm that minimize ‖E‖2 + ‖r‖2 subject to the consistency
equation (A+E)x = b+ r (here and elsewhere in this paper a matrix norm is always
the Frobenius norm and a vector norm is the Euclidean one). The TLS approach
was extensively used in a variety of scientific disciplines such as signal processing,
automatic control, statistics, physics, economic, biology, and medicine (see, e.g., [19]
and the references therein). The TLS problem has essentially an explicit solution,
expressed by the singular value decomposition of the augmented matrix (A,b) (see,
e.g., [11, 19]).

In practical situations, the original (noise-free) linear system is often ill-conditioned.
For example, this happens when the system is obtained via discretization of ill-posed
problems such as integral equations of the first kind (see, e.g., [10] and the references
therein). In these cases the least squares (LS) solution as well as the TLS solution
can be physically meaningless, and thus regularization is essential for stabilizing the
solution.

There are two well-established approaches (among many others) to stabilize the
LS solution: (i) Tikhonov regularization, where a quadratic penalty is appended to
the LS objective function [4, 33], and (ii) regularized least squares (abbreviated RLS
and LSQI), where a quadratic constraint bounding the size of the solution is added
[4, 8].
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For the TLS problem the situation is different. Stabilization by introducing a
quadratic constraint was extensively studied [1, 10, 14, 28, 24]. On the other hand,
Tikhonov regularization of the TLS (TRTLS) problem has not yet been considered.

In this paper we adopt the Tikhonov regularization concept to stabilize the TLS
solution; i.e., we consider the problem

(TRTLS) min
E,r,x

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
,(1)

where L ∈ Rk×n, k ≤ n, is a full row rank matrix and ρ > 0 is a penalty parameter.
L is a matrix that defines a (semi)norm on the solution through which its “size” is
measured. A common example where L is not square is when L is an approximation
matrix of the first or second order derivative [10, 16, 18].

The main difficulty associated with problem (TRTLS) is its nonconvexity. Nev-
ertheless, we show in this paper that the problem can be solved efficiently to global
optimality. First, in section 2 we reduce problem (TRTLS) to one involving only the
x variables:

min
x∈Rn

{
‖Ax − b‖2

‖x‖2 + 1
+ ρ‖Lx‖2

}
.(2)

In section 3 we derive an extremely mild condition for the attainability of an opti-
mal solution to (2). An algorithm for solving problem (TRTLS) is then described
in section 4. The algorithm consists of minimizing a single variable continuous (and
differentiable under a mild condition) function G(α) on a closed interval. Computing
G(α) and its derivative involves the solution of a single trust region subproblem. The
interesting special case, where the matrix L in problem (TRTLS) is the identity ma-
trix, is studied in section 5, where we prove that in this case G is unimodal and provide
an alternative algorithm for solving the TRTLS problem requiring a single spectral
decomposition. Finally, we provide in section 6 a detailed algorithm for the solution
of the TRTLS problem (with a general regularization matrix) and demonstrate our
method through an image deblurring example.

2. Simplified formulation of the TRTLS problem. In order to simplify
problem (1), we use a derivation similar to the one used in [1].1 Problem (TRTLS)
can be written as a double minimization problem:

min
x

min
E,r

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
.(3)

Consider the inner minimization problem

min
E,r

{
‖E‖2 + ‖r‖2 + ρ‖Lx‖2 : (A + E)x = b + r

}
.(4)

The Lagrangian of problem (4) is given by

L(E, r,λ) = ‖E‖2 + ‖r‖2 + ρ‖Lx‖2 + 2λT ((A + E)x − b − r).

Note that problem (4) is a linearly constrained convex problem with respect to the
variables E and r. Thus, the KKT conditions are necessary and sufficient [3, Propo-
sition 3.4.1], and we conclude that (E, r) is an optimal solution of (4) if and only if

1We thank Marc Teboulle for his contribution to this derivation.
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there exists λ ∈ Rm such that

2E + 2λxT = 0 (∇EL = 0),(5)

2r − 2λ = 0 (∇rL = 0),(6)

(A + E)x = b + r (feasibility).(7)

From (6) we have λ = r. Substituting this into (5) we have

E = −rxT .(8)

Combining (8) with (7) we obtain (A − rxT )x = b + r, so

r =
Ax − b

‖x‖2 + 1
(9)

and consequently

E = − (Ax − b)xT

‖x‖2 + 1
.(10)

Finally, by substituting (9) and (10) into the objective function of problem (4) we

obtain that the value of problem (4) is equal to ‖Ax−b‖2

‖x‖2+1 + ρ‖Lx‖2. Consequently,

the TRTLS problem (1) reduces to

f∗ = min
x∈Rn

{
H(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
+ ρ‖Lx‖2

}
.(11)

For a given optimal solution x to the simplified TRTLS problem (11), the optimal
pair (E, r) to the original TRTLS problem is given by (9) and (10).

3. Attainability of the minimum. In this section, we find a sufficient condi-
tion for the attainability of the minimum in (11). First, notice that if k = n, then
L has full rank and as a result the objective function is a coercive function2 and the
minimum is attained (see [3]). On the other hand, if k < n, then the minimum in
(11) might not be attained. This is illustrated by the following example.

Example. Consider problem (11) with data

m = 3, n = 2, A =

⎛⎝ 1 0
0 1
0 0

⎞⎠ , b =

⎛⎝ 4
0
0

⎞⎠ , L =
(

1 0
)
, ρ = 1.

The TRTLS problem (11) in this case is

min
x1,x2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x1 − 4)2 + x2

2

1 + x2
1 + x2

2

+ x2
1︸ ︷︷ ︸

H(x1,x2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(12)

To show the nonattainment of the minimum, suppose on the contrary that the
minimum is attained at a point (x∗

1, x
∗
2). Notice that

(x∗
1)

2 ≤ H(x∗
1, x

∗
2) ≤ H(0, x2) ∀x2 ∈ R.

2A real valued function f : Rn → R is coercive if lim‖x‖→∞ f(x) = ∞.
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Since H(0, x2) =
16+x2

2

1+x2
2

x2→∞−→ 1 we conclude that |x∗
1| ≤ 1, which implies the inequality

(x∗
1 − 4)2 > 1 + (x∗

1)
2. Therefore, the function ϕ(y) = H(x∗

1, y) =
(x∗

1−4)2+y2

1+(x∗
1)2+y2 + (x∗

1)
2

is strictly decreasing and as a result we have, for example, H(x∗
1, x

∗
2 +1) < H(x∗

1, x
∗
2),

which is a contradiction to the assumption that the minimum is attained at (x∗
1, x

∗
2).

We therefore conclude that the minimum (12) is not attained.
Theorem 3.1 introduces a sufficient condition for the attainability of the minimum

of the TRTLS problem (11).
Theorem 3.1. Consider problem (11) with A ∈ Rm×n,b ∈ Rm, and L ∈

Rk×n, n > k. Let F ∈ Rn×k be a matrix whose columns form an orthogonal basis
for the null space of L. If the following condition is satisfied,

λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
< λmin(FTATAF),(13)

then
(i)

f∗ ≤ λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
;(14)

(ii) the minimum of (11) is attained.
Proof. (i) Let d ∈ Rp+1 be an eigenvector corresponding to the minimum eigen-

value of the matrix

H =

(
FTATAF FTATb

bTAF ‖b‖2

)
.

Then

dTHd

‖d‖2
= λmin(H).(15)

dp+1 must be different from zero since otherwise we would have

λmin(H)
d=(d̃T ,0)T

=
dTHd

‖d‖2
=

d̃TFTATAFd̃

‖d̃‖2
≥ λmin(FTATAF),

which is in contradiction to (13). Therefore, dp+1 �= 0. Let y ∈ Rp be such that
d

−dp+1
= (yT ,−1)T . Then

λmin(H)
(15)
=

dTHd

‖d‖2
=

(
d

dn+1

)T
H
(

d
dn+1

)
∥∥∥( d

dn+1

)∥∥∥2

=

(
yT −1

)
H

(
y
−1

)
‖
(

yT −1
)
‖2

=
yTFTATAFy − 2yTFTATb + ‖b‖2

‖y‖2 + 1

FTF=I,LF=0
=

yTFTATAFy − 2yTFTATb + ‖b‖2

yTFTFy + 1
+ ρ‖LFy‖2

= H(Fy) ≥ f∗,
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thus proving (i). To prove (ii), suppose on the contrary that the minimum value of
(11), f∗, is not attained, which implies that there exists a sequence xk, k ≥ 1, such
that

‖xk‖ → ∞, q(xk) + h(xk)︸ ︷︷ ︸
H(xk)

→ f∗,(16)

where q(xk) ≡ ‖Axk−b‖2

‖xk‖2+1 and h(xk) ≡ ρ‖Lxk‖2. Since both the sequences q(xk) and
xk

‖xk‖ are bounded, there exists a subsequence xnk
for which the subsequences q(xnk

)

and
xnk

‖xnk
‖ converge to a finite value. That is, there exist η and d such that

q(xnk
) → η,

xnk

‖xnk
‖ → d.

Now, from (16) it follows that

q(xnk
) + h(xnk

)

‖xnk
‖2

→ 0

and since q(xnk
) is bounded we have that

h(xnk
)

‖xnk
‖2 → 0. But, on the other hand,

h(xnk
)

‖xnk
‖2 → ρ‖Ld‖2 and as a result we have that ‖Ld‖2 = 0, which is equivalent to

d ∈ Null(L). To summarize, we have found a subsequence xnk
for which q(xnk

)
converges and

xnk

‖xnk
‖ → d, where d ∈ Null(L) and ‖d‖ = 1. Now,

f∗ = lim
k→∞

{q(xnk
) + h(xnk

)}
h(·)≥0

≥ lim
k→∞

q(xnk
) = lim

k→∞

‖Axnk
− b‖2

‖xnk
‖2 + 1

= lim
k→∞

xT
nk

ATAxnk
− 2bTAxnk

+ ‖b‖2

‖xnk
‖2 + 1

= lim
k→∞

(
xnk

‖xnk
‖

)T
ATA
(

xnk

‖xnk
‖

)
− 2 1

‖xnk
‖b

TA
(

xnk

‖xnk
‖

)
+ ‖b‖2

‖xnk
‖2

1 + 1
‖xnk

‖2

= dTATAd.

Since d ∈ Null(L) we can write d = Fv, and therefore we obtain the following lower
bound on f∗:

f∗ ≥ min
vTFTFv=1

vTFTATAFv
FTF=I

= min
‖v‖2=1

vTFTATAFv = λmin(FTATAF).

On the other hand, by condition (13), λmin(FTATAFT ) > λmin(H), and therefore
we have that

f∗ > λmin(H),

which is a contradiction to part (i).
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Remarks.
1. Weak inequality is always satisfied in (13): the matrix in the right-hand side

of (13) is a principal submatrix of the one in the left-hand side. Hence, by the
interlacing theorem of eigenvalues [34, Theorem 7.8], weak inequality holds.

2. Condition (13) is invariant to the specific choice of the orthogonal basis of
the null space of L.

3. For L = 0 problem (11) reduces to the classical TLS problem. In this case
we can take F = I in condition (13), which then reduces to the well-known
condition [11, 19] for the attainability of the minimum in the TLS problem:

λmin

(
ATA ATb
bTA ‖b‖2

)
< λmin

(
ATA
)
.(17)

Incidentally, for the nonregularized version of problem (12), i.e.,

min
x1,x2

{
(x1 − 4)2 + x2

2

1 + x2
1 + x2

2

}
,(18)

condition (17) does hold since

λmin

(
ATA ATb
bTA ‖b‖2

)
= 0 < 1 = λmin

(
ATA
)

and indeed (18) attains an optimal solution x∗
1 = 4, x∗

2 = 0.
4. The TRTLS problem (12), for which nonattainability of the minimum was

established, indeed does not satisfy condition (13). F can be chosen to be
( 0
1 ), and we have

λmin(FTATAF) = 1

and

λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
= λmin

(
1 0
0 4

)
= 1.

4. Solving the TRTLS problem with general L. In this section we consider
the TRTLS problem (11) with a full row rank k×n regularization matrix L. We will
assume that condition (13) is satisfied, and therefore the minimum is attained.

Problem (11) can be formulated as a double minimization problem in the following
way:

min
α≥1

min
‖x‖2=α−1

{
‖Ax − b‖2

α
+ ρ‖Lx‖2

}
,

which can be written as

min
α≥1

{G(α)},(19)

where

G(α) ≡ min
‖x‖2=α−1

{
‖Ax − b‖2

α
+ ρ‖Lx‖2

}
.(20)
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Calculating function values of G requires solving a minimization problem with a
quadratic objective function and a norm equality constraint. In section 4.1 we briefly
review known results on this problem including necessary and sufficient optimality
conditions. In section 4.2 continuity and differentiability of G are established under
standard second order sufficiency conditions. In section 4.3 an upper bound ᾱ on the
value of the optimal α is derived. Thus, the TRTLS problem (11) is reduced to a one
dimensional minimization of G over a finite interval [1, ᾱ].

4.1. Minimization of a quadratic function subject to a norm equality
constraint. In this section we consider the minimization problem

min
‖x‖2=β

{
xTQx − 2fTx + c

}
.(21)

We do not assume that Q is positive semidefinite, and therefore the objective function
need not be convex. Problem (21) is the well-known trust region subproblem (TRS);
it has been extensively studied from both theoretical and algorithmic aspects [2, 5,
7, 23, 27, 31].3 Necessary and sufficient conditions for a (global) solution of (21) are
well established [5, 7, 32].

Theorem 4.1 (see [5, 7, 32]). Consider problem (21) with a symmetric matrix
Q ∈ Rn×n, f ∈ Rn, c ∈ R, β ∈ R+. Then x∗ is an optimal solution of (21) if and only
if there exists λ∗ ∈ R such that

(Q − λ∗I)x∗ = f ,(22)

‖x∗‖2 = β,(23)

Q − λ∗I  0.(24)

Moreover, if f /∈ Null(Q − λmin(Q)I)⊥, then the solution of problem (21) is unique.
Many algorithms have been suggested to solve the TRS. A solution based on the

complete spectral decomposition can be found in [8]. For medium and large-scale
problems the latter approach is not applicable. Thus, several methods have been
devised for these scenarios [5, 7, 13, 23, 25, 30, 29].

4.2. Continuity and differentiability of G.

4.2.1. Continuity. The continuity of G(α) for α > 1 follows from a theorem by
Gauvin and Dubeau [9, Theorem 3.3] . The notation in [9] is quite different from the
notation in this paper, and therefore we will present the three sufficient conditions for
continuity of G at a point ᾱ from [9] in our terminology (the quotation from [9] is in
italic).

1. The feasible set {x : ‖x‖2 = ᾱ− 1} is nonempty. This condition is naturally
satisfied for ᾱ > 1.

2. There exists ε > 0 such that
⋃

|α−ᾱ|<ε{x : ‖x‖2 = α− 1} is compact. This is

also true in our problem since the union is equal to {x : ᾱ − 1 − ε ≤ ‖x‖2 ≤
ᾱ− 1 + ε}, which is obviously compact.

3. The Mangasarian–Fromovitz regularity conditions are satisfied (see [22]). In
our problem, this means that the gradient of the constraint is different from
zero at the optimal solution, i.e., x∗ �= 0. This is true for ᾱ > 1 since
‖x∗‖2 = ᾱ− 1.

3The TRS is usually considered with an inequality constraint ‖x‖2 ≤ β instead of an equality
one; however, all known results can be trivially converted to the equality case.
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What is left to prove is that G is continuous at α = 1 (from the right). This is proved
next.

Lemma 4.1. G is continuous at α = 1 from the right.
Proof. First, G(1) = ‖b‖2. Now, for every α > 1 let xα be such that H(xα) = G(α)

and ‖xα‖2 = α− 1. Then

|G(α) − G(1)| = |H(xα) − ‖b‖2|

=

∣∣∣∣‖Axα − b‖2

α
+ ρ‖Lxα‖2 − ‖b‖2

∣∣∣∣
=

∣∣∣∣( 1

α
− 1

)
‖b‖2 +

xT
αATAxα − 2bTAxα

α
+ ρxT

αLTLxα

∣∣∣∣
≤
(

1 − 1

α

)
‖b‖2 +

(
λmax(ATA)

α
+ ρλmax(LTL)

)
‖xα‖2

+ 2
‖ATb‖

α
‖xα‖

‖xα‖2=α−1
=

(
1 − 1

α

)
‖b‖2 +

(
λmax(ATA)

α
+ ρλmax(LTL)

)
(α− 1)

+ 2
‖ATb‖

α

√
α− 1

α→1+

−→ 0.

Therefore, limα→1+ G(α) = G(1).
Corollary 4.1. G is continuous over [1,∞).

4.2.2. Differentiability. The function G is of the general form

G(α) = min
g(x)=α−1

f(x, α),(25)

where

f(x, α) ≡ xTQαx − 2fTα x + cα

and

g(x) = ‖x‖2, Qα =
1

α
ATA + ρLTL, fα =

1

α
ATb, cα =

1

α
‖b‖2.(26)

The single variable function G is not necessarily differentiable. In this subsection we
show that under a suitable condition, G is differentiable of any order.

Our argument is the same as the one used in the sensitivity analysis of minimiza-
tion problems (see, e.g., [3, 26] and the references therein). Theorem 4.2 establishes
the differentiability of G under a suitable regularity condition.

Theorem 4.2. For every α > 1 that satisfies the condition

fα /∈ Null(Qα − λmin(Qα)I)⊥,(27)

G(α) is differentiable of any order and its first derivative is given by

G′(α) = λ(α) + f ′
α(x(α), α) = λ(α) − ‖Ax(α) − b‖2

α2
,(28)
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where x(α) and λ(α) are the unique solutions of the KKT conditions (22) and (23).
Proof. Let α > 1 be such that condition (27) is satisfied. By Theorem 4.1,

condition (27) implies the uniqueness of the solution of the minimization problem
(25). Consider the system of equations

(Qα − λI)x = fα,(29)

‖x‖2 = α− 1.(30)

By Theorem 4.1, x(α) and λ(α) are the solutions of the system for the given α. The
Jacobian matrix associated with the system of equations (29) and (30) with respect
to (x, λ) at (x(α), λ(α)) is given by

J =

(
Qα − λ(α)I x(α)

x(α)T 0

)
.

To show that J is nonsingular note first that condition (27) implies also that

Qα − λ(α)I � 0.(31)

This is true since (29) implies that fα ∈ Range(Qα − λ(α)I) = Null(Qα − λ(α)I)⊥.
This condition combined with (27) and (24) implies that λ(α) < λmin(Qα). To show
the nonsingularity of J , we will prove that the only solution of the system

J

(
w
t

)
= 0, w ∈ Rn, t ∈ R,

is the trivial solution. Indeed, the system can be written explicitly as

(Qα − λ(α)I)w + 2tx(α) = 0,(32)

2x(α)Tw = 0.(33)

Multiplying (32) by wT from the left and using (33), we obtain wT (Qα−λ(α)I)w = 0.
Since Qα − λ(α)I � 0 we conclude that w = 0. Substituting this into (32) we have
t = 0, proving the nonsingularity of J . Invoking the implicit function theorem, the
differentiability of any order of x(α) and λ(α) in a neighborhood of α follows. Now
x(α) and λ(α) satisfy the identities (in α)

f ′
x(x(α), α) − λ(α)g′x(x(α)) = 0,(34)

g(x(α)) = α− 1.(35)

Differentiating both sides of (35) yields the equation

ẋ(α)T g′x(x(α)) = 1.(36)

Multiplying (34) from the left by ẋ(α)T we obtain

ẋ(α)T f ′
x(x(α), α) − λ(α)ẋ(α)T g′x(x(α)) = 0.(37)

By substituting (36) into (37) we obtain

ẋ(α)T f ′
x(x(α), α) = λ(α).(38)
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Fig. 1. Examples of G(α).

G(α) and its derivatives are given by

G(α) = f(x(α), α),

G′(α) = ẋ(α)T f ′
x(x(α), α) + f ′

α(x(α), α).(39)

Substituting (38) into (39), the expression for the derivative (28) follows.
Example. Some examples of G(α) are given in Figure 1. These examples were

randomly generated with dimensions m = n = 4 and k = 3.
In all of these examples G is continuous and differentiable. Note that in most

examples the function G seems to be “well behaved” in the sense that it is strictly
unimodal. A “bad” example is given in Figure 2(a), where we see an example of a
nondifferentiable function. The point of nondifferentiability is ᾱ = 2.275. Figure 2(b)
plots the quantity dist(fα,Null(Qα − λmin(Qα)I)⊥) versus α. It can be readily seen
that the point in which the distance is zero is exactly the point ᾱ.

So far we have shown how to reduce the TRTLS problem (11) to a one dimensional
problem minα≥1 G(α). One of the problems frequently arising in one dimensional (line
search) methods is determining an initial interval of search in which the optimum is
known to reside. At this point, we have only shown that a lower bound on α is 1.
Next we derive an upper bound.

4.3. Upper bound on the norm of optimal solutions. Let x∗ be an optimal
solution of problem (11). In this section we find an upper bound for ‖x∗‖. We recall



108 AMIR BECK AND AHARON BEN-TAL

1 2 3 4 5 6 7 8 9 10
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

α

g
(α

)

2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

α
d

is
t(

f α
,N

u
ll(

Q
α
−

λ
m

in
I)

⊥
)

(a) (b)

Fig. 2. An example of a nondifferentiable G(α).

the assumption that L is full row rank. In the case where k = n, it is very easy to
bound the ‖x∗‖, as can be seen from the following lemma.

Lemma 4.2. Suppose that k = n, and let x∗ be an optimal solution of minx∈Rn H(x).

Then ‖x∗‖2 ≤ ‖b‖2

ρλmin(LLT )
.

Proof. First, notice that λmin(LLT ) > 0 since L has full row rank. Now,

ρ‖Lx∗‖2 ≤ H(x∗) ≤ H(0) = ‖b‖2,

and the result follows from the simple observation that ‖Lx∗‖2 = (x∗)TLTLx∗ ≥
λmin(LLT )‖x∗‖2 > 0.

The case in which k < n is much harder. In this case, we assume that condition
(13) is satisfied.

Theorem 4.3. Suppose that condition (13) is satisfied, and let x∗ be an optimal
solution of minx∈Rn H(x). Then

‖x∗‖2 ≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ))

l1 − l2

}2

+δ,

(40)
where

l2 = λmin

(
FTATAF FTATb

bTAF ‖b‖2

)
,

l1 = λmin(FTATAF),

δ = l2
λmin(LLT )ρ

, and F is a matrix whose columns form an orthogonal base of Null(L).

Proof. Consider the decomposition

x∗ = Fv + LTw,(41)

where v ∈ Rn−k and w ∈ Rn (such decomposition is possible since Null(L) =
(Range(LT ))⊥). Now,

‖x∗‖2 = ‖v‖2 + wTLLTw.(42)
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By (14),

H(x∗) = f∗ ≤ l2.

As a result,

ρ‖Lx∗‖2 ≤ l2.(43)

Substituting (41) into (43) we obtain

ρwT (LLT )2w ≤ l2,

which implies the following inequality:

wTLLTw = wT (LLT )2w
wTLLTw

wT (LLT )2w
≤ l2

ρ
λmax((LLT )−1(LLT )(LLT )−1) = δ.

(44)
We assume for now that ‖v‖ ≥ 1. Substituting the decomposition (41) into the
objective function H we have

H (x∗)

=
‖Ax∗ − b‖2

‖x∗‖2 + 1
+ ρ‖Lx∗‖2

≥ ‖Ax∗ − b‖2

‖x∗‖2 + 1
=

‖A(Fv + LTw) − b‖2

‖Fv + LTw‖2 + 1

=
vTFTATAFv + 2vTFTATALTw − 2vTFTATb + wTLATALTw − 2wTLATb + ‖b‖2

1 + ‖v‖2 + wTLLTw

=

vT FT AT AFv
‖v‖2 + β

1 + γ
≥ l1 + β

1 + γ
,

where

γ =
1 + wTLLTw

‖v‖2
,

β =
2vTFTATALTw − 2vTFTATb + wTLATALTw − 2wTLATb + ‖b‖2

‖v‖2
.

We have thus proven that H(x∗) ≥ θ, where θ = l1+β
1+γ . Combining this with Theorem

3.1 and condition (13) we have θ ≤ l2 < l1. Now,

l1 − l2 ≤ l1 − θ = |θ − l1| =

∣∣∣∣ l1 + β

1 + γ
− l1

∣∣∣∣ = ∣∣∣∣β − l1γ

1 + γ

∣∣∣∣ ≤ β + l1γ.(45)

Also,

(46)

γ ≤ 1 + δ

‖v‖2

‖v‖≥1

≤ 1 + δ

‖v‖ ,

β ≤ 2|vTFTATALTw| + 2|vTFTATb| + |wTLATALTw| + 2|wTLATb| + ‖b‖2

‖v‖2

(∗)
≤ 2

‖v‖

(
λmax(ATA)

√
δ + ‖ATb‖

)
+

1

‖v‖2

(
‖b‖2 + λmax(ATA)δ + 2‖ATb‖

√
δ
)
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‖v‖≥1

≤ 2

‖v‖

(
λmax(ATA)

√
δ + ‖ATb‖

)
+

1

‖v‖

(
‖b‖2 + λmax(ATA)δ + 2‖ATb‖

√
δ
)

=
1

‖v‖

(
‖b‖2 + λmax(ATA)(δ + 2

√
δ) + ‖ATb‖(2 + 2

√
δ)
)
,

(47)

where inequality (*) is true due to the Cauchy–Schwarz inequality and trivial linear
algebra inequalities. For example, |vTFTATALTw| is bounded as follows:

|vTFTATALTw|
C-S
≤ ‖Fv‖ · ‖ATALTw‖

λmax(F)≤1

≤ ‖v‖λmax(ATA)‖LTw‖
(44)

≤ λmax(ATA)‖v‖
√
δ.

Using the upper bound on β (47) and the upper bound on γ (46), we conclude that
if ‖v‖ ≥ 1, then

l1 − l2
(45)

≤ β + l1γ

≤ 1

‖v‖

(
‖b‖2 + λmax(ATA)(δ + 2

√
δ) + ‖ATb‖(2 + 2

√
δ) + l1(1 + δ)

)
.

Therefore,

‖v‖ ≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ)

l1 − l2

}
.

(48)
Finally,

‖x∗‖2

= ‖v‖2 + ‖LTw‖2

(44),(48)

≤ max

{
1,

‖b‖2 + λmax(ATA)(δ + 2
√
δ) + ‖ATb‖(δ + 2

√
δ) + l1(1 + δ)

l1 − l2

}2

+ δ.

Remark. Recall that the sufficient condition for attainability is that l2 < l1. Note
that if l2 is very close to l1, then the upper bound on ‖x∗‖2 might be very large.

5. The case L = I.

5.1. Strict unimodality of G. In this section we show that in the case in
which L = I, the function G defined in (20) has a very attractive property: strictly
unimodal. A strictly unimodal function over an interval [a, b] is a function that has a
unique global minimum α∗ and is strictly decreasing over [a, α∗] and strictly increasing
over [α∗, b] (α∗ can be equal to a or b and in that case the function is monotone).
The fact that G is strictly unimodal implies that we can solve the one dimensional
minimization problem efficiently (with, e.g., the golden section method; see [3]).

Theorem 5.1. Consider problem (11) with L = I. If ATb /∈ Null(ATA −
λmin(ATA)I)⊥, then G, defined in (20), is differentiable for every α > 1 and strictly
unimodal.

Proof. First, by substituting Qα = 1
αATA + ρI and fα = 1

αATb into (27) we
obtain the following sufficient condition for differentiability of G at α:

ATb /∈ Null(ATA − λmin(ATA)I)⊥.
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Now, in order to prove the strict unimodality of G, it is sufficient to prove the following
property of G: if G′(α) = 0, then G′′(α) > 0. By differentiating both sides of (39), we
obtain

G′′(α) = ẍ(α)T f ′
x(x(α), α)+ẋ(α)T f ′′

x2(x(α), α)ẋ(α)+2ẋ(α)T f ′′
xα(x(α), α)+f ′′

α2(x(α), α).
(49)
Differentiating (36), we have

ẍ(α)T g′x(x(α)) + ẋ(α)T g′′x2(x(α))ẋ(α) = 0.(50)

Therefore,

G′′(α) = G′′(α) − λ(α) · 0
(50)
= G′′(α) − λ(α)(ẍ(α)T g′x(x(α)) + ẋ(α)T g′′x2(x(α))ẋ(α))

(49)
=

A︷ ︸︸ ︷
ẍ(α)T (f ′

x(x(α), α) − λ(α)g′x(x(α)))

+

B︷ ︸︸ ︷
ẋ(α)T (f ′′

x2(x(α), α) − λ(α)g′′x2(x(α))) ẋ(α)

+ 2ẋ(α)T f ′′
xα(x(α), α) + f ′′

α2(x(α), α)︸ ︷︷ ︸
C

.

By (34) we have A = 0 and

B = ẋ(α)T (f ′′
x2(x(α), α) − λ(α)g′′x2(x(α))) ẋ(α) = ẋ(α)T (Qα − λ(α)I)ẋ(α)

(31)
> 0.

The latter inequality is true since by (36) ẋ(α) �= 0. Suppose that G′(α) = 0; then

ẋ(α)T f ′
x(x(α), α) + f ′

α(x(α), α) = 0,

which can also be written as

2ẋ(α)T
(

AT (Ax(α) − b)

α

)
− ‖Ax(α) − b‖2

α2
= −2ρẋ(α)TLTLx(α).(51)

Now,

C = 2ẋ(α)T f ′′
xα(x(α), α) + f ′′

α2(x(α), α)

= −4ẋ(α)T
AT (Ax(α) − b)

α2
+ 2

‖Ax(α) − b‖2

α3

(51)
= 4ρ

ẋ(α)TLTLx(α)

α
.

In our case L = I, and thus C = 4ρ ẋ(α)Tx(α)
α

(36)
= 2ρ

α > 0 and we conclude that, when
G′(α) = 0, then G′′(α) = A + B + C > 0, proving the unimodality property.
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5.2. Another approach to the case L = I.

5.2.1. The schematic algorithm. In the case L = I the problem is given by

min
x∈Rn

{
H(x) ≡ ‖Ax − b‖2

‖x‖2 + 1
+ ρ‖x‖2

}
.(52)

We use the following simple observation, which goes back to Dinkelbach [6]: For every
t ∈ R, the following two statements are equivalent:

min
x∈Rn

H(x) ≤ t,

min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t(‖x‖2 + 1)} ≤ 0.(53)

The minimization problem (53) also seems hard to solve; however, we will show in
section 5.2.2 that it is in fact a very simple problem having essentially an explicit
solution. Consider the function φ : R → R defined by

φ(t) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t(‖x‖2 + 1)}.

We claim that φ is strictly decreasing. To prove this suppose that t1 < t2, and let
xt1 ≡ argminx∈Rn{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2 − t1(‖x‖2 + 1)}. Then

φ(t1) = ‖Axt1 − b‖2 + ρ‖xt1‖4 + ρ‖xt1‖2 − t1(‖xt1‖2 + 1)

> ‖Axt1 − b‖2 + ρ‖xt1‖4 + ρ‖xt1‖2 − t2(‖xt1‖2 + 1) ≥ φ(t2).

From the above observation we also have that t∗ ≡ minx∈Rn H(x) is the unique root
of φ(·). Moreover, t∗ ∈ [0, ‖b‖2] since

φ(0) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + ρ‖x‖2} ≥ 0

and

φ(‖b‖2) = min
x∈Rn

{‖Ax − b‖2 + ρ‖x‖4 + (ρ− ‖b‖2)‖x‖2 − ‖b‖2}

≤ min
x∈Rn

{‖A0 − b‖2 + ρ‖0‖4 + (ρ− ‖b‖2)‖0‖2 − ‖b‖2} = 0.

As a result, the optimal t∗ can be found by, e.g., a simple bisection algorithm with
an initial interval [0, ‖b‖2].

5.2.2. Solving the subproblem. The subproblem can also be written as

min
x∈Rn

{
xTATAx + (ρ− t)‖x‖2 + ρ‖x‖4 − 2bTAx + ‖b‖2 − t

}
.

Making the change of variables x = Uz, where U is orthogonal matrix diagonalizing
ATA, i.e., UTATAU = diag(λ1, . . . , λn), the problem then reduces to

min
z∈Rn

n∑
j=1

{
λjz

2
j + (ρ− t)z2

j + ρz4
j − 2fjzj

}
,(54)

where f = UTATb. Note that since ρ canbe smaller than t, (54) might be a non-
convex problem. But, in fact, this does not really matter since this is a separable
problem in its variables. Therefore, the solution of (54) requires solving n indepen-
dent minimization problems:

min
zj∈R

{
(λj + ρ− t)z2

j + ρz4
j − 2fjzj

}
.(55)
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The scalar objective function is a coercive function (since the dominating factor
is z4

j ). Therefore, the minimum of (55) is attained at a point satisfying g′j(zj) = 0,

where gj(zj) = (λj + ρ − t)z2
j + ρz4

j − 2fjzj . Therefore, the minimum is attained at
one of the real roots of

4ρz3
j + 2(λj + ρ− t)zj − 2fj = 0.(56)

This is a cubic equation and therefore can be solved explicitly by Cardano’s formula.
More precisely, the roots of the cubic equation x3 + 3Qx− 2R = 0 are given by

x1 = (R +
√
Q3 + R2)1/3 + (R−

√
Q3 + R2)1/3

and

x2,3 = − 1

2

[
(R +
√

Q3 + R2)1/3 + (R−
√

Q3 + R2)1/3
]

±
√

3

2
i
[
(R +
√
Q3 + R2)1/3 − (R−

√
Q3 + R2)1/3

]
.

In any case, it has three real roots if Q3 + R2 ≤ 0 and only one real root (and two
complex roots) otherwise. The minimum of (55) is attained at one of the roots of
the cubic equation (56). Therefore, the initial step of the algorithm is to diagonalize
the matrix ATA, and then a bisection algorithm is invoked to find the unique root
of the strictly decreasing function φ. The calculation of a function value of φ requires
solving n cubic equations.

The algorithm described in this section is summarized below.

Algorithm TRTLSI.

Input: A ∈ Rm×n,b ∈ Rm, ρ > 0, and ε—a tolerance parameter.
Output: x∗—a solution (up to some tolerance) of the TRTLS problem (11) with
L = I.

1. Set tmin ← 0 and tmax ← ‖b‖2.
2. Compute the spectral decomposition of ATA: UTATAU = diag(λ1, λ2, . . . , λn).
3. Set f ← UTATb.
4. While |tmax − tmin| > ε repeat steps (a), (b), and (c):

(a) For every j = 1, 2, . . . , n compute the solutions zj1, . . . , z
j
pj

of the one
dimensional cubic equation (56). Here pj denotes the number of different
real solutions of the jth cubic equation.

(b) For every j = 1, 2, . . . , n set

βj ← min
k=1,...,pj

{(λj + ρ− t)(zjk)
2 + ρ(zjk)

4 − 2fjz
j
k}.

(c) If
∑n

j=1 βj − t < 0, then tmax = t; else tmin = t.
5. Set

mj ← argmin
k=1,...,pj

{(λj + ρ− t)(zjk)
2 + ρ(zjk)

4 − 2fjz
j
k}.

6. Let w be such that wj = zjmj
for every j = 1, . . . , n.

7. Set x∗ = Uw.
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The dominant computational effort when applying algorithm TRTLSI is the single
calculation of the spectral decomposition of ATA, which requires O(n3) operations.
At each iteration the computational cost of solving n cubic equations is O(n). For
problems with up to several hundreds of variables, algorithm TRTLSI is therefore ap-
plicable. However, for problems with thousands or even tens of thousands of variables,
algorithm TRTLSI cannot be implemented. Nevertheless, it is still possible to use the
approach of solving the one dimensional minimization problem (19) since large-scale
TRSs can be solved efficiently (see, e.g., [5, 7] and the references therein). A specific
implementation of the algorithm for a general regularization matrix is given in the
subsequent section.

6. Implementation and example. We have shown that solving the TRTLS
problem (11) (for a general regularization matrix L) reduces to a problem of solving
a one dimensional minimization problem over a closed interval. The specific details
of the algorithm (for a general regularization matrix) depend on the choice of the
one dimensional solver and the selection of a method for solving the TRS. In section
6.1 we describe a specific implementation—algorithm TRTLSG. We then apply the
proposed algorithm in section 6.2 to an image deblurring example.

6.1. A detailed algorithm for the TRTLS problem. We use the method
of Moré and Sorensen for solving the TRS (21). The method is based on applying
Newton’s method to the problem

1

φ(λ)
− 1

β
= 0,(57)

where φ(λ) ≡ fT (Q− λI)−1f . The main computational effort at each iteration is the
calculation of a Cholesky factorization of a matrix of the form Q−λI. For large-scale
problems the Cholesky factorization is not affordable, and other nondirect methods,
such as Krylov subspace methods, can be employed (see, e.g., [29] and the references in
[5, 7]). In our example n = 1024 so that Moré and Sorensen’s method is appropriate.

Algorithm TRTLSG.

Input: A ∈ Rm×n,b ∈ Rm,L ∈ Rk×n, ρ > 0, and ε1, ε2—tolerance parameters.
Output: x∗—a solution (up to some tolerance) of the TRTLS problem (11).

1. Set αmin ← 1 + ε1.
2. If k = n, set αmax to be the upper bound given in Lemma 4.2; else αmax is

equal to the upper bound given in Theorem 4.3.
3. While |αmax − αmin| > ε2 repeat steps (a), (b), and (c):

(a) Set α ← αmin+αmax

2 .
(b) Solve the following TRS:

min
‖x‖2=α−1

{
xTQαx − 2fTα x

}
,

where Qα and fα are given in (26), and obtain a solution x(α) and a
multiplier λ(α) that satisfy conditions (22), (23), and (24) (with Q =
Qα, fα,x

∗ = x(α), and λ∗ = λ(α)).

(c) If λ(α) − ‖Ax(α) − b‖2

α2︸ ︷︷ ︸
G′(α)

> 0, then αmax = α; else αmin = α.

4. Set x∗ = x(αmax).
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In our implementation the tolerance parameters take the values ε1 = 10−1 and
ε2 = 10−6.

The one dimensional solver in algorithm TRTLSG is a simple bisection algorithm
applied to the derivative of G(α). To guarantee global convergence of the algorithm,
the function G should be unimodal. For the case L = I the unimodality property
was proven in section 5.1. We observed through numerous random examples of the
TRTLS problem of different dimensions (4 ≤ n,m, k ≤ 1024) that the unimodality
property almost always holds even for L �= I. The “bad” example in Figure 2 (with
m = n = 4, k = 3) is an exceptional example. Moreover, for n > 10 we have not been
able to find a single example which is not unimodal. Thus, for all practical purposes,
algorithm TRTLSG finds the global optimum. If, for some reason, the function G
is not unimodal, then algorithm TRTLSG does not necessarily converge to a global
minimum and more sophisticated one dimensional global solvers should be employed.

6.2. Example. To illustrate the effectiveness of the TRTLS approach, we con-
sider an image deblurring example. The TRTLS problems arising in this example
were solved by algorithm TRTLSG implemented in MATLAB.

The choice of the regularization parameter ρ in our experiments was done by
using the L-curve method [16, 21]. This method was originally devised as a method
for choosing the regularization parameter for a regularized least squares problem.
The L-curve is a plot of the L-norm ‖Lxρ‖ versus the residual ‖Axρ − b‖, where
xρ is the solution of the regularization method with parameter ρ. The obtained plot
usually has an L-shape appearance, and the chosen parameter is the one which is
the closest to the left bottom corner. For the TLS problem, we follow the L-curve
approach described in [24]: we plot the L-norm ‖Lxρ‖2 versus the fractional residual
‖Axρ − b‖2/(1 + ‖xρ‖2) for a various number of regularization parameters and pick
the parameter closest to the L-shaped corner.

Let X be a 32×32 two dimensional image obtained from the sum of three harmonic
oscillations:

X(z1, z2) =

3∑
l=1

ai cos(wl,1z1 + wl,2z2 + φl),

(
wl,i =

2πkl,i
n

)
, 1 ≤ z1, z2 ≤ 32,

where kl,i ∈ Z2 (see Figure 3—true image). The specific values of the parameters are
given in Table 1.

Table 1

Image parameters.

l al wl,1 wl,2 φl

1 1.3936 0.1473 0.0982 5.8777
2 0.5579 0.0982 0.0982 5.7611
3 0.8529 0.0491 0.0982 2.5778

We consider the square system

Atruextrue = btrue,

where xtrue ∈ R1024 is obtained by stacking the columns of the 32 × 32 image X.
The vector xtrue was normalized so that ‖xtrue‖ = 1. The 1024 × 1024 matrix Atrue

represents an atmospheric turbulence blur originating from [15] and implemented in
the function blur(n,3) from the “Regularization Tools” [17]. The observed matrix
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Fig. 3. Results for different regularization solvers.

and vector were generated by adding white noise to the data: A = Atrue + σE and
b = btrue+σe, where each component of E ∈ R1024×1024 and e ∈ R1024 was generated
from a standard normal distribution.

In our experiment the standard deviation σ was chosen to be 0.05, which results in
a highly noisy image (see Figure 3—observation). The LS estimator was implemented
in the function lsqr from [17]; it can be readily observed that it produces a poor image.

The choice of regularization matrix has a major influence on the quality of the
obtained image. The solution of the TRTLS problem with standard regularization
produces an unsatisfactory image (see Figure 3—TRTLS with L = I).

To produce a better result, we use a regularization matrix that accounts for the
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smoothness property of this image. In particular, the matrix L was chosen to satisfy
the relation

LTL = RTR + I,(58)

where R is a discrete approximation of the Laplace operator, which is a two dimen-
sional convolution with the following mask:⎡⎣ −1 −1 −1

−1 8 −1
−1 −1 −1

⎤⎦ .
This operator is standard in image processing [20]. With this choice of L, the TRTLS
algorithm gave the much better image (see Figure 3—TRTLS with L �= I). We also
compared our results to the one obtained by the classic Tikhonov regularization of
the least squares, i.e., the solution of the minimization problem

min
x

{‖Ax − b‖2 + ρ‖Lx‖2}

with the same regularization matrix given in (58). Tikhonov regularization of the
least squares (see Figure 3—Tikhonov L �= I) provides a better image than the least
squares, but its quality is inferior to the one obtained by the corresponding TRTLSG
algorithm.
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CONSTRAINT REDUCTION FOR LINEAR PROGRAMS WITH
MANY INEQUALITY CONSTRAINTS∗
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Abstract. Consider solving a linear program in standard form where the constraint matrix A
is m × n, with n � m � 1. Such problems arise, for example, as the result of finely discretizing a
semi-infinite program. The cost per iteration of typical primal-dual interior-point methods on such
problems is O(m2n). We propose to reduce that cost by replacing the normal equation matrix,
AD2AT , where D is a diagonal matrix, with a “reduced” version (of same dimension), AQD2

QAT
Q,

where Q is an index set including the indices of M most nearly active (or most violated) dual
constraints at the current iterate, with M ≥ m a prescribed integer. This can result in a speedup
of close to n/|Q| at each iteration. Promising numerical results are reported for constraint-reduced
versions of a dual-feasible affine-scaling algorithm and of Mehrotra’s predictor-corrector method
[S. Mehrotra, SIAM J. Optim., 2 (1992), pp. 575–601]. In particular, while it could be expected that
neglecting a large portion of the constraints, especially at early iterations, may result in a significant
deterioration of the search direction, it appears that the total number of iterations typically remains
essentially constant as the size of the reduced constraint set is decreased down to some threshold.
In some cases this threshold is a small fraction of the total set. In the case of the affine-scaling
algorithm, global convergence and local quadratic convergence are proved.
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1. Introduction. Consider a primal-dual linear programming pair in standard
form, i.e.,

min cTx subject to Ax = b, x ≥ 0,(1.1)

max bT y subject to AT y + s = c, s ≥ 0,(1.2)

where A has dimensions m× n. The dual problem is equivalently written as

max bT y subject to AT y ≤ c.(1.3)
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Most algorithms that have been proposed for the numerical solution of such problems
belong to one of two classes: simplex methods and interior-point methods. For back-
ground on such methods, see, e.g., [NS96] and [Wri97]. In both classes of algorithms,
the main computational task at each iteration is the solution of a linear system of
equations. In the simplex case, the system has dimension m; in the interior-point
case it has dimensions 2n + m, but can readily be reduced (“normal equations”) to
one of size m at the cost of forming the matrix H := AS−1XAT . Here S and X are
diagonal but vary from iteration to iteration, and the cost of forming H, when A is
dense, is of the order of m2n operations at each iteration.

The focus of the present paper is the solution of (1.1)–(1.2) when n � m � 1,
i.e., when there are many more variables than equality constraints in the primal, many
more inequality constraints than variables in the dual. This includes fine discretiza-
tions of “semi-infinite” problems of the form

max bT y subject to a(ω)T y ≤ c(ω) ∀ω ∈ Ω,(1.4)

where, in the simplest cases, Ω is an interval of the real line. Network problems
may also have a disproportionately large number of inequality constraints: For many
network problems in dual form, there is one variable for each node of the network and
one constraint for each arc or link, so that a linear program associated with a network
with m nodes could have up to O(m2) constraints. Clearly, for such problems one
iteration of a standard interior-point method would be computationally much more
costly than one iteration of a simplex method. On the other hand, given the large
number of vertices in the polyhedral feasible set of (1.3), the number of iterations
needed to approach a solution with an interior-point method is likely to be significantly
smaller than that needed when a simplex method is used.

Intuitively, when n � m, most of the constraints in (1.3) are of little or no
relevance. Conceivably, if an interior-point search direction were computed based on a
much smaller problem, with only a small subset of the constraints, significant progress
could still be made toward a solution, provided this subset were astutely selected.
Motivated by such consideration, in the present paper we aim at devising interior-point
methods for the solution of (1.1)–(1.2) with n � m � 1, with drastically reduced
computational cost per iteration. In a sense, such an algorithm would combine the
best aspects of simplex methods and interior-point methods in the context of problems
for which n � m � 1: each iteration would be effected at low computational cost,
yet the iterates would follow an “interior” trajectory rather than being constrained
to proceed along edges.

The issue of computing search directions for linear programs of the form (1.3)
with n � m—or for semi-infinite linear programs (with a continuum of inequality
constraints)—based on a small subset of the constraints has been an active area of re-
search for many years. In most cases, the proposed schemes are based on logarithmic
barrier (“primal”) interior-point methods. In one approach, known as “column gen-
eration” (for the A matrix) or “build-up” (see, e.g., [Ye92, dHRT92, GLY94, Ye97]),
constraints are added to (but never deleted from) the constraint set iteratively as
they are deemed critical. In particular, the scheme studied in [Ye97] allows for more
than one constraint (column) to be added at each step, and it is proved that the
algorithm terminates in polynomial time with a bound whose dependence on the
constraints is limited to those that are eventually included in the constraint set.
In [Ye92, GLY94, Ye97], in the spirit of cutting-plane methods, the successive iterates
are infeasible for (1.3) and the algorithm stops as soon as a feasible point is achieved;
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while in the approach proposed in [dHRT92] all iterates are feasible for (1.3). An-
other approach is the “build-down” process (e.g., [Ye90]) by which columns of A are
discarded when it is determined that the corresponding constraints are guaranteed
not to be active at the solution. Both build-up [dHRT92] and build-down [Ye90] ap-
proaches were subsequently combined in [dHRT94], and a complexity analysis for the
semi-infinite case was carried out in [LRT99].

In the present paper, a constraint reduction scheme is proposed in the context
of primal-dual interior-point methods. Global and local quadratic convergence are
proved in the case of a primal-dual affine-scaling (PDAS) method. (An early version
of this analysis appeared in [Tit99].) Distinctive merits of the proposed scheme are
its simplicity and the fact that it can be readily incorporated into other primal-dual
interior-point methods. In the scheme’s simplest embodiment, the constraint set
is determined “from scratch” at the beginning of each iteration, rather than being
updated in a build-up/build-down fashion. Promising numerical results are reported
with constraint-reduced versions of the PDAS method and of Mehrotra’s predictor-
corrector (MPC) algorithm [Meh92]. Strikingly, while (consistent with conventional
wisdom) the unreduced version of MPC significantly outperformed that of PDAS in
our random experiments, the reduced version of PDAS performed essentially at the
same level, in terms of CPU time, as that of MPC.

The remainder of the paper is organized as follows. In section 2, the basics
of primal-dual interior-point methods are reviewed and the computational cost per
iteration is analyzed, with special attention paid to possible gains to be achieved in
certain steps by ignoring most constraints. Section 3 contains the heart of this paper’s
contribution. There, a dual-feasible PDAS algorithm is proposed that features a
constraint-reduction scheme. Global and local quadratic convergence of this algorithm
are proved, and numerical results are reported that suggest that, even with a simplistic
implementation, the constraint-reduction scheme may lead to significant speedup.
In section 4, promising numerical results are reported for a similarly reduced MPC
algorithm, both with a dual-feasible initial point and with an infeasible initial point.
Finally, section 5 is devoted to concluding remarks.

2. Preliminaries. Let

n := {1, 2, . . . , n};

for i ∈ n, let ai ∈ Rm denote the ith column of A; let F be the feasible set for (1.3),
i.e.,

F := {y : AT y ≤ c},

and let F o ⊆ Rm denote the dual strictly feasible set

F o := {y : AT y < c}.

Also, given y ∈ F , let I(y) denote the index set of active constraints at y, i.e.,

I(y) := {i ∈ n : aTi y = ci}.

Given any index set Q ⊆ n, let AQ denote the m × |Q| matrix obtained from A by
deleting all columns ai with i �∈ Q; similarly let xQ and sQ denote the vectors of
size |Q| obtained from x and s by deleting all entries xi and si with i �∈ Q. Further,
following standard practice, let X denote diag(xi, i ∈ n), and S denotes diag(si, i ∈ n).
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When subscripts, superscripts, or diacritical signs are attached to x and s, they are
inherited by xQ, sQ, X, and S. The rest of the notation is standard. In particular,
‖ · ‖ denotes the Euclidean norm.

Primal-dual interior-point algorithms use search directions based on the Newton
step for the solution of the equalities in the Karush–Kuhn–Tucker (KKT) conditions
for (1.2), or a perturbation thereof, while maintaining positivity of x and s. Given
μ > 0, the perturbed KKT conditions of interest are

AT y + s− c = 0,(2.1a)

Ax− b = 0,(2.1b)

Xs = μe,(2.1c)

x, s ≥ 0,(2.1d)

with μ = 0 yielding the true KKT conditions. Given a current guess (x, y, s), the
Newton step of interest is the solution to the linear system

⎡⎣0 AT I
A 0 0
S 0 X

⎤⎦⎡⎣Δx
Δy
Δs

⎤⎦ =

⎡⎣ −rc
−rb

−Xs + μe

⎤⎦ ,(2.2)

where

rb := Ax− b, rc := AT y + s− c

are the primal and dual residuals. Applying block Gaussian elimination to eliminate
Δs yields the system (usually referred to as “augmented system”)[

0 A
XAT −S

] [
Δy
Δx

]
=

[
−rb

−Xrc + Xs− μe

]
,(2.3a)

Δs = −ATΔy − rc.(2.3b)

With s > 0, further elimination of Δx results in the “normal equations”

AS−1XATΔy = −rb + A(−S−1Xrc + x− μS−1e),(2.4a)

Δs = −ATΔy − rc,(2.4b)

Δx = −x + μS−1e− S−1XΔs.(2.4c)

Note that (2.4a) is equivalently written as

AS−1XATΔy = b−AS−1(Xrc + μe).

For ease of reference, define the Jacobian and “augmented” Jacobian

J(A, x, s) :=

⎡⎣0 AT I
A 0 0
S 0 X

⎤⎦ , Ja(A, x, s) :=

[
0 A

XAT −S

]
.(2.5)

The following result is proven in the appendix.1

1Concerning the second claim of Lemma 1, only sufficiency is used in the convergence analysis, but
the fact that the listed conditions are in fact necessary and sufficient may be of independent interest.
We could not find this result (or even the sufficiency portion) in the literature, so are providing a
proof for completeness. We would be grateful to anyone who would point us to a reference for the
result.
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Lemma 1. Ja(A, x, s) is nonsingular if and only if J(A, x, s) is. Further, suppose
that x ≥ 0 and s ≥ 0.2 Then J(A, x, s) is nonsingular if and only if the following three
conditions hold: (i) |xi| + |si| > 0 for all i, (ii) {ai : si = 0} is linear independent,
and (iii) {ai : xi �= 0} spans Rm.

In the next two sections, two types of primal-dual interior-point methods are con-
sidered: first, a dual-feasible (but primal-infeasible) PDAS algorithm, then a version
of MPC. In the former, at each iteration the normal equations (2.4) are solved once,
with μ = 0, and rc = 0. In the latter, the normal equations are solved twice per
iteration with different right-hand sides.

We assume that A is dense. For large m and n � m, the bulk of the CPU cost
is consumed by the solution of the normal equations (2.4). Indeed, the number of
operations (per iteration) in other computations amounts to at most a small multiple
of n. As for the operations involved in solving the normal equations, the operation
count is roughly as follows:

− Forming H := AS−1XAT : m2n;
− Forming v := b−AS−1(Xrc + μe): 2mn;
− Solving HΔy = v (Cholesky factorization): m3/3;
− Computing Δs := −ATΔy − rc: 2mn;
− Computing Δx := −x + S−1(−XΔs + μe): 2n.

(Because both algorithms we consider update y and s by taking a common step t̂
along Δy and Δs, rc is updated at no cost: the new value is (1 − t̂) times the old
value.)

The above suggests that maximum CPU savings should be obtained by replacing,
in the definition of H, matrix A by its submatrix AQ, corresponding to a suitably
chosen index set Q. The cost of forming H would then be reduced to m2|Q| operations.
In this paper, we investigate the effect of making that modification only, and leaving
all else unchanged, so as to least “perturb” the original algorithms.

A central issue is then the choice of Q. Given y ∈ Rm and M ≥ m, let QM (y)
be the set of all subsets of n that contain the indexes of M leftmost components of
c−AT y. More precisely (some components of c−AT y may be equal, so “M leftmost”
may not be uniquely defined), let

QM (y) := {Q ⊆ n : ∃Q′ ⊆ Q s.t. |Q′| = M and ci − aTi y ≤ cj − aTj y ∀i ∈ Q′, j �∈ Q′}.
(2.6)

Consequently, the statement “Q ∈ QM (y),” to be used later, means that the index
set Q contains the indices of M components of the vector c − AT y that are smaller
or equal to all other components of c−AT y. The convergence analysis of section 3.2
guarantees that our reduced PDAS algorithm will perform appropriately (under cer-
tain assumptions involving M) as long as Q is in QM (y). Given that n � m, this
leaves a lot of leeway in choosing Q. We have two competing goals. On the one hand,
we want |Q| to be small enough that the iterations are significantly faster than when
Q = n. On the other hand, we want to include enough well chosen constraints that
the iteration count remains low. In the numerical experiments we report toward the
end of this paper, we restrict ourselves to a very simple scheme: we let Q be precisely
the set of indexes of M leftmost components of c−AT y. Note that the “M leftmost”
rule is inexpensive to apply: it takes at most O(n log n) operations—comparisons,

2The result still holds, and the same proof applies, under the milder but less intuitive assumption
“xisi ≥ 0 for all i.” The result as stated is sufficient for our present purpose.
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which are faster than additions or multiplications. (For small M , it takes even fewer
comparisons.)

The following assumption will be needed in order for the proposed algorithms to
be well defined.

Assumption 1. All m×M submatrices of A have full row rank.
Lemma 2. Suppose Assumption 1 holds. Let x > 0, s > 0, and Q ⊆ n with

|Q| ≥ M . Then AQS
−1
Q XQA

T
Q is positive definite.

Proof. Follows from positive definiteness of S−1
Q XQ and full row rank of AQ.

3. A reduced, dual-feasible PDAS algorithm.

3.1. Algorithm statement. The proposed reduced primal-dual interior-point
affine scaling (rPDAS) iteration is strongly inspired from the iteration described
in [TZ94], a dual-feasible primal-dual iteration based on the Newton system discussed
above, with μ = 0 and rc = 0. In particular, the normal equations for the algorithm
of [TZ94] are given by

AS−1XATΔy = b,(3.1a)

Δs = −ATΔy,(3.1b)

Δx = −x− S−1XΔs.(3.1c)

The iteration focuses on the dual variables. Note that the iteration requires the
availability of an initial y0 ∈ F o.

Iteration rPDAS.
Parameters. β ∈ (0, 1), xmax > 0, x > 0, integer M satisfying m ≤ M ≤ n.
Data. y ∈ F o, s := c−AT y, x > 0, with xi ≤ xmax, i = 1, . . . , n, Q ∈ QM (y).
Step 1. Compute search direction:

Solve AQS
−1
Q XQA

T
QΔy = b,(3.2a)

and compute Δs := −ATΔy,(3.2b)

Δx := −x− S−1XΔs.(3.2c)

Set x̃ := x + Δx and, for i ∈ n, set

(x̃−)i := min{x̃i, 0}.

Step 2. Updates:
(i) Compute the largest dual feasible step size

t :=

{
∞ if Δsi ≥ 0 ∀i ∈ n,
min{(−si/Δsi) : Δsi < 0, i ∈ n} otherwise.

(3.3)

Set

t̂ := min{max{βt, t−‖Δy‖}, 1}.(3.4)

Set y+ := y + t̂Δy, s+ := s + t̂Δs.
(ii) Set

x+
i := min{max{min{‖Δy‖2 + ‖x̃−‖2, x}, x̃i}, xmax} ∀i ∈ n.(3.5)

(iii) Pick Q+ ∈ QM (y).
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It should be noted that (ΔxQ,Δy,ΔsQ) constructed by Iteration rPDAS also
satisfies

ΔsQ = −AT
QΔy,(3.6a)

ΔxQ = −xQ − S−1
Q XQΔsQ,(3.6b)

i.e., it satisfies the full set of normal equations associated with the constraint-reduced
system. Equivalently, they satisfy the Newton system (with μ = 0 and rc = 0)⎡⎣ 0 AT

Q I

AQ 0 0
SQ 0 XQ

⎤⎦⎡⎣ΔxQ

Δy
ΔsQ

⎤⎦ =

⎡⎣ 0
b−AQxQ

−XQsQ

⎤⎦ .(3.7)

Remark 1. Primal update rule (3.5) is identical to the “dual” update rule used
in [AT06] in the context of indefinite quadratic programming. (The “primal” problem
in [AT06] can be viewed as a direct generalization of the dual (1.3).) As explained
in [AT06], imposing the lower bound ‖Δy‖2 + ‖x̃−‖2, which is a key to our global
convergence analysis, precludes updating of x by means of a step in direction Δx;
further, the specific form of this lower bound simplifies the global convergence analysis
while, together with the bound t−‖Δy‖ in (3.4), allowing for a quadratic convergence
rate. Also key to our global convergence analysis (though in our experience not
needed in practice) is the upper bound xmax imposed on all components of the primal
variable x; it should be stressed that global convergence of the sequence of vectors
x̃ to a solution is guaranteed regardless of the value of xmax > 0. Finally, replacing
in (3.5) min{‖Δy‖2 + ‖x̃−‖2, x} simply with ‖Δy‖2 + ‖x̃−‖2 would not affect the
theoretical convergence properties of the algorithm. However, allowing small values
of x+

i even when ‖Δy‖2 + ‖x̃−‖2 is large proved beneficial in practice, especially in
early iterations.

3.2. Convergence analysis. Before embarking on a convergence analysis, we
introduce two more definitions. First, let F ∗ ⊆ Rm be the set of solutions of (1.3),
i.e.,

F ∗ := {y∗ ∈ F : bT y∗ ≥ bT y ∀y ∈ F}.

Of course, F ∗ is the set of y for which (2.1) holds with μ = 0 for some x, s ∈ Rn.
Second, given y ∈ F , we will say that y is stationary for (1.3) whenever there exists
x ∈ Rn such that

Ax = b(3.8)

and

X(c−AT y) = 0,(3.9)

with no sign constraint imposed on x; equivalently, with s := c− AT y (≥ 0), (2.1a)–
(2.1c) hold with μ = 0 for some x ∈ Rn. We will refer to such x as a multiplier vector
associated with y. Clearly, every point in F ∗ is stationary, but not all stationary
points are in F ∗: in particular, all vertices of F are stationary.
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3.2.1. Global convergence. We now show that, under certain nondegeneracy
assumptions, the sequence of dual iterates generated by Iteration rPDAS converges
to F ∗. First, on the basis of Lemma 2, it is readily verified that, under Assumption 1,
Iteration rPDAS is well defined. That it can be repeated ad infinitum then follows
from the next proposition.

Proposition 3. Suppose Assumption 1 holds. Then Iteration rPDAS generates
quantities with the following properties: (i) Δy �= 0 if and only if b �= 0; (ii) t̂ > 0,
y+ ∈ F o, s+ = c−AT y+ > 0, and x+ > 0.

Proof. The first claim is a direct consequence of Lemma 2 and (3.2a); the other
claims are immediate.

Now, let y0 ∈ F o, let s0 = c − AT y0, let x0 > 0, Q0 ⊆ n with |Q0| ≥ M ,
and let {(xk, yk, sk)}, {Qk}, {Δyk}, {x̃k}, {t̄k}, and {t̂k} be generated by successive
applications of Iteration rPDAS starting at (x0, y0, s0). Our analysis focuses on the
dual sequence {yk}.

In view of Proposition 3, sk = c − AT yk > 0 for all k, so yk ∈ F o for all k. We
first note that, under no additional assumptions, the sequence of dual objective values
is monotonic nondecreasing, strictly so if b �= 0. This fact plays a central role in our
global convergence analysis.

Lemma 4. Suppose Assumption 1 holds. If b �= 0, then bTΔyk > 0 for all k. In
particular, {bT y} is nondecreasing.

Proof. The claim follows from (3.2a), Lemma 2, Proposition 3, and Step 2(i) of
Iteration rPDAS.

The remainder of the global convergence analysis is carried out under two addi-
tional assumptions. The first one implies that {yk} is bounded.

Assumption 2. The dual solution set F ∗ is nonempty and bounded.
Equivalently, the superlevel sets {y ∈ F : bT y ≥ α} are bounded for all α. Bounded-
ness of {yk} then follows from its feasibility and monotonicity of {bT yk} (Lemma 4
and Step 2(i) of Iteration rPDAS).

Lemma 5. Suppose Assumptions 1 and 2 hold; then {yk} is bounded.
Our final nondegeneracy assumption ensures that small values of ‖Δyk‖ indicate

that a stationary point of (1.3) is being approached (Lemma 6).
Assumption 3. For all y ∈ F , {ai : i ∈ I(y)} is a linear independent set of

vectors.
Lemma 6. Suppose Assumptions 1 and 3 hold. Let y∗ ∈ Rm and suppose that

K, an infinite index set, is such that {yk} converges to y∗ on K. If {Δyk} converges
to zero on K, then y∗ is stationary and {x̃k} converges to x∗ on K, where x∗ is the
unique multiplier vector associated with y∗.

Proof. Suppose {Δyk} → 0 as k → ∞, k ∈ K. Without loss of generality (by
going down to a further subsequence if necessary), assume that, for some Q∗, Qk = Q∗

for all k ∈ K. Equation (3.7) implies that

AQ∗ x̃k
Q∗ − b = 0 ∀k ∈ K,(3.10)

and (3.2b)–(3.2c) yield

xk
i a

T
i Δyk − ski x̃

k
i = 0 ∀i,∀k.(3.11)

Let s∗ = c − AT y∗, so sk → s∗ as k → ∞, k ∈ K. Since {xk} is bounded (xk
i ∈

[0, xmax] ∀i by construction), it follows from (3.11) that for all i �∈ I(y∗) (i.e., all i for
which s∗i > 0), {x̃k

i } → 0 as k → ∞, k ∈ K. Now, in view of Assumption 3 (linear
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independence of the active constraints), |I(y∗)| ≤ m and, since Qk ∈ QM (yk) for all
k, M ≥ m, I(y∗) ⊆ Q∗. Hence, (3.10) yields∑

i∈I(y∗)

x̃k
i ai − b → 0 as k → ∞, k ∈ K,

and Assumption 3 implies that, for all i ∈ I(y∗), {x̃k
i } converges on K, say, to x∗

i .
Taking limits in (3.10)–(3.11) then yields

Ax∗ − b = 0,

X∗s∗ = 0,

implying that y∗ is stationary, with multiplier vector x∗. Uniqueness of x∗ again
follows from Assumption 3.

Proving that {yk} converges to F ∗ will be achieved in two main steps. The
first objective is to show that {yk} converges to the set of stationary points of (1.3)
(Lemma 9). This will be proved via a contradiction argument: if, for some infinite
index set K, {yk} were to converge on K to a nonsolution point—for instance, to
a nonstationary point—then {Δyk} would have to go to zero on K (Lemma 8), in
contradiction with Lemma 6. The heart of the argument lies in the following lemma.

Lemma 7. Suppose Assumptions 1, 2, and 3 hold. Let K be an infinite index set
such that

inf{‖Δyk−1‖2 + ‖x̃k−1
− ‖2 : k ∈ K} > 0.

Then {Δyk} → 0 as k → ∞, k ∈ K.
Proof. In view of (3.5), for all i ∈ n, xk

i is bounded away from zero on K.
Proceeding by contradiction, assume that, for some infinite index set K ′ ⊆ K,
inf

k∈K′
||Δyk‖ > 0. Since {yk} (see Lemma 5) and {xk} (see (3.5)) are bounded, we

may assume, without loss of generality, that for some y∗ and x∗, with x∗
i > 0 for all

i, and some Q∗ with |Q∗| ≥ M ,

{yk} → y∗ as k → ∞, k ∈ K ′,

{xk} → x∗ as k → ∞, k ∈ K ′,

and

Qk = Q∗ ∀k ∈ K ′.

Let s∗ := c−AT y∗; since sk = c−AT yk for all k, it follows that {sk} → s∗, k ∈ K ′.
Since in view of Lemma 1, of Assumptions 1 and 3, and of the fact that x∗

i > 0 for
all i, the matrix J(AQ∗ , x∗

Q∗ , s∗Q∗) is nonsingular, it follows from (3.7) that, for some

v∗ and x̃∗
i , i ∈ Q∗, with v∗ �= 0 (since inf

k∈K′
‖Δyk‖ > 0),

{Δyk} → v∗ as k → ∞, k ∈ K ′,

{xk
i } → x̃∗

i as k → ∞, k ∈ K ′, i ∈ Q∗.



128 A. L. TITS, P.-A. ABSIL, AND W. P. WOESSNER

In view of linear independence Assumption 3, since {sk} → s∗ = c − AT y∗, and
since, by definition of QM , I(y∗) ⊆ Q∗, it follows that ski is bounded away from zero
when i /∈ Q∗, k ∈ K ′. It then follows from (3.2b) and (3.2c) that, for some x̃∗,

{x̃k} → x̃∗ as k → ∞, k ∈ K ′.(3.12)

Now, Step 2(i) of Iteration rPDAS and (3.2c) yield

t
k

= −
skik

Δskik
=

xk
ik

x̃k
ik

for some ik,

for all k ∈ K ′ such that t
k
< ∞. Since the components of {xk} are bounded away

from zero on K ′ (since x∗
i > 0 for all i), it follows from (3.12) that t

k
is bounded away

from zero on K ′, and from Step 2(i) in Iteration rPDAS that the same holds for t̂k.
Thus, for some t > 0, t̂k ≥ t for all k ∈ K ′. Also, (3.2b)–(3.2c) yield, for all k,

x̃k = (Sk)−1XkATΔyk(3.13)

which together with (3.2)(a) yields

bTΔyk = (Δyk)TAQkXk
Qk(Sk

Qk)−1AT
QkΔyk = (x̃k

Qk)TAT
QkΔyk ∀k.(3.14)

In view of Lemma 4, it follows that

bT yk+1 = bT (yk + t̂kΔyk) ≥ bT yk + tbTΔyk = bT yk + t(AQk x̃k
Qk)TΔyk ∀k ∈ K ′.

(3.15)

Now, since v∗ �= 0 and |Q∗| ≥ M , it follows from Assumption 1 that AT
Q∗v∗ �= 0.

Further, taking limits in (3.13) as k → ∞, k ∈ K ′, we get

X∗
Q∗AT

Q∗v∗ − S∗
Q∗ x̃∗

Q∗ = 0.

Positivity of x∗
i and nonnegativity of s∗i for all i then imply that

(
x̃∗
Q∗

)
i
and (AT

Q∗v∗)i
have the same sign whenever the latter is nonzero, in which case the former is nonzero
as well. It follows that (x̃∗

Q∗)TAT
Q∗v∗ > 0. Thus there exists δ > 0 such that

(AQ∗ x̃k
Q∗)T (Δyk) > δ for k large enough, k ∈ K ′. Since, in view of Lemma 4,

{bT yk} is monotonic nondecreasing, it follows from (3.15) that bT yk → ∞ as k → ∞,
a contradiction since yk is bounded.

Lemma 8. Suppose Assumptions 1, 2, and 3 hold. Suppose there exists an infinite
index set K such that {yk} is bounded away from F ∗ on K. Then {Δyk} goes to zero
on K.

Proof. Let us again proceed by contradiction, i.e., suppose {Δyk} does not con-
verge to zero as k → ∞, k ∈ K. In view of Lemma 7, there exists an infinite index
set K ′ ⊆ K such that

x̃k−1
− → 0 as k → ∞, k ∈ K ′(3.16)

and

Δyk−1 → 0 as k → ∞, k ∈ K ′.(3.17)

Further, since {yk} is bounded, and bounded away from F ∗, there is no loss of
generality in assuming that, for some y∗ �∈ F ∗, {yk} → y∗ as k → ∞, k ∈ K ′.
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Since ‖yk − yk−1‖ = ‖t̂k−1Δyk−1‖ ≤ ‖Δyk−1‖, it follows that {yk−1} → y∗ as
k → ∞, k ∈ K ′ which implies, in view of (3.17) and of Lemma 6, that y∗ is sta-
tionary and {x̃k−1} → x∗ as k → ∞, k ∈ K ′, where x∗ is the corresponding multiplier
vector. From (3.16) it follows that x∗ ≥ 0, thus that y∗ ∈ F ∗, a contradiction.

Lemma 9. Suppose Assumptions 1, 2, and 3 hold. Then {yk} converges to the
set of stationary points of (1.3).

Proof. Suppose the claim does not hold. Because {yk} is bounded, there exist an
infinite index set K and some nonstationary y∗ such that yk → y∗ as k → ∞, k ∈ K.
By Lemma 6, {Δyk} does not converge to zero on K. This contradicts Lemma 8.

We are now ready to embark on the final step in the global convergence analysis:
prove convergence of {yk} to the solution set for (1.3). The key to this result is
Lemma 11, which establishes that the multiplier vectors associated with all limit
points of {yk} are the same. Thus, let

L :=
{
y ∈ Rm : y is a limit point of {yk}

}
.

(In view of Lemma 9, every y ∈ L is a stationary point of (P ).) The set L is bounded
(since {yk} is bounded) and, as a limit set, it is closed, and thus compact. We first
prove an auxiliary lemma.

Lemma 10. Suppose Assumptions 1, 2, and 3 hold. If {yk} is bounded away from
F ∗, then L is connected.

Proof. Suppose the claim does not hold. Since L is compact, there must exist
compact sets E1, E2 ⊂ Rn, both nonempty, such that L = E1 ∪ E2 and E1 ∩ E2 = ∅.
Thus δ := min

y∈E1,y′∈E2

‖y−y′‖ > 0. A simple contradiction argument based on the fact

that {yk} is bounded shows that, for k large enough, miny∈L ‖yk−y‖ ≤ δ/3, i.e., either
miny∈E1

‖yk − y‖ ≤ δ/3 or miny∈E2 ‖yk − y‖ ≤ δ/3. Moreover, since both E1 and
E2 are nonempty (i.e., contain limit points of {yk}), each of these situations occurs
infinitely many times. Thus K := {k : miny∈E1 ‖yk − y‖ ≤ δ/3,miny∈E2 ‖yk+1 − y‖ ≤
δ/3} is an infinite index set and ‖Δyk‖ ≥ δ/3 > 0 for all k ∈ K. In view of Lemma 8,
this is a contradiction.

Lemma 11. Suppose Assumptions 1, 2, and 3 hold. Suppose {yk} is bounded
away from F ∗. Let y, y′ ∈ L. Let x and x′ be the associated multiplier vectors. Then
x = x′.

Proof. Given any y ∈ L, let x(y) be the multiplier vector associated with y, let
s(y) = c−AT y, and let J(y) be the index set of “binding” constraints at y, i.e.,

J(y) = {i ∈ n : xi(y) �= 0}.

We first show that, if y, y′ ∈ L are such that J(y) = J(y′), then x(y) = x(y′). Indeed,
from (2.1b), ∑

j∈J(y)

xj(y)aj = b =
∑

j∈J(y)

xj(y
′)aj ,

and the claim follows from linear independence Assumption 3. To conclude the proof,
we show that, for any y, y′ ∈ L, J(y) = J(y′). Let ỹ ∈ L be arbitrary and let
E1 := {y ∈ L : J(y) = J(ỹ)} and E2 := {y ∈ L : J(y) �= J(ỹ)}. We show that

both E1 and E2 are closed. Let {ξ�} ⊆ L be a convergent sequence, say to ξ̂, such
that J(ξ�) = J for all �, for some J . It follows from the first part of this proof that
x(ξ�) = x for all � for some x. Now, for all �, sj(ξ

�) = 0 for all j such that xj �= 0, so
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that sj(ξ̂) = 0 for all j such that xj �= 0. Thus J ⊆ I(ξ̂), and from linear independence

Assumption 3 it follows that x(ξ̂) = x and thus J(ξ̂) = J . Also, since L is closed,

ξ̂ ∈ L. Thus, if {ξ�} ⊆ E1, then ξ̂ ∈ E1 and, if {ξ�} ⊆ E2, then ξ̂ ∈ E2, proving that
both E1 and E2 are closed. Since E1 is nonempty (it contains ỹ), connectedness of L
(Lemma 10) implies that E2 is empty. Thus J(y) = J(ỹ) for all y ∈ L, and the proof
is complete.

With all the tools in hand, we present the final theorem of this section. The
essence of its proof is that if {yk} does not converge to F ∗, complementary slackness
will not be satisfied.

Theorem 12. Suppose Assumptions 1, 2, and 3 hold. Then {yk} converges to
F ∗.

Proof. Proceeding again by contradiction, suppose that some limit point of {yk}
is not in F ∗ and thus, since yk ∈ F for all k and since, in view of the monotonicity of
{bT yk} (Lemma 4), bT yk takes on the same value at all limit points of {yk}, that {yk}
is bounded away from F ∗. In view of Lemma 8, {Δyk} → 0. Let x∗ be the common
multiplier vector associated with all limit points of {yk} (see Lemma 11). A simple
contradiction argument shows that Lemma 6 then implies that {x̃k} → x∗. Since
{yk} is bounded away from F ∗, x∗ �≥ 0. Let i0 be such that x∗

i0
< 0. Then x̃k

i0
< 0

for all k large enough. The definition of x̃k in Step 1 of Iteration rPDAS, together
with (3.2c), then implies that Δski0 > 0 for k large enough, and it then follows from

the update rule for sk in Step 2(i) that, for k large enough,

0 < ski0 < sk+1
i0

< · · · .

On the other hand, since x∗
i0

< 0, complementary slackness (3.9) implies that (c −
AT ŷ)i0 = 0 for all limit points ŷ of {yk} and thus, since {yk} is bounded, {ski0} → 0.
This is a contradiction.

3.2.2. Local rate of convergence. We prove q-quadratic convergence of the
pair (xk, yk) (when xmax is large enough) under one additional assumption, which
supersedes Assumption 2. (A sequence {zk} is said to converge q-quadratically to z∗

if it converges to z∗ and there exists a constant θ such that ‖zk+1−z∗‖ ≤ θ‖zk−z∗‖2

for all k large enough.)
Assumption 4. The dual solution set F ∗ is a singleton.
Let y∗ denote the unique solution to (1.3), i.e., F ∗ = {y∗}, let s∗ := c − AT y∗,

and let x∗ be the corresponding multiplier vector (unique in view of Assumption 3).
Of course, under Assumptions 1, 3, and 4, it follows from Theorem 12 that {yk} → y∗

as k → ∞. Further, under Assumption 3, Assumption 4 implies that strict comple-
mentarity holds, i.e.,

x∗
i > 0 ∀i ∈ I(y∗).(3.18)

Moreover, Assumption 4 implies that

span({ai : i ∈ I(y∗)}) = Rm.(3.19)

Lemma 13. Suppose Assumptions 1, 3, and 4 hold and let Q ⊇ I(y∗) and Qc =
n \Q. Then Ja(AQ, x

∗
Q, s

∗
Q) and J(AQ, x

∗
Q, s

∗
Q) are nonsingular and AT

Qcy∗ < cQc .

Proof. The last claim is immediate. Since s∗ = c − AT y∗, it follows from linear
independence Assumption 3 that {ai : si = 0} is linear independent, hence its subset
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retaining only the columns whose indices are in Q is also linear independent. The
first two claims now follow directly from Lemma 1.

The following preliminary result is inspired from [PTH88, Proposition 4.2].
Lemma 14. Suppose Assumptions 1, 3, and 4 hold. Then (i) {Δyk} → 0; (ii)

{x̃k} → x∗; and (iii) if x∗
i ≤ xmax for all i ∈ n, then {xk} → x∗.

Proof. To prove Claim (i), proceed by contradiction. Specifically, suppose that,
for some infinite index set K, infk∈K‖Δyk‖ > 0. Without loss of generality, assume
that, for some Q∗, Qk = Q∗ for all k ∈ K. Since Q∗ ∈ QM (yk) for all k ∈ K, since
{yk} → y∗ as k → ∞, and since, in view of Assumption 3, |I(y∗)| ≤ m ≤ M , it
must hold that Q∗ ⊇ I(y∗). On the other hand, Lemma 7 implies that there exists
an infinite index set K ′ ⊆ K such that {Δyk−1}k∈K′ and {x̃k−1

− }k∈K′ go to zero. In
view of Lemma 6 it follows that {x̃k−1}k∈K′ → x∗. It then follows from (3.5) that, for
all i, {xk

i }k∈K′ → ξ∗i := min{x∗
i , xmax}. Since Q∗ ⊇ I(y∗), it follows from Lemma 1,

Assumption 3, (3.18), and (3.19) that J(AQ∗ , ξ∗Q∗ , s∗Q∗) is nonsingular. Now note that,
in view of (3.7), it holds that (see (2.5))

J(AQk , xk
Qk , s

k
Qk)

⎡⎣ x̃k
Qk

Δyk

ΔskQk

⎤⎦ =

⎡⎣0
b
0

⎤⎦ ∀k ∈ K ′.(3.20)

On the other hand, by feasibility of x∗ and complementarity slackness,

J(AQ∗ , ξ∗Q∗ , s∗Q∗)

⎡⎣x∗
Q∗

0
0

⎤⎦ =

⎡⎣0
b
0

⎤⎦ .(3.21)

From (3.20) and (3.21), nonsingularity of J(AQ∗ , ξ∗Q∗ , s∗Q∗) thus implies that {Δyk} →
0 as k → ∞, k ∈ K ′, a contradiction since K ′ ⊆ K. Claim (i) is thus proved. Claim (ii)
then directly follows from Lemma 6 and Claim (iii) follows from (3.5).

To prove q-quadratic convergence of {(yk, xk)}, the following property of Newton’s
method will be used. It is borrowed from [TZ94, Proposition 3.10].

Proposition 15. Let Φ : Rn → Rn be twice continuously differentiable and let
ẑ ∈ Rn be such that Φ(ẑ) = 0 and ∂Φ

∂z (ẑ) is nonsingular. Let ρ > 0 be such that ∂Φ
∂z (z)

is nonsingular whenever z ∈ B(ẑ, ρ) := {z : ‖z − ẑ‖ ≤ ρ}. Let dN : B(ẑ, ρ) → Rn

be the Newton increment dN(z) := −
(
∂Φ
∂z (z)

)−1
Φ(z). Then given any c1 > 0 there

exists c2 > 0 such that the following statement holds:
For all z ∈ B(ẑ, ρ) and z+ ∈ Rn such that, for each i ∈ {1, . . . , n}, either

(i) |z+
i − ẑi| ≤ c1‖dN(z)‖2

or

(ii) |z+
i − (zi + dN

i (z))| ≤ c1‖dN(z)‖2,

it holds that

‖z+ − ẑ‖ ≤ c2‖z − ẑ‖2.(3.22)

We will apply this proposition to the equality portion of the KKT conditions (2.1)
(with μ = 0). Eliminating s from this system of equations yields Φ(x, y) = 0, with Φ
given by

Φ(x, y) :=

[
Ax− b

X(c−AT y)

]
.(3.23)
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It is readily verified that (2.3a), with μ = 0, rc = 0, and s replaced by c−AT y, is the
Newton iteration for the solution of Φ(x, y) = 0. In particular, Ja(A, x, c − AT y) is
the Jacobian of Φ(x, y).

Of course, Iteration rPDAS does not make use of the Newton direction for Φ,
since it is based on a reduced set of constraints. Lemma 16 below relates the direction
computed in Step 1 of Iteration rPDAS to the Newton direction.

In what follows, we use z (possibly with subscripts, superscripts, or diacritical
signs) to denote (x, y) (with the same subscripts, superscripts, or diacritical signs on
both x and y). Also, let

Go := {z : x > 0, y ∈ F o}

and, given z ∈ Go and Q ∈ QM (y), let Δx(z,Q), Δy(z,Q), x+(z,Q), y+(z,Q),
x̃(z,Q), t(z,Q), and t̂(z,Q) denote the quantities defined by Iteration rPDAS, and
let Δz(z,Q) := (Δx(z,Q),Δy(z,Q)) and z+(z,Q) := (x+(z,Q), y+(z,Q)). Further,
let Qc := n \Q, let dN(z) := Δz(z,n) denote the Newton increment for Φ, and, given
ρ > 0, let B(z∗, ρ) := {z : ‖z − z∗‖ ≤ ρ}. The following lemma was inspired from an
idea of O’Leary [O’L04]. (Existence of ρ > 0 follows from Lemma 13.)

Lemma 16. Suppose Assumptions 1, 3, and 4 hold. Let ρ > 0 be such that, for all
(x, y) ∈ B(z∗, ρ) ∩ Go and for all Q ∈ QM (y), Ja(AQ, xQ, cQ − AT

Qy) is nonsingular

and AT
Qcy < cQc . Then there exists γ > 0 such that, for all z ∈ B(z∗, ρ) ∩ Go,

Q ∈ QM (y),

‖Δz(z,Q) − dN(z)‖ ≤ γ‖z − z∗‖ · ‖dN(z)‖.

Proof. Let z ∈ B(z∗, ρ) ∩Go, Q ∈ QM (y) and let s := c− AT y. Then, Δy(z,Q)
and ΔxQ(z,Q) satisfy (direct consequence of (3.7))[

0 AQ

XQA
T
Q −SQ

] [
Δy(z,Q)

ΔxQ(z,Q)

]
=

[
b−AQxQ

XQsQ

]
.(3.24)

On the other hand, Δy(z,n) and Δx(z,n) satisfy (see (2.3a), with μ = 0 and rc = 0)[
0 A

XAT −S

] [
Δy(z,n)
Δx(z,n)

]
=

[
b−Ax
Xs

]
,

and eliminating ΔxQc(z,n) in the latter yields[
AQcS−1

Qc XQcAT
Qc AQ

XQA
T
Q −SQ

] [
Δy(z,n)

ΔxQ(z,n)

]
=

[
b−AQxQ

XQsQ

]
.(3.25)

Equating the left-hand sides of (3.24) and (3.25) yields

[
Δy(z,Q)

ΔxQ(z,Q)

]
= Ja(AQ, xQ, cQ −AT

Qy)
−1

[
AQcS−1

Qc XQcAT
Qc AQ

XQA
T
Q −SQ

] [
Δy(z,n)

ΔxQ(z,n)

]
.

(3.26)

Expressing

[
Δy(z,n)

ΔxQ(z,n)

]
as Ja(AQ, xQ, cQ−AT

Qy)
−1Ja(AQ, xQ, cQ−AT

Qy)

[
Δy(z,n)

ΔxQ(z,n)

]
and subtracting from (3.26) then yields[

Δy(z,Q)
ΔxQ(z,Q)

]
−
[

Δy(z,n)
ΔxQ(z,n)

]
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= Ja(AQ, xQ, cQ −AT
Qy)

−1

[
AQcS−1

Qc XQcAT
Qc 0

0 0

] [
Δy(z,n)

ΔxQ(z,n)

]
.

Further, it follows from (3.1b) and (3.1c) and from (3.2b) and (3.2c) that

ΔxQc(z,Q) − ΔxQc(z,n) = S−1
Qc XQcAT

Qc(Δy(z,Q) − Δy(z,n)).

Since SQc and Ja(AQ, xQ, cQ −AT
Qy) are continuous and nonsingular over the closed

ball B(z∗, ρ), and since ‖XQc‖ = ‖XQc −X∗
Qc‖ ≤ ‖z − z∗‖ (since cQc − AT

Qcz∗ > 0,
i.e., I(y∗) ∩ Qc is empty), in view of the fact that {Qc : Q ∈ QM (y)} is finite (since
QM (y) is) the claim follows.

We are now ready to prove q-quadratic convergence.
Theorem 17. Suppose Assumptions 1, 3, and 4 hold. If x∗

i < xmax for all i ∈ n,
then {(xk, yk)} converges to (x∗, y∗) q-quadratically.

Proof. We aim at establishing that the conditions in Proposition 15 hold for Φ
given by (3.23) and with ẑ := z∗(= (x∗, y∗)), z+ := z+(z,Q), Q ∈ QM (y), and ρ > 0
small enough. First, note that

∂Φ

∂z
(z) = Ja(A, x, c−AT y),

so, in view of (3.18), (3.19), and linear independence Assumption 3, it follows from
Lemma 1 that ∂Φ

∂z (z∗) is nonsingular. Next, let i ∈ I(y∗) and consider Step 2(ii) in
Iteration rPDAS. Let Q ⊇ I(y∗). From Lemma 13, we know that J(AQ, x

∗
Q, s

∗
Q) is

nonsingular. Since, by feasibility of x∗ and complementarity slackness,

J(AQ, x
∗
Q, s

∗
Q)

⎡⎣x∗
Q

0
0

⎤⎦ =

⎡⎣0
b
0

⎤⎦ ,

it follows from (3.7), (3.2), and the fact that sj := cj − aTj y is bounded away from
zero in a neighborhood of z∗ for j /∈ Q (Lemma 13), that

Δy(z,Q) → 0 as z → z∗(3.27)

and

x̃(z,Q) → x∗ as z → z∗.(3.28)

Note that, for z ∈ Go close enough to z∗, Q ⊇ I(y∗) for all Q ∈ QM (y). Since x∗
i > 0

(from (3.18)) and x∗ ≥ 0, it follows that for z ∈ Go close enough to z∗,

‖Δy(z,Q)‖2 + ‖x̃−(z,Q)‖2 < x̃i(z,Q) ∀Q ∈ QM (y),

which, in view of the update rule for x in Step 2(ii) of Iteration rPDAS, since x∗
i <

xmax, implies that, for z ∈ Go close enough to z∗,

x+
i (z,Q) = x̃i(z,Q) = xi + Δxi(z,Q) ∀Q ∈ QM (y),

yielding, for z ∈ Go close enough to z∗,

x+
i (z,Q) − (xi + Δxi(z,n)) = Δxi(z,Q) − Δxi(z,n) ∀Q ∈ QM (y).(3.29)
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In view of Lemma 16, it follows that, for z close enough to z∗, z ∈ Go,

|x+
i (z,Q) − (xi + Δxi(z,n))| ≤ γ‖z − z∗‖ · ‖dN(z)‖ ∀Q ∈ QM (y).(3.30)

Next, let i �∈ I(y∗), so that x∗
i = 0, and again consider Step 2(ii) in Iteration rPDAS.

Then for every z ∈ Go close enough to z∗, and every Q ∈ QM (y), either again

x+
i (z,Q) = xi + Δxi(z,Q),

yielding again (3.29) and (3.30), or

x+
i (z,Q) = ‖Δy(z,Q)‖2 + ‖x̃−(z,Q)‖2,≤ ‖Δz(z,Q)‖2

yielding, since x∗
i = 0,

‖x+
i (z,Q) − x∗

i ‖ ≤ ‖Δz(z,Q) − dN(z) + dN(z)‖2 ≤ (γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2
(3.31)

for every z ∈ Go close enough to z∗, Q ∈ QM (y). Finally, consider the “y” components
of z. From (3.2b)–(3.2c) we know that, for z ∈ Go close enough to z∗, for all Q ∈
QM (y), and for all i such that Δsi(z,Q) := −aTi Δy(z,Q) �= 0,

si
aTi Δy(z,Q)

= − si
Δsi(z,Q)

=
xi

x̃i(z,Q)
.

In view of Lemma 14(i), we conclude that, for i �∈ I(y∗),

|xi|
|x̃i(z,Q)| → ∞ as z → z∗, Q ∈ QM (y).

Step 2(i) in Iteration rPDAS then yields

t(z,Q) = min

{
xi

x̃i(z,Q)
: i ∈ I(y∗)

}
for z ∈ Go close enough to z∗, Q ∈ QM (y). Step 2(i) in Iteration rPDAS further
yields, for z ∈ Go close enough to z∗ (using (3.27)), Q ∈ QM (y),

t̂(z,Q) = min

{
1,

xi(z,Q)

x̃i(z,Q)(z,Q)
− ‖Δy(z,Q)‖

}
,

for some i(z,Q) ∈ I(y∗). (Nonemptiness of I(y∗) is insured by Assumption 4.) Thus,
for z ∈ Go close enough to z∗, Q ∈ QM (y), and some i(z,Q) ∈ I(y∗),

‖y+(z,Q) − (y + Δy(z,Q))‖ = |t̂(z,Q) − 1|‖Δy(z,Q)‖

≤
∣∣∣∣ ‖Δy(z,Q)‖ +

x̃i(z,Q)(z,Q) − xi(z,Q)

x̃i(z,Q)(z,Q)

∣∣∣∣ ‖Δy(z,Q)‖.

Since x∗
i > 0 for all i ∈ I(y∗), it follows that for some c0 > 0 and z ∈ Go close enough

to z∗,

‖y+(z,Q) − (y + Δy(z,Q))‖ ≤ (‖Δy(z,Q)‖ + c0‖Δx(z,Q)‖)‖Δy(z,Q)‖
≤ (1 + c0)‖Δz(z,Q)‖2

≤ (1 + c0)(‖Δz(z,Q) − dN(z)‖ + ‖dN(z)‖)2

≤ (1 + c0)(γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2
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for all Q ∈ QM (y). It follows from Lemma 16 that

‖y+(z,Q) − (y + Δy(z,n))‖ ≤ (1 + c0)(γ‖z − z∗‖ · ‖dN(z)‖ + ‖dN(z)‖)2

+γ‖z − z∗‖ · ‖dN(z)‖

≤ c1 max{‖dN(z)‖2, ‖z − z∗‖2}(3.32)

for some c1 > 0 independent of z for all z ∈ Go close enough to z∗, Q ∈ QM (y).
Equations (3.30), (3.31), and (3.32) are the key to the completion of the proof.

For z ∈ Go (close enough to z∗) such that ‖z − z∗‖ ≤ ‖dN(z)‖, in view of
Proposition 15, (3.30), (3.31), and (3.32) imply that, for some c2 > 0 independent of
z, and for all Q ∈ QM (y),

‖z+(z,Q) − z∗‖ ≤ c2‖z − z∗‖2.

On the other hand, for z ∈ Go close enough to z∗ such that ‖dN(z)‖ < ‖z−z∗‖, (3.30)
yields, for some c3 > 0 independent of z and for all Q ∈ QM (y),

|x+
i (z,Q) − x∗

i | ≤ γ‖z − z∗‖ · ‖dN(z)‖ + ‖xi + Δxi(z,n) − x∗
i ‖ ≤ c3‖z − z∗‖2

for all i ∈ I(y∗), where we have invoked quadratic convergence of the Newton iteration;
(3.31) yields, for some c4 > 0 independent of z,

|x+
i (z,Q) − x∗

i | ≤ c4‖z − z∗‖2

for all i �∈ I(y∗); and (3.32) yields, for some c5 > 0 independent of z,

‖y+(z,Q) − y∗‖ ≤ c1‖z − z∗‖2 + ‖yi + Δy(z,n) − y∗‖ ≤ c5‖z − z∗‖2.

In particular, they together imply again that, for all z ∈ Go close enough to z∗,
Q ∈ QM (y),

‖z+(z,Q) − z∗‖ ≤ c2‖z − z∗‖2

for some c2 > 0 independent of z. Since, in view of Lemma 14, zk converges to z∗, it
follows that zk converges to z∗ q-quadratically.

3.3. Numerical results. Algorithm rPDAS was implemented in Matlab and
run on an Intel(R) Pentium(R) III CPU 733MHz machine with 256 KB cache, 512
MB RAM, Linux kernel 2.6.11, and Matlab 7 (R14).3

Parameters were chosen as β := 0.99, xmax := 1015, x := 10−4. The code was
supplied with strictly feasible initial dual points (i.e., y0 ∈ F o). The initial primal
vector, x0, was chosen using the heuristic in [Meh92, p. 589] modified to accommodate

dual feasibility. Specifically, x0 := x̂0 + δ̂x, where x̂0 is the minimum norm solution
of Ax = b, δ̂x := δx + (x̂0 + δxe)

T s0/(2
∑n

i=1 s
0
i ), δx := max{−1.5 · min(x), 0}, where

s0 := x − AT y0 and e is the vector of all ones. The “M most active” heuristic (Q
consists of the indexes of the M leftmost components of c− AT y) was used to select
the index set Q. The code uses Matlab’s “Cholesky-Infinity” factorization (cholinc
function) to solve the normal equations (3.2a). A safeguard si := max{10−14, si} was

3The code is available from the authors.
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applied before Step 1; this prevents the matrix AQS
−1
Q XQA

T
Q in (3.2a) from being

excessively ill-conditioned and avoids inaccuracies in the ratios si/Δsi involved in (3.3)
that could lead to unnecessarily small steps. We used a stopping criterion, adapted
from [Meh92, p. 592], based on the error in the primal-dual equalities (2.1b)–(2.1a)
and the duality gap. Specifically, convergence was declared when

‖b−Ax‖
1 + ‖x‖ +

‖c−AT y − s‖
1 + ‖s‖ +

|cTx− bT y|
1 + |bT y| < tol,

where tol was set to 10−8. Notice that, in the case of iteration rPDAS, ‖c−AT y− s‖
vanishes throughout, up to numerical errors.

Execution times strongly depend on how the computation of HQ := AQD
2
QA

T
Q

(where D2
Q := S−1

Q XQ is diagonal), involved in (3.2a), is implemented in Matlab.

Storing the |Q| × |Q| matrix D2
Q as a full matrix is inefficient, or even impossible

(even when |Q| is much smaller than n, it may still be large). We are left with two
options: Either (i) compute an auxiliary matrix D2

QA
T
Q using a “for” loop over the |Q|

rows of AT
Q, then compute AQ ∗D2

QA
T
Q, or (ii) create a sparse matrix D2

Q using the

spdiags function, then compute AQ ∗D2
Q ∗AT

Q. If the matrix A is in sparse form with
sufficiently few nonzero elements, then the second option is (much) more efficient. If
the matrix A is dense, then both options have comparable speed. Consequently, we
used the second option in all experiments.

Numerical results obtained with algorithm rPDAS on several types of problems
(to be discussed below) are presented in Figures 1 through 4. The points on the
plots, as well as those on the plots of Figures 5 through 12 discussed in section 4,
correspond to different runs on the same problem. The runs differ only by the number
of constraints M that are retained in Q; this information is indicated on the horizontal
axis in relative value. The rightmost point thus corresponds to the experiment without
constraint reduction, while the points on the extreme left correspond to the most
drastic constraint reduction. The plots are built as follows: the execution script picks
progressively smaller values of M from a predefined list of values until it reaches the
end of the list, or early, abnormal termination occurs. The latter was always caused
by either (i) the number of iterations reaching a predefined limit of 100 (this is an ad
hoc choice to stop the execution script when it reaches values of M where the number
of iterations become high), or (ii) Matlab generating NaN values, which happens
when the normal matrix becomes numerically singular. Abnormal termination did
occur in the numerical experiment presented in Figure 3 due to (ii) and in a few other
instances due to (i).

In the lower plot of each figure, the vertical axis indicates CPU times to solution
(total time, as well as time expended in the computation of HQ and time used for the
solution of the normal equation) as returned by the Matlab function cputime. We
emphasize that these results are valid only for the specific Matlab implementation
described above. Results could vary widely, depending on the programming language,
the possible use of the BLAS, and the hardware. In contrast, the number of iterations
shown on the upper plot has more meaning.

The first test problem is of the finely discretized semi-infinite type: the dual
feasible set F is a polytope whose faces are tangent to the unit sphere. Contact
points on the sphere were selected from the uniform distribution by first generating
vectors of numbers distributed according to N (0, 1)—normal distribution with mean
zero and standard deviation one—and then normalizing these vectors. These points
form the columns of A, and c was selected as the vector of all ones. Each entry of the
objective vector, b, was chosen from N (0, 1), and y0 was selected as the zero vector.
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Fig. 1. rPDAS on the problem with constraints tangent to the unit sphere.
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Fig. 2. rPDAS on the “fully random” problem.

This yields a problem that lends itself nicely to constraint reduction, since n � m
(we chose m = 50 and n = 20000), A is dense, and Assumption 1 on the full rank
of submatrices of A holds for M as low as m. Numerical results are presented in
Figure 1.

Arguably the most remarkable result in this paper is that observed on the upper
plot of Figure 1 (and again in other figures discussed below): the number of iterations
shows little variation over a significant range of values of |Q|. We tested the algorithm
on several problems randomly generated, as explained above, and always observed that
only very low values of |Q| produce a significant increase in the number of iterations.

The second test problem is “fully random.” The entries of A and b were generated
from N (0, 1). To ensure a dual-feasible initial point, y0 and s0 were chosen from a
uniform distribution on (0, 1) and the vector c was generated by taking c := AT y0+s0.
We again chose m = 50 and n = 20000. Results are displayed in Figure 2.
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Fig. 3. rPDAS on SCSD1.

Note that these results are qualitatively similar to those of Figure 1. Here again,
the number of iterations is stable over a wide range of values of |Q|. Experiments
conducted on other test problems drawn from the same distribution produced similar
results.

Next, we searched the Netlib LP library for problems where n is significantly
greater than m and Assumption 1 is satisfied for reasonably small M . This left us
with the SCSD problems. These problems, however, are very sparse. The computation
of the normal matrix AD2AT involves only sparse matrix multiplications that can be
performed efficiently and account only for a small portion of the total execution time.
Therefore, the constraint reduction strategy, which focuses on reducing the cost of
forming the normal matrix, has little effect on the overall execution time. (If the
computation of HQ is done with a for loop as explained above, then an important
speedup is observed.) We tested algorithm rPDAS on SCSD1 (m = 77, n = 760) and
SCSD6 (m = 147, n = 1350). For both problems, we set y0 to 0 ∈ F o. Results are
displayed in Figures 3 and 4. Here again, the number of iterations is quite stable over
a wide range of values of |Q|.

4. A reduced MPC algorithm.

4.1. Algorithm statement. We consider a constraint-reduced version of Mehro-
tra’s predictor-corrector (MPC) method [Meh92]—or rather of the simplified version
of that algorithm found in [Wri97].

Iteration rMPC.

Parameters. β ∈ (0, 1), integer M satisfying m ≤ M ≤ n.

Data. y ∈ Rm, s > 0, x > 0, Q ∈ QM (y), μ := xT s/n.

Step 1. Compute affine scaling direction:

Solve

AQS
−1
Q XQA

T
QΔy = −rb + A(−S−1Xrc + x)



CONSTRAINT REDUCTION FOR LPs WITH MANY CONSTRAINTS 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

N
um

be
r 

of
 it

er
at

io
ns

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

|Q|/n

C
P

U
 ti

m
e 

(s
ec

.)

total

form HQ

solves

Fig. 4. rPDAS on SCSD6.

and compute

Δs := −ATΔy − rc,

Δx := −x− S−1XΔs,

and let

t
pri
aff

:= arg max{t ∈ [0, 1] | x + tΔx ≥ 0},

tdual
aff := arg max{t ∈ [0, 1] | s + tΔs ≥ 0}.

Step 2. Compute centering parameter:

μaff := (x + t
pri
aff

Δx)T (s + tdual
aff Δs)/n,

σ := (μaff/μ)3.

Step 3. Compute centering/corrector direction:

Solve

AQS
−1
Q XQA

T
QΔycc = −AS−1(σμe− ΔXΔs)

and compute

Δscc := −ATΔycc,

Δxcc := S−1(σμe− ΔXΔs) − S−1XΔscc.

Step 4. Compute MPC step:

Δxmpc := Δx + Δxcc,

Δympc := Δy + Δycc,

Δsmpc := Δs + Δscc,
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tpri
max := arg max{t ∈ [0, 1] | x + tΔxmpc ≥ 0},

tdual
max := arg max{t ∈ [0, 1] | s + tΔsmpc ≥ 0},

tpri := min{βtpri
max, 1},

tdual := min{βtdual
max , 1}.

Step 5. Updates:

x+ := x + tpriΔxmpc,

y+ := y + tdualΔympc,

s+ := s + tdualΔsmpc.

Pick Q+ ∈ QM (y+).
As compared with the case of Iteration rPDAS, the speed-up per iteration achieved

by rMPC over MPC is not as striking. This is due to the presence of two additional
matrix-vector products in the iteration (see Step 3) for a total of three matrix-vector
products per iteration. Further, these products involve the full A matrix and require
O(mn) flops, which can be substantial.

4.2. Numerical results: Dual-feasible initial point. We report on numer-
ical results obtained with a Matlab implementation of the reduced MPC (rMPC)
algorithm.4 The hardware, software, test problems, initial points, and presentation of
the results are the same as in section 3.3. Figures 5, 6, 7, and 8 are the counterparts
of Figures 1, 2, 3, and 4, respectively.
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Fig. 5. rMPC on the problem with constraints tangent to the unit sphere, with dual-feasible
initial point.

4.3. Numerical results: Infeasible initial point. We now report on numeri-
cal experiments that differ from the ones in section 4.2 only by the choice of the initial

4The code is available from the authors.
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Fig. 6. rMPC on the “fully random” problem, with dual-feasible initial point.
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Fig. 7. rMPC on SCSD1, with dual-feasible initial point.
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Fig. 8. rMPC on SCSD6, with dual-feasible initial point.
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Fig. 9. rMPC on the problem with constraints tangent to the unit sphere, with infeasible initial
point.
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Fig. 10. rMPC on the “fully random” problem, with infeasible initial point.

variables. Here we select the initial variables as in [Meh92, p. 589], without modifica-
tion. Consequently, there is no guarantee that the initial point will be dual-feasible;
and indeed, in most experiments, the initial point was dual-infeasible (in addition to
being primal-infeasible, as in all the previous experiments). Figures 9, 10, 11, and 12
are the counterparts of Figures 5, 6, 7, 8, respectively.

5. Discussion. In the context of primal-dual interior-point methods for linear
programming, a scheme was proposed, aimed at significantly decreasing the compu-
tational effort at each iteration when solving problems which, when expressed in dual
standard form, have many more constraints than (dual) variables. The core idea is
to compute the dual search direction based only on a small subset of the constraints,
carefully selected in an attempt to preserve the quality of the search direction. Global
and local quadratic convergence was proved for a class of schemes in the case of a sim-
ple dual-feasible affine scaling algorithm. Promising numerical results were reported
both on this “reduced” affine scaling algorithm and a similarly “reduced” version of
the MPC algorithm, using a rather simplistic heuristic: for a prescribed M > m,
keep only the M most nearly active (or most violated) constraints. In particular,
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Fig. 11. rMPC on SCSD1, with infeasible initial point.
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Fig. 12. rMPC on SCSD6, with infeasible initial point.

rather unexpectedly, it was observed that, on a number of problems, the number of
iterations to solutions did not increase when the size of the reduced constraint set was
decreased, down to a small fraction of the total number of constraints! Accordingly,
all savings in computational effort per iteration directly translate to savings in total
computational effort for the solution of the problem. Another interesting finding is
that, in our Matlab implementation, the reduced affine scaling algorihtm rPDAS
works as well as the reduced MPC algorithm on random problems in terms of CPU
time; however, CPU times may vary widely over implementations.

The (unreduced) MPC algorithm has remarkable invariance properties. Let {(xk,
yk, sk)} be a sequence generated by MPC on the problem defined by (A, b, c). Let P
be an invertible m×m matrix, let R be a diagonal positive-definite n× n matrix, let
v belong to Rm, and define A := PAR, b := Pb, c := Rc + RATPT v, x0 := R−1x0,
y0 := P−T y0 + v, and s0 := Rs0. Then the sequence {(xk,yk, zk)} generated by
MPC on the problem defined by (A,b, c) satisfies xk = R−1xk, yk = P−T yk + v,
and sk = Rsk.5 The reduced algorithm rMPC is still invariant under the action of

5Note, however, that the procedure recommended in [Meh92] for generating x0 and s0, while



144 A. L. TITS, P.-A. ABSIL, AND W. P. WOESSNER

P and v, but it is no longer invariant under the action of R, because the relation
s = Rs affects the choice of the set Q. A simple way to recover invariance under R is
to redefine QM based on (ci − aTi y)/s

0
i instead of ci − aTi y.

The rPDAS and PDAS algorithms (rPDAS with Q = n) have weaker invari-
ance properties than MPC. While they are invariant under the action of v and of
orthogonal P (that is, Euclidean transformations of the dual space), they are nei-
ther invariant under the action of nonorthogonal P , because of the presence of ‖Δy‖
in (3.4) and (3.5), nor under the action of R, because of (3.5) containing the quantity
‖x̃−‖ and fixed bounds on x (and also, for rPDAS, because of the way QM is defined).6

Algorithms rPDAS and PDAS can be modified to achieve other invariance properties.
If ‖Δy‖ is replaced7 by ‖(ΔY 0)−1Δy‖, where ΔY 0 = diag (Δy0

i , i = 1, . . . ,m), then
the algorithms are invariant under v and nonsingular diagonal P . If instead ‖Δy‖ is
replaced by ‖Δy‖/‖Δy0‖, then the algorithms are invariant under Euclidean trans-
formation and uniform scaling of the dual (i.e., P is a nonzero scalar multiple of an
orthogonal matrix). If (3.5) is replaced by

x+
i := min{max{min{(‖Δy‖2 + ‖(X0)−1x̃−‖2)x0

i , xx
0
i }, x̃i}, xmaxx

0
i } ∀i ∈ n,

then PDAS is invariant under R; if, moreover, QM is redefined based on (ci−aTi y)/s
0
i

instead of ci − aTi y, then rPDAS becomes invariant under R, too.
We have focused on a constraint selection rule that requires that, at each iteration,

the M “most nearly active” (or “most violated”) constraints all be included in the
reduced set. It should be clear, however, that nearness to activity can be measured
differently for each constraint, and indeed differently at each iteration. In fact, only
two conditions must be satisfied in order for our convergence analysis to go through:
(i) AQ must have full row rank at each iteration, which is required in order for the
algorithm to be well defined, and (ii) constraints must be included in the reduced set
whenever y is “close enough” to the corresponding constraint boundary.

Appendix. Proof of Lemma 1.
The first claim is a direct consequence of the equivalence between (2.2) and (2.3).

Let us now prove the sufficiency portion of the second claim. Thus suppose conditions
(i) through (iii) hold, and let (ξ, η, σ)T be in the nullspace of J(A, x, s). We show that
it must be identically zero. We have

AT η + σ = 0,(A.1)

Aξ = 0,(A.2)

Sξ + Xσ = 0.(A.3)

Equation (A.1) yields

ξTAT η + ξTσ = 0,(A.4)

which, in view of (A.2), yields

ξTσ = 0.(A.5)

invariant under the action of P and v, is not invariant under that of R.
6Note that simpler versions of PDAS that do not aim at superlinear convergence enjoy v, P , and

R invariance as defined above (see, e.g., [MAR90]).
7Assuming that no component of Δy0 vanishes.



CONSTRAINT REDUCTION FOR LPs WITH MANY CONSTRAINTS 145

Also, (A.3) yields

σi = − si
xi

ξi

whenever xi �= 0, and ξi = 0 otherwise (since |xi| + |si| > 0), so that (A.5) yields

−
∑

i:xi �=0

si
xi

ξ2
i = 0.

Since si/xi ≥ 0 whenever xi �= 0, it follows that siξi = 0 whenever xi �= 0. It then
follows from (A.3) that xiσi = 0 whenever xi �= 0, yielding

Xσ = 0(A.6)

and, from (A.3),

Sξ = 0.(A.7)

Since {ai : si = 0} is linear independent, it follows from (A.2) and (A.7) that ξ = 0.
Equation (A.1) and (A.6) now yield XAT η = 0, so that aTi η = 0 whenever xi �= 0.
Since {ai : xi �= 0} spans Rm, we conclude that η = 0. Finally, it now follows
from (A.1) that σ = 0, concluding the proof of the sufficiency portion of the second
claim.

As for the necessity portion of the second claim, first, inspection of the last n
rows, then of the first n columns of J(A, x, s), shows that the first two conditions are
needed in order for J(A, x, s) to be nonsingular. As for the third condition, suppose
it does not hold, i.e., suppose that {ai : xi �= 0} does not span Rm. Then there
exists η �= 0 such that aTi η = 0 for all i such that xi �= 0. Further, let ξ := 0 and
let σ := −AT η, so that σi = 0 for all i such that xi �= 0. It is readily checked that
(ξ, η, σ) is in the nullspace of J(A, x, s). Since η �= 0, J(A, x, s) must be singular.
This completes the proof of the necessity portion of the second claim.
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ON THE STABILITY OF CONVEX-VALUED MAPPINGS AND
THEIR RELATIVE BOUNDARY AND EXTREME POINTS SET

MAPPINGS∗

MIGUEL A. GOBERNA† , MAXIM I. TODOROV‡ , AND VIRGINIA N. VERA DE SERIO§

Abstract. This paper deals with the transmission of the main stability properties (lower and
upper semicontinuity in Berge sense, and closedness) from a given closed–convex-valued mapping to
its corresponding relative boundary and extreme point set mappings, and vice versa. The domain
of the mappings considered in this paper are locally metrizable spaces and the images range on
Euclidean spaces. Important examples of the class of mappings considered in this paper are the
feasible set mapping and the optimal set mapping of convex optimization problems, for which the
space of parameters is the result of perturbing a given nominal problem.

Key words. stability theory, set-valued mappings, convex hull mappings, relative boundary
mappings, extreme points set mappings
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1. Introduction. The main objective of the paper is to analyze the relation-
ships between important pairs of mappings, one of them being the convex hull of the
other, which frequently arise in convex optimization (convex systems), where, as a
consequence of measurement or roundoff errors, the nominal problem y0 (system y0)
is usually replaced in practice by perturbed problems (systems, respectively) having
the same structure. Let us denote by Y the set of all possible perturbed problems
(systems) equipped with a certain pseudometric measuring the size of the perturba-
tions and let F : Y ⇒ Rn be the set-valued mapping associating with each y ∈ Y
its feasible set or its optimal set (its solution set, respectively). Under mild condi-
tions, F(y) is the convex hull of its boundary set bdF(y), its relative boundary set
rbdF(y), and/or its extreme points set extrF(y) for all y ∈ Y . We denote these
mappings from Y to Rn as bdF , rbdF , and extrF , which are called boundary map-
ping, relative boundary mapping, and extreme points set mapping of F , respectively.
The connections between the stability properties of F , bdF , and extrF have been
already analyzed in the particular context of linear semi-infinite systems ([3] and [4],
respectively), where Y is equipped with the pseudometric of the uniform convergence.

Throughout this paper we consider given an arbitrary convex-valued mapping F :
Y ⇒ Rn, where the domain Y is a locally metrizable space (i.e., Y is equipped with the
topology induced by an extended distance on Y , δ, taking values on R+∪{+∞}), and
its boundary mapping, relative boundary mapping, and extreme points set mapping,
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bdF , rbdF , and extrF . The relationships between F and bdF , assuming that
F = conv bdF , have been studied in [5]. In the same vein, this paper considers the
relationships between the stability properties of F , rbdF , and extrF , assuming that
F = conv rbdF and F = conv extrF , respectively. The finite dimension of the image
space plays a crucial role in those arguments based on the compactness of the unit
sphere or on Carathéodory’s theorem.

Some of these relationships are direct consequences of basic results about arbi-
trary mappings A : Y ⇒ Rn and their corresponding convex hull mappings, convA :
Y ⇒ Rn, which associates to each y ∈ Y the convex hull of A (y), i.e., (convA) (y) =
convA (y) for all y ∈ Y . Although some results on the transmission of stability prop-
erties between A and convA are already known (see, e.g., [6] and [1]), we provide
proofs of other results which will be used in what follows. Thus, for each stability
property, we start analyzing the relationships between A and convA, and then we
exploit the properties of the images of F , rbdF , and extrF in order to obtain the
relationships between these mappings; section 3 deals with the lower semicontinu-
ous (lsc) property and section 4 with the upper semicontinuous (usc) property and
closedness.

Let us introduce some additional notation. Given X ⊂ Rn, aff X denotes the
affine hull of X. From the topological side, bdX, rbdX, intX, rintX, and clX
represent the boundary, the relative boundary, the interior, the relative interior, and
the closure of X, respectively. If X is convex, its set of extreme points is denoted by
extrX. The Euclidean norm in Rn will be denoted by ‖.‖ and the open ball centered
at x and radius ε > 0 by B (x; ε). If X is a convex set and x ∈ X, then

B (x; ε) ∩ rbdX = ∅ =⇒ B (x; ε) ∩ aff X ⊂ rintX(1.1)

for all ε > 0.
The standard simplex in Rn+1 is

S :=

{
(λ1, . . . , λn+1) ∈ Rn+1

+ |
n+1∑
i=1

λi = 1

}
.

For the sake of completeness, we recall the stability concepts and some basic
results for set-valued mappings that we shall consider in this paper. Let M : Y ⇒ Rn

be a set-valued mapping with its domain domM := {y ∈ Y | M(y) 
= ∅}. The
following semicontinuity concepts are due to Bouligand and Kuratowski (see [1, section
1.4]).

We say that M is lower semicontinuous at y0 ∈ Y in the Berge sense if, for
each open set W ⊂ Rn such that W ∩M(y0) 
= ∅, there exists an open set V ⊂ Y ,
containing y0, such that W ∩ M(y) 
= ∅ for each y ∈ V . Obviously, M is lsc at
y0 /∈ domM and y0 ∈ int domM if M is lsc at y0 ∈ domM.

M is upper semicontinuous at y0 ∈ Y in the Berge sense if, for each open set W ⊂
Rn such that M(y0) ⊂ W , there exists an open set V ⊂ Y , containing y0, such that
M(y) ⊂ W for each y ∈ V . If M is usc at y0 /∈ domM, then y0 ∈ int(Y � domM).

If M is simultaneously lsc and usc at y0 we say that M is continuous at this
point.

M is closed at y0 ∈ domM if for all sequences {yr}∞r=1 ⊂ Y and {xr}∞r=1 ⊂ Rn

satisfying xr ∈ M(yr) for all r ∈ N, limr→∞ yr = y0 and limr→∞ xr = x0 (in brief,
yr → y0 and xr → x0) one has x0 ∈ M(y0). If M is usc at y0 ∈ domM and M(y0)
is closed, then M is closed at y0. Conversely, if M is closed and locally bounded at
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y0 ∈ domM (i.e., if there is a neighborhood of y0, say V , and a bounded set A ⊂ Rn

containing M(y) for every y ∈ V ), then M is usc at y0.
Finally, M is lsc (usc, closed, locally bounded) if it is lsc (usc, closed, locally

bounded) at y for all y ∈ Y .
Without entering in details we would like to mention that there are other notions

of lower and upper semicontinuity as lsc and usc in the sense of Hausdorff (see, e.g.,
[2]) or inner and outer semicontinuity (see, e.g., [8], where it is shown that the last
two concepts are equivalent to lsc in Berge sense and closedness when M(y) is closed
for all y ∈ Y ).

2. Preliminaries. We say that M : Y ⇒ Rn is locally convex at y0 ∈ Y if there
exists an open set V ⊂ Y , containing y0, such that M(y) is convex for all y ∈ V . We
shall use the following sufficient condition for M to be locally bounded.

Proposition 2.1. Let M : Y ⇒ Rn and let y0 ∈ domM such that M(y0) is
bounded and M is lsc, closed, and locally convex at y0. Then M is locally bounded
and continuous at y0.

Proof. Let r0 ∈ N such that

M(y0) ⊂ B(0n; r0).(2.1)

Since M is lsc and locally convex at y0 there exists an open set V ⊂ Y , containing
y0, such that M(y) is convex and

B (0n; r0) ∩M(y) 
= ∅ for each y ∈ V.(2.2)

If M is not locally bounded at y0, given r ∈ N there exists yr ∈ Y , with δ (yr, y) ≤
1
r , such that M(yr) � B (0n; r). Thus there exists a sequence {xr} such that

xr ∈ M(yr), ‖xr‖ ≥ r, r = 1, 2, . . . .

Let r1 ≥ r0 such that yr ∈ V for all r ≥ r1. In this case, due to (2.2), we can take
zr ∈ B (0n; r0) ∩ M(yr). Since xr ∈ M(yr)�B (0n; r0) and M(yr) is convex, there
exists ur ∈ ]xr, zr] := {(1 − λ)xr + λzr | 0 < λ ≤ 1} such that

ur ∈ M(yr), ‖ur‖ = r0, r ≤ r1.(2.3)

By the compactness of the spheres in Rn, there exists a subsequence {urk} such that
urk ∈ M(yrk), k = 1, 2, . . . , and limk urk = u0, with ‖u0‖ = r0. Since M is closed at
y0 and limk yrk = y0, we must have u0 ∈ M(y0), which contradicts (2.1).

We have shown that M is locally bounded at y0. Since we are assuming that M
is closed at y0, it is also usc at y0. Hence it is continuous at y0.

The condition of M being locally convex above is not superfluous as the following
example shows.

Example 2.2. If Y = [0, 1] and M : Y ⇒ R is defined by M(y) = {0, 1/y} for
y 
= 0 and M(0) = {0}, then M is neither locally bounded nor continuous at y0 = 0,
in spite of M(y0) being bounded and being M lsc and closed at y0.

The truncated mapping of M : Y ⇒ Rn with radius ρ > 0 is Mρ : Y ⇒ Rn

defined such as

Mρ (y) := M (y) ∩ clB (0n; ρ) for all y ∈ Y.

The following result (Lemma 2 in [5]), which establishes the relationships between M
and Mρ, will be useful in the next sections.

Proposition 2.3. Let M : Y ⇒ Rn and let y0 ∈ domM. Then the following
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statements hold:
(i) M is closed at y0 if and only if Mρ is closed at y0 for all ρ > 0 such that
Mρ (y0) 
= ∅.
(ii) If M is usc at y0 and M(y0) is closed, then Mρ is usc at y0 for all ρ > 0 such
that Mρ (y0) 
= ∅.
(iii) If M is usc at y0, then there exist a positive scalar ρ and an open neighborhood
of y0, V, such that

M(y)�Mρ(y) ⊂ M(y0)�Mρ(y0) for all y ∈ V.(2.4)

The converse statement holds when M is closed at y0.
(iv) If Mρ is lsc at y0 for every ρ such that M(y0) ∩B (0n; ρ) 
= ∅, then M is lsc at
y0. The converse statement holds if M(y0) is convex.

As an immediate consequence of the following result we obtain characterizations
of the identities F = conv bdF , F = conv rbdF , and F = conv extr F . Recall that
an edge is a one-dimensional face whereas a half-flat is the intersection of a flat (also
called affine manifold) with a closed halfspace which meets it, but does not contain
it.

Proposition 2.4. Given a convex set F ⊂ Rn, the following statements hold:
(i) F = conv bdF if and only if F is a closed set which does not contain halfspaces.
(ii) F = conv rbdF if and only if F is a closed set which does not contain half-flats
of the same dimension.
(iii) If F = conv extrF , then F contains neither lines nor unbounded edges. The
converse holds if F is closed.

Proof. Obviously, if F = ∅, then

conv bdF = conv rbdF = conv extrF = ∅.

So we can assume that F 
= ∅ without loss of generality.
(i) It is a straightforward consequence of Lemma 2 in [3].
(ii) If F = conv rbdF , then rbdF ⊂ F and so F is closed for each y ∈ Y . If F

contains a half-flat of the same dimension, then it is either a flat or a half-flat, with
conv rbdF 
= F in both cases.

Conversely, since F is a closed and convex set which is neither a flat nor a half-flat,
then F = conv rbdF by Theorem 2.6.12 in [9].

(iii) Suppose that F = conv extrF . F 
= ∅ entails extrF 
= ∅ and so F does not
contain lines. We shall obtain a contradiction assuming the existence of a halfline
edge of F , say A.

Let A = {x + λv | λ ≥ 0} be an edge of F . Then v 
= 0n and x ∈ extrF . We shall
prove that no element of A\{x} belongs to conv extrF . We assume the contrary, i.e.,
that there exists λ > 0 such that x + λv ∈ conv extrF .

If x+λv = x1 ∈ extrF , then x1 = 1
2x+ 1

2 (x + 2λv), with x, x+2λv ∈ F , making
this impossible. Thus we can write x + λv =

∑p
i=1 λixi, where p ≥ 2,

∑p
i=1 λi = 1

and λi > 0, and xi ∈ extrF , i = 1, . . . , p, with xi 
= xj if i 
= j. Then we can write

x + λv = λ1x1 + (1 − λ1)

p∑
i=2

(
λi

1 − λ1

)
xi,(2.5)

which yields x1,
∑p

i=2

(
λi

1−λ1

)
xi ∈ A because A is a face of F . Since A∩extrF = {x},

x1 = x, and so from (2.5) we get
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x +
λ

1 − λ1
v =

p∑
i=2

(
λi

1 − λ1

)
xi.(2.6)

By taking into account again that A is a face of F , we get the following contra-
diction: x2, . . . , xp ∈ A ∩ extrF = {x} .

We have shown that (A \ {x}) ∩ conv extrF = ∅. Since ∅ 
= A \ {x} ⊂ F , we
conclude that conv extrF � F .

Conversely, if F is closed and does not contain lines, it is the convex hull of its
extreme points and extreme directions (Corollary 2.6.15 in [9]). Since the assumption
precludes the existence of extreme directions, we have conv extrF = F .

Remark 2.5. According to Proposition 2.4, if F = conv bdF (F = conv rbdF),
then we have Fρ = conv bdFρ (Fρ = conv rbdFρ, respectively) for all ρ > 0. Nev-
ertheless, in the case of F = conv extr F , we need to show that Fρ = conv extrFρ

because F could be not closed-valued. In order to do this, it is enough to prove that
if F (y) := F = conv extrF and x ∈ Fρ with ‖x‖ < ρ, then x ∈ conv extrFρ. We can
write

x =
∑
j∈J

λjxj , |J | < ∞,
∑
j∈J

λj = 1, λj > 0 and xj ∈ extrF for all j ∈ J.

Let I = {j ∈ J | ‖xj‖ > ρ}. If I = ∅, then xj ∈ [extrF ]ρ ⊂ extrFρ for all j ∈ J and
so x ∈ conv extrFρ. Otherwise take an arbitrary k ∈ I. Let x′

k ∈ [x, xk] ⊂ F such
that ‖x′

k‖ = ρ, so that x′
k ∈ extrFρ. If x′

k = (1 − μ)x + μxk, with 0 < μ < 1, and we
denote yj = xj for all j ∈ J , j 
= k, and yk = x′

k, we get an expression x =
∑

j∈J αjyj ,
where

∑
j∈J αj = 1, αj > 0 and yj ∈ extrF for all j ∈ J , but now the cardinality of

the set {j ∈ J | ‖yj‖ > ρ} is |I| − 1. After |I| iterations of this procedure we get x
expressed as a convex combination of elements of extrFρ. In fact, if Φ is any operator
that transforms convex sets in Rn into sets in Rn satisfying [Φ (F)]ρ ⊂ Φ (Fρ) ⊂ Fρ

and {x ∈ F (y) | ‖x‖ = ρ} ⊂ Φ (Fρ (y)) for all y ∈ Y , then

F = conv Φ (F) =⇒ Fρ = conv Φ(Fρ).

Observe that Φ (F) = bdF , rbdF , and extr F satisfy these conditions.

3. Lower semicontinuity. We shall use the following classical result ([6, Propo-
sition 2.6]).

Theorem 3.1. If A : Y ⇒ Rn is lsc at y0 ∈ domA, then convA is also lsc at
y0.

In particular, taking A = bdF we get the direct statement of Proposition 1 in
[5], whose corresponding converse statement establishes that, if F = conv bd F is
lsc and closed at y0 ∈ domF , then bd F is also lsc at y0. The next two results
are counterparts of this converse statement for rbdF and extrF (instead of bd F).
Example 3 in [5], where bd F = rbdF = extrF , shows that the closedness of F is not
superfluous in these results. The following example shows that, in general, if convA
is lsc and closed at y0, then A is not necessarily lsc at y0. Accordingly, the proofs
must appeal to the specific properties of the sets rbdF(y) and extrF(y).

Example 3.2. Let A : R ⇒ R such that

A (y) =

{
{−1, 0, 1}, y = 0,
{−1, 1}, y 
= 0.
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It is easy to see that convA is constant (so that it is continuous and closed) whereas
A is not lsc at y0 = 0.

Theorem 3.3. Let F : Y ⇒ Rn be such that F = conv rbd F and F is lsc and
closed at y0 ∈ domF . Then rbdF is lsc at y0.

Proof. Let us denote R = rbd F . Since F (y0) cannot be singleton (otherwise
R (y0) = ∅, contradicting the assumptions), we have |F (y0)| > 1.

We assume that R is not lsc at y0 and we shall obtain a contradiction. This
assumption entails the existence of an open convex set W and a sequence {yr} such
that yr → y0,

W ∩R (y0) 
= ∅,(3.1)

and

W ∩R (yr) = ∅, r = 1, 2, . . . .(3.2)

Since y0 ∈ int domF , we can assume that yr ∈ domF , r = 1, 2, . . . . By (3.1), we
can choose a point x̂ ∈ W ∩R (y0). Fix x ∈ rintF (y0). Then

x̂− λ (x− x̂) /∈ F (y0) for all λ > 0.(3.3)

Because F is lsc at y0 and x, x̂ ∈ F (y0), there exist two sequences, {xr} and {x̂r},
with xr, x̂r ∈ F (yr) for all r, xr → x, and x̂r → x̂. Let δ > 0 such that B(x̂; δ) ⊂ W
and take r0 ∈ N such that x̂r ∈ B(x̂; δ

2 ) for all r ≥ r0. Given r ≥ r0, (3.2) yields

B(x̂; δ
2 ) ∩R (yr) = ∅ and so, by (1.1), B(x̂; δ

2 ) ∩ aff F (yr) ⊂ F (yr). Hence

x̂r −
δ

4 ‖xr − x̂r‖
(xr − x̂r) ∈ F (yr) for all r ≥ r0.

Taking limits as r → ∞ we get, by the closedness of F at y0, that

x̂− δ

4 ‖x− x̂‖ (x− x̂) ∈ F(y0),

in contradiction with (3.3).
Theorem 3.4. Let F : Y ⇒ Rn be such that F = conv extr F and F is lsc and

closed at y0 ∈ domF . Then extrF is lsc at y0.
Proof. We denote E = extrF and consider two possible cases.
Case 1. F (y0) is bounded.
F is locally bounded at y0 according to Proposition 2.1. Let V be an open set in

Y , y0 ∈ V , and ρ > 0 such that F (y) ⊂ clB (0n; ρ) for all y ∈ V .
We assume that E is not lsc at y0 and we shall get a contradiction.
Let W be an open set and let {yr} ⊂ V , with yr → y0, be such that

W ∩ E (y0) 
= ∅(3.4)

and

W ∩ E (yr) = ∅ for all r ∈ N.(3.5)

By (3.4) we can select a point x0 ∈ W ∩ E (y0).
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Given k ∈ N, since x0 ∈ B(x0; k
−1)∩F(y0) and F is lsc at y0, there exists rk ∈ N

such that B(x0; k
−1) ∩ F(yrk) 
= ∅. We can assume that {yrk} is a subsequence of

{yr}. Let

zk ∈ B(x0; k
−1) ∩ F (yrk) , k = 1, 2, . . . .(3.6)

For any k ∈ N, we can write

zk =

n+1∑
i=1

λk
i e

k
i , (λk

1 , . . . , λ
k
n+1) ∈ S, eki ∈ E (yrk) , i = 1, . . . , n + 1,(3.7)

because F(yrk) = conv E(yrk).

By the compactness of the simplex S, we can assume without loss of generality
that (λk

1 , . . . , λ
k
n+1) → (λ1, . . . , λn+1) ∈ S. Analogously, since for any i ∈ {1, . . . ,

n + 1}, {
eki
}
⊂ E (yrk) ⊂ F (yrk) ⊂ clB (0n; ρ) ,

we can assume that eki → ei ∈ clB (0n; ρ), i = 1, . . . , n + 1. Since F is closed at y0

and eki ∈ F (yrk) for all k ∈ N, we get ei ∈ F (y0). Now, taking limk in (3.7) and
recalling (3.6), we obtain

x0 =

n+1∑
i=1

λiei, (λk
1 , . . . , λ

k
n+1) ∈ S, ei ∈ F(y0), i = 1, . . . , n + 1.(3.8)

Since x0 ∈ E (y0) = extrF (y0), we must have in (3.8) all the coefficients λi = 0
except one, λj = 1, in which case x0 = ej . Since ej = limk e

k
j , {ekj } ⊂ E (yrk) ⊂ Rn\W

by (3.5), and Rn\W is closed, we have x0 = ej ∈ Rn\W , i.e., x0 /∈ W . This contradicts
the selection of x0 in W ∩ E (y0).

Case 2. F (y0) is unbounded.

The plan of the proof is to consider the truncated mapping Fρ, for a certain ρ > 0.
Since Fρ = conv extrFρ by Remark 2.5 and Fρ (y0) is bounded, we are in case 1 and
so extrFρ will be lsc at y0. This will allow us to conclude that E = extrF is lsc at y0.

First we show that if Eρ is the truncated mapping of E of radius ρ > 0, then

extrFρ (y) = Eρ (y) ∪ {x ∈ F (y) | ‖x‖ = ρ} for all y ∈ Y.(3.9)

In fact, the inclusion extrFρ (y) ⊃ Eρ (y) ∪ {x ∈ F (y) | ‖x‖ = ρ} is obvious. For the
reverse inclusion take x ∈ extrFρ (y) such that ‖x‖ < ρ. Assume that x = λu+(1−λ)v
with 0 < λ < 1 and u, v ∈ F (y) , u 
= v. We may assume without loss of generality
that ‖u‖ , ‖v‖ < ρ which contradicts the fact that x is an extreme point of Fρ(y).
Therefore, x ∈ Eρ (y).

Now, in order to prove that E is lsc at y0, assume that E is not. Then there exist
x0 ∈ E (y0), δ > 0, and a sequence {yr} such that yr → y0 and E (yr) ∩ B (x0; δ) = ∅
for every r ∈ N. Take ρ = ‖x0‖ + δ and observe that x0 ∈ extrFρ (y0) according to
(3.9). Fρ is lsc and closed at y0, and so, by case 1, extrFρ is lsc at y0, which implies
that there exists a sequence {xr} such that xr → x0, xr ∈ extrFρ (yr), and ‖xr‖ < ρ
for r large enough. This yields the contradiction E (yr) ∩B (x0; δ) 
= ∅.
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4. Upper semicontinuity and closedness. In contrast with the lower semi-
continuity, the closedness of a set-valued mapping A is not inherited by convA (even
though A = bdF , rbdF , extrF , as Example 3 in [5] shows). On the other hand,
Proposition 4 in [5] establishes that, if bdF is usc at y0, then F is usc at y0. In this
section we shall prove that a similar statement holds for rbdF , but not for extrF
even though extrF is either locally bounded or closed (nevertheless, according to the
next Theorem 4.3, these two properties together entail the upper semicontinuity and
the closedness of F).

Example 4.1. Let E : Y ⇒ R2, where Y = [2,+∞[ and

E (y) =
{
x ∈ R2 | ‖x‖ = 1, x1 < y−1

}
∪ {(y, 0)} for all y ∈ Y.

It is easy to see that E is locally bounded and continuous but not closed at y0 = 2,
and that it is the extreme points set mapping of F = conv E. We shall prove that F
is not usc at y0. Let

W := {x ∈ R2 |
√

3 |x2| < 2 − x1, x1 < 2} ∪B

(
(2, 0) ;

1

2

)
,

F (y0) ⊂ W. If y > 2, then x = (1, 1√
3
) ∈ F (y) \W . Observe also that F cannot be

closed at y0 (because F (y0) is not closed).

Example 4.2. Let E : R ⇒ R3 be such that

E (y) =
{
(x1, x2, 0) ∈ R3 | x2 = x2

1

}
∪ {(0, 0, y)} for all y ∈ R.

As in the previous example, E = extrF for F = conv E and E is continuous at y0 = 0,
but now E is also closed and E (y0) is unbounded. In order to prove that F is not usc
at y0, let us consider the convex plane set C :=

{
x ∈ R2 | x2 ≥ x2

1

}
and the open set

W := R3 \
{
x ∈ R3 | x3 ≥ x−1

2 , x2 > 0
}
.

Obviously, F (y0) = C × {0} ⊂ W . Moreover, if y > 0 and y > 4/r2 for 0 
= r ∈ R,
we have (

0,
r2

2
,
y

2

)
=

1

2
(0, 0, y) +

1

4
[(−r, r2, 0) + (r, r2, 0)] ∈ F (y) \W,

so that F (y) � W . Hence F is not usc at y0.

Finally, we show that F is closed at y0. Let yr → y0 and xr → x0 be such
that xr ∈ F (yr), r = 1, 2, . . . . Since F (yr) = conv [(C × {0}) ∪ {(0, 0, yr)}], for any
r ∈ N, we can write

xr = λr (cr, 0) + (1 − λr) (0, 0, yr) = (λrc
r, (1 − λr) yr) , c

r ∈ C, 0 ≤ λr ≤ 1.

Observe that cr ∈ C and (0, 0) ∈ C entail λrc
r ∈ C. On the other hand, xr

3 =
(1 − λr) yr ∈ conv {0, yr}. Taking limits we get x0 = limr x

r ∈ C × {0} = F (y0).

The next result is a reformulation of a well-known result ([1, Lemma 1.1.9]), taking
into account the mentioned equivalence between closedness and outer semicontinuity.

Theorem 4.3. If A : Y ⇒ Rn is closed and locally bounded at y0 ∈ domA, then
convA is closed and usc at y0.
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Observe that it is not possible to replace in Theorem 4.3 above the condition
“A is closed and locally bounded at y0” by just “A is closed and usc at y0” (recall
Example 4.2).

Given two set-valued mappings M,N : Y ⇒ Rn, we say that M is contained
in N (in brief, M ⊂ N ) locally at y0 if there exists an open set V ⊂ Y , containing
y0, such that M(y) ⊂ N (y) for all y ∈ V . We also define the closure of M as the
mapping clM : Y ⇒ Rn such that (clM) (y) = clM(y) for all y ∈ Y .

Corollary 4.4. Let A : Y ⇒ Rn and let y0 ∈ domA be such that A (y0) is
bounded and A is usc at y0. Then each of the following conditions guarantees that
convA is closed and usc at y0:
(i) A (y0) is closed.
(ii) clA ⊂ convA locally at y0.

Proof. (i) Since A is usc at y0 and A (y0) is bounded, then A is locally bounded
at y0. The conclusion follows from Theorem 4.3.

(ii) First we prove that clA is usc at y0. In fact, given an open set W such that
clA (y0) ⊂ W , we have

A (y0) ⊂ U := clA (y0) + B(0n; ε),

where

ε :=
1

2
d (clA (y0) ,R

n \W ) > 0.

Since U is open, there exists an open set V ⊂ Y , y0 ∈ V , such that A (y) ⊂ U for all
y ∈ V . Then clA (y) ⊂ clU ⊂ W .

Now we show that convA is usc at y0.
Since clA is usc at y0 and clA (y0) is compact we can assert, applying statement

(i) to clA, that conv clA is closed and usc at y0. Since the assumption implies that
conv clA = convA locally at y0, we conclude that convA is closed and usc at y0.

The boundedness assumption in Corollary 4.4 is not superfluous even for the
extreme points set mapping (recall again Example 4.2, where (i) holds).

Now, we give a condition that assures that if A is usc at y0, then convA is usc
at y0 as well.

Proposition 4.5. Let A : Y ⇒ Rn and let y0 ∈ domA be such that

rbd convA ⊂ A ⊂ conv rbd convA

locally at y0 and convA is closed at y0. If A is usc at y0, then convA is usc at y0.
Proof. Let F := convA and let R = rbdF . We assume that A is usc at y0.
Let V1 be a neighborhood of y0 such that R (y) ⊂ A (y) ⊂ convR (y) for all

y ∈ V1. Then we have F (y) = convR (y) for all y ∈ V1.
By Proposition 2.3, there exists ρ > 0 and a neighborhood of y0, V2 ⊂ V1, such

that

A(y)�Aρ(y) ⊂ A(y0)�Aρ(y0) for all y ∈ V2.(4.1)

We shall prove that we can replace A with F in (4.1), so that F will be usc at y0

because F is closed at y0 (again by Proposition 2.3). Let y ∈ V2 and x be such that

x ∈ F(y) and ‖x‖ > ρ.



156 M. GOBERNA, M. TODOROV, AND V. VERA DE SERIO

If x ∈ A(y), then x ∈ A(y)�Aρ(y) and so

x ∈ A(y0)�Aρ(y0) ⊂ A(y0) ⊂ F(y0).

Suppose that x /∈ A(y) and x /∈ F(y0). Now, R(y) ⊂ A(y) implies that

x ∈ F(y)�A(y) ⊂ F(y)�R(y) = rintF(y).(4.2)

Since F(y0) is closed and convex, there exist a 
= 0n and a scalar α such that

a′x = α and a′x < α for all x ∈ F(y0).(4.3)

Consider the flat H := {x ∈ aff F(y) | a′x = α}. Obviously a′c = 0 for all c ∈
H − x (the linear subspace parallel toH).

We shall get a contradiction if we are able to prove that H ⊂ F(y). In fact, in
this case if a′x = α for all x ∈ aff F(y), then H = aff F(y) and so F(y) = aff F(y),
i.e., F(y) is a flat. Otherwise F(y) is a half-flat. In both cases F (y) 
= convR (y)
despite of y ∈ V1.

In order to prove that H ⊂ F(y) we associate with each c ∈ (H − x) \ {0n} the
halfline S (c) := {x + λc | λ ≥ 0} ⊂ H. Now we prove that

S (c) ∩ clB(0n; ρ) = ∅ ⇒ S (c) ⊂ rintF(y).(4.4)

Assume that S (c) ∩ clB(0n; ρ) = ∅ and S (c) � rintF(y). By (4.2) we have

0 < λ := sup {λ ∈ R+ | x + λc ∈ rintF(y)} < +∞.

Thus x + λc ∈ R(y) ⊂ A(y) and, by (4.1), we have

x + λc ∈ A(y)� clB(0n; ρ) = A(y)�Aρ(y)
⊂ A(y0)�Aρ(y0) ⊂ F(y0),

so that by (4.3) a′x = α and a′x = a′(x + λc) < α. This is a contradiction.
Finally, we prove that H ⊂ F(y) by means of a discussion based on the set

C := H ∩ clB(0n; ρ).
If C = ∅, then H is the union of halflines emanating from x in all directions

parallel to H, and these halflines are contained in rintF(y), according to (4.4). Then
H ⊂ rintF(y) ⊂ F(y).

If |C| = 1, then all the halflines mentioned above are contained in rintF(y),
except one. Thus H ⊂ F(y).

If |C| > 1, then C is a closed ball in H and all the halflines in H emanating from x
which do not meet C are contained in rintF(y). Then F(y) contains the complement,
relative to H, of a pointed cone with apex x. Hence we have again H ⊂ F(y).

Given A : Y ⇒ Rn and ρ > 0, we denote by Aρ and by (convA)ρ the truncated
mappings of A and convA, respectively, with radius ρ. We also define the mapping
Aρ : Y ⇒ Rn such that

Aρ (y) = Aρ (y) ∪ {x ∈ convA (y) | ‖x‖ = ρ}.

If F = conv rbdF (F = conv bdF), and A = rbdF (A = bdF , respectively),
then (convA)ρ = convAρ. The inclusion (convA)ρ ⊂ convAρ follows from the fact
that any convex combination x = (1 − λ)u + λv, 0 ≤ λ ≤ 1, x, u, v ∈ convA (y),
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‖x‖ ≤ ρ and ‖v‖ > ρ, can be expressed as x = (1 − α)u + αw, where 0 ≤ α ≤ 1 and
w ∈ [x, v] ⊂ convA(y), with ‖w‖ = ρ.

Lemma 4.6. Let A : Y ⇒ Rn and let y0 ∈ domA be such that A (y0) and
convA (y0) are closed and A is usc at y0. Then {ρ > 0 | Aρ is closed at y0} is un-
bounded.

Proof. We will prove that, under the assumptions, Aρ is closed at y0 for all
ρ ∈ I := {ρ > 0 | Aρ (y0) 
= ∅} (I is a halfline). We denote F = convA.

Let ρ ∈ I, yk → y0 and xk → x0 be such that xk ∈ Aρ (yk), k = 1, 2, . . . .

Since Aρ (yk) ⊂ clB(0n; ρ) for all k ∈ N, ‖x0‖ ≤ ρ.

If there exists an increasing sequence {kr} ⊂ N such that xkr
∈ A (ykr ), r =

1, 2, . . . , then x0 ∈ A (y0) (because A is closed at y0) and so x0 ∈ Aρ (y0) ⊂ Aρ (y0).

Thus we can assume without loss of generality that xk /∈ A (yk), k = 1, 2, . . . .

Given k ∈ N, we have xk ∈ Aρ (yk) �Aρ (yk) ⊂ {x ∈ F (yk) | ‖x‖ = ρ}. Since
‖xk‖ = ρ for all k, we have ‖x0‖ = ρ.

If x0 ∈ F (y0), then x0 ∈ Aρ (y0) and we have finished. So we assume that
x0 /∈ F (y0). Since this set is closed, ε := 1

2d (x0,F (y0)) > 0. Let us consider the
open convex set W := F (y0) + B(0n; ε). Since A (y0) ⊂ F (y0) ⊂ W and A is usc
at y0, there exists a neighborhood of y0, say V , such that A (y) ⊂ W for all y ∈ V .
Then, taking convex hulls, we get F (y) ⊂ W for all y ∈ V .

Let k0 ∈ N be such that yk ∈ V for all k ≥ k0. For such a k we have xk ∈
Aρ (yk) ⊂ F (yk) ⊂ W whereas x0 /∈ F (y0), so that d (xk, x0) ≥ ε. This contradicts
xk → x0.

Lemma 4.7. Let A : Y ⇒ Rn be such that (convA)ρ = convAρ for all ρ > 0 suf-
ficiently large and let y0 ∈ domA such that {ρ > 0 | Aρ is closed at y0} is unbounded.
Then convA is closed at y0.

Proof. Let F := convA. Let yr → y0 and xr → x0 be such that xr ∈ F(yr),
r = 1, 2, . . . .

Since the convergent sequence {xr} is bounded, and by the assumptions on
{Aρ | ρ > 0}, there exists ρ > 0 such that ‖xr‖ ≤ ρ for all r ∈ N, Fρ = convAρ

and Aρ is closed at y0. Since Aρ is closed and locally bounded at y0, by Theorem 4.3,
Fρ = convAρ is closed and usc at y0. Then, since xr ∈ Fρ(yr) for all r ∈ N, we have
x0 ∈ Fρ(y0) ⊂ F(y0).

Proposition 4.8. Let A : Y ⇒ Rn be such that (convA)ρ = convAρ for all
ρ > 0 sufficiently large and let y0 ∈ domA such that A (y0) is closed,

rbd convA ⊂ A ⊂ conv rbd convA

locally at y0 and A is usc at y0. Then convA is usc at y0.

Proof. By assumption rbd convA (y0) ⊂ A (y0) ⊂ convA (y0), so that conv A (y0)
is closed. Then, by Lemma 4.6, {ρ > 0 | Aρ is closed at y0} is unbounded and, by
Lemma 4.7, convA is closed at y0. We conclude that convA is usc at y0 by Proposition
4.5.

Theorem 4.9. Let F : Y ⇒ Rn be such that F = conv rbd F and rbdF is usc
at y0 ∈ domF . Then F is usc at y0.

Proof. It is a straightforward consequence of Proposition 4.8, taking A = rbd
F .

The last four results are also valid replacing “rbd” everywhere with “bd” (see
[5]). The final example illustrates the results in sections 3 and 4 and shows that there
is no usc counterpart for Theorems 3.3 and 3.4.
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Example 4.10. Let us identify the complex field C with R2 and let us take as
Y the set of polynomials of degree q ∈ N (fixed) with complex coefficients equipped
with the Euclidean distance on R2q+2. Given y ∈ Y , we denote by A (y) its set of
complex zeros and by F (y) its convex hull, i.e., the polytope F (y) = convA (y). By
the fundamental theorem of algebra, A (y) 
= ∅ for all y ∈ Y , so that domA = Y . Let
us denote by B, R, and E the boundary mapping, the relative boundary mapping,
and the extreme points set mapping of F , respectively. By Proposition 2.4, we have

F = convB = convR = conv E .

A is lsc and usc as a consequence of a well-known consequence of Rolle’s theorem for
complex polynomials (see, e.g., [7]) and, since it has closed images, it is also closed.
By Theorem 3.1 and Corollary 4.4, F is also lsc, usc, and closed. Consequently, B,
R, and E are lsc by Propositions 1 in [4] and Theorems 3.3 and 3.4 in this paper (the
direct proofs of these statements are rather involved). Now we show that R and E
are neither usc nor closed if q = 3.

Let y0 = x3 + x, with A (y0) = {0,±i}, and let yr = x3 − 2
rx

2 + (1 + 1
r2 )x, with

A (yr) =
{
0, 1

r ± i
}
, r = 1, 2, . . . . Obviously, yr → y0. Taking the constant sequence

xr = 0, r = 1, 2, . . . , we have xr ∈ E (yr) ⊂ F (yr) for all r, whereas 0 /∈ E (y0) =
R (y0) = {±i}. Thus neither R nor E is closed (usc) at y0.
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Abstract. Path-following methods for primal-dual active set strategies requiring a regulariza-
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are analyzed. Monotonicity and convexity of the primal-dual path value function are investigated.
Both feasible and infeasible approximations are considered. Numerical path-following strategies are
developed and their efficiency is demonstrated by means of examples.

Key words. semismooth Newton methods, path-following methods, active set strategy, primal-
dual methods

AMS subject classifications. 49M15, 49M37, 65K05, 90C33

DOI. 10.1137/040611598

1. Introduction. Primal-dual active set strategies or, in some cases equiva-
lently, semismooth Newton methods, were proved to be efficient methods for solving
constrained variational problems in function space [1, 9, 10, 11, 12, 13]. In certain
cases regularization is required, resulting in a family of approximating problems with
more favorable properties than those of the original one, [12, 13]. In previous work [13]
convergence, and in some cases rate of convergence, with respect to the regularization
parameter was proved. In the numerical work the adaptation of these parameters was
heuristic, however. The focus of the present investigation is on an efficient control
of the regularization parameter in the primal-dual active set strategy for a class of
constrained variational problems. To explain the involved issues we proceed mostly
formally in this section and consider the problem{

minJ (v) over v ∈ X

s.t. Gv ≤ ψ,
(1)

where J is a quadratic functional on a Hilbert space X, and G : X → Y . It is assumed
that Y ⊂ L2(Ω) is a Hilbert lattice with ordering ≤ induced by the natural ordering
of L2(Ω). We note that (1) subsumes problems of very different nature. For example,
for the control constrained optimal control problem⎧⎪⎨⎪⎩

min 1
2 |y − z|2L2 + α

2 |u|2L2

s.t. − Δy = u in Ω, y = 0 on ∂Ω,

u ≤ ψ a.e. in Ω,

with Ω a bounded domain in Rn, z ∈ L2(Ω), α > 0, one can use y = (−Δ)−1u, where
Δ denotes the Laplacian with homogenous Dirichlet boundary conditions, and arrive
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at {
min 1

2 |(−Δ)−1u− z|2 + α
2 |u|2

s.t. u ≤ ψ a.e. in Ω,

which is clearly of the form (1). For J (v) = 1
2

∫
Ω
|∇v|2dx −

∫
Ω
f v, X = H1

0 (Ω),
and G = I we obtain the classical obstacle problem. For state constrained control
problems with y ≤ ψ one has{

min 1
2 |(−Δ)−1u− z|2 + α

2 |u|2

s.t. (−Δ)−1u ≤ ψ a.e. in Ω,

which is also of the form (1). From the point of view of duality theory these three
problems are very different. While it is straightforward to argue the existence of a
Lagrange multiplier in L2(Ω) for the control constrained optimal control problem, it is
already more involved and requires additional assumptions to guarantee its existence
in L2(Ω) for obstacle problems, and for state constrained problems the Lagrange
multiplier is only a measure. If we resort to a formal discussion, then in either of
these cases we arrive at the optimality system of the form{

J ′(v) + G∗λ = 0,

λ = max(0, λ + c(G(v) − ψ) )
(2)

for any fixed c > 0. Here, G∗ denotes the adjoint of G. The second equation in (2) is
equivalent to λ ≥ 0, G(v) ≤ ψ, and λ(G(v) − ψ) = 0.

Continuing formally, the primal-dual active set strategy determines the active set
at iteration level k by means of

Ak+1 = {x ∈ Ω: λk(x) + c(G(vk)(x) − ψ(x) ) > 0},

assigns the inactive set Ik+1 = Ω \ Ak+1, and updates (v, λ) by means of{
J ′(vk+1) + G∗λk+1 = 0,

λk+1 = 0 on Ik+1, (G(vk+1) − ψ)(x) = 0 for x ∈ Ak+1.
(3)

These auxiliary problems require special attention. For obstacle problems the con-
straint vk+1 = ψ on Ak+1 induces that the associated Lagrange multiplier λk+1 is in
general less regular than the Lagrange multiplier associated with v ≤ ψ for the original
problem; see, e.g., [13]. For problems with combined control and state constraints it
may happen that due to the assignment on Ik+1 and Ak+1, (3) has no solution while
the original problem does. For these reasons in, e.g., [9, 12, 13] the second equation
in (2) was regularized, resulting in the family of equations{

J ′(v) + G∗λ = 0,

λ = max(0, λ̄ + γ(G(v) − ψ)),
(4)

where λ̄ is fixed, possibly λ̄ = 0, and γ ∈ R+. In the above-mentioned references it
was shown that under appropriate conditions the solutions (vγ , λγ) to (4) exist, the
quantity λγ enjoys extra regularity, and (vγ , λγ) converge to the solution of (2) as
γ → ∞+.
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In previous numerical implementations the increase of γ to infinity was heuristic.
As the system (4) becomes increasingly ill-conditioned as γ tends to ∞, in this paper
a framework for a properly controlled increase of γ-values will be developed in order to
cope with the conditioning problem. In fact, in a typical algorithmic regime for solving
(1) one uses the solution (vγ , λγ) to (4) for some γ as the initial guess for the solution to
(4) for the updated γ-value γ+ > γ. Typically, if γ+ 	 γ, then (vγ , λγ) is only a poor
approximation of (vγ+ , λγ+), which in addition to numerical linear algebra issues (like
ill-conditioned system matrices) causes severe stability problems for iterative solvers
for (4) such as semismooth Newton methods. Together with developing a new γ-
update strategy, we aim at solving the auxiliary problems (4) only inexactly to keep
the overall computational cost low. To this end we define neighborhoods of the path
which allow inexact solutions and which contract in a controlled way towards the
path as the iteration proceeds. Our work is inspired by concepts from path-following
methods in finite dimensional spaces [4, 5, 16, 18, 19]. We first guarantee the existence
of a sufficiently smooth path γ → (vγ , λγ), with γ ∈ (0,∞) in appropriately chosen
function spaces. Once the path is available it can be used as the basis for updating
strategies of the path parameter. Given a current value γk, with associated primal and
dual states (vγk

, λγk
), the γ-update should be sufficiently large to make good progress

towards satisfying the complementarity conditions. On the other hand, since we are
not solving the problems along the path exactly, we have to use safeguards against
steps which would lead us too far off the path. Of course, these goals are impeded by
the fact that the path is not available numerically. To overcome this difficulty we use
qualitative properties of the value function, like monotonicity and convexity, which can
be verified analytically. These suggest the introduction of model functions which will
be shown to approximate the value functional along the path very well. We use these
model functions for our updating strategies of γ. In the case of exact path-following we
can even prove convergence of the resulting strategy. In the present paper the program
just described is carried out for a class of problems corresponding to contact problems.
State constrained optimal control problems require a different approach that will be
considered independently. As we shall see, the (infinite dimensional) parameter λ̄ can
be used to guarantee that the iterates of the primal variable are feasible. Further, it
turns out that the numerical behavior of infeasible approximations is superior to the
feasible ones from the point of view of iteration numbers.

Interior point methods also require an additional parameter, which, however,
enters into (2) differently. For the problem under consideration here, the interior-
point relaxation replaces the second equation in (2) by

λ(x) (ψ −G(v))(x) =
1

γ
for x ∈ Ω.(5)

Path-following interior-point methods typically start strictly feasible, with iterates
which are required to stay strictly feasible during the iterations while satisfying, or
satisfying approximately, the first equation in (2) and (5). Path-following interior-
point methods have not received much attention for infinite dimensional problems
yet. In fact, we are aware of only [17], where such methods are analyzed for optimal
control problems related to ordinary differential equations. For the problem classes
that we outlined at the beginning of this section, the primal-dual active set strategy
proved to be an excellent competitor to interior-point methods, as was demonstrated,
for example, in [1] comparing these two methods.

This paper is organized as follows. Section 2 contains the precise problem for-
mulation and the necessary background on the primal-dual active set strategy. The
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existence and regularity of the primal-dual path is discussed in section 3. Properties
of the primal-dual path value functional are analyzed in section 4. Section 5 contains
the derivation of the proposed model functions for the primal-dual path value func-
tional. Exact as well as inexact path-following algorithms are proposed in section 6,
and their numerical behavior is discussed there as well.

2. Problem statement, regularization, and its motivation. We consider{
min 1

2 a(y, y) − (f, y) over y ∈ H1
0 (Ω)

s.t. y ≤ ψ,
(P)

where f ∈ L2(Ω), ψ ∈ H1(Ω), with ψ|∂Ω ≥ 0, where Ω is a bounded domain in
Rn with Lipschitz continuous boundary ∂Ω. Throughout, (·, ·) denotes the standard
L2(Ω)-inner product, and we assume that a(·, ·) is a bilinear form on H1

0 (Ω)×H1
0 (Ω)

satisfying

a(v, v) ≥ ν|v|2H1
0

and a(w, z) ≤ μ|w|H1 |z|H1(6)

for some ν > 0, μ > 0 independent of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω). Here and

throughout we use |v|H1
0

= |∇v|L2 for v ∈ H1
0 (Ω), which defines a norm on H1

0 (Ω)

due to Friedrichs’ inequality, and |w|H1 = (|w|2L2 + |∇w|2L2)1/2 denotes the standard
H1-norm; see, e.g., [2]. Moreover, let A : H1

0 (Ω) → H−1(Ω) be defined by

a(v, w) = 〈Av,w〉H−1,H1
0

for all v, w ∈ H1
0 (Ω).

It is well known that (P) admits a unique solution y∗ ∈ H1
0 (Ω) with associated

Lagrange multiplier λ∗ = −Ay∗ + f , satisfying the optimality system{
a(y∗, v) + 〈λ∗, v〉H−1,H1

0
= (f, v),

〈λ∗, y∗ − ψ〉H−1,H1
0

= 0, y∗ ≤ ψ, 〈λ∗, v〉 ≤ 0 for all v ≤ 0.
(7)

This also holds with f ∈ H−1(Ω). Under well-known additional requirements on a, ψ,
and Ω, as for example{

a(v, w) =
∫
Ω
(
∑

aijvxiwxj + d v w), with aij ∈ C1(Ω̄), d ∈ L∞(Ω),

d ≥ 0, ψ ∈ H2(Ω), ∂Ω is C1,1, or Ω is a convex polyhedron,
(8)

we have (y∗, λ∗) ∈ H2(Ω) × L2(Ω), and the optimality system can be expressed as{
Ay∗ + λ∗ = f in L2(Ω),

λ∗ = (λ∗ + c(y∗ − ψ))+ for some c > 0,
(9)

where (v)+ = max(0, v); for details see, e.g., [14].
Our aim is the development of Newton-type methods for solving (7) or (9), which

is complicated by the system of inequalities in (7) and the nondifferentiable max-
operator in (9). In the recent past significant progress was made in the investigation
of semismooth Newton methods and primal-dual active set methods for coping with
nondifferentiable functionals in infinite dimensional spaces; see, for instance, [10, 15].
A direct application of these techniques to (9) results in the following algorithm.



PATH-FOLLOWING METHODS 163

Algorithm A.

(i) Choose c > 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λk(x) + c(yk(x) − ψ(x)) > 0}.
(iii) Compute yk+1 = arg min { 1

2 a(y, y) − (f, y) : y = ψ on Ak+1}.
(iv) Let λk+1 be the Lagrange multiplier associated with the constraint in (iii),

with λk+1 = 0 on Ω \ Ak+1.
(v) Set k := k + 1 and go to (ii).
The optimality system for the variational problem in (iii) is given by{

a(yk+1, v) + 〈λk+1, v〉H−1,H1
0

= (f, v) for all v ∈ H1
0 (Ω),

yk+1 = ψ on Ak+1, λk+1 = 0 on Ik+1 = Ω \ Ak+1.
(10)

This corresponds to (3) in our introductory discussion. The Lagrange multiplier
associated with the constraint y = ψ on Ak+1 is in general only a distribution in
H−1(Ω) and is not in L2(Ω). In fact, λk+1 is related to the jumps in the normal
derivatives of y across the interface between Ak+1 and Ik+1 [13]. This complicates
the convergence analysis for Algorithm A since the calculus of Newton (or slant)
differentiability [10] does not apply. We note that these difficulties are not present
if (7) or (9) is discretized. However, they are crucial for the treatment of infinite
dimensional problems, and as such they are generic. Analogous difficulties arise for
state constrained optimization problems, for inverse problems with BV-regularization,
and for elasticity problems with contract and friction, to mention a few. This suggests
the introduction of regularized problems, which in our case are chosen as

min
1

2
a(y, y) − (f, y) +

1

2γ

∫
Ω

|(λ̄ + γ(y − ψ))+|2 over y ∈ H1
0 (Ω),(Pγ)

where γ > 0 and λ̄ ∈ L2(Ω), λ̄ ≥ 0 are fixed. For later use we denote the objective
functional of (Pγ) by J(y; γ). The choice of λ̄ will be used to influence the feasibility
of the solution yγ of (Pγ). Using Lebesgue’s bounded convergence theorem to dif-
ferentiate the max under the integral in J(y; γ), the first order optimality condition
associated with (Pγ) is given by{

a(yγ , v) + (λγ , v) = (f, v) for all v ∈ H1
0 (Ω),

λγ = (λ̄ + γ(yγ − ψ))+,
(OCγ)

where (yγ , λγ) ∈ H1
0 (Ω)×L2(Ω). With (8) holding, we have yγ ∈ H2(Ω). The primal-

dual active set strategy, or equivalently the semismooth Newton method, for (Pγ) is
given next. For its statement and for later use we introduce χAk+1 , the characteristic
function of the set Ak+1 ⊆ Ω.

Algorithm B.

(i) Choose λ̄ ≥ 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λ̄(x) + γ(yk(x) − ψ(x)) > 0}, Ik+1 = Ω \ Ak+1.
(iii) Solve for yk+1 ∈ H1

0 (Ω): a(yk+1, v)+((λ̄+γ(yk+1−ψ))χAk+1
, v) = (f, v) for

all v ∈ H1
0 (Ω).

(iv) Set

λk+1 =

{
0 on Ik+1,
λ̄ + γ(yk+1 − ψ) on Ak+1.
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Algorithm B was analyzed in [13], where global as well as locally superlinear con-
vergence for every fixed γ > 0 were established. However, the choice and adaptation
(increase) of γ was heuristic in [13] and earlier work. The focus of the present in-
vestigation is the automatic adaptive choice of γ. We shall utilize the following two
results, which we recall from [13] where the proofs can also be found.

Proposition 2.1. The solutions (yγ , λγ) to (OCγ) converge to (y∗, λ∗) in the
sense that yγ → y∗ strongly in H1

0 (Ω) and λγ ⇀ λ∗ weakly in H−1(Ω) as γ → ∞.
We say that a satisfies the weak maximum principle if for any v ∈ H1

0 (Ω)

a(v, v+) ≤ 0 implies v+ = 0.(11)

Proposition 2.2. Assume that (11) holds and let 0 < γ1 ≤ γ2 < ∞.
(a) In the infeasible case, i.e., for λ̄ = 0, we have y∗ ≤ yγ2 ≤ yγ1 .
(b) In the feasible case, i.e., if

λ̄ ≥ 0 and 〈λ̄− f + Aψ, v〉H−1,H1
0
≥ 0 for all v ∈ H1

0 (Ω),(12)

with v ≥ 0, then yγ1 ≤ yγ2 ≤ y∗ ≤ ψ.

3. The primal-dual path. In this section we introduce the primal-dual path
and discuss its smoothness properties.

Definition 3.1. The family of solutions C = {(yγ , λγ) : γ ∈ (0,∞)} to (OCγ),
considered as subset of H1

0 (Ω)×H−1(Ω), is called the primal-dual path associated with
(P).

For r ≥ 0 we further set Cr = {(yγ , λγ) : γ ∈ [r,∞)}, and with some abuse of
terminology we also refer to Cr as a path. In the following lemma we denote by ŷ the
solution to the unconstrained problem

minJ(y) =
1

2
a(y, y) − (f, y) over y ∈ H1

0 (Ω).(P̂)

Subsequently, in connection with convergence of a sequence in function space we
use the subscript “weak” together with the space to indicate convergence in the weak
sense.

Lemma 3.2. For each r > 0 the path Cr is bounded in H1
0 (Ω) × H−1(Ω), with

limγ→∞(yγ , λγ) = (y∗, λ∗) in H1
0 (Ω)×H−1(Ω)weak. For λ̄ = 0 the path C0 is bounded

in H1
0 (Ω) ×H−1(Ω), with limγ→0+(yγ , λγ) = (ŷ, 0) in H1

0 (Ω) × L2(Ω).
Proof. From (OCγ) we have for every γ > 0

a(yγ , yγ − y∗) + (λγ , yγ − y∗) = (f, yγ − y∗).(13)

Since λγ = max(0, λ̄ + γ(yγ − ψ)) ≥ 0 and ψ − y∗ ≥ 0 we have

(λγ , yγ − y∗) =

(
λγ ,

λ̄

γ
+ yγ − ψ + ψ − y∗ − λ̄

γ

)
≥ 1

γ
(λγ , λ̄ + γ(yγ − ψ)) − 1

γ
(λγ , λ̄)

=
1

γ

[
|λγ |2L2 − (λγ , λ̄)

]
.

Combined with (13) this implies that

a(yγ , yγ) +
1

γ
|λγ |2L2 ≤ a(yγ , y

∗) + (f, yγ − y∗) +
1

γ
(λ̄, λγ).(14)
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This estimate, (6), (OCγ), and the Poincaré–Friedrichs inequality imply that Cr is
bounded in H1

0 (Ω) ×H−1(Ω) for every r > 0. In fact, for ω > 0 satisfying ω|y|2H1 ≤
|y|2

H1
0
, we have

ω|yγ |2H1 +
1

γ
|λγ |2L2 ≤ a(yγ , yγ) +

1

γ
|λγ |2L2

≤ μ|yγ |H1 |y∗|H1 + |f |H−1 (|yγ |H1 + |y∗|H1) +
1

γ
|λ̄|L2 |λγ |L2

≤ ω

4
|yγ |2H1 +

μ2

ω
|y∗|2H1 +

ω

2
|yγ |2H1 +

1

2ω
|f |2H−1

+
1

2γ
|λγ |2L2 +

1

2γ
|λ̄|2L2 + |f |H−1 |y∗|H1 ,

and hence

ω

4
|yγ |2H1 +

1

2γ
|λγ |2L2 ≤ μ2

ω
|y∗|2H1 +

1

2ω
|f |H−1 + |f |H−1 |y∗|H1 +

1

2γ
|λ̄|2L2 .

This estimate implies that {yγ : γ ≥ r} is bounded in H1
0 (Ω) for every r > 0. The

first equation of (OCγ) implies that {λγ : γ ≥ r} is bounded in H−1(Ω) as well. From
Proposition 2.1 we have that limγ→∞(yγ , λγ) = (y∗, λ∗) in H1

0 (Ω) ×H−1(Ω)weak. If
λ̄ = 0, then from (14), (6), and (OCγ) the path Co is bounded in H1

0 (Ω) × H−1(Ω)

and λγ → 0 in L2(Ω) for γ → 0+. From (OCγ) and the optimality condition for (P̂)
we have

a(yγ − ŷ, yγ − ŷ) + (λγ , yγ − ŷ) = 0,

and hence limγ→0+ yγ = ŷ in H1
0 (Ω).

Proposition 3.3. The path Cr is globally Lipschitz in H1
0 (Ω)×H−1(Ω) for every

r > 0. If λ̄ = 0, then C0 is globally Lipschitz continuous.
Proof. Let γ, γ̄ ∈ [r,∞) be arbitrary. Then

A(yγ − yγ̄) + (λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+ = 0.

Taking the inner-product with yγ − yγ̄ and using the monotonicity and Lipschitz
continuity (with constant L = 1) of x → max(0, x), we find

a(yγ − yγ̄ , yγ − yγ̄)
≤

∣∣((λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+, yγ − yγ̄
)∣∣

≤ |γ − γ̄| |yγ − ψ|L2 |yγ − yγ̄ |L2 .

By Lemma 3.2 the set {yγ}γ≥r is bounded in H1
0 (Ω). Hence there exists K1 > 0 such

that

ν|yγ − yγ̄ |2H1
0
≤ K1|γ − γ̄| · |yγ − yγ̄ |L2 ,

and by Poincaré’s inequality there exists K2 > 0 such that

|yγ − yγ̄ |H1
0
≤ K2|γ − γ̄| for all γ ≥ r, γ̄ ≥ r.
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Let us recall here that |y|H1
0

= |∇y|L2 . Lipschitz continuity of γ → λγ from [r,∞)

to H−1(Ω) follows from the first equation in (OCγ). For λ̄ = 0 the set {yγ}γ≥0 is
bounded in H1

0 (Ω). The remainder of the proof remains identical.
Lemma 3.4. For every subset I ⊂ [r,∞), r > 0, the mapping γ → λγ is globally

Lipschitz from I to L2(Ω).
Proof. For 0 < γ1 ≤ γ2 we have by (OCγ)

|λγ1
− λγ2

|L2 = |(λ̄ + γ1(yγ1 − ψ))+ − (λ̄ + γ2(yγ2 − ψ))+|L2

≤ (K3γ1 + K1 + |ψ|L2) |γ1 − γ2|

for some constant K3 > 0.
We shall use the following notation:

Sγ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) > 0}.

Further we set

g(γ) = λ̄ + γ(yγ − ψ).(15)

Since γ → yγ ∈ H1
0 (Ω) is Lipschitz continuous by Proposition 3.3, there exists a weak

accumulation point ẏ(= ẏγ) of 1
γ̄−γ (yγ̄ − yγ) as γ̄ → γ > 0, which is also a strong

accumulation point in L2(Ω). Further 1
γ̄−γ (g(γ̄)− g(γ)) has ġ(γ) : = yγ − ψ + γ ẏγ as

a strong accumulation point in L2(Ω) as γ̄ → γ. In case γ̄ approaches γ from above
(or below), the associated accumulation points ẏrγ (or ẏlγ) satisfy certain properties

which are described next. In what follows we use ġr(γ) or ġl(γ) whenever ẏγ in ġ(γ)
is replaced by ẏrγ and ẏlγ , respectively.

Proposition 3.5. Let γ > 0, and denote by ẏrγ any weak accumulation point of
1

γ̄−γ (yγ̄ − yγ) in H1
0 (Ω) as γ̄ ↓ γ. Set

S+
γ = Sγ ∪ {x : λ̄(x) + γ(yγ(x) − ψ(x)) = 0 ∧ ġr(γ)(x) ≥ 0}.

Then ẏrγ satisfies

a(ẏrγ , v) + ((yγ − ψ + γẏrγ)χS+
γ
, v) = 0 for all v ∈ H1

0 (Ω).(16)

Proof. By (OCγ) we have for every v ∈ H1
0 (Ω)

a(yγ̄ − yγ , v) + ((λ̄ + γ̄(yγ̄ − ψ))+ − (λ̄ + γ(yγ − ψ))+, v) = 0.(17)

We multiply (17) by (γ̄ − γ)−1 and discuss separately the two terms in (17). Clearly,
we have

lim
γ̄↓γ

(γ̄ − γ)−1a(yγ̄ − yγ , v) = a(ẏrγ , v).

Here and below the limit is taken on the sequence of γ̄-values, which provides the
accumulation point. Lebesgue’s bounded convergence theorem allows us to consider
the pointwise limits of the integrands. Considering separately the cases g(γ)(x)< 0,
g(γ)(x) > 0, and g(γ)(x) = 0, we have

(γ̄ − γ)−1((g(γ̄))+ − (g(γ))+, v)

→ ((yγ − ψ + γ ẏrγ)χS+
γ
, v) as γ̄ ↓ γ,

(18)
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which ends the proof.
As a consequence of the proof we obtain the following result.
Corollary 3.6. Let γ > 0, and denote by ẏlγ any weak accumulation point of

1
γ̄−γ (yγ̄ − yγ) in H1

0 (Ω) as γ̄ ↑ γ. Set S−
γ = Sγ ∪ {x : λ̄(x) + γ(yγ(x) − ψ(x)) =

0 ∧ ġl(γ)(x) ≥ 0}. Then ẏlγ satisfies

a(ẏlγ , v) + ((yγ − ψ + γ ẏlγ)χS−
γ
, v) = 0 for all v ∈ H1

0 (Ω).(19)

Another corollary of Proposition 3.5 treats the case λ̄ = 0.
Corollary 3.7. Let λ̄ = 0, and assume that (11) holds. Then the right- and

left- derivatives ẏrγ and ẏlγ of γ → yγ , γ ∈ (0,∞), exist and are given by

a(ẏrγ , v) + ((yγ − ψ + γ ẏrγ)χ{yγ>ψ}, v) = 0 for all v ∈ H1
0 (Ω),(20)

a(ẏlγ , v) + ((yγ − ψ + γ ẏlγ)χ{yγ≥ψ}, v) = 0 for all v ∈ H1
0 (Ω).(21)

Proof. Let γ̄ ↓ γ. By Proposition 2.2 any accumulation point ẏrγ of (γ̄−γ)−1(yγ̄−
yγ) satisfies ẏrγ ≤ 0 and hence

S+
γ = {x ∈ Ω: yγ(x) > ψ(x)} ∪ {x ∈ Ω: yγ(x) = ψ(x) ∧ ẏrγ(x) = 0}.

Observe that

(yγ − ψ + γẏrγ)χS+
γ

= (yγ − ψ + γẏrγ)χ{yγ>ψ}.

This implies that every accumulation point ẏrγ satisfies (20). Since the solution to
(20) is unique, the directional derivative from the right exists.

Similarly, if γ̄ ↑ γ, by Proposition 2.2 we have S−
γ = {x ∈ Ω: yγ(x) ≥ ψ(x)}, and

(21) follows.
Henceforth we set

S◦
γ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) = 0}.

Corollary 3.8. If meas(S◦
γ) = 0, then γ → yγ ∈ H1

0 (Ω) is differentiable at γ,
and the derivative ẏγ satisfies

a(ẏγ , v) + ((yγ − ψ + γ ẏγ)χSγ , v) = 0 for all v ∈ H1
0 (Ω).(22)

Proof. Let z denote the difference of two accumulation points of (γ̄ − γ)−1(yγ̄ −
yγ) as γ̄ → γ. As a consequence of (16) and (19)

a(z, v) + γ(zχSγ , v) = 0 for all v ∈ H1
0 (Ω).

This implies that z = 0 by (6). Consequently, accumulation points are unique, and
by (16), (19) they satisfy (22).

The assumption meas(So
γ) = 0 in Corollary 3.8 reflects the lack of differentiability

of the max-operation in (OCγ).

4. The primal-dual path value functional. In this section we investigate
the value function associated with (Pγ) and study its monotonicity and smoothness
properties.

Definition 4.1. The functional

γ → V (γ) = J(yγ ; γ) =
1

2
a(yγ , yγ) − (f, yγ) +

1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2
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defined on (0,∞) is called the primal-dual path value functional.
Let us start by studying first order differentiability properties of V .
Proposition 4.2. The value function V is differentiable with

V̇ (γ) = − 1

2γ2

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

Corollary 4.3. For λ̄ = 0 we have V̇ (γ) = 1
2

∫
Ω
|(yγ −ψ)+|2 ≥ 0 and V̇ (γ) > 0

unless yγ is feasible. For λ̄ satisfying (12) and with (11) holding, we have yγ ≤ ψ and

hence V̇ (γ) ≤ 0 for γ ∈ (0,∞).
In either of the two cases V̇ (γ) = 0 implies that yγ solves (P̂).

Proof. We show only that V̇ (γ) = 0 implies that yγ solves (P̂). The rest of the
assertion follows immediately from Proposition 4.2.

If λ̄ = 0, then V̇ (γ) = 0 yields yγ ≤ ψ. Thus, λγ = 0, and hence yγ solves (P̂).

If (11) and (12) are satisfied, then yγ ≤ ψ and V̇ (γ) = 0 implies γ(yγ − ψ) ≤
λ̄ + γ(yγ − ψ) ≤ 0. As a consequence λγ = 0, and yγ solves (P̂).

Proof of Proposition 4.2. For γ̄, γ ∈ (0,∞) we find

1

2
a(yγ̄ + yγ , yγ̄ − yγ) − (f, yγ̄ − yγ)

+ 1
2 ((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+, yγ̄ − yγ) = 0,

(23)

and consequently

V (γ̄) − V (γ) =
1

2
a(yγ̄ , yγ̄) − 1

2
a(yγ , yγ) − (f, yγ̄ − yγ)

+
1

2γ̄

∫
Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 − 1

2γ

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

=
1

2γ̄

∫
Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 +
1

2γ

∫
Ω

−|(λ̄ + γ(yγ − ψ))+|2

+
1

2

∫
Ω

−((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+)(yγ̄ − yγ)

=

∫
Pγ̄∩Pγ

z +

∫
Pγ̄∩Nγ

z +

∫
Pγ∩Nγ̄

z = I1 + I2 + I3,

where z stands for the sum of the kernels on the left of the above equalities,

Pγ = {x : λ̄ + γ(yγ − ψ) > 0}, Nγ = {x : λ̄ + γ(yγ − ψ) < 0},

and Pγ̄ , Nγ̄ are defined analogously. For I2 we have

|I2| ≤
1

2

∫
Pγ̄∩Nγ

1

γ̄
(λ̄ + γ̄(yγ̄ − ψ))2 + |λ̄ + γ̄(yγ̄ − ψ)| |yγ̄ − yγ |

≤ 1

2

∫
Ω

1

γ̄
(γ̄(yγ̄ − ψ) − γ(yγ − ψ))2 + |yγ̄ − yγ |(|γ̄yγ̄ − γ yγ | + |γ̄ − γ| |ψ|),

and hence by Proposition 3.3

lim
γ̄→γ

1

γ̄ − γ
|I2| = 0.(24)
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Analogously one verifies that

lim
γ̄→γ

1

γ̄ − γ
|I3| = 0.(25)

On Pγ̄ ∩ Pγ we have

z =
1

2γ̄
(λ̄ + γ̄(yγ̄ − ψ))2

− 1

2γ
(λ̄ + γ(yγ − ψ))2 − 1

2
(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

=
γ − γ̄

2γ̄γ
(λ̄ + γ̄(yγ̄ − ψ))2

+
1

2γ

[
2λ̄(γ̄(yγ̄ − ψ) − γ(yγ − ψ)) + γ̄2(yγ̄ − ψ)2 − γ2(yγ − ψ)2

]
− 1

2
(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

=
γ − γ̄

2γ̄γ
(λ̄ + γ̄(yγ̄ − ψ))2 +

λ̄

γ
[γ̄(yγ̄ − ψ) − γ(yγ̄ − ψ)]

+
1

2

[
γ̄2

γ
(yγ̄ − ψ)2 − γ̄(yγ̄ − ψ)2 + (γ̄ − γ)(yγ̄ − ψ)(yγ − ψ)

]
,

and thus on Pγ̄ ∩ Pγ̄

(γ̄ − γ)−1z =
−1

2γ̄γ
(λ̄ + γ̄(yγ − ψ))2 +

λ̄

γ
(yγ̄ − ψ)

+
1

2

[
γ̄

γ
(yγ̄ − ψ)2 + (yγ̄ − ψ)(yγ − ψ)

]
.

By Lebesgue’s bounded convergence theorem,

lim
γ̄→γ

1

γ̄ − γ
I1 = lim

γ̄→γ

1

γ̄ − γ

∫
Ω

z χPγ̄∩Pγ

= − 1

2γ2

∫
Ω

((λ̄ + γ(yγ − ψ))+)2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

Together with (24) and (25), this implies the claim.
Remark 4.1. Note that V̇ is characterized without recourse to ẏγ .

The boundedness of {γ2V̇ (γ)}γ≥0 is established next. In what follows we use
(v)− = −min(0, v).

Proposition 4.4. If λ̄ = 0 and a(v+, v−) = 0 for all v ∈ H1
0 (Ω), then

{γ2V̇ (γ)}γ≥0 is bounded. If (11) and (12) hold, then again {γ2V̇ (γ)}γ≥0 is bounded.
Proof. In the case λ̄ = 0 we have

a(yγ − ψ, v) + γ((yγ − ψ)+, v) = (f, v) − a(ψ, v) for all v ∈ H1
0 (Ω).

Since (yγ − ψ) ∈ H1
0 (Ω) and a((yγ − ψ)+, (yγ − ψ)−) = 0 we have, using (6) with

v = (yγ − ψ)+,

ν|(yγ − ψ)+|2H1
0 (Ω) + γ|(yγ − ψ)+|2L2 ≤ |f |L2 |(yγ − ψ)+|H1

0
+ μ|ψ|H1 |yγ − ψ|H1 .
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This implies the existence of a constant K, depending on |ψ|H1 and |f |L2 but inde-
pendent of γ ≥ 0, such that γ|(yγ − ψ)+|L2 ≤ K. Since V̇ (γ) = 1

2

∫
Ω
|(yγ − ψ)+|2 the

claim follows.
Turning to the feasible case with (11) and (12) holding, we have that yγ ≤ ψ for

every γ > 0, and hence (λ̄ + γ(yγ − ψ))(x) > 0 if and only if λ̄(x) > γ(ψ − yγ)(x).
Consequently,

|V̇ (γ)| ≤ 1

2γ2

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(ψ − yγ)

≤ 3

2γ2
|λ̄|2L2 ,

which again implies the claim.
Before we investigate V̈ , we state a result which connects γV̇ (γ), |y∗−yγ |H1

0
, and

V ∗ − V (γ), where V ∗ = limγ→∞ V (γ). It will be used in section 6.1 for designing a
γ-update strategy.

Proposition 4.5. In the feasible and infeasible cases the following estimate holds
true:

|y∗ − yγ |2H1
0
≤ 2

ν

(
V ∗ − V (γ) − γV̇ (γ)

)
.

Proof. We have V ∗ − V (γ) = J(y∗) − J(yγ ; γ) and

J(y∗) − J(yγ ; γ) ≥ ν

2
|y∗ − yγ |2H1

0
+ a(yγ , y

∗ − yγ) − (f, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2 ,

where we have used (6). From (OCγ) we have

a(yγ , y
∗ − yγ) − (f, y∗ − yγ) = −((λ̄ + γ(yγ − ψ))+, y∗ − yγ),

and hence

J(y∗) − J(yγ ; γ) ≥ ν

2
|y∗ − yγ |2H1

0
− ((λ̄ + γ(yγ − ψ))+, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

≥ ν

2
|y∗ − yγ |2H1

0
− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

+ ((λ̄ + γ(yγ − ψ))+, yγ − ψ)

=
ν

2
|y∗ − yγ |2H1

0
+ γV̇ (γ).

This completes the proof.
Below we shall assume that yγ − ψ ∈ C(Ω̄). Recall that for dimension n ≤ 3 and

with (6) and (8) holding, we have yγ ∈ H2(Ω) ⊂ C(Ω̄).
Proposition 4.6. Let ẏγ denote any accumulation point of (γ̄ − γ)−1(yγ̄ − yγ)

as γ̄ → γ.
(a) If λ̄ = 0, yγ − ψ ∈ C(Ω̄), and (8) is satisfied, then γ → V (γ) is twice

differentiable at γ with

V̈ (γ) =

∫
Ω

(yγ − ψ)+ẏγ .(26)
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(b) For arbitrary λ̄, if meas(S◦
γ) = 0, then γ → V (γ) is twice differentiable at γ

with

V̈ (γ) =
1

γ3

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

− 2

γ2

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)

+
1

γ

∫
Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χSγ .

(27)

Proof. (a) On the subsequence γn realizing the accumulation point, we have
that limn→∞(γn − γ)−1(V̇ (γn)− V̇ (γ)) equals the right-hand side of (26). The claim
will be established by verifying that the accumulation points ẏγ restricted to Sγ =
{x : yγ(x) − ψ(x) > 0} are unique. Let z denote the difference of two accumulation
points. By (16) and (19) we have

a(z, v) + γ(z, v) = 0 for all v ∈ H1
0 (Ω) with v = 0 on Ω \ Sγ .

Using (8) and the fact that Sγ is an open set relative to Ω due to the continuity of
yγ − ψ, we find that z = 0 in Sγ , as desired.

(b) Let ẏγ denote any accumulation point of (γ̄ − γ)−1(yγ̄ − yγ) as γ̄ ↓ γ, and
recall the notation g(γ) = λ̄+ γ(yγ − ψ) and S+

γ from section 3. On the subsequence
realizing the accumulation point we find

lim
γ̄→γ

1

γ̄ − γ
(V̇ (γ̄) − V̇ (γ)) =

1

γ3

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

− 2

γ2

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)

+
1

γ

∫
Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χS+
γ
.

(28)

By assumption, meas(S◦
γ) = 0 and, hence the right-hand sides of (27) and (28) coin-

cide. Since ẏγ is unique by Corollary 3.8 the claim is established.

5. Model functions. In this section we derive low-parameter families of func-
tions which approximate the value functional V and share some of its qualitative
properties. We will make use of these models in the numerics section when devising
path-following algorithms.

5.1. Infeasible case. Throughout this subsection we assume (8) and

λ̄ = 0, yγ − ψ ∈ C(Ω̄) for all γ ∈ (0,∞).(29)

Observe that (8), together with the general assumption (6), implies (11). In fact, for
any v ∈ H1

0 (Ω) we have a(v, v+) ≥ γ|v+|2, and hence 0 ≥ a(v, v+) implies v+ = 0.
Proposition 5.1. The value function V satisfies V̇ (γ) ≥ 0 and V̈ (γ) ≤ 0 for

γ ∈ (0,∞).
Proof. Proposition 4.2 implies that V̇ (γ) ≥ 0. Moreover, yγ2 ≤ yγ1 for γ2 ≥ γ1 > 0

and hence ẏγ ≤ 0 a.e. on Sγ . Consequently V̈ (γ) ≤ 0 by Proposition 4.6.
A model function m for the value function V should reflect the sign properties

of V and its derivatives. Moreover, V (0) gives the value of (P̂), and hence we shall
require that m(0) = V (0). Finally from Lemma 3.2 we conclude that V is bounded
on [0,∞). All these properties are satisfied by functions of the form

m(γ) = C1 −
C2

E + γ
(30)
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with C1 ∈ R. Here C2 ≥ 0, E > 0 satisfy

m(0) = V (0) = C1 −
C2

E
.(31)

Other choices for model functions are also conceivable, for example, γ → C1 − C1

(E+γ)r

with r > 1. Note, however, that the asymptotic behavior of the model in (30) is
such that γ2ṁ(γ) is bounded for γ → ∞. This is consistent with the boundedness of
γ2V̇ (γ) for γ → ∞ asserted in Proposition 4.4.

Another reason for choosing (30) is illustrated next. Choosing v = (yγ − ψ)+ in
(OCγ), we find

a(ẏγ , (yγ − ψ)+) + |(yγ − ψ)+|2L2 + γ

∫
Ω

(yγ − ψ)+ẏγ = 0.(32)

For the following discussion we

replace a(·, ·) by E(·, ·) with E > 0 a constant, and V by m.(33)

By Proposition 4.2 and (26) the following ordinary differential equation is obtained
for m:

(E + γ) m̈(γ) + 2 ṁ(γ) = 0.(34)

The solutions to (34) are given by (30). To get an account for the quality of our model
in (30) we refer to the left-hand plot of Figure 4 in section 6.

5.2. Feasible case. Throughout this subsection we assume

(11), λ̄ satisfies (12), and meas (S◦
γ) = 0 for all γ ∈ (0,∞).(35)

Proposition 5.2. The value function V satisfies V̇ (γ) ≤ 0 and V̈ (γ) ≥ 0 for
γ ∈ (0,∞).

Proof. By Proposition 2.2 we have yγ ≤ ψ and hence V̇ (γ) ≤ 0 by Proposition
4.2. A short computation based on (27) shows that

V̈ (γ) =
1

γ3

∫
Ω

χλ̄2 +

∫
Ω

χ(yγ − ψ)ẏγ ≥ 1

γ

∫
Ω

χ(yγ − ψ)2 +

∫
Ω

χ (yγ − ψ)ẏγ ,(36)

where χ is the characteristic function of the set Sγ = {λ̄+ γ(yγ −ψ) > 0}. From (22)
we have

γ|ẏγ |L2(Sγ) ≤ |ψ − yγ |L2(Sγ),

and hence V̈ (γ) ≥ 0.
An immediate consequence is stated next.
Lemma 5.3. If the solution to the unconstrained problem is not feasible, then

limγ↓0 V (γ) = ∞.
Proof. Assume that limγ↓0 V (γ) is finite. Then, using (Pγ), there exists a sequence

γn → 0 and ỹ ∈ H1
0 (Ω) such that yγn ⇀ ỹ weakly in H1

0 (Ω), with yγn the solution to
(Pγn), and λγn = max(0, λ̄+ γn(yn −ψ)) → 0 in L2(Ω). Consequently ỹ ≤ ψ. Taking

the limit with respect to n in (OCγn), it follows that ỹ ≤ ψ is the solution to (P̂),
which contradicts our assumption.
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From Lemmas 3.2 and 5.3 and Proposition 5.2 it follows that γ → V (γ), γ ∈
(0,∞), is a monotonically strictly decreasing convex function with limγ→0+ V (γ) = ∞.
All these properties are also satisfied by functions of the form

m(γ) = C1 − C2

E + γ
+

B

γ
,(37)

provided that C1 ∈ R, C2 ≥ 0, E > 0, B > 0, and C2 ≤ B.
We now give the motivation for choosing the model function m for V as in (37).

From (22) with v = (yγ − ψ)χ we get

a(ẏγ , (y − ψ)χ) + γ(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0,

where χ = χSγ . As in the infeasible case we replace a(·, ·) by E(·, ·), with E a constant,
and using (22), we arrive at

(E + γ)(ẏγχ, v) + ((yγ − ψ)χ, v) = 0.

The choice v = yγ − ψ implies

(E + γ)(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0.(38)

Note that V̇ (γ) can be expressed as

V̇ (γ) = − 1

2γ2

∫
Ω

λ̄2χ +
1

2

∫
Ω

(yγ − ψ)2χ.(39)

Using (36) and (39) in (38), and replacing V by m, due to the substitution for a(·, ·),
we find

(E + γ)m̈ + 2ṁ− E γ−3

∫
Ω

χ λ̄2 = 0.

We further replace
∫
Ω
χλ̄2, which is a bounded quantity depending on γ, by 2B, and

obtain, as the ordinary differential equation that we propose for the model function
m in the feasible case,

(E + γ)m̈ + 2ṁ− 2γ−3EB = 0.(40)

The family of solutions is given by (37). In the right-hand plot of Figure 4 in section 6
we depict the approximation quality of m(γ).

6. Path-following algorithms. In this section we study the basic Algorithm
B together with a variety of adjustment schemes for the path parameter γ. For this
purpose recall that, depending on the shift parameter λ̄, the elements yγ along the
primal-dual path are feasible or infeasible. As we have seen in the previous section,
this implies different models for approximating the value function V . We will see,
however, that for γ > 0 in both cases similar strategies for updating γ may be used.
When referring to the infeasible or feasible case, (29), respectively (35), is assumed
to hold.

The subsequent discussion is based on the following two-dimensional test prob-
lems. We point out that the bound ψ in problem P1 below does not satisfy ψ ∈ H1(Ω).
However, as we shall see, the feasible and infeasible primal-dual path as well as the al-
gorithms introduced subsequently still perform satisfactorily. We include this example
since discontinuous obstacles are of practical relevance.
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Test problem P1. We consider (8) with aij = δij , with δij the Kronecker symbol,
d = 0, and Ω = (0, 1)2. We choose

f(x1, x2) = 500x1 sin(5x1) cos(x2)

and ψ ≡ 10 on Ω \K, and ψ ≡ 1 on K with K = {x ∈ Ω : 1
5 ≤ ‖x− ( 1

2 ,
1
2 )�‖2 ≤ 2

5}.
The solution y∗, the obstacle ψ, and the active set A∗ at the solution are shown in
Figure 1.

Fig. 1. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P1.

Test problem P2. Again we consider (8), with aij , d, and Ω as before, and define

y† :=

⎧⎪⎪⎨⎪⎪⎩
x1 on T1 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≤ 1 − x1},
1 − x2 on T2 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≥ 1 − x1},
1 − x1 on T3 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≥ 1 − x1},
x2 on T4 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≤ 1 − x1}.

(41)

The obstacle ψ is defined by ψ ≡ y† on S1 := {x ∈ Ω : ‖x− ( 1
2 ,

1
2 )�‖∞ ≤ 1

4}, ψ ≡ 1
4

on S2 \ S1, and

ψ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x1 on T1 ∩ (Ω \ S2),
1
4 − 2(x2 − 7

8 ) on T2 ∩ (Ω \ S2),
1
4 − 2(x1 − 7

8 ) on T3 ∩ (Ω \ S2),

2x2 on T4 ∩ (Ω \ S2),

with S2 := {x ∈ Ω : ‖x− ( 1
2 ,

1
2 )�‖∞ ≤ 3

8}. The forcing term is given by

(f, φ)L2 =

∫
Ω+

φ(s)ds + (χS1 , φ)L2 +

∫
S1∩Ω+

φ(s)ds for all φ ∈ H1
0 (Ω),
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where Ω+ := {x ∈ Ω : x2 = x1}∪{x ∈ Ω : x2 = 1−x1}. We recall that for φ ∈ H1
0 (Ω),

Ω ⊂ R2, the traces along smooth curves are well defined. The solution y∗ is given
by y∗ = y†. The active or coincidence set at the solution is A∗ = S1. The Lagrange
multiplier λ∗ = f + Δy∗ is in H−1(Ω) and enjoys no extra regularity. In Figure 2 we
display the optimal solution y∗, the obstacle ψ, and the active set A∗.

Fig. 2. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P2.

Test problem P3. For this test problem (8) is satisfied. We therefore obtain
y∗ ∈ H2(Ω) and λ∗ ∈ L2(Ω). The coefficients aij and d as well as Ω are as before. The
volume force f is given by f = −Δv with v(x1, x2) = sin(3πx1) sin(3πx2). Further, we
have ψ = 1

4 − 1
10 sin(πx1) sin(πx2). The optimal solution y∗, the Lagrange multiplier

λ∗, and the active set at y∗ are displayed in Figure 3.
Unless specified otherwise, the subsequent algorithms are initialized by y0 =

(−Δ)−1f , where −Δ denotes the Laplacian with homogeneous Dirichlet boundary
conditions. The initial Lagrange multiplier is chosen as λ0 = γ0χ{y0>ψ}(y0 − ψ).

The discretization of −Δ is based on the classical five-point finite difference sten-
cil. We denote the mesh size by h, which we occasionally drop for convenience. The
forcing term f in P2 is discretized by f = −Δy† + χS1e+ χS1(−Δy†), where e is the
vector of all ones and χS1 represents a diagonal matrix with entry (χS1)ii = 1 for
grid points xi ∈ S1 and (χS1)ii = 0 otherwise. Above y† denotes the grid function
corresponding to (41).

6.1. A strategy based on model functions—exact path-following. As
outlined in section 5, there are good reasons to trust our model functions (30) and
(37) in the infeasible and feasible cases, respectively. Let us start by focusing on the
infeasible case. The model is given by m(γ) = C1 − C2(E + γ)−1. For determining
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0 1
0 

1
Active set P3

Fig. 3. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P3.

the three parameters C1, C2, and E, we use the information V (0), V (γ), V̇ (γ), which,
by Proposition 4.2, is available from one solve of the unconstrained problem (P̂) and
one solve for (Pγ). The conditions

m(0) = V (0), m(γ) = V (γ), ṁ(γ) = V̇ (γ)(42)

yield

E = γ2V̇ (γ)
(
V (γ) − V (0) − γV̇ (γ)

)−1

,

C2 = γ−1E(E + γ) (V (γ) − V (0)) ,(43)

C1 = V (0) + C2E
−1.

We could have used an alternative reference value γr ∈ (0, γ) and computed m(γr) =
V (γr) instead of m(0) = V (0). In Figure 4 we compare V (γ) to m(γ) for different
values of the coefficients (C1, C2, E). These coefficients depend on different values
yf for γ (in (42)) produced by Algorithm EP (see below) for problem P1. The solid
line corresponds to V (γ). The corresponding γ-values γf for (42) are depicted in the
legend of the left plot in Figure 4. The dotted and dashed line belong to rather small
γ-values, and the dashed-dotted and the circled lines to large γf in (42). As we can
see, the dotted line is accurate in the range of relatively small γf , while the other lines
are more accurate for large γf . From now on we consider only the choices γr = 0 and
γ = γk in (42) when updating γk.

Next we discuss properties of the model parameters E, C1, C2 according to (43).
For this purpose assume that the solution ŷ to (P̂) is not feasible for (P). Then
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Fig. 4. Left: Model m(γ) vs. V (γ) (solid) in the infeasible case for P1. Right: Model m(γ) vs.
V (γ) in the feasible case.

by Corollary 4.3 we have V̇ (γ) > 0 for all γ > 0. Consequently V (γ) > V (0) and
V (γ) − V (0) − γV̇ (γ) = −

∫ γ

0

∫ γ

s
V̈ (σ)dσds > 0, and hence E > 0 and C2 > 0 for all

γ ∈ (0,+∞). This implies m(γ) ≤ C1 and m(γ) → C1 for γ → +∞.
We propose the following update strategy for γ: Let {τk} satisfy τk ∈ (0, 1) for

all k ∈ N and τk ↓ 0 as k → ∞, and assume that V (γk) is available. Then, given γk,
the updated value γk+1 should ideally satisfy

|V ∗ − V (γk+1)| ≤ τk|V ∗ − V (γk)|.(44)

Since V ∗ and V (γk+1) are unknown, we use C1,k and our model mk(γ) = C1,k −
C2,k/(Ek + γ) at γ = γk+1 instead. Thus, (44) is replaced by

|C1,k −mk(γk+1)| ≤ τk|C1,k − V (γk)| =: βk.(45)

Solving the equation C1,k −mk(γk+1) = βk, we obtain

γk+1 =
C2,k

βk
− Ek.(46)

In Theorem 6.1 we shall show that γk+1 ≥ κγk, with κ > 1, independently of k ∈ N.
Before we turn to the feasible case, we interpret (44) in view of Proposition 4.5

in the infeasible case. Recall that V ∗ ≥ V (γ), and observe that |V ∗ − V (γ)| =
O(|y∗ − yγ |H1

0
). Proposition 4.5 yields

|y∗ − yγ |2H1
0
≤ 2

ν
(V ∗ − V (γ))

since V̇ (γ) > 0. Setting τk = ω2
k|V ∗ − V (γk)|, with ωk → 0, in (44) yields

|y∗ − yγk+1
|2H1

0
≤ Cτω

2
k|y∗ − yγk

|2H1
0
.

Consequently, we obtain

|y∗ − yγk+1
|H1

0

|y∗ − yγk
|H1

0

≤ Cτωk,
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which implies q-superlinear convergence of {yγk
} in H1

0 (Ω).
In the feasible case, i.e., when λ̄ satisfies (12), we use the model m(γ) = C1 −

C2(E + γ)−1 +Bγ−1 with C2 ≥ 0 and E,B > 0; see (37). Let γr > 0, γr �= γ, denote
a reference γ-value; then we use the conditions

m(γr) = V (γr), ṁ(γr) = V̇ (γr), m(γ) = V (γ), ṁ(γ) = V̇ (γ)

for fixing B, C1, C2, E. Solving the corresponding system of nonlinear equations, we
get

E =

((
(γr − γ)(V̇ (γr)γ

2
r + V̇ (γ)γ2) + 2γrγ(V (γ) − V (γr)

))
(
(V̇ (γ)γ + V̇ (γr)γr)(γ − γr) + (γr + γ)(V (γr) − V (γ))

)
and

B =
γ2
rγ

2
(
(V (γ) − V (γr))

2 − V̇ (γ)V̇ (γr)(γ − γr)
2
)

(
(γ − γr)2(V̇ (γr)γ2

r + V̇ (γ)γ2) + 2(γ − γr)γrγ(V (γr) − V (γ))
)

Then the parameters C1 and C2 are given by

C2 = (E + γ)2
(
B

γ2
+ V̇ (γ)

)
,

C1 = V (γ) +
C2

E + γ
− B

γ
.

In the right plot of Figure 4 we show |m(γ) − V (γ)| with m(γ) produced by the
iterates of Algorithm EP for P1 similar to the infeasible case. Again we can see that
our model yields a close approximation of the value function V .

If we require that (45) be satisfied in the feasible case, then we obtain the following
update strategy for γ:

γk+1 = −Dk

2
+

√
D2

k

4
+

BkEk

βk
,(47)

where Dk = Ek + (C2,k − Bk)/βk. In Theorem 6.1 we shall establish γk+1 ≥ κγk for
all k ∈ N0 with κ > 1 independent of k.

Next we describe an exact path-following version of Algorithm B, which utilizes
the update strategy (45) for updating γ.

Algorithm EP.

(i) Select γr. Compute V (γr), and choose γ0 > max(1, γr); set k = 0.
(ii) Apply Algorithm B to obtain yγk

.

(iii) Compute V (γk), V̇ (γk), and γk+1 according to (46) in the infeasible case or
(47) in the feasible case.

(iv) Set k = k + 1, and go to (ii).
Concerning the choice of γr note that in the infeasible case we have γr ≥ 0, and

in the feasible case γr > 0. Convergence of Algorithm EP is addressed next.
Theorem 6.1. Assume that the solution to (P̂) is not feasible for (P). Then the

iterates γk of Algorithm EP tend to ∞ as k → ∞, and consequently limk→∞(yγk
, λγk

) =
(y∗, λ∗) in H1

0 (Ω) ×H−1(Ω)weak.
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Proof. Let us consider the infeasible case. Then (45) is equivalent to

0 < C1,k −mk(γk+1) < τk(C1,k −mk(γk)).(48)

Since γ → mk(γ) is strictly increasing and τk ∈ (0, 1), it follows that γk+1 > γk for
every k = 0, 1, . . . . If limk→∞ γk = ∞, then limk→∞(yγk

, λγk
) = (y∗, λ∗). Otherwise

there exists γ̄ such that limk→∞ γk = γ̄. Since γ → V (γ) and γ → V̇ (γ) are continuous
on (0,∞), it follows from (42) and (43) that limk→∞ Ek = E(γ̄), limk→∞ C1,k =
C1(γ̄), and limk→∞ C2,k = C2(γ̄), where E(γ̄), C1(γ̄), C2(γ̄) are given by (43) with γ
replaced by γ̄. Taking the limit with respect to k in (48), we arrive at

C2(γ̄)

E(γ̄) + γ̄
= 0,

which is impossible, since C2(γ̄) > 0 and E(γ̄) > 0 if the solution to (P̂) is not feasible
for (P). Thus limk→∞ γk = ∞. The feasible case is treated analogously.

Numerically we stop the algorithm as soon as ‖(r1,h
k , r2,h

k , r3,h
k )�‖2 ≤ √

εM , where

r1,h
k = ‖yhγk

+ (−Δh)−1(λh
γk

− fh)‖H−1,h/‖fh‖H−1,h ,

r2,h
k = ‖λh

γk
− max(0, λh

γk
+ yhγk

− ψh)‖H−1,h ,

r3,h
k = ‖max(0, yhγk

− ψh)‖Lh
2
,

and εM denotes the machine accuracy. Here | · |H−1,h denotes the discrete version of
| · |H−1 . For some vector v it is realized as |v|H−1 = |∇h(−Δh)−1v|Lh

2
with | · |Lh

2
the

discrete L2-norm and ∇h a forward difference approximation of the gradient operator;
see [8]. The inner iteration, i.e., Algorithm B for γ = γk, is terminated if successive
active sets coincide or

‖ − Δhyh,lγk
+ λh,l

γk
− fh‖H−1,h

‖fh‖H−1,h

≤ √
εM .

Here the superscript l = l(k) denotes the iteration index of Algorithm B for fixed k.
For a discussion and numerical results in the case where the approximation errors due
to the discretization of the underlying function space problems are incorporated into
the algorithmic framework, e.g., when stopping the algorithm, we refer to the next
section 6.2.

The initialization of γ is as follows: In the infeasible case we propose a choice of
γ0 based on the deviation of the linearization of V (γ) at γ = γr from the objective
value of the unconstrained problem (P̂) at the projection of yγr onto the feasible set.

In our realization of this heuristic we choose γr = 0 and compute ŷ, V (0), and V̇ (0).
Then we set

γ0 = max

{
1, ζ

J(yb) − V (0)

V̇ (0)

}
,(49)

where ζ ∈ (0, 1] is some fixed constant, yb(x) = min(ŷ, ψ(x)), and J denotes the
objective function of (P̂). Note that ŷ is the minimizer of the unconstrained problem
(P̂). For the examples below we use ζ = 1. In the feasible case we choose a reference
value γr, e.g., γr = 1, and solve the path problem (Pγ). Then we choose

γ0 = γr +
J(ŷ) − V (γr)

V̇ (γr)
,(50)
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where ŷ denotes the minimizer of the discretized unconstrained problem (P̂). If ŷ is
not feasible for (P), then one has J(ŷ) < V (γr) and hence γ0 > γr.

When applied to P1, P2, and P3 for h = 1/128 and with τk = 0.01k+1, we obtain
the results shown in Figure 5 and Table 6.1.
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Fig. 5. Number of inner iterations (vertical axis) per outer iteration for P1 (left plot), P2
(middle plot), and P3 (right plot); solid line – infeasible case, dashed line – feasible case.

Table 6.1

Comparison of iteration counts.

P1 P2 P3
Version # outer # inner # outer # inner # outer # inner

Feasible 5 44 4 10 4 31
Infeasible 4 15 4 11 4 16

From our test runs, also for other test problems, we observe the following char-
acteristics:

• For the feasible version the number of inner iterations exhibits an increasing
tendency until a saturation value is reached, and then, unless the algorithm
stops at an approximate solution, it starts to decrease. For the infeasible
version we typically observe that the first couple of iterations require several
inner iterations. As the outer iterations proceed the number of inner iterations
drops eventually to one. We also tested less aggressive γ-updates compared
to the ones used here, e.g., updates based on γk+1 = ξγk with ξ > 1 fixed.

• The numerically observable convergence speed of yγk
towards y∗ in H1

0 (Ω) is
typically superlinear. This can be seen from Figure 6, where the plots for the
discrete versions qhk of the quotients

qk =
|yγk+1

− y∗|H1
0

|yγk
− y∗|H1

0

are shown. Note that the vertical axis uses a logarithmic scale. In the first
row, for P1 we depict the behavior of qhk for h = 2−i, i = 5, 6, 7, 8, for the
infeasible case (left plot) and the feasible case (right plot). We observe that
the convergence rate is stable with respect to decreasing mesh size h. In the
second row we see the behavior of qhk for P2 and P3, with h = 2−7. Again,
we observe a superlinear rate of convergence. With respect to decreasing h
the same conclusion as for P1 holds true. These stability results provide a
link between our function space theory and the numerical realization of the
algorithms.
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Fig. 7. Difference in active sets for P1 and P2; solid line – infeasible case, dashed line – feasible
case.

• In connection with the convergence speed it is of interest how the detection
process of the correct active set works. For the rather aggressive γ-updates
used in Algorithm EP the difference between two successive active sets is zero
typically only in the last iteration. However, if a less aggressive strategy for
updating γ is used, then it is to be expected, that the difference of active sets
might become zero earlier along the iteration. In Figure 7, for the strategy
γk+1 = 2γk, we show the difference of successive active sets; i.e., the vertical
axis relates to the number of grid points that are in Ak+1 but not in Ak

and vice versa. We detect that for the infeasible case there exists an iteration
index k̄ after which the difference is constantly zero. This behavior is a strong
indication that the correct active set was detected. It suggests that we fix this
set Ak̄ and set ȳ|Ak̄

= ψ|Ak̄
, Ik̄ = Ω \ Ak̄, and λ̄Ik̄

= 0. Then one computes
ȳ|Ik̄

and λ̄Ak̄
such that a(ȳ, v) + 〈λ̄, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 (Ω), and

checks whether (ȳ, λ̄) satisfies (7). If this is the case, then the solution is
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found; otherwise γk̄ is updated and the iteration continued. If we apply this
technique for P1 in the infeasible case, then the algorithm stops at iteration
15 (35 inner iterations) with the exact discrete solution, as compared to 28
outer and 47 inner iterations without the additional stopping rule. There were
four iterations where the additional system solve was necessary but without
obtaining the numerical solution. Hence, with respect to system solves, the
amount of work drops from 47 solves to 39 (= 35 + 4). A similar observation
is true for P2 and P3. In the feasible case, however, this strategy yields no
reduction of iterations. Here, typically the correct active set is determined in
the last iteration (for large enough γ).

• The dependence of the iteration number on the mesh size of the discretiza-
tion for P1 is depicted in Table 6.2 (those for P2 and P3 are similar). In
parenthesis we show the number of inner iterations. The results clearly in-
dicate that the outer iterations are mesh independent, while the number of
inner iterations increases as the mesh size decreases. In the third row we
display the results obtained by applying Algorithm A for the solution of the
unregularized problem (P) with data according to P1. If we compare these
results with those of the infeasible exact path-following algorithm, we find
that for sufficiently small mesh sizes h the infeasible version of Algorithm EP
requires significantly fewer iterations than does Algorithm A, which is also an
infeasible algorithm. Also, the number of iterations required by Algorithm
A exhibits a relatively strong dependence on h when compared to Algorithm
EP in the infeasible case. Similar observations apply also to P2 and P3. This
shows that taking into account the function space theoretic properties when
regularizing problem (P) results in an algorithmic framework which performs
stably with respect to decreasing mesh size of the discretization.

Table 6.2

Comparison of iteration counts for different mesh sizes.

Mesh size h
Version 1/16 1/32 1/64 1/128 1/256

EP feasible 5(19) 5(23) 5(30) 5(44) 5(72)
EP infeasible 4(8) 4(11) 4(13) 4(15) 4(19)

Algorithm A 4 8 14 26 48
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Fig. 8. γ-updates; solid line – infeasible case, dashed line – feasible case.

• From the plots in Figure 8, where the y-axis again has a logarithmic scale,
it can be seen that our strategy (45) produces a rapidly increasing sequence



PATH-FOLLOWING METHODS 183

{γk}. The plots in Figure 8 depict the increase of γk as a function of the
iteration number. The question arises of whether one could increase γ more
rapidly. Numerical examples employing an ad hoc strategy show that if γ is
increased too quickly, then the numerical error may prevent the residuals of
the first order system from dropping below

√
εM . This effect is due to the

ill-conditioning of the linear systems for large γ. On the other hand, small
increases in γ result in a slow convergence speed of Algorithm EP. Further,
in our test runs and as can be seen from Figure 8, the feasible version of
Algorithm EP is less aggressive in enlarging γk.

6.2. Inexact path-following. While exact path-following is primarily of the-
oretical interest, the development of inexact path-following techniques that keep the
number of iterations as small as possible is of more practical importance. The strat-
egy in the previous section relies on the fact that for every γk the corresponding point
on the primal-dual path is computed. This, however, is not the case for inexact tech-
niques and, as a consequence, a different update strategy for the path parameter γ
is necessary. A common concept in inexact path-following methods is based on the
definition of an appropriate neighborhood of the path; see, e.g., [3] and the references
therein for a noninterior neighborhood-based path-following method, or [5, 16, 18, 19]
for path-following techniques related to interior point methods. It is typically re-
quired that the primal-dual iterates stay within the neighborhood of the path, with
the goal to reduce the computational burden while still maintaining convergence of
the method.

We define

r1
γ(y, λ) = ‖ − Δy + λ− f‖H−1 ,(51a)

r2
γ(y, λ) = ‖λ− max(0, λ + γ(y − ψ))‖H−1 ,(51b)

and the neighborhood

N (γ) :=

{
(y, λ) ∈ H1

0 (Ω) × L2(Ω) : ‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

}
(52)

in the infeasible case and

N (γ) :=

{
(y, λ) ∈ H1

0 (Ω) × L2(Ω) :‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

∧ ∂

∂γ
J(y; γ) ≤ 0

}
(53)

in the feasible case. Above, τ > 0 denotes some fixed parameter. Note that adding
the condition ∂

∂γJ(y; γ) ≥ 0 in (52) yields no further restriction, since this condition

is automatically satisfied by the structure of J(y; γ). We also point out that the
conditions on the derivative of J(y; γ) are included in (52) and (53), respectively,
in order to qualitatively capture (up to first order) the analytical properties of the
primal-dual path.

Next we specify our framework for an inexact path-following algorithm.
Algorithm IP.

(i) Initialize γ0 according to (49) in the infeasible case or (50) in the feasible
case; set k := 0.
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(ii) Apply Algorithm B to find (yk+1, λk+1) ∈ N (γk).
(iii) Update γk to obtain γk+1.
(iv) Set k = k + 1, and go to (ii).

Note that if in step (ii) the path-problem (Pγ) is solved, then r1
γ(yγ , λγ) = r2

γ(yγ , λγ) =
0.

As is the case with primal-dual path-following interior point methods, the update
strategy for γ in step (iii) of Algorithm IP is a delicate issue. If the increase of γ
from one iteration to the next is rather small, then we follow the path closely, and the
convergence speed is slow. If the γ-update is too aggressive, then step (ii) requires
many iterations of Algorithm B to produce iterates in the neighborhood. We propose
the following strategy, which performed very well in our numerical tests.

We introduce the primal infeasibility measure ρF and the complementarity mea-
sure ρC as follows:

ρFk+1 :=

∫
Ω

(yk+1 − ψ)+dx,(54)

ρCk+1 :=

∫
Ik+1

(yk+1 − ψ)+dx +

∫
Ak+1

(yk+1 − ψ)−dx,(55)

where (·)− = −min(0, ·) and (·)+ = max(0, ·). Note that at the optimal solution both
measures vanish. Further, we point out that ρC is related to the duality measure well
known from primal-dual path-following interior point methods. These measures are
used in the following criterion for updating γ:

γk+1 ≥ max

(
γk max

(
τ1,

ρFk+1

ρCk+1

)
,

1

(max(ρFk+1, ρ
C
k+1))

q

)
(56)

with τ1 > 1 and q ≥ 1. The first term in the outermost max-expression is used
because of our observation that ρFk+1 ≥ ρCk+1 in the infeasible case. If ρC is small

compared to ρF , we find that the iterates primarily lack feasibility as compared to
complementarity. Therefore, a strong increase in γ, which aims at reducing constraint
infeasibility, is favorable. If both measures are of almost the same size and rather
small, then the second term in the outer max-expression should yield a significant
increase in γ. Typically q ∈ [ 32 , 2] is chosen, which induces growth rates for γ.

If there is still a significant change in the active sets from one iteration to the next
and the update γk+1 based on (56) would be too large compared to γk, then many
inner iterations would be necessary to keep track of the path, or very conservative
γ-updates in the following iterations have to be chosen. We safeguard the γ-updates
by utilizing our model function m(γ), which was found to be a reliable tool. In fact,
in updating γ, large deviations from m(γ) are prohibited by comparing the value of
the tangent to J(y; γ) at γ = γk with the actual model value. If necessary and as long
as γk+1 is much larger than γk, we reduce the actual γ-value until

|tk(γk+1) −mk(γk+1)| ≤ τ3|J(yk+1; γk) − J(yk; γk−1)|(57)

with 0 < τ3 < 1, tk(γ) = J(yk+1; γk) + ∂J
∂γ (yk+1; γk)(γ − γk), and mk(γ) the model

related to γk. Recall that mk(γk) = J(yk+1; γk). The motivation of this strategy
utilizes the good approximation qualities of our models. Indeed, for small γ the
distance between tk and mk might be large, but so is |J(yk+1; γk)−J(yk; γk−1)| since
the change in the function value is expected to be relatively large for small γ. For
large γ, however, both difference measures tend to be small.
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Concerning the numerical realization of Algorithm IP in the discrete setting we
point out that by an a posteriori analysis of the discretization errors one finds that the
norm of the residuals in (51a) and (51b) can be approximated typically to the order
of h. This can be used as an upper bound for γ in the discrete versions of (52) and
(53), respectively. However, since, on a fixed grid, our discrete versions of (P) and
(Pγ) are consistent (as γ → ∞) and admit unique solutions in RNh , where Nh ∈ N

depends on the mesh size of discretization h, it is of interest to consider γ → ∞. On
a fixed grid, this allows us also to study the behavior of our discretized algorithms
as finite dimensional solvers for problems similar to the discrete versions of the ones
under consideration. With respect to the latter aspect, below we report on test runs
of Algorithm IP when applied to our test problems P1, P2, and P3. The parameters
had values q = 1.5, τ1 = 10, τ3 = 0.999, τ = 1e6. The stopping rule for the outer
iteration is as before.

P1. The infeasible version of Algorithm IP requires 9 outer iterations and at most
2 inner iterations per outer iteration. In particular, in many iterations the criterion
(yk+1, λk+1) ∈ N (γk) was satisfied within 1 inner iteration. The feasible version of
Algorithm IP stops after 11 iterations. With respect to inner iterations in the feasible
case we note that more than 1 or 2 inner iterations were necessary only in the last
3 outer iterations with 3, 4, and 6 inner iterations, respectively. For both runs, the
behavior of the measures ρF and ρC is shown in Figure 9. Note that the vertical scale
is a logarithmic one. The left plot corresponds to the infeasible case. The feasibility
measure ρF and the complementarity measure ρC are both convergent at a superlinear
rate. In the feasible case, which is depicted in the right plot, we observe that ρC is
only linearly convergent. In some iterations we have ρFk > 0. However, the constraint
violation is of the order of the machine precision and thus negligible.

1 2 3 4 5 6 7 8 9

10
−13

10
−10

10
−5

10
−3
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outer iteration

Fig. 9. Behavior of the measures ρF (solid) and ρC (dashed) for P1, left plot – infeasible case,
right plot – feasible case.

P2. For this test problem the infeasible version of Algorithm IP required 11
iterations with one inner iteration per outer iteration. The feasible version needed 6
outer iterations and 9 inner iterations.

P3. The behavior of Algorithm IP for solving P3 is comparable to its behavior
for P1 and P2. In fact, the infeasible version required 11 outer iterations and 11
inner iterations for solving the discrete problem. The feasible variant of Algorithm
IP stopped successfully after 9 outer and 19 inner iterations. For the latter run, in
the next-to-last iteration 5 inner iterations were necessary; otherwise at most 2 inner
iterations were needed. With respect to the behavior of the decrease of the measures
ρC and ρF , an observation similar to the one obtained from Figure 9 for P1 holds
true. We remark only that in the feasible case ρC exhibits an almost superlinear
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convergence behavior.
Compared to the exact path-following strategy of Algorithm EP, the inexact path-

following concept of Algorithm IP is in many cases more efficient. In Table 6.3 we pro-
vide the number of outer and inner iterations for exact versus inexact path-following.
In parenthesis we write the number of inner iterations.

Table 6.3

Comparison of iteration counts between exact and inexact path-following.

Infeasible case Feasible case
P1 P2 P3 P1 P2 P3

EP 4 (15) 4 (11) 4 (16) 5 (44) 4 (10) 4 (31)
IP 9 (12) 11 (11) 11 (11) 11 (25) 6 (9) 9 (19)

Finally we address the issue of how to incorporate the approximation error due
to the discretization of function space quantities; see [6, 7]. First note that with (8)
holding (which is the case for P3), the discretization of the residual in the definition of
the neighborhoods (52), respectively (53), approximates the original one to the order
of h. Hence, in our discrete version of Algorithm IP the neighborhood criterion

‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

becomes

‖(r1,h
γ (y, λ), r2,h

γ (y, λ))�‖2 ≤ max

{√
εM , κinh,

τ
√
γ

}
,

with some constant κin > 0. We stop the outer iteration as soon as the discrete
residual drops below max{κouth,

√
εM}, where κout > 0 is fixed. In our tests we use

κin = 1 and κout = 10. Applying this strategy for the solution of P3, we obtain
(outer) iteration numbers as displayed in Table 6.4. Here, in parenthesis we give the
total number of inner iterations.

Table 6.4

Inexact path-following with h-dependent stopping of inner and outer iterations.

Version Mesh size
1/16 1/32 1/64 1/128 1/256 1/512

IP 1 (1) 4 (4) 5 (5) 8 (8) 9 (10) 10 (10)
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MESH ADAPTIVE DIRECT SEARCH ALGORITHMS
FOR CONSTRAINED OPTIMIZATION∗
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Abstract. This paper addresses the problem of minimization of a nonsmooth function under
general nonsmooth constraints when no derivatives of the objective or constraint functions are avail-
able. We introduce the mesh adaptive direct search (MADS) class of algorithms which extends the
generalized pattern search (GPS) class by allowing local exploration, called polling, in an asymptot-
ically dense set of directions in the space of optimization variables. This means that under certain
hypotheses, including a weak constraint qualification due to Rockafellar, MADS can treat constraints
by the extreme barrier approach of setting the objective to infinity for infeasible points and treating
the problem as unconstrained.

The main GPS convergence result is to identify limit points x̂, where the Clarke generalized
derivatives are nonnegative in a finite set of directions, called refining directions. Although in the
unconstrained case, nonnegative combinations of these directions span the whole space, the fact that
there can only be finitely many GPS refining directions limits rigorous justification of the barrier
approach to finitely many linear constraints for GPS. The main result of this paper is that the general
MADS framework is flexible enough to allow the generation of an asymptotically dense set of refining
directions along which the Clarke derivatives are nonnegative.

We propose an instance of MADS for which the refining directions are dense in the hypertangent
cone at x̂ with probability 1 whenever the iterates associated with the refining directions converge
to a single x̂. The instance of MADS is compared to versions of GPS on some test problems. We
also illustrate the limitation of our results with examples.

Key words. mesh adaptive direct search algorithms (MADS), convergence analysis, constrained
optimization, nonsmooth analysis, Clarke derivatives, hypertangent, contingent cone
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1. Introduction. We present and analyze a new mesh adaptive direct search
(MADS) class of algorithms for minimizing a nonsmooth function f : Rn → R∪{+∞}
under general constraints x ∈ Ω �= ∅ ⊆ Rn. For the form of the algorithm given here,
the feasible region Ω may be defined through blackbox constraints given by an oracle,
such as a computer code that returns a yes or no indicating whether or not a specified
trial point is feasible.

In the unconstrained case, where Ω = Rn, this new class of algorithms occupies
a position somewhere between the generalized pattern search (GPS) class [30], as
organized in [8], and the Coope and Price frame-based methods [12]. A key advantage
of MADS over GPS for both unconstrained and linearly constrained optimization is
that local exploration of the space of variables is not restricted to a finite number of
directions (called poll directions). This is the primary drawback of GPS algorithms
in our opinion, and our main motivation in defining MADS was to overcome this
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restriction. MADS algorithms are frame-based methods. We propose a less general
choice of frames than the choices allowed by Coope and Price. Our MADS frames
are easy to implement, and they are specifically aimed at ensuring an asymptotically
dense set of polling directions. We illustrate our ideas with an example algorithm
that we call LTMADS because it is based on a random lower triangular matrix.

The convergence analysis here is based on Clarke’s calculus [10] for nonsmooth
functions. The analysis evolved from our previous work on GPS [3] where we gave
a hierarchy of convergence results for GPS that show the limitations inherent in the
restriction to finitely many directions. Specifically, we showed that for unconstrained
optimization, GPS produces a limit point at which the gradient is zero if the func-
tion at that point is strictly differentiable [20]. Strict differentiability is just the
requirement that the generalized gradient is a singleton, i.e., that ∂f(x̂) = {∇f(x̂)}
in addition to the requirement that f is Lipschitz near x̂. But if the function f is
only Lipschitz near such a limit point x̂, then Clarke’s generalized directional deriva-
tives [10] are provably nonnegative only for a finite set of directions D̂ ⊂ Rn (called the
set of refining directions) whose nonnegative linear combinations span the whole space

f◦(x̂; d) := lim sup
y→x̂, t↓0

f(y + td) − f(y)

t
≥ 0 for all d ∈ D̂.(1.1)

This result (1.1) for GPS is not as strong as stating that the generalized derivative is
nonnegative for every direction in Rn, i.e., that the limit point is a Clarke stationary
point, or equivalently that 0 ∈ ∂f(x̂), the generalized gradient of f at x̂ defined by

f◦(x̂; v) ≥ 0 for all v ∈ Rn ⇔ 0 ∈ ∂f(x̂) := {s ∈ Rn : f◦(x̂; v) ≥ vT s for all v ∈ Rn}.
(1.2)

Example F in [2] shows that indeed the GPS algorithm does not necessarily produce
a Clarke stationary point for Lipschitz functions because of the restriction to finitely
many poll directions. This is so even if the gradient exists at the limit point x̂. For the
unconstrained case, this restriction can be overcome by assuming more smoothness
for f , e.g., strict differentiability at x̂ [3] as mentioned above.

However, even in the presence of simple bound constraints, the directional depen-
dence of GPS cannot be overcome by any amount of smoothness, by using penalty
functions, or by the use of the filter approach for handling constraints [4]. In contrast,
MADS produces a limit point at which the Clarke derivatives are nonnegative for every
direction in the tangent cone. The class of problems that MADS is designed for is sim-
ilar but not the same as that of Lucidi, Sciandrone, and Tseng [23] and Price, Coope,
and Dennis [27]. They also target nonlinear optimization but require that all functions
be continuously differentiable and that the constraint derivatives be available.

Besides the advantages of an asymptotically dense set of refining directions,
MADS can also treat a wide class of nonlinear constraints by the “barrier” approach.
By this we mean that the algorithm is not applied directly to f but to the barrier
function fΩ, defined to be equal to f on Ω and +∞ outside Ω. This way of rejecting
infeasible points was shown to be effective for GPS with finitely many linear con-
straints by Lewis and Torczon [21]. However, their proof requires that the tangent
cone generators of the feasible region at boundary points near an iterate be known at
each iteration.

For LTMADS, a specific implementation of the general framework MADS, no spe-
cial effort is needed for the barrier approach to be provably effective with probability
1 on nonlinear constraints satisfying a mild constraint qualification due to Rockafellar
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[29]—that there exists a hypertangent vector at the limit point. A key advantage of
the barrier approach is that one can avoid expensive function calls to f whenever a
constraint is violated. Indeed, the question of feasibility of a trial point needs only
a yes or no answer—the constraints do not need to be given by a known algebraic
condition. Marsden [24] exploited this capability in an insightful way to avoid a sig-
nificant number of full 3D LES turbulence simulations when the nonlinear constraints
were violated in MADS applied to a trailing edge design problem.

The class of algorithms presented here differs significantly from previous GPS
extensions [4, 22] to nonlinear constraints. Treating constraints as we do motivates
us to use the generalization of the Clarke derivative presented in Jahn [18]. Jahn’s
approach is aimed at a case like ours where the evaluation of f is restricted to points
in the feasible domain Ω. Thus instead of (1.1) we use the following definition of the
Clarke generalized derivative at x̂ ∈ Ω in the direction v ∈ Rn:

f◦(x̂; v) := lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y + tv) − f(y)

t
.(1.3)

Both definitions (1.1) and (1.3) coincide when Ω = Rn or when x̂ ∈ int(Ω).
The main theoretical objective of this paper is to show that under appropriate

assumptions, a MADS algorithm produces a constrained Clarke stationary point, i.e.,
a limit point x̂ ∈ Ω satisfying the following necessary optimality condition:

f◦(x̂; v) ≥ 0 for all v ∈ TCl
Ω (x̂),(1.4)

where TCl
Ω (x̂) is the Clarke tangent cone to Ω at x̂ (see [10] or Definition 3.5).

The paper is organized into two main parts. First, sections 2 and 3 present the
abstract MADS algorithm class and its convergence analysis. The analysis revolves
around three types of tangent cones. This allows us to tie some convergence results
to local differentiability of the function f at limit points satisfying certain constraint
qualifications. We present sufficient conditions under which (1.4) holds. We discuss
the consequences of this when the algorithm is applied to an unconstrained problem,
or when the set Ω is regular in the sense of Definition 3.7 or [10]. We also give a
stronger constraint qualification ensuring that MADS produces a contingent KKT
stationary point (Definition 3.11) if f is strictly differentiable. The reader will find a
quite different algorithm analyzed using the same concepts in [15].

Then in sections 4 and 5, we give an instance of MADS along with numerical
experiments to compare MADS with standard GPS. On an artificial example, where
GPS is well known to stagnate, we show that MADS reaches the global optimum. We
give a comparison on a parameter fitting problem in catalytic combustion kinetics on
which we know that GPS performs well [17]. We also give an example illustrating
the power of being able to handle even simple nonlinear constraints by the barrier
approach. We also use this example to illustrate that MADS can cope surprisingly
well as the dimension of the problem increases. The final example shows the value of
randomly generated polling directions for a problem with a narrowing feasible region.

Notation. R,Z, and N, respectively, denote the sets of real numbers, integers,
and nonnegative integers. For x ∈ Rn and δ ∈ R+, Bδ(x) denotes the open ball of
radius δ centered at x. For a matrix D, the notation d ∈ D indicates that d is a
column of D. The iteration numbers are denoted by the index k.

2. Mesh adaptive direct search algorithms. MADS is an iterative feasible-
point algorithm. Given an initial iterate x0 ∈ Ω, a MADS algorithm attempts to
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locate a minimizer of the function f over Ω by evaluating fΩ at some trial points.
The algorithm does not require any derivative information for f . This is essential
when ∇f is unavailable, either because it does not exist, or it cannot be accurately
estimated due to noise in f or other reasons. At each iteration, a finite number of
trial points are generated and the infeasible trial points are discarded. The objective
function values at the feasible trial points are compared with the current incumbent
value fΩ(xk), i.e., the best feasible objective function value found so far. Each of these
trial points lies on the current mesh, constructed from a finite set of nD directions
D ⊂ Rn scaled by a mesh size parameter Δm

k ∈ R+. Just as in GPS, this mesh is not
actually constructed, it just underlies the algorithm.

There are two restrictions on the set D. First, D must be a positive spanning
set [14], i.e., nonnegative linear combinations of its elements must span Rn. Sec-
ond, each direction dj ∈ D (for j = 1, 2, . . . , nD) must be the product Gzj of some
fixed nonsingular generating matrix G ∈ Rn×n by an integer vector zj ∈ Zn. For
convenience, the set D is also viewed as a real n× nD matrix.

Definition 2.1. At iteration k, the current mesh is defined to be the following
union:

Mk =
⋃

x∈Sk

{x + Δm
k Dz : z ∈ NnD},

where Sk is the set of points where the objective function f had been evaluated by the
start of iteration k.

In the definition above, the mesh is defined to be the union of sets over Sk.
Defining the mesh this way ensures that all previously visited points lie on the mesh,
and that new trial points can be selected around any of them using the directions in D.
This definition of the mesh is identical to the one in [4] and generalizes the one in [3].

The mesh is conceptual in the sense that it is never actually constructed. In
practice, one can easily make sure that the strategy for generating trial points is such
that they all belong to the mesh. One simply has to verify in Definition 2.1 that x
belongs to Sk and that z is an integer vector. The objective of the iteration is to
find a feasible trial mesh point with a lower objective function value than the current
incumbent value fΩ(xk). Such a trial point is called an improved mesh point, and the
iteration is called a successful iteration. There are no sufficient decrease requirements
on the objective function value.

The evaluation of fΩ at a trial point x is done as follows. First, the constraints
defining Ω are tested to determine if x is feasible or not. Indeed, since some of the
constraints defining Ω might be expensive or inconvenient to test, one would order the
constraints to test the easiest ones first. If x �∈ Ω, then fΩ(x) is set to +∞ without
evaluating f(x), and perhaps without evaluating all the constraints defining Ω. In
effect, this means we discard the infeasible trial points. On the other hand, if x ∈ Ω,
then f(x) is evaluated. This remark may seem obvious, but it saves computation [24],
and it is needed in the proof of Theorem 3.12.

Each iteration is divided into two steps. The first, called the search step, has
the same flexibility as in GPS. It allows evaluation of fΩ at any finite number of mesh
points. Any strategy can be used in the search step to generate a finite number of
trial mesh points. Restricting the search points to lie on the mesh is a way in which
MADS is less general than the frame methods of Coope and Price [12]. The search

is said to be empty when no trial points are considered. The drawback to the search

flexibility is that it cannot be used in the convergence analysis—except to provide
counterexamples as in [2]. More discussion of search steps is given in [1, 8].
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When an improved mesh point is generated, then the iteration may stop, or it
may continue if the user hopes to find a more improved mesh point. In either case,
the next iteration will be initiated with a new incumbent solution xk+1 ∈ Ω with
fΩ(xk+1) < fΩ(xk) and with a mesh size parameter Δm

k+1 equal to or larger than Δm
k

(the exact rules for updating this parameter are presented in (2.1)). Coarsening the
mesh when improvements in fΩ are obtained can speed convergence.

Whenever the search step fails to generate an improved mesh point, then the
second step, called the poll, is invoked before terminating the iteration. The poll

step consists of a local exploration of the space of optimization variables near the
current incumbent solution xk. The difference between the MADS and the GPS
algorithms lies exactly in this poll step. For this reason, our numerical comparisons
in what follows use empty, or very simple, search steps in order to illustrate the
value of the MADS poll step.

When the iteration fails in generating an improved mesh point, then the next
iteration is initiated from any point xk+1 ∈ Sk+1 with fΩ(xk+1) = fΩ(xk). There
is usually a single such incumbent solution, and xk+1 is set to xk. The mesh size
parameter Δm

k+1 is reduced to increase the mesh resolution in order to allow the
evaluation of f at trial points closer to the incumbent solution. More precisely, given
a fixed rational number τ > 1, and two integers w− ≤ −1 and w+ ≥ 0, the mesh size
parameter is updated as follows:

Δm
k+1 = τwkΔm

k for some wk ∈

⎧⎨⎩
{0, 1, . . . , w+} if an improved mesh

point is found
{w−, w− + 1, . . . ,−1} otherwise.

(2.1)

Everything up to this point in the section applies to both GPS and MADS. We
now present the key difference between both classes of algorithms. For MADS, we
introduce the poll size parameter Δp

k ∈ R+ for iteration k. This new parameter
dictates the magnitude of the distance from the trial points generated by the poll

step to the current incumbent solution xk. In GPS, there is a single parameter to
represent these quantities: Δk = Δp

k = Δm
k . In MADS, the strategy for updating Δp

k

must be such that Δm
k ≤ Δp

k for all k, and moreover, it must satisfy

lim
k∈K

Δm
k = 0 if and only if lim

k∈K
Δp

k = 0 for any infinite subset of indices K.(2.2)

An implementable updating strategy satisfying these requirements is presented in
section 4.

We now move away from the GPS terminology, and toward that of Coope and
Price because it is better suited to describe MADS. The set of trial points considered
during the poll step is called a frame. The frames of Coope and Price can be more
general than MADS frames in a way not important to the present discussion. For this
reason, we do not digress to discuss their general definition here [11].

The MADS frame is constructed using a current incumbent solution xk (called the
frame center) and the poll and mesh size parameters Δp

k and Δm
k to obtain a positive

spanning set of directions Dk. Unlike GPS, generally the MADS set of directions Dk

is not a subset of D.
Definition 2.2. At iteration k, the MADS frame is defined to be the set

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,
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where Dk is a positive spanning set such that 0 �∈ Dk and for each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ NnDk that may depend on the iteration number k

• the distance from the frame center xk to a frame point xk + Δm
k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖ ≤

Δp
k max{‖d′‖ : d′ ∈ D}

• limits (as defined in Coope and Price [11]) of the normalized sets Dk ={
d

‖d‖ : d ∈ Dk

}
are positive spanning sets.

The set of all poll directions D =
⋃∞

k=1 Dk is said to be asymptotically dense if the
closure of the cone generated by D equals Rn.

If the poll step fails to generate an improved mesh point, then the frame is said
to be a minimal frame, and the frame center xk is said to be a minimal frame center.
This leads to mesh refinement: Δk+1 < Δk (see (2.1)).

The algorithm is stated formally below. It is very similar to GPS, with differences
in the poll step, and in the new poll size parameter.

A general MADS algorithm

• Initialization: Let x0 ∈ Ω, Δm
0 ≤ Δp

0, D, G, τ , w− and w+ satisfy the
requirements given above.
Set the iteration counter k ← 0.

• Search and poll step: Perform the search and possibly the poll steps
(or only part of them) until an improved mesh point xk+1 is found on the
mesh Mk (see Definition 2.1).

– Optional search: Evaluate fΩ on a finite subset of trial points on
the mesh Mk.

– Local poll: Evaluate fΩ on the frame Pk (see Definition 2.2).

• Parameter update: Update Δm
k+1 according to (2.1), and Δp

k+1 so that (2.2)
is satisfied.
Set k ← k + 1 and go back to the search and poll step.

The crucial distinction and advantage of MADS over GPS is that the MADS mesh
size parameter Δm

k may go to zero more rapidly than Δp
k. Consequently, the directions

in Dk used to define the frame may be selected in a way so that asymptotically they
are not confined to a finite set. Note that in GPS both Δm

k and Δp
k are equal: a

single parameter plays the role of the mesh and poll size parameters, and therefore,
the number of positive spanning sets that can be formed by subsets of D is constant
over all iterations.

For example, suppose that in R2 the set D is composed of the eight directions
{(d1, d2)

T �= (0, 0)T : d1, d2 ∈ {−1, 0, 1}}. There are a total of eight distinct positive
bases containing three directions that can be constructed from D. Figures 2.1 and 2.2
illustrate some possible frames in R2 for three values of Δm

k . The frames in Figure 2.1
are generated by a GPS instance, and are such that Δp

k = Δm
k . Regardless of k and

of the mesh or poll size parameters, each direction in Dk is confined to be selected
in D.

The frames in Figure 2.2 are generated by an instance of MADS with Δp
k =

n
√

Δm
k . One can see that the new MADS algorithm may select the directions of

Dk from a larger set. With the new algorithm, the frame may be chosen among
the mesh points lying inside the square with the dark contour. We will present in
section 4 an implementation of MADS ensuring that given any directions in Rn, the
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Fig. 2.1. Example of GPS frames Pk = {xk +Δm
k d : d ∈ Dk} = {p1, p2, p3} for different values

of Δm
k = Δp

k. In all three figures, the mesh Mk is the intersection of all lines.

algorithm generates arbitrarily close poll directions, i.e., that the set of poll directions
is asymptotically dense in Rn.

We have presented above a general framework for MADS algorithms. The next
section contains a detailed convergence analysis for that general framework. It presents
sufficient conditions to ensure a hierarchy of convergence results based on the local
differentiability of f (using the Clarke nonsmooth calculus) and on the local proper-
ties of Ω (using three types of tangent cones). The results rely on the assumption
that a specific set of directions (called the refining directions—see Definition 3.2) be
dense in a tangent cone. Then, in section 4 we propose a specific implementation
called LTMADS, and give sufficient conditions to satisfy this assumption.

3. MADS convergence analysis. The convergence analysis below relies on the
assumptions that x0 ∈ Ω, that f(x0) is finite, and that all iterates {xk} produced by
the MADS algorithm lie in a compact set. Future work will relax the first assumption
by incorporating the filter approach given in [4].

The section is divided into three subsections. The first recalls Torczon’s [30]
analysis of the behavior of the mesh size parameter and defines refining sequences as
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Fig. 2.2. Example of MADS frames Pk = {xk + Δm
k d : d ∈ Dk} = {p1, p2, p3} for different

values of Δm
k and Δp

k. In all three figures, the mesh Mk is the intersection of all lines.

in [3]. It also defines the idea of a refining subsequence and a refining direction. The
second subsection recalls the definitions of the hypertangent, Clarke, and contingent
cones in addition to some results on generalized derivatives. The third contains a
hierarchy of convergence results based on local properties of the feasible region Ω.

3.1. Preliminaries. Torczon [30] first showed the following result for uncon-
strained pattern search algorithms. Then Audet and Dennis [3] used the same tech-
nique for a description of GPS that is much closer to our description of MADS.
The proof of this result for MADS is identical to that of GPS. The element neces-
sary to the proof is that for any integer N ≥ 1, the iterate xN may be written as
xN = x0 +

∑N−1
k=0 Δm

k Dzk for some vectors zk ∈ NnD . This is still true with our new
way of defining the mesh and the frame (see Definitions 2.1 and 2.2).

Proposition 3.1. The poll and mesh size parameters produced by a MADS
instance satisfy

lim inf
k→+∞

Δp
k = lim inf

k→+∞
Δm

k = 0.
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Price and Coope [26] propose a frame-based method for linearly constrained prob-
lems in which trial points are not confined to be on an underlying mesh. The price
of this greater flexibility is that their convergence analysis is based upon the assump-
tion that the frame size parameter (which plays a role similar to the MADS poll size
parameter) goes to zero.

Since the mesh size parameter shrinks only at minimal frames, Proposition 3.1
guarantees that there are infinitely many minimal frame centers. The following defi-
nition specifies the subsequences of iterates and limit directions we use.

Definition 3.2. A subsequence of the MADS iterates consisting of minimal
frame centers, {xk}k∈K for some subset of indices K, is said to be a refining subse-
quence if {Δp

k}k∈K converges to zero.

Let x̂ be the limit of a convergent refining subsequence. If the limit limk∈L
dk

‖dk‖
exists for some subset L ⊆ K with poll direction dk ∈ Dk, and if xk + Δm

k dk ∈ Ω for
infinitely many k ∈ L, then this limit is said to be a refining direction for x̂.

It is shown in [3], that there exists at least one convergent refining subsequence.
We now present some definitions that will be used later to guarantee the existence of
refining directions.

3.2. Three types of tangent cones. Three different types of tangent cones
play a central role in our analysis. Their definition, and equivalent ones, may be
found in [29, 10, 18]. After presenting them, we supply an example where the three
cones differ to illustrate some of our results. The first cone that we present is the
hypertangent cone.

Definition 3.3 (Hypertangent cone). A vector v ∈ Rn is said to be a hypertan-
gent vector to the set Ω ⊆ Rn at the point x ∈ Ω if there exists a scalar ε > 0 such
that

y + tw ∈ Ω for all y ∈ Ω ∩Bε(x), w ∈ Bε(v) and 0 < t < ε.(3.1)

The set of hypertangent vectors to Ω at x is called the hypertangent cone to Ω at x
and is denoted by TH

Ω (x).
The hypertangent cone is a useful concept for understanding the behavior of the

MADS algorithm. When analyzing MADS, we will be concerned with the following
specific subsequences:

• minimal frame centers xk → x̂;
• mesh size parameters Δm

k ↘ 0 and step sizes Δm
k ‖dk‖ ↘ 0;

• normalized refining directions dk

‖dk‖ → v �= 0.

These subsequences will be chosen in a way so that xk ∈ Ω and xk +(Δm
k ‖dk‖) dk

‖dk‖ ∈
Ω. The connection with the hypertangent definition is obvious by noticing that the
roles of y, t, and w are played by xk,Δ

m
k ‖dk‖, and dk

‖dk‖ , respectively. The connection

with the Clarke derivative (1.3) will be made explicit in Theorem 3.12.
Since the definition of a hypertangent is rather technical and crucial to our results,

we will pause for a short discussion. The reader could easily show that if Ω is a full
dimensional polytope defined by linear constraints, then every direction from a point
x̂ ∈ Ω into the interior of Ω is a hypertangent. That follows immediately from the
following result relating hypertangents to the constraint qualification suggested by
Gould and Tolle [16]; see also [6] for a discussion of the Gould and Tolle constraint
qualification and the closely related one of Mangasarian and Fromovitz.

Theorem 3.4. Let C : Rn → Rm be continuously differentiable at a point x̂ ∈
Ω = {x ∈ Rn : C(x) ≤ 0}, and let A(x̂) = {i ∈ {1, 2, . . . ,m} : ci(x̂) = 0} be the
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active set at x̂. If v ∈ Rn is a hypertangent vector to Ω at x̂, then ∇ci(x̂)T v < 0 for
each i ∈ A(x̂) such that ∇ci(x̂) �= 0. Furthermore, if ∇ci(x̂)T v < 0 for each i ∈ A(x̂),
then v ∈ Rn is a hypertangent vector to Ω at x̂.

Proof. Let v be a hypertangent vector to Ω at x̂. Then, there exists an ε > 0 such
that x̂ + tv ∈ Ω for any 0 < t < ε. Let i ∈ A(x̂). Continuous differentiability of ci at
x̂ implies that

∇ci(x̂)T v = lim
t→0

ci(x̂ + tv) − ci(x̂)

t
≤ 0.

It only remains to show that ∇ci(x̂)T v �= 0 when ∇ci(x̂) �= 0. Suppose by way
of contradiction that ∇ci(x̂)T v = 0 and ∇ci(x̂) �= 0. Since the hypertangent cone
is an open set [29], for any nonnegative δ ∈ R sufficiently small, v + δ∇ci(x̂) is a
hypertangent vector to Ω at x̂. It follows that

0 ≥ ∇ci(x̂)T (v + δ∇ci(x̂)) = δ‖∇ci(x̂)‖2
2 > 0,

which is a contradiction. Thus, ∇ci(x̂)T v < 0 when ∇ci(x̂) �= 0.

To prove the converse, let i ∈ A(x̂) be such that ∇ci(x̂) �= 0 and v ∈ Rn be such
that ‖v‖ = 1 and ∇ci(x̂)T v < 0. The product ∇ci(y)

Tw is a continuous function at
(y; w) = (x̂; v), and so there is some ε1 > 0 such that

∇ci(y)
Tw < 0 for all y ∈ Bε1(x̂) and w ∈ Bε1(v).(3.2)

Take ε = min{1, ε1
3 } and let y, w be in Bε(x̂) and Bε(v), respectively, with y ∈ Ω, and

let 0 < t < ε. We will show that y + tw ∈ Ω. Our construction ensures that ci(y) ≤ 0
and ε < ε1, and so by the mean value theorem, we have

ci(y + tw) ≤ ci(y + tw) − ci(y) = ∇ci(y + θtw)T (tw) for some θ ∈ [0, 1].(3.3)

But, ‖y + θtw − x̂‖ ≤ ‖y − x̂‖ + θt(‖w − v‖ + ‖v‖) < ε + ε(ε + 1) ≤ 3ε ≤ ε1, thus
y+ θtw ∈ Bε1(x̂), and w ∈ Bε(v) ⊆ Bε1(v). It follows that (3.2) applies and therefore
∇ci(y+θtw)Tw < 0. This is combined with (3.3) and with the fact that t > 0 implies
that ci(y+ tw) ≤ 0. But ci was any active component function, and so C(y+ tw) ≤ 0
and thus y + tw ∈ Ω.

We would like to culminate our hierarchy of convergence results by providing
necessary conditions to ensure contingent stationarity. In order to do so, we present
two other types of tangent cones.

Definition 3.5 (Clarke tangent cone). A vector v ∈ Rn is said to be a Clarke
tangent vector to the set Ω ⊆ Rn at the point x in the closure of Ω if for every sequence
{yk} of elements of Ω that converges to x and for every sequence of positive real
numbers {tk} converging to zero, there exists a sequence of vectors {wk} converging
to v such that yk + tkwk ∈ Ω. The set TCl

Ω (x) of all Clarke tangent vectors to Ω at x
is called the Clarke tangent cone to Ω at x.

Definition 3.6 (Contingent cone). A vector v ∈ Rn is said to be a tangent
vector to the set Ω ⊆ Rn at the point x in the closure of Ω if there exists a sequence
{yk} of elements of Ω that converges to x and a sequence of positive real numbers
{λk} for which v = limk λk(yk − x). The set TCo

Ω (x) of all tangent vectors to Ω at x
is called the contingent cone (or sequential Bouligand tangent cone) to Ω at x.

Definition 3.7. The set Ω is said to be regular at x provided TCl
Ω (x) = TCo

Ω (x).
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Any convex set is regular at each of its points [10]. Both TCo
Ω (x) and TCl

Ω (x)
are closed cones, and both TCl

Ω (x) and TH
Ω (x) are convex cones. Moreover, TH

Ω (x) ⊆
TCl

Ω (x) ⊆ TCo
Ω (x). Rockafellar [29] showed that TH

Ω (x) = int(TCl
Ω (x)) whenever TH

Ω (x)
is nonempty. Moreover, since the closure of the interior of a closed convex set is the
set itself [28], it follows that TCl

Ω (x) = cl(TH
Ω (x)) whenever TH

Ω (x) is nonempty.

3.3. Generalized derivatives. Recall that we are using Jahn’s definition (1.3)
of the Clarke derivative instead of (1.1), and therefore we cannot directly use the
calculus theory developed in [10]. The next lemma and proposition extend previously
known calculus results in the unconstrained case.

Lemma 3.8. Let f be Lipschitz near x̂ ∈ Ω with Lipschitz constant λ. If u and v
belong to TH

Ω (x̂), then

f◦(x̂;u) ≥ f◦(x̂; v) − λ‖u− v‖.

Proof. Let f be Lipschitz near x̂ ∈ Ω with Lipschitz constant λ and let u and
v belong to TH

Ω (x̂). Let ε > 0 be such that y + tw ∈ Ω whenever y ∈ Ω ∩ Bε(x̂),
w ∈ Bε(u) ∪ Bε(v) and 0 < t < ε. This can be done by taking ε to be the smaller of
the values for u and v guaranteed by the definition of a hypertangent. In particular,
if y ∈ Ω∩Bε(x̂) and if 0 < t < ε, then both y+ tu and y+ tv belong to Ω. This allows
us to go from the first to the second equality of the following chain:

f◦(x̂;u) = lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tu ∈ Ω

f(y+tu)−f(y)
t

= lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y+tu)−f(y)
t

= lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y+tv)−f(y)
t + f(y+tu)−f(y+tv)

t

= f◦(x̂; v) + lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y+tu)−f(y+tv)
t ≥ f◦(x̂; v) − λ‖u− v‖.

Based on the previous lemma, the next proposition shows that the Clarke gen-
eralized derivative is continuous with respect to v on the Clarke tangent cone. The
result is necessary to the proofs of Theorems 3.12 and 3.13.

Proposition 3.9. Let f be Lipschitz near x̂ ∈ Ω. If TH
Ω (x̂) �= ∅ and if v ∈ TCl

Ω (x̂)
then

f◦(x̂; v) = lim
w → v,

w ∈ TH
Ω (x̂)

f◦(x̂;w).

Proof. Let λ be a Lipschitz constant for f near x̂ ∈ Ω and let {wk} ⊂ TH
Ω (x̂) be

a sequence of directions converging to a vector v ∈ TCl
Ω (x̂). By definition of the

hypertangent cone, let 0 < εk < 1
k be such that

y + tw ∈ Ω whenever y ∈ Ω ∩Bεk(x̂), w ∈ Bεk(wk) and 0 < t < εk.(3.4)

We first show the inequality f◦(x̂; v) ≤ limk f
◦(x̂;wk). Equation (3.4) implies

that
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f◦(x̂; v) = lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω

f(y+tv)−f(y)
t

= lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tv ∈ Ω
y + twk ∈ Ω

f(y+tv)−f(y)
t

≤ lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + twk ∈ Ω

f(y+twk)−f(y)
t − f(y+twk)−f(y+tv)

t

= f◦(x̂;wk) + lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + twk ∈ Ω

f(y+twk)−f(y+tv)
t .

As k goes to infinity,
∣∣ f(y+twk)−f(y+tv)

t

∣∣ ≤ λ‖wk − v‖ goes to zero. Since {wk} was
arbitrary in the hypertangent cone, it follows that

f◦(x̂; v) ≤ lim
w → v,

w ∈ TH
Ω (x̂)

f◦(x̂;w).

Second, we show the reverse inequality: f◦(x̂; v) ≥ limk f
◦(x̂;wk). Let us define

uk = 1
kwk + (1 − 1

k )v = wk + (1 − 1
k )(v − wk). Since the hypertangent cone is a

convex set, and since v lies in the closure of the hypertangent cone, it then follows
that uk ∈ TH

Ω (x̂) for every k = 1, 2, . . .
We now consider the generalized directional derivative

f◦(x̂;uk) = lim sup
y → x̂, y ∈ Ω

t ↓ 0, y + tuk ∈ Ω

f(y+tuk)−f(y)
t .

The fact that uk ∈ TH
Ω (x̂) implies that there exists yk ∈ Ω ∩ Bεk(x̂) and 0 < tk

k < εk
such that yk + tkuk ∈ Ω and

f(yk + tkuk) − f(yk)

tk
≥ f◦(x̂;uk) − εk,(3.5)

where εk is the constant from (3.4). We now define the sequence zk = yk + tk
k wk ∈ Ω

converging to x̂, and the sequence of scalars hk = (1 − 1
k )tk > 0 converging to zero.

Notice that

zk + hkv = yk + tk

(
1

k
wk +

(
1 − 1

k

)
v

)
= yk + tkuk ∈ Ω,

and therefore

f◦(x̂; v) = lim sup
z → x̂, z ∈ Ω

h ↓ 0, z + hv ∈ Ω

f(z+hv)−f(z)
t

≥ lim
k

f(zk+hkv)−f(zk)
hk

= lim
k

f(yk+tkuk)−f(yk)

(1− 1
k )tk

+
f(yk)−f(yk+

tk
k wk)

(1− 1
k )tk

by (3.5): ≥ lim
k

f◦(x̂;uk) − εk +
f(yk)−f(yk+

tk
k wk)

(1− 1
k )tk

by Lemma 3.8: ≥ lim
k

f◦(x̂;wk) − λ‖uk − wk‖ − εk −
λ
k ‖wk‖
(1− 1

k )

= lim
k

f◦(x̂;wk) − λ‖v − wk‖ − λ
k ‖v‖ = lim

k
f◦(x̂;wk).
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Unfortunately, the above proposition is not necessarily true when the hypertan-
gent cone is empty: f◦(x̂; v) may differ from limw→v f

◦(x̂;w). The above proof breaks
as we cannot show in (3.4) that y+twk belongs to Ω when y ∈ Ω is close to x̂ and when
t > 0 is small. The following example in R2 illustrates that in this case, the Clarke
generalized derivative is not necessarily upper semicontinuous on the contingent cone.

Example 3.10. Consider a feasible region Ω ⊂ R2 that is the union of

Ω1 = {(a, b)T : a ≥ 0, b ≥ 0} with Ω2 = {(−a, b)T : b = −a2, a ≥ 0}.

One can verify that at the origin

TH
Ω (0) = ∅, TCl

Ω (0) = {(a, 0)T : a ≥ 0} ⊂ Ω1 and TCo
Ω (0) = Ω1∪{(−a, 0)T : a ≥ 0},

and therefore Ω is not regular at the origin.
Consider the continuous concave function in R2: f(a, b) = −max{0, a}. Notice

that f(a, b) = 0 for (a, b)T ∈ Ω2, and f(a, b) = −a ≤ 0 on Ω1. We will show that
f◦(0;w) is nonnegative for w in the interior of the contingent cone but f◦(0; e1) = −1
with e1 = (1, 0)T in the Clarke tangent cone.

Let w = (w1, w2)
T be any direction in int(TCo

Ω (0)) = int(Ω1). We will construct
appropriate subsequences in order to compute a valid lower bound on f◦(0;w). For
every positive integer k, define

yk =

(
−w1

k
,
−w2

1

k2

)T

and tk =
1

k
.

One can easily check that yk ∈ Ω2 ⊂ Ω, and hence f(yk) = 0 for every k. Also,

for every k >
w2

1

w2
, we have yk + tkw =

(
0, 1

k2 (kw2 − w2
1)
)T ∈ Ω1 ⊂ Ω is on the

nonnegative b axis. It follows that f(yk + tkw) = 0 for every such k, and so

f◦(0;w) ≥ lim
k→∞

f(yk+tkw)−f(yk)
tk

= lim
k→∞

k · (0 − 0) = 0.

In particular, taking w = (1, ε), we have that f◦(0; (1, ε)T ) is nonnegative for any
ε > 0.

However, let us compute the Clarke generalized directional derivative f◦(0; e1) at
the origin in the direction e1 = (1, 0)T ∈ TCl

Ω (0). The origin cannot be approached
by points yk = (ak, bk)

T ∈ Ω with the properties that bk < 0, and yk + tke1 ∈ Ω with
tk > 0. This is easy to see from a picture because yk would have to be in Ω2, and then
yk + tke1 cannot possibly be in Ω. A necessary condition for both sequences to be in
Ω is that yk belongs to Ω1, where f(a, b) = −a. But then every difference quotient in
the definition of f◦(0; e1) is −1, and therefore f◦(0; e1) = −1.

This example shows that when the hypertangent cone at x̂ is empty, the Clarke
tangent cone is not. It is possible that f◦(x̂;w) is nonnegative for every w in the
interior of the contingent cone and drops discontinuously to a negative value on the
boundary of the contingent cone: f◦(x̂; e1) < lim supw→e1 f

◦(x̂;w).

3.4. A hierarchy of convergence results for MADS. We now present dif-
ferent necessary optimality conditions based on the tangent cone definitions.

Definition 3.11. Let f be Lipschitz near x̂ ∈ Ω. Then, x̂ is said to be a Clarke
or contingent stationary point of f over Ω, if f◦(x̂; v) ≥ 0 for every direction v in the
Clarke or contingent cone of Ω at x̂, respectively.



MESH ADAPTIVE DIRECT SEARCH ALGORITHMS 201

In addition, x̂ is said to be a Clarke or contingent KKT stationary point of f over
Ω, if −∇f(x̂) exists and belongs to the polar of the Clarke or contingent cone of Ω at
x̂, respectively.

This leads to our basic result on refining directions from which all our hierarchy of
results are derived. The proof of these results also illustrates the close connection be-
tween the MADS framework, the Clarke calculus, and the definition of a hypertangent
vector.

Theorem 3.12. Let f be Lipschitz near a limit x̂ ∈ Ω of a refining subsequence,
and let v ∈ TH

Ω (x̂) be a refining direction for x̂. Then the generalized directional
derivative of f at x̂ in the direction v is nonnegative, i.e., f◦(x̂; v) ≥ 0.

Proof. Let {xk}k∈K be a refining subsequence converging to x̂ and v =
limk∈L

dk

‖dk‖ ∈ TH
Ω (x̂) be a refining direction for x̂, with dk ∈ Dk for every k ∈ L.

Since f is Lipschitz near x̂, Proposition 3.9 ensures that f◦(x̂; v) = limk∈L f◦(x̂; dk

‖dk‖ ).

But, for any k ∈ L, one can apply the definition of the Clarke generalized derivative
with the roles of y and t played by xk and Δm

k ‖dk‖, respectively. Note that this last
quantity indeed converges to zero since Definition 2.2 ensures that it is bounded above
by Δp

k max{‖d′‖ : d′ ∈ D}, where D is a finite set of directions, and (2.2) states that
Δp

k goes to zero. Therefore

f◦(x̂; v) ≥ lim sup
k∈L

f(xk+Δm
k ‖dk‖

dk
‖dk‖ )−f(xk)

Δm
k ‖dk‖

= lim sup
k∈L

f(xk+Δm
k dk)−f(xk)

Δm
k ‖dk‖ ≥ 0.

The last inequality follows from the fact that for each sufficiently large k ∈ L, xk +
Δm

k dk ∈ Ω and f(xk + Δm
k dk) = fΩ(xk + Δm

k dk) was evaluated and compared by the
algorithm to f(xk), but xk is a minimal frame center, so the inequality holds.

We now show that Clarke directional derivatives of f at the limit x̂ of minimal
frame centers, for meshes that get infinitely fine, are nonnegative for all directions in
the hypertangent cone, i.e., we show that MADS generates a Clarke stationary point.

Theorem 3.13. Let f be Lipschitz near a limit x̂ ∈ Ω of a refining subsequence,
and assume that TH

Ω (x̂) �= ∅. If the set of refining directions for x̂ is dense in TH
Ω (x̂),

then x̂ is a Clarke stationary point of f on Ω.

Proof. The proof follows directly from Theorem 3.12 and Proposition 3.9.

Note that even though the algorithm is applied to fΩ instead of f , the conver-
gence results are linked to the local smoothness of f and not fΩ, which is obviously
discontinuous on the boundary of Ω. This is because we use (1.3) as the definition of
the Clarke generalized derivative instead of (1.1). The constraint qualification used
in these results is that the hypertangent cone is nonempty at the feasible limit point
x̂. Further discussion of nonempty hypertangent cones is found in Rockafellar [29].

A corollary to this last theorem is that if f is strictly differentiable at x̂, then it
is a Clarke KKT point.

Corollary 3.14. Let f be strictly differentiable at a limit x̂ ∈ Ω of a refining
subsequence, and assume that TH

Ω (x̂) �= ∅. If the set of refining directions for x̂ is
dense in TH

Ω (x̂), then x̂ is a Clarke KKT stationary point of f over Ω.

Proof. Strict differentiability ensures that the gradient ∇f(x̂) exists and that
∇f(x̂)T v = f◦(x̂; v) for all directions. It follows directly from the previous proposition
that −∇f(x̂)T v ≤ 0 for every direction v in TCl

Ω (x̂), thus x̂ is a Clarke KKT stationary
point.
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Our next two results are based on the definition of set regularity (see Defini-
tion 3.7).

Proposition 3.15. Let f be Lipschitz near a limit x̂ ∈ Ω of a refining subse-
quence, and assume that TH

Ω (x̂) �= ∅. If the set of refining directions for x̂ is dense in
TH

Ω (x̂), and if Ω is regular at x̂, then x̂ is a contingent stationary point of f over Ω.

Proof. The definition of regularity of the set Ω ensures that f◦(x̂;w) ≥ 0 for all
w in TCo

Ω (x̂).

The following result is the counterpart to Corollary 3.14 for contingent station-
arity. The proof is omitted since it is essentially the same.

Corollary 3.16. Let f be strictly differentiable at a limit x̂ ∈ Ω of a refining
subsequence, and assume that TH

Ω (x̂) �= ∅. If the set of refining directions for x̂ is
dense in TH

Ω (x̂), and if Ω is regular at x̂, then x̂ is a contingent KKT stationary point
of f over Ω.

Example F in [2] presents an instance of a GPS algorithm such that when applied
to a given unconstrained optimization problem, it generates a single limit point x̂
which is not a Clarke stationary point. In fact, it is shown that f is differentiable but
not strictly differentiable at x̂ and ∇f(x̂) is nonzero. This unfortunate circumstance
is due to the fact that GPS uses a finite number of poll directions while MADS can
use infinitely many.

The following result shows that the algorithm ensures strong optimality conditions
for unconstrained optimization, or when x̂ is in the interior of Ω.

Theorem 3.17. Let f be Lipschitz near a limit x̂ of a refining subsequence. If
Ω = Rn, or if x̂ ∈ int(Ω), and if the set of refining directions for x̂ is dense in Rn,
then 0 ∈ ∂f(x̂).

Proof. Let x̂ be as in the statement of the result, then TH
Ω (x̂) = Rn. Combining

Definition 3.11 and Theorem 3.13 with (1.2) yields the result.

Newton’s method uses second derivatives, and the standard analysis of New-
ton’s method assumes Lipschitz continuity of the second derivatives. Correspondingly,
MADS is an algorithm that uses only function values, and we assume only that the
function f is Lipschitz near x̂.

In the general statement of the algorithm we did not present a strategy that
would guarantee a dense set of refining directions in the hypertangent cone. We want
to keep the algorithm framework as general as possible. There are different strategies
that could be used to generate a dense set of poll directions. The selection of the
set Dk could be done in a deterministic way or may use some randomness. In the
remainder of the paper, we present, analyze, and test one MADS strategy that uses
some randomness. We do this because we have not found a deterministic strategy that
achieves a satisfying distribution of poll directions when the process is terminated after
a reasonable number of iterations.

4. Practical implementation—LTMADS. We now present two variants of a
stochastic implementation of the MADS algorithm. We call either variant LTMADS,
because of the underlying lower triangular basis construction, and we show that with
probability 1, the set of poll directions generated by the algorithm is dense in the
whole space, and in particular in the hypertangent cone.

4.1. Implementable instances of a MADS algorithm. Let G = I, the
identity matrix, and let D = [I − I], τ = 4, w− = −1 and w+ = 1 be the fixed
algorithmic parameters. Choose Δm

0 = 1,Δp
0 = 1 to be the initial mesh and poll size
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parameters, and define the update rules as follows:

Δm
k+1 =

⎧⎪⎨⎪⎩
Δm

k

4 if xk is a minimal frame center

4Δm
k if an improved mesh point is found, and if Δm

k ≤ 1
4

Δm
k otherwise.

A consequence of these rules is that the mesh size parameter is always a power of 4
and never exceeds 1. Thus, 1√

Δm
k

≥ 1 is always a nonnegative power of 2 and hence

integral.
We now present a strategy to randomly generate the poll directions. In what

follows, every random generation is done uniformly with equal probabilities. In order
to ensure that the set of refining directions is dense in the hypertangent cone, one
of these directions must be selected in a different way. This direction must depend
only on the value of the mesh size parameter, and not on the iteration number. The
direction is denoted by b(�) where � is an integer related to the mesh size parameter.
An additional counter, called �c, is initially set to zero and is used to keep track of
the values of � for which b(�) was created. The construction of b(�) is as follows.

Generation of the direction b(�) for a given nonnegative integer �.

• Verification if b(�) was already created:
If �c > �, then exit this procedure with the existing vector b(�) ∈ Zn.
Otherwise, set �c ← �c + 1, and continue to the next step.

• Index of entry with largest component:
Let ι̂ be an integer randomly chosen in the set N = {1, 2, . . . , n}.

• Construction of b(�):
Randomly set bι̂(�) to either plus or minus 2�, and bi(�) for i ∈ N \ {ι̂} to be an
integer in {−2� + 1,−2� + 2, . . . , 2� − 1}. Record b(�) and exit this procedure.

The above procedure returns a vector b(�) ∈ Zn such that all elements but one
are integers between −2� +1 and 2�−1. The other element is either −2� or 2�. More-
over, when two iterations have the same mesh size parameter, then the corresponding
vectors b(�) are identical.

To each mesh size parameter Δm
k , we assign an integer � = − log4(Δ

m
k ) ∈ N so

that Δm
k = 4−�. Note that the mesh size parameter in LTMADS takes the values

1, 1
4 ,

1
16 , . . . , and therefore � is necessarily a nonnegative integer.

We now present a procedure that extends b(�) to a positive spanning set of either
2n or n + 1 poll directions. The procedure first generates an (n− 1) × (n− 1) lower
triangular matrix, and then combines it with b(�) to create a basis in Rn. Finally, this
basis is extended to a positive basis by either mirroring the directions (for a maximal
2n basis), or by taking the negative sum of the directions (for a n + 1 basis).

The rows of a lower triangular matrix L are randomly permuted, and a row of
zeroes is inserted in position ι̂, where ι̂ is the index defined in the construction of the
vector b(�). This results in a n×(n−1) matrix. The column b(�) is appended to it, and
this leads to a basis B in Rn. The permutation of the rows ensures that the zeroes of
the triangular matrix are not mostly located in the upper part of B. Afterwards, the
columns of B are randomly permuted to ensure that the zeroes are not mostly located
in the right part of B′. This construction ensures that |det(B)| = |det(B′)| = 2�n.
The completion to a positive basis Dk appends to B′ either the negative sum of the
columns of B′, or the negative of each column.
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Generation of the positive basis Dk and update of Δp
k.

• Construction of the direction b(�) and index ι̂:
Let � = − log4(Δ

m
k ), and construct b(�) by the above procedure.

Set ι̂ to be the integer in N such that |bι̂(�)| = 2�.

• Basis construction in Rn−1:
Let L be a lower triangular (n − 1) × (n − 1) matrix where each term on the
diagonal is either plus or minus 2�, and the lower components are randomly chosen
in {−2� + 1,−2� + 2, . . . , 2� − 1}.
L is a basis in Rn−1 with | det(L)| = 2�(n−1).

• Permutation of the lines of L, and completion to a basis in Rn:
Let {p1, p2, . . . , pn−1} be random permutations of the set N \ {ι̂}. Set

Bpi,j = Li,j for i, j = 1, 2, . . . , n− 1
Bι̂,j = 0 for j = 1, 2, . . . , n− 1
Bi,n = bi(�) for i = 1, 2, . . . , n.

B is a basis in Rn with | det(B)| = 2�n.

• Permutation of the columns of B:
Let {q1, q2, . . . , qn} be random permutations of the set N .
Set B′

i,qj = Bi,j for each i and j in N . B′ is a basis in Rn with | det(B′)| = 2�n.

• Completion to a positive basis:

– Minimal positive basis: Set Dk = [B′ d] with di = −
∑

j∈N B′
ij .

Set the poll size parameter to Δp
k = n

√
Δm

k ≥ Δm
k .

– Maximal positive basis: Set Dk = [B′ −B′].
Set the poll size parameter to Δp

k =
√

Δm
k ≥ Δm

k .

The construction also ensures that b(�) is necessarily a column of the positive
basis Dk. Our convergence analysis will show that as k goes to infinity, the union of
all directions b(�) is dense in Rn with probability 1. We will also show that if the
entire sequence of iterates converges, then the set of refining directions is also dense
in Rn with probability 1.

The following example in R5 highlights the features of the positive basis construc-
tion.

Example 4.1. Consider an iteration k with Δm
k = 1

16 . The step Construction

of the direction b(�) and index ι̂ fixed � = − log4(Δ
m
k ) = 2. Suppose that the

randomly defined vector b(�) is (−3, 2, 4,−1, 0)T . It follows that ι̂ = 3 since b3(�) = 4.
Observe that all other components of b(�) are integers between −22 + 1 and 22 − 1.

Suppose that the step Basis construction in Rn−1 generates the random lower
triangular matrix

L =

⎡⎢⎢⎣
−4 0 0 0

3 4 0 0
−1 2 −4 0

1 −2 0 4

⎤⎥⎥⎦ ∈ Z4×4.

Now, if the two permutation steps generate the row permutation vector (p1, p2, p3,
p4) = (4, 1, 2, 5), and the column permutation vector (q1, q2, q3, q4, q5) = (5, 1, 3, 2, 4),
then the bases constructed from L and b(�) are
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B =

⎡⎢⎢⎢⎢⎣
3 4 0 0 −3

−1 2 −4 0 2
0 0 0 0 4

−4 0 0 0 −1
1 −2 0 4 0

⎤⎥⎥⎥⎥⎦ and B′ =

⎡⎢⎢⎢⎢⎣
4 0 0 −3 3
2 0 −4 2 −1
0 0 0 4 0
0 0 0 −1 −4

−2 4 0 0 1

⎤⎥⎥⎥⎥⎦
(the entries copied from L appear in boldface characters). One may easily verify that
|det(B)| = |det(B′)| = 45 and that the four terms B′

pi,qi for i = 1, 2, 3, 4 as well as
B′

3,q5 are equal to either 4 or −4.

Finally, depending on if the minimal or maximal positive basis is selected, the
Completion to a positive basis step generates the set Dk composed of the
columns of either⎡⎢⎢⎢⎢⎣

4 0 0 −3 3 −4
2 0 −4 2 −1 1
0 0 0 4 0 −4
0 0 0 −1 −4 5

−2 4 0 0 1 −3

⎤⎥⎥⎥⎥⎦

or

⎡⎢⎢⎢⎢⎣
4 0 0 −3 3 −4 0 0 3 −3
2 0 −4 2 −1 −2 0 4 −2 1
0 0 0 4 0 0 0 0 −4 0
0 0 0 −1 −4 0 0 0 1 4

−2 4 0 0 1 2 −4 0 0 −1

⎤⎥⎥⎥⎥⎦.

A key point of this construction is that any iteration with a mesh size parameter
equal to 1

16 will have b(�) as the q5th column of Dk. In this particular example, b(�)
is the fourth column of Dk. The other columns will usually differ from one iteration
to another.

Since MADS is allowed to be opportunistic and end a poll step as soon as a
better point is found, we want to randomize the poll directions. Thus, the purpose
of the second step is to permute the rows of the matrix B so that the zeroes in the
upper triangular part of the matrix are randomly positioned, and to permute the
columns so that the dense column is not always the first in Dk. The name LTMADS
is based on the lower triangular matrix at the heart of the construction of the frames.

The following result shows that the frames generated by the LTMADS algorithm
satisfy the conditions of Definition 2.2.

Proposition 4.2. At each iteration k, the procedure above yields a Dk and a
MADS frame Pk such that

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Mk is given by Definition 2.1 and Dk is a positive spanning set such that for
each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ NnD that may depend on the iteration number k;

• the distance from the frame center xk to a frame point xk + Δm
k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖ ≤

Δp
k max{‖d′‖ : d′ ∈ D};
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• limits (as defined in Coope and Price [11]) of the normalized sets Dk are
positive spanning sets.

Proof. The first n columns of Dk form a basis of Rn because they are obtained by
permuting rows and columns of the lower triangular matrix B, which is nonsingular
because it has nonzero terms on the diagonal. Moreover, taking the last direction
to be the negative of the sum of the others leads to a minimal positive basis, and
combining the first n columns of Dk with their negatives gives a maximal positive
basis [14].

Again by construction, Dk has all integral entries in the interval [−2�, 2�]
(
with 2� =

1√
Δm

k

)
, and so clearly each column d of Dk can be written as a nonnegative integer

combination of the columns of D = [I,−I]. Hence, the frame defined by Dk is on the
mesh Mk.

Now the �∞ distance from the frame center to any frame point is ‖Δm
k d‖∞ =

Δm
k ‖d‖∞. There are two cases. If the maximal positive basis construction is used,

then Δm
k ‖d‖∞ =

√
Δm

k = Δp
k. If the minimal positive basis construction is used, then

Δm
k ‖d‖∞ ≤ n

√
Δm

k = Δp
k. The proof of the second bullet follows by noticing that

max{‖d′‖∞ : d′ ∈ [I − I]} = 1.

The frame can be rewritten in the equivalent form {xk+
√

Δm
k v : v ∈ V}, where V

is a set whose columns are the same as those of B after permutation and multiplication
by

√
Δm

k .

Coope and Price [11] show that a sufficient condition for the third bullet to hold
is that each element of V is bounded above and below by positive constants that are
independent of k. This is trivial to show with our construction. Indeed, each entry
of V lies between −1 and 1 and every term on the diagonal is ±1. B is a triangular
matrix, and therefore |det(V)| = 1.

The frames given in Figure 2.2 were generated using minimal positive bases
with direction sets Dk: {(−1, 0)T , (0,−1)T , (1, 1)T }, {(−2,−1)T , (0,−2)T , (2, 3)T },
and {(−3, 4)T , (4, 0)T , (−1,−4)T }. One can see that as Δm

k and Δp
k go to zero, the

number of candidates for frame points increases rapidly. For the three examples il-
lustrated in the figure, the number of distinct possible frames that LTMADS may
choose from is 4, 20, and 44, respectively (the frames Dk are interpreted as sets and
not matrices). For example, in the case depicted in the rightmost figure, the ι̂th row
of the matrix B is [0 ± 4], the other row is [±4 β], where β is an integer between −3
and 3. It follows that for a given ι̂, there are 2 × 2 × 7 = 28 possibilities for B. The
index ι̂ is either 1 or 2, and thus the number of possibilities for B′ is 56. Permuting
the columns does not change the points in the frames. However, some different values
of B′ lead to the same frame Dk when viewed as a set. For examples, when B′ is[

4 −1
0 −4

]
or

[
−3 4

4 0

]
,

then in both cases the set of directions in the frame Dk is {(−3, 4)T, (4, 0)T, (−1,−4)T }.
This leads to a total of 44 different frames.

In addition to an opportunistic strategy, i.e., terminating a poll step as soon
as an improved mesh point is detected, a standard trick we use in GPS to improve
the convergence speed consists of promoting a successful poll direction to the top
of the list of directions for the next poll step. We call this dynamic ordering of
the polling directions. This strategy cannot be directly implemented in MADS since
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at a successful iteration k − 1, the poll size parameter is increased, and therefore a
step of Δm

k in the successful direction will often be outside the mesh. The way we
mimic GPS dynamic ordering in MADS is that when the previous iteration succeeded
in finding an improved mesh point, we execute a simple one point dynamic search
in the next iteration as follows. Suppose that fΩ(xk) < fΩ(xk−1) and that d is
the direction for which xk = xk−1 + Δm

k−1d. Then, the trial point produced by the
search step is sk = xk−1 + 4Δm

k−1d. Note that with this construction, if Δm
k−1 < 1,

then sk = xk−1 + Δm
k d and otherwise, sk = xk−1 + 4Δm

k d. In both cases sk lies on
the current mesh Mk. If this search finds a better point, then we go on to the next
iteration, but if not, then we proceed to the poll step. The reader will see in the
numerical results below that this seems to be a good strategy.

4.2. Convergence analysis. The convergence results in section 3.4 are based
on the assumption that the set of refining directions for the limit of a refining sequence
is asymptotically dense in the hypertangent cone at that limit. The following result
shows that the above instances of LTMADS generates an asymptotically dense set of
poll directions with probability 1. Therefore, the convergence results based on the
local smoothness of the objective function f and on the local topology of the feasible
region Ω can be applied to LTMADS.

Theorem 4.3. Let x̂ ∈ Ω be the limit of a refining subsequence produced by either
instance of LTMADS. Then the set of poll directions for the subsequence converging
to x̂ is asymptotically dense in TH

Ω (x̂) with probability 1.
Proof. Let x̂ be the limit of a refining subsequence {xk}k∈K produced by one

of the above instances of LTMADS (either with the minimal or maximal positive
basis). Consider the sequence of positive bases {Dk}k∈K . Each one of these bases is
generated independently.

We use the notation P [E] to denote the probability that E occurs. Let v be a
direction in Rn with ‖v‖∞ = 1 such that P [|vj | = 1] ≥ 1

n and P [vj = 1 | |vj | = 1] =
P [vj = −1 | |vj | = 1] = 1

2 . We will find a lower bound on the probability that a
normalized direction in Dk is arbitrarily close to the vector v.

Let k be an index of K, and let � = − log4(Δ
m
k ). Recall that in the generation

of the positive basis Dk, the column b(�) is such that |bι̂(�)| = 2�, and the other

components of b(�) are random integers between −2� + 1 and 2� − 1. Set u = b(�)
‖b(�)‖∞

.

It follows by construction that u = 2−�b(�) and ‖u‖∞ = |uι̂| = 1. We will now show
for any 0 < ε < 1, that the probability that ‖u− v‖∞ < ε is bounded below by some
nonnegative number independent of k, as k ∈ K goes to infinity. Let us estimate the
probability that |uj − vj | < ε for each j. For j = ι̂ we have

P [|uι̂ − vι̂| < ε] ≥ P [uι̂ = vι̂ = 1] + P [uι̂ = vι̂ = −1]

= P [uι̂ = 1] × P [vι̂ = 1] + P [uι̂ = −1] × P [vι̂ = −1]

≥ 1

2
× 1

2n
+

1

2
× 1

2n
=

1

2n
.

For j ∈ N \ {ι̂} we have

P [|uj − vj | < ε] = P [vj − ε < uj < vj + ε] = P
[
2�(vj − ε) < bj(�) < 2�(vj + ε)

]
.

We will use the fact that the number of integers in the interval [2�(vj−ε), 2�(vj +ε)]∩
[−2� + 1, 2� − 1] is bounded below by the value 2�ε− 1. Now, since the bases Dk are
independently generated, and since bj(�) is an integer randomly chosen with equal
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probability among the 2�+1−1 integers in the interval [−2� +1, 2�−1], then it follows
that

P [|uj − vj | < ε] ≥ 2�ε− 1

2�+1 − 1
>

2�ε− 1

2�+1
=

ε− 2−�

2
.

Recall that x̂ is the limit of a refining subsequence, and so there exists an integer α
such that

√
Δm

k = 2−� ≤ ε
2 whenever α ≤ k ∈ K, and so

P [|uj − vj | < ε] ≥
ε−

√
Δm

k

2
≥ ε

4
for any k ∈ K with k ≥ α.

It follows that

P [‖u− v‖∞ < ε] =

n∏
j=1

P [|uj − vj | < ε] ≥
(
ε
4

)n−1

2n
for any k ∈ K with k ≥ α.

We have shown when k is sufficiently large that P [‖u − v‖∞ < ε] is larger than
a strictly positive constant which is independent of Δm

k . Thus, there will be a poll
direction in Dk for some k ∈ K arbitrarily close to any direction v ∈ Rn, and in
particular to any direction v ∈ TH

Ω (x̂).
The proof of the previous result shows that the set of directions consisting of the

b(�) directions over all iterations is dense in Rn. Nevertheless, we require the algorithm
to use a positive spanning set at each iteration instead of a single poll direction. This
ensures that any limit of a refining subsequence is the limit of minimal frame centers
on meshes that get infinitely fine. At this limit point, the set of refining directions
is generated from the set of poll directions which is dense in LTMADS and finite in
GPS. Therefore with both MADS and GPS, the set of directions for which the Clarke
generalized derivatives are nonnegative positively span the whole space. However,
GPS does not allow the possibility that the set of refining directions is dense, since it
is finite.

Finally, we give a condition that ensures dense MADS refining directions with
probability 1.

Theorem 4.4. Suppose that the entire sequence of iterates produced by either
instance of LTMADS converges to x̂ ∈ Ω. Then the set of refining directions for the
entire sequence of iterates is asymptotically dense in TH

Ω (x̂) with probability 1.
Proof. Let K be the set of indices of iterations that are minimal frame centers.

If the entire sequence of iterates produced by an instance of LTMADS converges to
x̂ ∈ Ω, then the subsequence {xk}k∈K also converges to x̂. Therefore, {b(�)}∞�=1 is a
subsequence of refining directions. This subsequence was shown in Theorem 4.3 to be
asymptotically dense in TH

Ω (x̂) with probability 1.

5. Numerical results. We consider four test problems in this section. Each
problem is intended to make a point about MADS. We give results for GPS with a
poll step only and with a simple Latin hypercube search step. The GPS results all
use a poll ordering we have found to be advantageous in our experience using GPS.

The first problem is unconstrained, but GPS is well known to stagnate on this
problem if it is given an unsuitable set of directions. MADS has no problem converging
quickly to a global optimizer. The second problem is a bound constrained chemical
engineering problem where GPS is known to behave well enough to justify publication
of the results [17]. Still, on the whole, MADS does better. The third is a simple
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nonlinearly constrained problem where GPS and another filter version of GPS are
both known to converge short of an optimizer. As the theory given here predicts,
MADS has no difficulty. We also use this problem to show that MADS does well as
the number of variables increases.

The last example is such that the feasible region gets narrow very quickly. This
is meant to be a test for any derivative-free feasible point algorithm—like GPS or
MADS with the extreme barrier approach to constraints. MADS does better than
GPS with the filter or the barrier, both of which stagnate due to the limitation of
finitely many poll directions. MADS stops making progress when the mesh size gets
smaller than the precision of the arithmetic.

Of course, even when one tries to choose carefully, four examples are not conclusive
evidence. However, we believe that these numerical results coupled with the more
powerful theory for MADS make a good case for MADS versus GPS. In addition,
there is the evidence in [24] that MADS was effective on a problem in which each
function evaluation took weeks to perform. In [5] MADS was used in a context of
identifying optimal algorithmic trust-region parameters. In [7] MADS was used to
optimize spent potliner treatment process in aluminium production. Furthermore,
MADS has recently been added as an option in the Matlab gads toolbox [25].

5.1. An unconstrained problem where GPS does poorly. Consider the
unconstrained optimization problem in R2 presented in [19] where GPS algorithms
are known to converge to nonstationary points:

f(x) =
(
1 − exp(−‖x‖2)

)
× max{‖x− c‖2, ‖x− d‖2},

where c = −d = (30, 40)T . Figure 5.1 shows level sets of this function. It can be
shown that f is locally Lipschitz and strictly differentiable at its global minimizer
(0, 0)T .

The GPS and MADS runs are initiated at x0 = (−2.1, 1.7)T , depicted by a
diamond in the right part of Figure 5.1. The gradient of f exists and is nonzero at
that point, and therefore both GPS and MADS will move away from it. Since there is
some randomness involved in the MADS instance described in section 4.1, we ran it a
total of 5 times, to see how it compares to our standard NOMAD [13] implementation
of GPS. Figure 5.2 shows a log plot of the progress of the objective function value for
each set of runs. All poll steps were opportunistic, and the runs were stopped when
a minimal frame with poll size parameter less than 10−10 was detected. For GPS,
the maximal 2n positive basis refers to the set of positive and negative coordinate
directions, and the two minimal n + 1 positive bases are {(1, 0)T , (0, 1)T , (−1,−1)T }
and {(1, 0)T , (−0.5, 0.866025)T , (−0.5,−0.866025)T }, and the termination criteria are
the same, i.e., when Δk drops below 10−10.

Without a search strategy, every GPS run converged to a point on the line x2 =
− 3

4x1, where f is not differentiable. These three limit points are denoted by stars in
Figure 5.1. As proved in [3], the limit points for GPS satisfy the necessary optimality
condition that the Clarke generalized directional derivatives are nonnegative for D
at these limit points, but they are not local optimizers. One can see by looking at
the level sets of f that no descent directions can be generated by the GPS algorithm
using the above directions.

However, when adding a search strategy (by randomly selecting 2n mesh points
at each search step) or when using LTMADS, all runs eventually generated good
directions and converged to the origin, the global optimal solution. Figure 5.2 suggests
that the MADS convergence is faster than GPS. Also, even if randomness appears in
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Fig. 5.1. Level sets of f(x) =
(
1 − exp(−‖x‖2)

)
× max{‖x− c‖2, ‖x− d‖2}.

Fig. 5.2. Progression of the objective function value vs the number of evaluations.

these instances of LTMADS, the behavior of the algorithm is very stable in converging
quickly to the origin.

5.2. A test problem where GPS does well. The academic example above
was one of our motivations for developing MADS. We now apply MADS to an example
from the chemical engineering literature for which GPS was shown to be preferable
to a conjugate-direction approach. Hayes et al. [17] describe a method for evaluating
the kinetic constants in a rate expression for catalytic combustion applications using
experimental light-off curves. The method uses a transient one-dimensional single
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Fig. 5.3. Data set 1—Progression of the objective function value vs the number of evaluations.

channel monolith finite element reactor model to simulate reactor performance. The
objective is to find the values of four parameters in a way such that the model estimates
as closely as possible (in a weighted least square sense) an experimental conversion
rate. This is a bound constrained nonsmooth optimization problem in R4

+, where the
objective function measures the error between experimental data and values predicted
by the model.

For the three sets of experimental data analyzed in [17], we compared the in-
stances of GPS and MADS discussed above. The algorithms terminate whenever a
minimal frame center with Δp

k ≤ 2−6 (for MADS) or Δk ≤ 2−6 (for GPS) is de-
tected, or whenever 500 functions evaluations are performed, whichever comes first.
Figures 5.3, 5.4, and 5.5 show the progression of the objective function value versus
the number of evaluations for each data set.

The plots suggest that the objective function value decreases more steadily with
GPS than with MADS. This is because GPS uses a fixed set of poll directions that we
know to be an excellent choice for this problem. By allowing more directions, MADS
eventually generates a steeper descent direction, and the dynamic runs capitalize on
this by evaluating f further in that direction thus sharply reducing the objective
function value in a few evaluations. In general, if the number of function evaluations
is limited to a fixed number, then it appears that MADS with the dynamic strategy
gives a better result than GPS.

For all three data sets, the dynamic runs are preferable to the basic runs. It
also appears that for this problem, MADS runs with minimal n+1 directions perform
better than the maximal 2n runs. GPS with a 2 point random search at each iteration
systematically gave worst results than GPS without a search. In each of the three
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Fig. 5.4. Data set 2—Progression of the objective function value vs the number of evaluations.

data sets, the best overall solution was always produced by MADS with the dynamic
n + 1 directions.

The quality of the best solutions produced by GPS and MADS can be visualized
in Figure 5.6 where the difference between the experimental and predicted conversions
are plotted versus time. A perfect model with perfectly tuned parameters would have
had a difference of zero everywhere. The superiority of the solution produced by
MADS versus GPS is mostly visible for the second data set near the time 170 sec
and the third data set near the time 190 sec where in both cases the fit is better by
approximately 1%.

5.3. Linear optimization on an hypersphere. The third example shows
again the difficulty caused by being restricted to a finite number of polling directions.
It also illustrates the effect of dimension. This is a problem with a linear objective
and strictly convex full-dimensional feasible region, surely the simplest nonlinearly
constrained problem imaginable.

min
x∈Rn

n∑
i=1

xi

s.t.

n∑
i=1

x2
i ≤ 3n.

There is a single optimal solution to that problem: every component of the vector x
is −

√
3 and the optimal value is −

√
3n.

The starting point is the origin, and the algorithm terminates when Δp
k ≤ 10−12

(for MADS) or Δk ≤ 10−12 (for GPS), or when the number of function evaluations
exceeds 600n, whichever comes first. The algorithm was run with four values of n.
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Fig. 5.5. Data set 3—Progression of the objective function value vs the number of evaluations.

Fig. 5.6. Conversion rate error versus time.

For the GPS method we always used Dk = D = [I,−I] with dynamic ordering. The
GPS filter method is described in [4]. We used a search strategy, which we often use
with the GPS filter method, consisting of a 5n point Latin hypercube sample at the
first iteration, and a n/5 random search at other iterations.
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Fig. 5.7. Progression of the objective function value vs the number of evaluations on an easy
nonlinear problem.

The behavior of LTMADS is comparable for every value of n. In every case, that
MADS algorithm converged to the global optimal solution. The GPS barrier approach
quickly moved to a point on the boundary of the domain and stalled there. The GPS
filter approach was able to move away from that point, but it converged to a better
suboptimal solution. The absence of a search strategy, and the restriction to a finite
number of poll directions traps the iterates at a nonoptimal solution. The addition
of a random search strategy allows GPS with the filter, when n is 10, 20, or 50, to
move away from this solution, but it still was short of finding the optimal solution in
the number of function calls allowed. The “GPS search” label below applies to the
GPS with the filter and random search, because this combination performed better
than GPS with a random search step. The progression of the runs is illustrated in
Figure 5.7.

5.4. Numerical limitations. The optimal solution in this last example does
not satisfy the hypotheses of any GPS or MADS theorems because it is located at
−∞. However, the example is intended to show how well the various algorithms track
a feasible region that gets narrow quickly. Consider the following problem in R2:

min
x=(a,b)T

a

s.t. ea ≤ b ≤ 2ea.

The starting point is (0, 1)T , and the algorithm terminates when Δm
k < 10−323 (for

MADS) or Δk < 10−323 (for GPS) i.e., when the mesh size parameter drops below
the smallest positive representable number in double precision arithmetic. We admit
that this is excessive, but we wanted to run the algorithms to their limits. The same
strategies as in section 5.3 are used.
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Fig. 5.8. Progression of the objective function value versus the number of evaluations on a
difficult nonlinear problem.

The progression of the algorithms is illustrated in Figure 5.8. GPS with both
the barrier and filter approaches to constraints converged quickly to points where
the standard 2n basis does not contain a feasible descent direction. The filter GPS
(without search) approach to constraints did better than the GPS barrier (without
search) approach because it is allowed to become infeasible.

All 5 runs of the LTMADS method of the previous section ended with roughly
the same solution, a point where a ± Δp

k = a in finite arithmetic, which is all one
can ask. The same behavior is observed for GPS with a random search (similar
results were generated with or without the filter). The fact that LTMADS generates
an asymptotically dense set of poll directions, and that a search step is conducted at
each GPS iteration explain why both the GPS with a search and LTMADS do better
than the GPS barrier or filter approach.

The feasible region is very narrow, and therefore it gets quite improbable that
the MADS poll directions generate a feasible point. When such a feasible point is
generated it is always very close to the frame center since the mesh and poll parameters
are very small.

Even if the algorithm instances failed to solve this problem to optimality and
converged to points that are not Clarke stationary points, the GPS and MADS con-
vergence theory is not violated—yet. In all cases, there is a set of directions that
positively span R2 such that for each direction either the Clarke generalized deriva-
tive is nonnegative or is an infeasible direction.

6. Discussion. GPS is a valuable algorithm, but the application of nonsmooth
analysis techniques in [3] showed its limitations due to the finite choice of directions
in [2]. MADS removes the GPS restriction to finitely many poll directions. We have
long felt that this was the major impediment to stronger proofs of optimality for GPS
limit points (and better behavior on nonsmooth problems), and in this paper we find
more satisfying optimality conditions for MADS in addition to opening new options
for handling nonlinear constraints.
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It would be easy to define a GPS algorithm that contains a randomized selection
of poll directions. It would suffice to define the set of directions D to be large enough
to contain more than one positive basis, as illustrated in Figure 2.1. But since that
number would still remain finite and the directions would not fill the space, the theory
would remain limited. Introducing randomness to GPS in this way or to MADS as in
LTMADS does not make either into random search methods as viewed by that commu-
nity. The interested reader can refer to [31] and Chapter 2 of [32] for the distinction.

MADS is a general framework which also contains both deterministic and ran-
domized instances of polling direction choices. But most importantly, MADS allows
infinitely many different polling directions. To illustrate the MADS generality, we
proposed here a randomized way to choose polling directions. This method, which
we called LTMADS, performed well, especially for a first implementation. Of course,
this implies that the convergence analysis of LTMADS (and not that of the general
framework MADS) requires probabilistic arguments.

We could have used a deterministic strategy to define our first instance of MADS,
but the deterministic ways that we tried were such that when the algorithm was
halted after finitely many iterations, the set of poll directions was often far from being
uniformly distributed in Rn. This convinced us to present LTMADS here rather than
our early deterministic efforts despite being able to prove the same theorems without
the need for probabilistic arguments.

We expect that more, and perhaps better, instances of MADS will be found, and
we hope this paper will facilitate that. To have a MADS instance be backed by our
convergence analysis, one needs to show that the new instance generates a dense set
of refining directions.

When n is small, our examples suggested that GPS with a random search be-
haved similarly to MADS. Of course, it is well known [32] that random searches that
sample the space using a uniform distribution get worse as the dimension of the prob-
lem increases, and the probability of improvement for a fixed dimension decreases as
the function value decreases. Thus, for larger n, we would not recommend using a
pure random search step with either GPS or MADS.

We think that the ideas here can be readily applied to choosing templates for
implicit filtering [9], another very successful algorithm for nasty nonlinear problems.

7. Acknowledgments. Finally, we wish to thank Gilles Couture for coding
nomad, the c++ implementation of MADS and GPS, and to acknowledge useful
discussions with Andrew Booker, Mark Abramson, and Sébastien Le Digabel, and
constructive comments by the associate editor Margaret Wright and by an anonymous
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of mesh adaptive direct search (MADS) algorithms for minimization of a nonsmooth function under
general nonsmooth constraints. The notation used in the paper evolved since the preliminary versions,
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In [1] Audet and Dennis proposed the class of mesh adaptive direct search (MADS)
algorithms for minimization of a nonsmooth function under general nonsmooth con-
straints. The paper contains a convergence analysis for this class of methods and
proposes two variants of an implementable instance called LTMADS.

The proof that LTMADS is indeed an instance of MADS is not compatible with
the notation used in the rest of the paper. We restate the proposition and propose a
consistent proof.

Proposition 0.1 (Proposition 4.2 of [1]). At each iteration k, the procedure
above yields a Dk and a MADS frame Pk such that

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Δm
k > 0 is the mesh size parameter, Mk is given by Definition 2.1 of [1], and

Dk is a positive spanning set such that for each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ NnD that may depend on the iteration number k;

• the distance from the frame center xk to a frame point xk + Δm
k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖∞ ≤

Δp
k max{‖d′‖∞ : d′ ∈ D};

• limits (as defined in Coope and Price [2]) of convergent subsequences of the
normalized sets Dk := { d

‖d‖∞
: d ∈ Dk} are positive spanning sets.
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Proof. In order to construct the set of directions Dk, the algorithm builds matrices
at iteration k that should be called Lk, Bk, and B′

k. To ease the presentation, we omit
the index k in the proof of the two first bullets. The index k reappears in the proof
of the last bullet since this last result involves limits as k goes to infinity.

By the construction in [1], L is a lower triangular (n− 1)× (n− 1) matrix where
each term on the diagonal is either plus or minus 2�, and the lower components
are randomly chosen from the discrete set {−2� + 1,−2� + 2, . . . , 2� − 1}, with � an
integer that satisfies 2� =1/

√
Δm

k . The rules for updating the mesh size parameter

Δm
k ensure that � ∈ N. It follows that L is a basis in Rn−1 with |det(L)| = 2�(n−1).

Let {p1, p2, . . . , pn−1} be a random permutation of the set {1, 2, . . . , n} \ {ι̂}, where
{ι̂} is defined in [1]. The elements of the matrix B are defined as

Bpi,j = Li,j for i, j = 1, 2, . . . , n− 1,
Bι̂,j = 0 for j = 1, 2, . . . , n− 1,
Bi,n = bi(�) for i = 1, 2, . . . , n,

where bi(�) is a vector that depends only on the value of the mesh size parameter and
not on the iteration number (see section 4.1 of [1]). It follows that B is a permutation
of the rows and the columns of a lower triangular matrix whose diagonal elements are
either −2� or 2�. Therefore B is a basis in Rn and |det(B)| = 2�n.

The square matrix B′ is obtained by permuting the columns of B, and therefore
the columns of B′ form a basis of Rn. Furthermore, |det(B′)| = |det(B)| = 2�n.

One of the proposed versions of LTMADS uses a minimal positive basis at every
iteration, and the other variant uses a maximal positive basis at every iteration. The
columns of [B′ − b′] with b′i =

∑
j∈N B′

ij define a minimal positive basis, and the
columns of [B′ −B′] define a maximal positive basis [3].

Therefore, if Dk = [B′ − b′] or if Dk = [B′ − B′], then all entries of Dk are
integers in the interval [−n2�, n2�] or in the interval [−2�, 2�], respectively. It follows
that each column d of Dk can be written as a nonnegative integer combination of the
columns of D = [I − I]. Hence, the frame defined by Dk is on the mesh Mk.

Two cases must be considered to show the second bullet. Recall that with
LTMADS, the poll size parameter Δp

k (see [1]) is defined differently depending on
whether minimal or maximal positive bases are used. If the maximal positive basis
construction is used, then ‖Δm

k d‖∞ = Δm
k ‖d‖∞ =

√
Δm

k = Δp
k. If the minimal posi-

tive basis construction is used, then ‖Δm
k d‖∞ = Δm

k ‖d‖∞ ≤ n
√

Δm
k = Δp

k. The proof
of the second bullet follows by noticing that max{‖d′‖∞ : d′ ∈ [I − I]} = 1.

To show the third bullet, we will verify that the limit of the normalized sets
Dk := { d

‖d‖∞
: d ∈ Dk} forms a positive basis. It suffices to show that the conditions

(1a), (1b), and (C1) or (C2) of Coope and Price [2] hold.
• Conditions (1a) and (1b) ensure that the limit of any convergent subsequence

of the sequence of bases B′
k := { d

‖d‖∞
: d ∈ B′

k} is also a basis. Condition

(1a) requires that |det(B′
k)| be bounded below by a positive constant that is

independent of k. In our context, |det(B′
k)| = 1 for all k, and therefore this

condition is satisfied. Condition (1b) is also easily satisfied since normalized
directions are used. It follows that the limit of B′

k is a basis.
• Conditions (C1) and (C2) involve the columns added to each basis B′

k to form
a positive basis. In the case of the maximal bases, condition (C1) is easily
satisfied. For the minimal bases, (C2) holds since all the structure constants
ξ (again following the definition of Coope and Price [2]) satisfy −1 ≤ ξ ≤ − 1

n .
This concludes the proof.
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1. Introduction. Polynomial optimization problems (POPs) arise from various
applications in science and engineering. Recent developments [9, 15, 18, 19, 22, 25,
27, 31, 32] in semidefinite program (SDP) and sums of squares (SOS) relaxations
for POPs have attracted a lot of research from diverse directions. These relaxations
have been extended to polynomial SDPs [11, 12, 17] and POPs over symmetric cones
[20]. In particular, SDP and SOS relaxations have been popular for their theoretical
convergence to the optimal value of a POP [22, 25]. From a practical point of view,
improving the computational efficiency of SDP and SOS relaxations using the sparsity
of polynomials in POPs has become an important issue [15, 19].

A polynomial f in real variables x1, x2, . . . , xn of a positive degree d can have all
monomials of the form xα1

1 xα2
2 · · ·xαn

n with nonnegative integers αi (i = 1, 2, . . . , n)
such that αi ≥ 0 and

∑n
i=1 αi ≤ d; all monomials of different form add up to

(
n+d
d

)
.

We call such a polynomial fully dense. When we examine polynomials in POPs
from applications, we notice in many cases that they are sparse polynomials having
a few or some of all possible monomials as defined in [19]. The sparsity provides a
computational edge if it is handled properly when deriving SDP and SOS relaxations.
More precisely, taking advantage of the sparsity of POPs is essential to obtaining an
optimal value of a POP by applying SDP and SOS relaxations in practice.

For sparse POPs, generalized Lagrangian duals and their SOS relaxations were
proposed in [15]. The relaxations are derived using SOS polynomials for the La-
grangian multipliers with sparsity similar to that of the associated constraint poly-
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nomials. Then the relaxations are converted into equivalent SDPs. As a result, the
size of the resulting relaxations is reduced and computational efficiency is improved.
This approach is shown to have an advantage in implementation over the SDP relax-
ation given in [22] whose size depends only on the degrees of objective and constraint
polynomials of the POP.

The aim of this paper is to propose new practical SOS and SDP relaxations for
a sparse POP and show their performance for various test problems. The framework
of SOS and SDP relaxations presented here is based on the one proposed in [15].
The main idea here is that we define sparsity of a POP more precisely by finding a
structure of the polynomials in the POP to obtain sparse SOS and SDP relaxations
accordingly. Specifically, we introduce correlative sparsity, which is a special case of
the sparsity [19] mentioned above; the correlative sparsity implies the sparsity, but the
converse is not necessarily true. The correlative sparsity is described in terms of an
n× n symmetric matrix R, which we call the correlative sparsity pattern matrix (csp
matrix) of the POP. Each element Rij of the csp matrix R is either 0 or � representing
a nonzero value. We assign � to every diagonal element Rii (i = 1, 2, . . . , n), and also
to each offdiagonal element Rij = Rji (1 ≤ i < j ≤ n) if and only if either (i) the
variables xi and xj appear simultaneously in a term of the objective function or (ii)
they appear in an inequality constraint. The csp matrix R constructed in this way
represents the sparsity pattern of the Hessian matrix of the generalized Lagrangian
function of [15] (or the Hessian matrix of the objective function in unconstrained
cases) except for the diagonal elements; some diagonal elements of the Hessian matrix
may vanish while Rii = � (i = 1, 2, . . . , n) by definition. We say that the POP is
correlatively sparse if the csp matrix R (or the Hessian matrix of the generalized
Lagrangian function) is sparse.

From the csp matrix R, it is natural to induce graph G(N,E) with the node set
N = {1, 2, . . . , n} and the edge set E = {{i, j} : Rij = �, i < j} corresponding to the
nonzero offdiagonal elements of R. We call G(N,E) the correlative sparsity pattern
graph (csp graph) of the POP. We employ some results of graph theory regarding
maximal cliques of chordal graphs [1]. A key idea in this paper is to use the maximal
cliques of a chordal extension of the csp graph G(N,E) to construct sets of supports
for a sparse SOS relaxation. This idea is motivated by the recent work [5] that
proposed positive semidefinite matrix completion techniques for exploiting sparsity in
primal-dual interior-point methods for SDPs.

Theoretically, the proposed sparse SOS and SDP relaxations are not guaranteed to
generate lower bounds of the same quality as the dense SDP relaxation [22] for general
POPs. Practical experiences, however, show that the performance gap between the
two relaxations is small as we will observe in section 6. In particular, the definition
of a structured sparsity based on the csp matrix R and the csp graph G(N,E) make
it possible to achieve the same quality of lower bounds for quadratic optimization
problems (QOPs) where all polynomials in the objective function and constraints are
quadratic. More precisely, the proposed sparse relaxation of order 1 obtains lower
bounds of the same quality as the dense SOS relaxation of order 1, as shown in
section 4.5.

The remainder of the paper is organized as follows. After introducing basic nota-
tion and symbols of polynomials, we define SOS polynomials in section 2. In section 3,
we first describe the dense SOS relaxation of unconstrained POPs and then the sparse
SOS relaxation. We show how a csp matrix is defined from a given unconstrained
POP and how a sparse SOS relaxation is constructed using the maximal cliques of a
chordal extension of a csp graph induced from the csp matrix. Section 4 contains the
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description of an SOS relaxation of an inequality constrained POP with a structured
sparsity characterized by a csp matrix and a csp graph. We introduce a generalized
Lagrangian dual for the inequality constrained POP and a sparse SOS relaxation.
Section 5 discusses some additional techniques which enhance the practical perfor-
mance of the sparse SOS relaxation such as computing optimal solutions, handling
equality constraints, and scaling. Section 6 includes numerical results on various test
problems. We show that the proposed sparse SOS and SDP relaxations exhibit much
better performance in practice. Finally, we give concluding remarks in section 7.

2. Polynomials and SOS polynomials. Let R be the set of real numbers,
and let Z+ be the set of nonnegative integers. R[x] is the set of real-valued mul-
tivariate polynomials in xi (i = 1, 2, . . . , n). Each polynomial f ∈ R[x] is rep-
resented as f(x) =

∑
α∈F c(α)xα, where F ⊂ Z

n
+ is a nonempty finite subset,

c(α) (α ∈ F) are real coefficients, and xα = xα1
1 xα2

2 · · ·xαn
n . The support of f is

defined by supp(f) = {α ∈ F : c(α) �= 0} ⊂ Z
n
+, and the degree of f ∈ R[x] is defined

by deg(f) = max {
∑n

i=1 αi : α ∈ supp(f)}.
For every nonempty finite set G ⊂ Z

n
+, R[x,G] denotes the set of polynomials in

xi (i = 1, 2, . . . , n) whose support is in G; i.e., R[x,G] = {f ∈ R[x] : supp(f) ⊂ G} .
We denote R[x,G]2 as the set of SOS polynomials in R[x,G]. By construction, we see
that supp(g) ⊂ G + G if g ∈ R[x,G]2, where G + G denotes the Minkowski sum of
two G’s.

Let R
G denote the |G|-dimensional Euclidean space whose coordinates are indexed

by α ∈ G. Each vector of R
G is denoted as w = (wα : α ∈ G). We use the symbol

S(G) for the set of |G| × |G| symmetric matrices with coordinates α ∈ G. Let S+(G)
be the set of positive semidefinite matrices in S(G); if V ∈ S+(G),

wTV w =
∑
α∈G

∑
β∈G

Vαβwαwβ ≥ 0 for every w = (wα : α ∈ G) ∈ R
G .

The symbol u(x,G) is used for the |G|-dimensional column vector consisting of ele-
ments xα (α ∈ G). Then, the set R[x,G]2 can be rewritten as

R[x,G]2 =
{
u(x,G)TV u(x,G) : V ∈ S+(G)

}
.(2.1)

For more details, see [4, 25]. Let N = {1, 2, . . . , n}, ∅ �= C ⊂ N , and

AC

ω =

{
α ∈ Z

n
+ : αi = 0 if i �∈ C and

∑
i∈C

αi ≤ ω

}
.

Then we observe that AC
ω + AC

ω = AC
2ω for every nonempty C ⊂ N and ω ∈ Z+.

3. SOS relaxations of unconstrained POPs. In this section, we consider an
unconstrained POP,

minimize f0(x).(3.1)

Let ζ∗ = inf {f0(x) : x ∈ R
n} . Throughout this section, we assume that ζ∗ > −∞.

Then deg(f0) must be an even integer, i.e., deg(f0) = 2ω0 for some ω0 ∈ Z+. By
the lemma in section 3 of [29], we also know that F0 = supp(f0) ⊂ conv(Fe

0), where
Fe

0 = {α ∈ F0 : αi is an even nonnegative integer (i = 1, 2, . . . , n)} .
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3.1. An outline of sparse SOS relaxations. We first convert the POP (3.1)
into an equivalent problem,

maximize ζ subject to f0(x) − ζ ≥ 0.(3.2)

We fix a positive integer ω ≥ ω0, and replace the constraint of the problem (3.2) by
an SOS constraint to obtain

maximize ζ subject to f0(x) − ζ ∈ R[x,AN
ω ]2.(3.3)

The SOS optimization problem (3.3) serves as a relaxation of the POP (3.1). See [26]
and the references therein for more details of this relaxation. We can rewrite the SOS
constraint of (3.2) using the relation (2.1) as

f0(x) − ζ = u(x,AN
ω )TV u(x,AN

ω ) and V ∈ S+(AN
ω ).(3.4)

We call the parameter ω ∈ Z+ in (3.3) the (relaxation) order. In fact, we can fix
ω = ω0 in the unconstrained case. Nevertheless, we regard ω as a parameter to be
consistent with the notation of the constrained case.

We call a polynomial f0 ∈ R[x,AN
2ω] sparse if the number of elements in its

support F0 = supp(f0) is much smaller than the number of elements in AN
2ω that

forms a support of fully dense polynomials in R[x,AN
2ω]. When the objective function

f0 is a sparse polynomial in R[x,AN
2ω], the size of the SOS constraint (3.3) can be

reduced by eliminating redundant elements from AN
ω . In fact, by applying Theorem 1

of [29], AN
ω in problem (3.3) can be replaced by

G0
0 = conv

{α

2
: α ∈ Fe

0

⋃
{0}
}
∩ Z

n
+ ⊂ AN

ω .

Note that {0} is added as the support for the real number variable ζ.
A method that can further reduce the size of the SOS optimization problem by

eliminating redundant elements in G0
0 was proposed by Kojima, Kim, and Waki in

[19]. We write the resulting SOS constraint from their method as

f0(x) − ζ ∈ R[x,G∗
0]

2,(3.5)

where G∗
0 ⊂ G0

0 ⊂ AN
ω denotes the set obtained by applying the method.

We now outline a new sparse relaxation. Using the structure obtained from the
correlative sparsity, we generate multiple support sets G1,G2, . . . ,Gp ⊂ Z

n
+ such that

F0

⋃
{0} ⊂

p⋃
�=1

(G� + G�) ,(3.6)

and replace the SOS constraint (3.5) by

f0(x) − ζ ∈
p∑

�=1

R[x,G�]
2,(3.7)

where
∑p

�=1 R[x,G�]
2 =
{∑p

�=1 h� : h� ∈ R[x,G�]
2 (� = 1, 2, . . . , p)

}
. The support of

f0(x) − ζ is F0

⋃
{0}, while the support of each polynomial in

∑p
�=1 R[x,G�]

2 is
contained in

⋃p
�=1 (G� + G�). Hence (3.6) is necessary for the SOS constraint (3.7) to

be feasible although it is not sufficient. If the size of each G� is much smaller than
the size of G∗

0 and if the number of the support sets p is not large, the size of the SOS
constraint (3.7) is smaller than the size of the SOS constraint of (3.3).
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3.2. Correlative sparsity pattern matrix. The sparsity considered here is
measured by the number of different kinds of cross terms in the objective polynomial
f0. We will call this type of sparsity correlative sparsity. The correlative sparsity is
represented with the n× n (symbolic, symmetric) correlative sparsity pattern matrix
(abbreviated as csp matrix) R whose (i, j)th element Rij is given by

Rij =

⎧⎨⎩
� if i = j,
� if αi ≥ 1 and αj ≥ 1 for some α ∈ F0 = supp(f0),
0 otherwise

(i = 1, 2, . . . , n, j = 1, 2, . . . , n). Here � stands for some nonzero element. If the
csp matrix R of f0 is sparse, then f0 is sparse as defined in [19], but the converse is
not true. We say that f0 is correlatively sparse if the associated csp matrix is sparse.
As mentioned in the introduction, the correlative sparsity of an objective function
f0(x) is equivalent to the sparsity of its Hessian matrix with some additional nonzero
diagonal elements.

3.3. Correlative sparsity pattern graphs. We describe a method to deter-
mine the sets of supports G1,G2, . . . ,Gp for the target SOS relaxation (3.7) of the
unconstrained POP (3.1). The basic idea is to use the structure of the csp matrix R
and some results from graph theory.

Given a csp matrix R, the undirected graph G(N,E) with N = {1, 2, . . . , n} and
E = {{i, j} : i, j ∈ N, i < j, Rij = �} is called the correlative sparsity pattern graph
(abbreviated as csp graph). Let C1, C2, . . . , Cp ⊂ N denote the maximal cliques of
the csp graph G(N,E). Then, choose the sets of supports G1,G2, . . . ,Gp such that

G� = AC�
ω (� = 1, 2, . . . , p). We can easily verify that the relation (3.6) holds. However,

the method described above for choosing G1,G2, . . . ,Gp has a critical disadvantage
since finding all maximal cliques of a graph is a difficult problem in general. In fact,
finding a single maximum clique is an NP-hard problem. To resolve this difficulty, we
generate a chordal extension G(N,E′) of the csp graph G(N,E) and use the extended
csp graph G(N,E′) instead of G(N,E). See [1, 7] for chordal graphs and finding all
maximal cliques.

Consequently, we obtain a sparse SOS relaxation of the POP (3.1):

maximize ζ subject to f0(x) − ζ ∈
p∑

�=1

R[x,AC�
ω ]2,(3.8)

where C� (� = 1, 2, . . . , p) denote the maximal cliques of a chordal extension G(N,E′)
of the csp graph G(N,E).

There may be several different chordal extensions of a graph G(N,E), and any of
them is valid for deriving the sparse relaxation presented in this paper. The chordal
extension with the least number of edges, called the minimum chordal extension, serves
best for the resulting sparse relaxation. We remark that finding a chordal extension
of a graph is equivalent to calculating symbolic sparse Cholesky factorization of its
adjacency matrix; the resulting sparse matrix represents the chordal extension. The
minimum chordal extension corresponds to the sparse Cholesky factorization with the
minimum fill-ins. Finding the minimum chordal extension is difficult in general, but
fortunately, several heuristics, such as the minimum degree ordering, are known to
efficiently produce a good approximation. For more information on symbolic Cholesky
factorization with minimum degree ordering and a chordal extension, see [6].
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It should be noted that the number of the maximal cliques of G(N,E′) does not
exceed n, which is equivalent to the number of nodes of the graph G(N,E′) as well
as to the number of variables of the objective polynomial f0.

Let us consider a few typical examples. Suppose that the objective polynomial
function f0 ∈ R[x]2ω of the unconstrained POP (3.1) is a separable polynomial of
the form f0(x) =

∑n
i=1 hi(xi), where each hi(xi) denotes a polynomial in a single

variable xi ∈ R with deg(hi(xi)) = 2ω. In this case, the csp matrix R becomes
an n × n diagonal matrix so that Ci = {i} (i = 1, 2, . . . , n). Hence we take G� ={
ρe� : ρ = 0, 1, 2, . . . , ω

}
(� = 1, 2, . . . , n) in the sparse SOS relaxation (3.8). Here

e� ∈ R
n denotes the �th unit vector with 1 at the �th coordinate and 0 elsewhere.

The resulting SOS optimization problem inherits the separability from the separable
polynomial objective function f0, and is subdivided into n independent subproblems;
each subproblem forms an SOS relaxation of the corresponding subproblem of the
POP (3.1), minimizing h�(x�) in a single variable. We remark here that if we directly
apply the sparse SOS relaxation proposed in [19], we obtain the dense relaxation of
the form (3.3). Therefore, this case shows a critical difference between the sparse SOS
relaxation proposed in this paper and the one given in [19]. See Proposition 5.1 of
[19] for more details.

Suppose that f0(x) =
∑n−1

i=1 (aix
4
i + bix

2
ixi+1 + cixixi+1), where ai, bi, and ci

are nonzero real numbers (i = 1, 2, . . . , n − 1). Then, the csp matrix turns out to
be the n × n tridiagonal matrix which induces in fact a chordal graph; hence there
is no need to extend. In this case, the maximal cliques of the chordal graph are
C� = {�, � + 1} (� = 1, 2, . . . , n− 1).

For another example, let us consider f0(x) =
∑n−1

i=1 (aix
4
i + bix

2
ixn + cixixn),

where ai, bi, and ci are nonzero real numbers (i = 1, 2, . . . , n − 1). In this case, we
have the csp matrix

R =

⎛⎜⎜⎜⎜⎜⎝
� 0 . . . 0 �
0 � 0 �
...

. . .
...

0 0 . . . � �
� � . . . � �

⎞⎟⎟⎟⎟⎟⎠,

which gives a chordal graph with the maximal cliques C� = {�, n} (� = 1, 2, . . . , n−1).

4. SOS relaxations of inequality constrained POPs. Let fk ∈ R[x] (k =
0, 1, 2, . . . ,m). Consider the following POP:

minimize f0(x) subject to fk(x) ≥ 0 (k = 1, 2, . . . ,m).(4.1)

Let ζ∗ = inf{f0(x) : fk(x) ≥ 0 (k = 1, 2, . . . ,m)}. With the correlative sparsity
of the POP (4.1), we determine the generalized Lagrangian function with the same
sparsity and proper sets of supports in an SOS relaxation. A sparse SOS relaxation
is proposed in two steps. In the first step, we convert the POP (4.1) into an uncon-
strained minimization of the generalized Lagrangian function according to [15]. In
the second step, we apply the sparse SOS relaxation given in the previous section for
unconstrained POPs to the resulting minimization problem. A key point of utilizing
the correlative sparsity of the POP (4.1) is that the POP (4.1) and its generalized
Lagrangian function have the same correlative sparsity.
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4.1. Correlative sparsity in inequality constrained POPs. Let Fk = {i :
αi ≥ 1 for some α ∈ supp(fk)} (k = 1, 2, . . . ,m). Each Fk is regarded as the index
set of variables xi of the polynomial fk. For example, if n = 4 and fk(x) = x3

1 +
3x1x4 − 2x2

4, then Fk = {1, 4}. Define the n× n (symbolic, symmetric) csp matrix R
such that

Rij =

⎧⎪⎪⎨⎪⎪⎩
� if i = j,
� if αi ≥ 1 and αj ≥ 1 for some α ∈ supp(f0),
� if i ∈ Fk and j ∈ Fk for some k ∈ {1, 2, . . . ,m},
0 otherwise.

When the csp matrix R is sparse, we say that the POP (4.1) is correlatively sparse.

4.2. Generalized Lagrangian duals. The generalized Lagrangian function
[15] is defined as

L(x,ϕ) = f0(x) −
m∑

k=1

ϕk(x)fk(x),

where x ∈ R
n, ϕ = (ϕ1, ϕ2, . . . , ϕm) ∈ Φ, and

Φ =

{
ϕ = (ϕ1, ϕ2, . . . , ϕm) :

ϕk ∈ R[x,AN
ω ]2 for some ω ∈ Z+

(k = 1, 2, . . . ,m)

}
.

Then, for each fixed ϕ ∈ Φ, the problem of minimizing L(x,ϕ) over x ∈ R
n serves as

a Lagrangian relaxation problem; its optimal value, L∗(ϕ) = inf{L(x,ϕ) : x ∈ R
n},

bounds the optimal value ζ∗ of the POP (4.1) from below.
If our aim is to preserve the correlative sparsity of the POP (4.1) in the resulting

SOS relaxation, we need to have the Lagrangian function L that inherits the correl-
ative sparsity from the POP (4.1). Notice that ϕ can be chosen for this purpose. In
[15], Kim, Kojima, and Waki proposed choosing a polynomial of the same variables as
the variables xi (i ∈ Fk) in the polynomial fk for each multiplier polynomial ϕk, i.e.,
supp(ϕk) ⊂ {α ∈ Z

n
+ : αi = 0 (i �∈ Fk)}. Let ωk = 
deg(fk)/2� (k = 0, 1, 2, . . . ,m)

and ωmax = max{ωk : k = 0, 1, . . . ,m}. For every nonnegative integer ω ≥ ωmax,
define

Φω =
{

ϕ = (ϕ1, ϕ2, . . . , ϕm) : ϕk ∈ R[x,AFk
ω−ωk

]2 (k = 1, 2, . . . ,m)
}
.

Here the parameter ω ∈ Z+ serves as the (relaxation) order of the SOS relaxation of
the POP (4.1) that is derived in the next subsection. Then a generalized Lagrangian
dual (with the Lagrangian multiplier ϕ restricted to Φω) [15] is defined as

maximize ζ subject to L(x,ϕ) − ζ ≥ 0 and ϕ ∈ Φω.(4.2)

Let L∗
ω denote the optimal value of this problem: L∗

ω = sup {L∗(ϕ) : ϕ ∈ Φω}. Then
L∗
ω ≤ ζ∗. If the POP (4.1) includes the box inequality constraint of the form ρ−x2

i ≥
0 (i = 1, 2, . . . , n) for some ρ > 0, we know by Theorem 3.1 of [15] that L∗

ω converges
to ζ∗ as ω → ∞.

4.3. Sparse SOS relaxations. We show how a sparse SOS relaxation is formu-
lated using the sets of supports constructed from the csp matrix R. Let ω ≥ ωmax be
fixed. Suppose that ϕ ∈ Φω. Then L(·,ϕ) forms a polynomial in xi (i = 1, 2, . . . , n)
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with deg(L(·,ϕ)) = 2ω. We also observe from the construction of the csp matrix
R and Φω that the polynomial L(·,ϕ) has the same csp matrix as the csp matrix
R constructed for the POP (4.1). As in section 3.4, the csp matrix R induces the
csp graph G(N,E). By construction, we know that each Fk forms a clique of the
csp graph G(N,E). Let C1, C2, . . . , Cp be the maximal cliques of a chordal extension
G(N,E′) of G(N,E). Then, a sparse SOS relaxation of the POP (4.1) is written as

maximize ζ subject to L(x,ϕ) − ζ ∈
p∑

�=1

R[x,AC�
ω ]2 and ϕ ∈ Φω.(4.3)

Let ζω denote the optimal objective value of this SOS optimization problem. Then
ζω ≤ L∗

ω ≤ ζ∗ for every ω ≥ ωmax, but the convergence of ζω to ζ∗ as ω → ∞ is not
guaranteed in theory.

The above idea of the SOS relaxation of the constrained POP (4.1) using the
generalized Lagrangian function stems from Putinar’s lemma [28] and was first used
in [22]. In fact, if we replace every index subset Fk of N (k = 1, 2, . . . ,m) by the entire
index set N and if we take p = 1 and C1 = N , then the resulting SOS relaxation
(4.3) of the POP (4.1) essentially coincides with the dense SOS relaxation (4.10) of
Lasserre [22], and in this case, it was shown in [22] that ζω → ζ∗ as ω → ∞ under
moderate assumptions.

4.4. Primal approach. We have formulated a sparse SOS relaxation (4.3) of
the inequality constrained POP (4.1) in the previous subsection. For numerical com-
putation, we convert the SOS optimization problem (4.3) into an SDP, which serves
as an SDP relaxation of the POP (4.1). We may regard this way of deriving an SDP
relaxation from the POP (4.1) as the dual approach. We briefly mention below the
so-called primal approach to the POP (4.1) whose sparsity is characterized by the csp
matrix R and the csp graph G(N,E). We use the same symbols and notation as in
section 4.3. Let ω ≥ ωmax. To derive a primal SDP relaxation, we first transform the
POP (4.1) into an equivalent polynomial SDP,

minimize f0(x)

subject to u(x,AFk
ω−ωk

)u(x,AFk
ω−ωk

)T fk(x) ∈ S+(AFk
ω−ωk

)
(k = 1, 2, . . . ,m),

u(x,AC�
ω )u(x,AC�

ω )T ∈ S+(AC�
ω ) (� = 1, 2, . . . , p).

⎫⎪⎪⎬⎪⎪⎭(4.4)

The matrices u(x,AFk
ω−ωk

)u(x,AFk
ω−ωk

)T (k = 1, 2, . . . ,m) and u(x,AC�
ω )u(x,AC�

ω )T

(� = 1, 2, . . . , p) are positive semidefinite symmetric matrices of rank 1 for any x ∈ R
n,

and have 1 as a diagonal element. These facts ensure the equivalence between the
POP (4.1) and the polynomial SDP above. Let

F̃ =

(
p⋃

�=1

AC�
ω

)
\{0},

S̃ = S(AF1
ω−ω1

) × · · · × S(AFm
ω−ωm

) × S(AC1
ω ) × · · · × S(ACp

ω )

(the set of block diagonal matrices of matrices in S(AFk
ω−ωk

)

(k = 1, . . . ,m) and S(AC�
ω ) (� = 1, . . . , p) on their diagonal blocks),

S̃+ = {M ∈ S̃ : positive semidefinite}.
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Then we can rewrite the polynomial SDP above as

minimize
∑
α∈F̃

c̃0(α)xα subject to M(0) +
∑
α∈F̃

M(α)xα ∈ S̃+

for some c̃0(α) ∈ R (α ∈ F̃), M(0) ∈ S̃, and M(α) ∈ S̃ (α ∈ F̃). Now, replacing
each monomial xα by a single real variable yα, we have an SDP relaxation problem
of (4.1):

minimize
∑
α∈F̃

c̃0(α)yα subject to M(0) +
∑
α∈F̃

M(α)yα ∈ S̃+.(4.5)

We denote the optimal objective value by ζ̂ω.
The primal approach described in this section is based on the moment formulation

proposed by [22], which is the dual to the SOS relaxation of the constrained POP (4.1).
More precisely, if we replace every index subset Fk of N (k = 1, 2, . . . ,m) by the entire
index set N and if we take p = 1 and C1 = N , then we have the SDP relaxation of
the POP (4.1) which corresponds to the SDP (4.6) of Lasserre [22]. In this case, the
linearization of the matrix u(x,AN

ω )u(x,AN
ω )T forms the moment matrix Mω(y) of

the SDP (4.5) of Lasserre [22].

4.5. SOS and SDP relaxations of quadratic optimization problems with
order 1. Consider a QOP

minimize xTQ0x + 2qT
0 x

subject to xTQkx + 2qT
k x + γk ≥ 0 (k = 1, 2, . . . ,m).

}
(4.6)

Here Qk denotes an n× n symmetric matrix, qk ∈ R
n, and γk ∈ R. In this case, we

show that the proposed sparse SOS relaxation (4.3) of order ω = 1 using any chordal
extension of the csp graph G(N,E) attains the same optimal value as the dense SOS
relaxation [22] of order ω = 1. This demonstrates an advantage of using the set of
maximal cliques of a chordal extension of the csp graph G(N,E) instead of the set of
maximal cliques of G(N,E) itself.

We formulate the dense [22] and sparse relaxations of order ω = 1 using SOS
polynomials from the dual side. Consider the Lagrangian dual of (4.6):

maximize ζ subject to L(x,ϕ) − ζ ≥ 0 (∀x ∈ R
n) and ϕ ∈ R

m
+ ,(4.7)

where L denotes the Lagrangian function such that

L(x,ϕ) = xT

(
Q0 −

m∑
k=1

ϕkQk

)
x + 2

(
q0 −

m∑
k=1

ϕkqk

)T

x −
m∑

k=1

ϕkγk.

Then we replace the constraint L(x,ϕ) − ζ ≥ 0 (∀x ∈ R
n) by an SOS condition

L(x,ϕ) − ζ ∈ R[x,AN
1 ]2 to obtain the dense relaxation [22] of order ω = 1,

maximize ζ subject to L(x,ϕ) − ζ ∈ R[x,AN
1 ]2 and ϕ ∈ R

m
+ .(4.8)

Now consider the aggregated sparsity pattern matrix R̃ over the coefficient ma-
trices Q0,Q1, . . . ,Qm such that

R̃ij =

⎧⎨⎩
� if i = j,
� if i �= j and [Qk]ij �= 0 for some k ∈ {0, 1, 2, . . . ,m},
0 otherwise,
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which coincides with the csp matrix of the Lagrangian function L(·,ϕ) with ϕ ∈
R

m
+ . Let G(N,E′) be a chordal extension of the csp graph G(N,E) from R̃, and

let C� (� = 1, 2, . . . , p) be the maximal cliques of G(N,E′). Then we can apply the
sparse relaxation (3.8) to the unconstrained minimization of the Lagrangian function
L(·,ϕ) with ϕ ∈ R

m
+ . Thus, replacing R[x,AN

1 ]2 in the dense SOS relaxation (4.8)

by
∑p

�=1 R[x,AC�
1 ]2, we obtain the sparse SOS relaxation

maximize ζ

subject to L(x,ϕ) − ζ ∈
p∑

�=1

R[x,AC�
1 ]2 and ϕ ∈ R

m
+ .

⎫⎪⎬⎪⎭(4.9)

Note that L(·,ϕ) is a quadratic function in x ∈ R
n which results in the same csp graph

G(N,E) for each ϕ ∈ R
m
+ , and that C� (� = 1, 2, . . . , p) are the maximal cliques of a

chordal extension G(N,E′) of the csp graph G(N,E). Hence, if ϕ is chosen so that
the Hessian matrix ∇xxL(x, ϕ) of L(x, ϕ) is positive semidefinite, ∇xxL(x, ϕ) can be
factorized using a Cholesky factorization such that ∇xxL(x, ϕ) = MMT for some
n× n matrix M with the property {i ∈ N : Mij �= 0} ⊂ C ′

j for some maximal clique
C ′

j of G(N,E′) (j = 1, 2, . . . , n). If in addition L(x,ϕ) − ζ is an SOS polynomial or
the constraint of the dense relaxation (4.8) is satisfied, then L(x,ϕ)−ζ is represented
as

L(x,ϕ) − ζ = (1,xT )M̃M̃
T
(

1
x

)
=

n∑
�=1

(
M̃

T

.�+1

(
1
x

))2

+ α2

for some α ≥ 0 and some (1 + n) × (1 + n) matrix M̃ of the form

M̃ =

(
α b
0 M

)
.

Here M̃ .�+1 denotes the (� + 1)st column of M̃ . It should be noted that each

M̃
T

.�+1

(
1
x
)

is an affine function whose support is contained in

AC′
�

1 =
{
α ∈ Z

n
+ : αi = 0 (i �∈ C ′

�)
}

as a polynomial. Therefore we have shown that the dense SOS relaxation (4.8) with
order ω = 1 is equivalent to the sparse SOS relaxation (4.9) with order ω = 1.

5. Some technical issues.

5.1. Computing optimal solutions. Henrion and Lasserre [10] presented a
linear algebra method that computes multiple optimal solutions of the POP (4.1).
The moment matrix of full size induced from u(x,AN

ω )u(x,AN
ω )T plays an essential

role in their method. In the proposed sparse relaxation, however, the moment ma-
trix of full size is not available; instead multiple but partial moment matrices from
u(x,AC�

ω )u(x,AC�
ω )T (� = 1, 2, . . . , p), where the monomials in variables xi (i ∈ C�)

with degree up to ω are taken for the elements of the column vector u(x,AC�
ω ), are

generated. As mentioned in the previous sections, we further apply the method [19]
that eliminates redundant monomials from u(x,AC�

ω ) to reduce the size of the partial
moment matrices. Because of these reasons, it is difficult to utilize the linear algebra
method in the sparse relaxation.
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We present a different technique. The basic idea is to perturb the POP (4.1) so
that the projection of optimal solutions of the resulting primal SDP relaxation (4.5)
onto the space of the variables xi (i = 1, 2, . . . , n) consists of a unique point, which
is the unique optimal solution of the perturbed POP. This technique is originally
proposed in section 6.7 of [9]. We may assume without loss of generality that the
objective polynomial function f0 of the POP (4.1) is linear; if f0 is not linear, we may
replace f0(x) by a new variable x0 and add the inequality constraint f0(x) ≤ x0.

We consider

minimize f0(x) + pTx subject to fk(x) ≥ 0 (k = 1, 2, . . . ,m).(5.1)

Here p ∈ R
n denotes a perturbation vector. We then focus on the primal SDP

relaxation of the perturbed POP (5.1), which can be described as the problem of
minimizing f0(ye1 , ye2 , . . . , yen) +

∑n
i=1 piyei subject to the constraint of the SDP

(4.5). Define

D̃ = {(ye1 , ye2 , . . . , yen) ∈ R
n : (yα : α ∈ F̃) is a feasible solution of (4.5)}.

Note that D̃ is a convex subset of R
n. Then the primal SDP relaxation of the per-

turbed POP (5.1) is equivalent to the convex program

minimize f0(x) + pTx subject to x ∈ D̃,(5.2)

which may be regarded as the projection of the primal SDP relaxation of the perturbed
POP (5.1) onto the space of the variables of (5.1). Now we assume a certain weak
stability for the optimal solution set of the convex program (5.2): there exist ε > 0
and ρ > 0 such that the optimal solution set of the convex program (5.2) is nonempty
and is contained in the ball B(ρ) = {x ∈ R

n : ‖x‖ ≤ ρ} for any perturbation with

‖p‖ ≤ ε. In this case, we can replace the feasible region D̃ of the convex program

(5.2) by D̃∩B(ρ). Now D̃∩B(ρ) is convex and bounded. Hence, the convex program
(5.2) has a unique solution for almost every p with ‖p‖ ≤ ε by Theorem 2.2.9 of
[30].

Consequently, under the assumption on its optimal solution set, the convex pro-
gram (5.2) has a unique optimal solution for almost every small p. Suppose that

(a) p is sufficiently small;
(b) the convex program (5.2) has a unique optimal solution x̂; this means that

x̂ = (ŷe1 , ŷe2 , . . . , ŷen)T is obtained from any optimal solution (ŷα : α ∈ F̃)
of the primal SDP relaxation of the perturbed POP (5.1);

(c) the optimal value of the primal SDP relaxation of (5.1) coincides with the
value f0(x̂) + pT x̂; when f0 is linear, this condition always holds;

(d) x̂ is a feasible solution of the perturbed POP (5.1).

Then x̂ is an optimal solution of the perturbed POP (5.1), which may be regarded as
an approximate optimal solution of the original POP (4.1).

5.2. Equality constraints. Consider the POP

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . ,m), hj(x) = 0 (j = 1, 2, . . . , q).

}
(5.3)
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Here hj ∈ R[x]. Replacing each hj(x) = 0 by two inequality constraints hj(x) ≥ 0
and −hj(x) ≥ 0, we reduce the POP (5.3) to the inequality constrained POP:

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . ,m),

hj(x) ≥ 0, −hj(x) ≥ 0 (j = 1, 2, . . . , q).

⎫⎬⎭(5.4)

Let

ωk = 
deg(fk)/2� (k = 0, 1, 2, . . . ,m),

χj = 
deg(hj)/2� (j = 1, 2, . . . , q),

ωmax = max{ωk (k = 0, 1, 2, . . . ,m), χj (j = 1, 2, . . . , q)},
Fk = {i : αi ≥ 1 for some α ∈ supp(fk)} (k = 1, 2, . . . ,m),

Hj = {i : αi ≥ 1 for some α ∈ supp(hj)} (j = 1, 2, . . . , q).

We construct the csp matrix R and the csp graph G(N,E) of the POP (5.4). Let
C1, C2, . . . , Cp be the maximal cliques of a chordal extension of G(N,E), and let
ω ≥ ωmax. Applying the SOS relaxation in section 4 to the POP (5.4), we have

maximize ζ

subject to f0(x) −
m∑

k=1

ϕk(x)fk(x) −
q∑

j=1

(
ψ+
j (x) − ψ−

j (x)
)
hj(x) − ζ

∈
∑p

�=1 R[x,AC�
ω ]2,

ϕ ∈ Φω, ψ+
j , ψ

−
j ∈ R[x,AHj

ω−χj
]2 (j = 1, 2, . . . , q).

Since R[x,AHj

ω−χj
]2 − R[x,AHj

ω−χj
]2 = R[x,AHj

2(ω−χj)
], this problem is equivalent to

maximize ζ

subject to f0(x) −
m∑

k=1

ϕk(x)fk(x) −
q∑

j=1

ψj(x)hj(x) − ζ

∈
∑p

�=1 R[x,AC�
ω ]2,

ϕ ∈ Φω, ψj ∈ R[x,AHj

2(ω−χj)
] (j = 1, 2, . . . , q).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.5)

We can solve the SOS optimization problem (5.5) as an SDP with free variables.

5.3. Reducing the sizes of SOS relaxations. In [19], a method of reducing
the size of the SOS relaxation is proposed by exploiting sparsity. The method consists
of two phases. Suppose that, given an SOS polynomial f whose support is F , we want
to represent f using unknown polynomials φi ∈ R[x,G] (i = 1, 2, . . . , k) with some

support G such that f =
∑k

i=1 φ
2
i . In phase 1 of the method in [19], we compute

G0 = conv
{α

2 : α ∈ Fe
}⋂

Z
n
+, where Fe = {α ∈ F : αi is even (i = 1, 2, . . . , n)}. It

is known in [29] that supp(φi) ⊂ G0 for any SOS representation of f =
∑k

i=1 φ
2
i . In

phase 2, we eliminate redundant elements from G0 that are unnecessary in any SOS
representation of f .

In the sparse SOS relaxations (3.8) and (4.3), we can apply phase 2 of the method
with some modification to eliminate redundant elements from AC�

ω (� = 1, 2, . . . , p).
Let F denote the support of a polynomial f which we want to represent as

f =

p∑
�=1

ψ� for some ψ� ∈ R[x,G�]
2 (� = 1, 2, . . . , p).(5.6)
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The polynomial f can be either f0 − ζ in the unconstrained POP (3.1), or L(·,ϕ)− ζ
with ϕ ∈ Φω in the constrained POP (4.1). In both cases, we assume that the family
of supports G� = AC�

ω (� = 1, 2, . . . , p) is sufficient to represent f as in (5.6); hence
phase 1 is not implemented. Let Fe = {α ∈ F : αi is even (i = 1, 2, . . . , n)}. For
each α ∈

⋃p
�=1 G�, we check whether the following relations are true:

2α �∈ Fe and 2α �∈
p⋃

�=1

{β + γ : β ∈ G�, γ ∈ G�, β �= α}.

If an α ∈ G� satisfies these relations, we can eliminate α from G� and continue this
process until no α ∈

⋃p
�=1 G� satisfies these two relations. See [19] for more details.

5.4. Supports for Lagrange multiplier polynomials. In the generalized La-
grangian dual (4.2) and the sparse SOS relaxation (4.3), each multiplier polynomial
ϕk has been chosen from the SOS polynomials with the support AFk

ω−ωk
to inherit the

correlative sparsity from the original POP (4.1). For each k, let Jk = {� : Fk ⊂ C�}
(k = 1, 2, . . . ,m). By construction, Jk �= ∅. Now we can replace the support AFk

ω−ωk
of

SOS polynomials for ϕk by a union of AC�
ω−ωk

over some � ∈ Jk in the sparse SOS re-
laxation (4.3). This modification strengthens the SOS relaxation (4.3) without losing
much of the correlative sparsity of the other part.

5.5. Valid polynomial inequalities and their linearization. By adding ap-
propriate valid polynomial inequalities to the constrained POP (4.1), we can strengthen
its SDP relaxation (4.5). This idea has been used in many convex relaxation meth-
ods. See [18] and the references therein. We consider two types of valid polynomial
inequalities that occur frequently in practice. These inequalities are used for some
test problems in the numerical experiments in section 6. Suppose that (4.1) involves
the nonnegative and upper bound constraints on all variables: 0 ≤ xi ≤ ρi (i =
1, 2, . . . , n), where ρi denotes a nonnegative number (i = 1, 2, . . . , n). In this case,

0 ≤ xα ≤ ρα (α ∈ F̃) form valid inequalities, where ρ = (ρ1, ρ2, . . . , ρn) ∈ R
n.

Therefore we can add their linearizations 0 ≤ yα ≤ ρα to the primal SDP relaxation
(4.5). The complementarity condition xixj = 0 is another example. If αi ≥ 1 and
αj ≥ 1 for some α ∈ Z

n
+, then xα = 0 forms a valid equality in this case; hence we

can add yα = 0 to the primal SDP relaxation or we can reduce the size of the primal
SDP relaxation by eliminating the variable yα = 0.

5.6. Scaling. High degree of polynomials in POPs can cause numerical prob-
lems. Even when the degrees of objective and constrained polynomials are small, the
polynomial SDP (4.4) involves high degree monomials xα as the order ω gets larger.
Note that each variable yα corresponds to a monomial xα. More precisely, if x is a
feasible solution of the POP (4.1), then (yα = xα : α ∈ F̃) is a feasible solution of the
primal SDP relaxation (4.5) with the same objective value as (4.1). Therefore, if the
magnitudes of some components of a feasible (or optimal) solution x of (4.1) are much
larger (or smaller) than 1, the magnitude of some components of the corresponding

solution (yα = xα : α ∈ F̃) can be huge (or tiny). This may be the source of numer-
ical difficulties. To avoid such unbalanced magnitudes in the components of feasible
(or optimal) solutions of the primal SDP relaxation (4.5), it would be ideal to scale
the POP (4.1) so that the magnitudes of all nonzero components of optimal solutions
of the scaled problem are near 1. Practically such an ideal scaling is impossible.

Here we restrict our discussion to a POP of the form (4.1) with additional finite
lower and upper bounds on variables xi (i = 1, 2, . . . , n): ηi ≤ xi ≤ ρi (i = 1, 2, . . . ),
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where ηi and ρi denote real numbers such that ηi < ρi. In this case, we can perform
a linear transformation to the variables xi such that zi = (xi − ηi)/(ρi − ηi). Then we
have objective and constrained polynomials gk ∈ R[z] (k = 0, 1, . . . ,m) such that

gk(z1, z2, . . . , zn) = fk((ρ1 − η1)z1 + η1, (ρ2 − η2)z2 + η2, . . . , (ρn − ηn)zn + ηn).

We further normalize the coefficients of each gk ∈ R[z] such that g′k(z) = gk(z)/νk.
Here νk denotes the maximum magnitude of the coefficients of the polynomial gk ∈
R[z] (k = 0, 1, 2, . . . ,m). Consequently, we obtain a scaled POP which is equivalent to
the POP (4.1) with the additional bounding constraint on variables xi (i = 1, 2, . . . , n):

minimize g′0(z)
subject to g′k(z) ≥ 0 (k = 1, 2, . . . ,m), 0 ≤ zi ≤ 1 (i = 1, 2, . . . , n).

}
(5.7)

We note that the scaled POP (5.7) provides the same csp matrix as the original POP

(4.1). Furthermore, we can add the constraints 0 ≤ yα ≤ 1 (α ∈ F̃) to its primal
SDP (4.5) to strengthen the relaxation. A similar technique can be found in [9].

6. Numerical results. In this section, we present numerical results of the pro-
posed sparse relaxation for unconstrained and constrained problems. The focus is
on verifying the efficiency of the sparse relaxation compared with the dense relax-
ation in [22]. The sparse and dense relaxations were implemented with MATLAB for
constructing SDP problems and then a software package SeDuMi 1.05 was used to
solve the SDP problems. All the experiments were done on a 2.4GHz AMD Opteron
cpu with 8.0GB memory. Unconstrained problems that we deal with are benchmark
test problems from [3, 21, 24] and randomly generated test problems with artificial
correlative sparsity. Constrained test problems (section 6.2) are chosen from [8] and
optimal control problems [2].

We employ the techniques described in section 5.1 for finding an optimal solution.
In particular, we use the random perturbation techniques with the parameter ε =
10−5 in all the experiments presented here. After an optimal solution ŷ of an SDP
relaxation of the POP is found by SeDuMi, the linear part x̂ is considered for a
candidate of an optimal solution of the POP.

With regard to computing the accuracy of an obtained solution, we use the fol-
lowing for an unconstrained POP with an objective function f0:

εobj =
|the optimal value of SDP − (f0(x̂) + pT x̂)|

max{1, |f0(x̂) + pT x̂|} .

Here p ∈ R
n denotes a randomly generated perturbation vector such that |pj | < ε =

10−5 (j = 1, 2, . . . , n). For an inequality and equality constrained POP of the form
(5.3), we need another measure for feasibility in addition to εobj defined above. The
following feasibility measure is used:

εfeas = min {fk(x̂) (k = 1, . . . ,m), −|hj(x̂)| (j = 1, . . . , q)}.

We use the technique given in section 5.2 for every equality constrained problem
and the technique in section 5.3 of reducing the size of an SOS relaxation for all test
problems. In addition, we apply the techniques presented in sections 5.4, 5.5, and 5.6
to every constrained problem from the literature [8]. Specifically, we use ∪�∈Jk

AC�
ω−ωk

as the supports of ψk discussed in section 5.4.
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Table 6.1

Notation.

n the number of variables of a POP
d the degree of a POP

sparse cpu time in seconds consumed by the proposed sparse relaxation
dense cpu time in seconds consumed by the dense relaxation [22]
cl.str the structure of the maximal cliques

#clique the average number of cliques found in randomly generated problems
#solved the number of problems solved among randomly generated problems
max.cl the number of the maximal cliques
max the maximum of cpu time consumed by randomly generated problems
avr the average of cpu time consumed by randomly generated problems
min the minimum of cpu time consumed by randomly generated problems
cpu cpu time in seconds
ω the relaxation order

Table 6.2

Numerical results of the chained singular function and the Broyden banded function.

Chained singular function Broyden banded function

n cl.str εobj sparse dense n cl.str εobj sparse dense

16 3*14 3.5e-7 0.6 3059.5 6 6*1 8.0e-9 11.3 11.6
40 3*38 8.4e-7 1.4 — 7 7*1 1.9e-8 69.5 69.5

100 3*98 5.5e-7 3.8 — 8 7*2 2.8e-8 164.1 373.7
200 3*198 3.0e-7 8.4 — 9 7*3 9.1e-8 240.3 1835.6
400 3*398 3.6e-7 19.3 — 10 7*4 6.2e-8 348.7 8399.4

Table 6.1 shows notation used in the description of numerical experiments in the
following subsections. The notation “cl.str” indicates the structure of the maximal
cliques obtained by applying MATLAB functions “symamd” and “chol” to the csp
matrix. For example, 4*3 + 5*2 means three cliques of size 4 and two cliques of size 5.

6.1. Unconstrained cases. The problems presented here are from the litera-
ture [3, 21, 24] and randomly generated problems. Table 6.2 displays the numerical
results of the following two functions.

• The chained singular function [3]

fcs(x) =
∑
i∈J

(
(xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2

+ (xi+1 − 2xi+2)
4 + 10(xi − 10xi+3)

4
)
,

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.
• The Broyden banded function [21]

fBb(x) =

n∑
i=1

(
xi(2 + 5x2

i ) + 1 −
∑
j∈Ji

(1 + xj)xj

)2

,

where Ji = {j | j �= i,max(1, i− 5) ≤ j ≤ min(n, i + 1)}.
The above two problems of relatively small size could be solved by the dense

relaxation as shown in Table 6.2, and their results can be used for the comparison
of the performance of the sparse and dense relaxations. In the case of the chained
singular function fcs, its csp matrix R has nonzero elements near the diagonal; i.e.,
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Table 6.3

Numerical results of Broyden tridiagonal function, the chained Wood function, and the gener-
alized Rosenbrock function.

Broyden tridiagonal Chained Wood Generalized Rosenbrock

n cl.str εobj cpu cl.str εobj cpu cl.str εobj cpu

600 3*598 9.1e-7 9.3 2*599 1.4e-5 0.9 2*599 3.9e-7 3.4
700 3*698 9.0e-7 10.9 2*699 1.6e-5 1.1 2*699 7.5e-9 4.0
800 3*798 2.2e-7 12.6 2*799 1.8e-5 1.3 2*799 2.1e-7 5.1
900 3*898 1.3e-7 14.4 2*899 3.4e-5 1.4 2*899 2.1e-7 5.6

1000 3*998 2.6e-7 16.0 2*999 3.8e-5 1.6 2*999 4.5e-7 5.9

Rij = 0 if |j− i| > 3. This means that fcs is correlatively sparse. The “cl.str” column
of Table 6.2 shows that the sparsity can be detected correctly. As a result, the sparse
relaxation is much more efficient than the dense relaxation. We could successfully
solve the problem of 100 variables in a few seconds, while the dense relaxation could
not handle the problem of 20 or 30 variables.

If we look at the result of the Broyden banded function fBb in Table 6.2, we
observe that there is virtually no difference in performance between the proposed
sparse and dense relaxations for n = 6 and n = 7. Because the csp matrix of this
function has the bandwidth 7, it is fully dense when n = 6 and n = 7; the sparse
relaxation is identical to the dense relaxation in these cases. As n increases, however,
a sparse structure such as 7*2 for n = 8 can be found, and the sparse relaxation takes
advantage of the structured sparsity, providing an optimal solution faster than the
dense relaxation.

In Table 6.3, we present the numerical results of the following functions.
• The Broyden tridiagonal function [21]

fBt(x) = ((3 − 2x1)x1 − 2x2 + 1)
2

+

n−1∑
i=2

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)
2

+ ((3 − 2xn)xn − xn−1 + 1)
2
.

• The chained Wood function [3]

fcW(x) = 1 +
∑
i∈J

(
100(xi+1 − x2

i )
2 + (1 − xi)

2 + 90(xi+3 − x2
i+2)

2

+ (1 − xi+2)
2 + 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)

2
)
,

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.
• The generalized Rosenbrock function [24]

fgR(x) = 1 +

n∑
i=2

{100
(
xi − x2

i−1

)2
+ (1 − xi)

2}.

Each of the above three functions has a band structure in its csp matrix, and, therefore,
the problems of large sizes can be handled efficiently. For example, the Broyden
tridiagonal function fBt with 1000 variables could be solved in 16 seconds with the
accuracy of 2.6e-07. Note that the solutions are accurate in all tested cases.

Next, we present the numerical results of randomly generated problems. The aim
of the test using randomly generated problems is to observe the effects of increasing the
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Table 6.4

Randomly generated polynomials with max.cl = 4 and 2d = 4.

n #clique max avr min #solved
20 14.3 0.9 0.3 0.2 50/50
40 30.9 4.1 1.0 0.4 50/50
60 47.4 6.9 2.0 0.9 50/50
80 64.2 13.0 3.8 1.4 50/50

100 80.3 37.9 8.8 1.9 50/50

Table 6.5

Randomly generated polynomials with max.cl = 4 and n = 30.

2d #clique max avr min #solved
4 22.7 1.1 0.6 0.3 50/50
6 22.9 18.9 5.1 1.4 50/50
8 22.7 624.2 74.7 7.9 50/50

number of variables, the degree of the polynomials, and the maximal size of cliques
of the csp graph of a POP. The dense relaxation could not handle the randomly
generated problems of the sizes reported here, and we include only the numerical
results from the sparse relaxation.

Let us describe how an unconstrained problem with artificial correlative sparsity
is generated randomly. We begin by constructing a chordal graph randomly such
that the size of every maximal clique is not less than 2 and not greater than max.cl.
From the chordal graph, we derive the set of maximal cliques {C1, . . . , C�} with 2 ≤
|Ci| ≤ max.cl (i = 1, . . . , �). We let vCi(x) = (xd

k : k ∈ Ci), where 2d is the degree of
the polynomial, and generate a positive definite matrix V i ∈ S++(Ci) and a vector

gi ∈ [−1, 1]|A
Ci
2d−1| (i = 1, 2, . . . , �) randomly such that the minimum eigenvalue σ of

V 1, . . . ,V � satisfies the relation

σ ≥
�∑

i=1

(
‖gi‖2

√
|ACi

2d−1|
)
.

By using V i and gi, we define the objective function:

frand(x) =

�∑
i=1

(
vCi(x)TV ivCi(x) + gT

i u
(
x,ACi

2d−1

))
.

This unconstrained POP is guaranteed to have an optimal solution in the compact
set {x = (x1, . . . , xn) ∈ R

n | maxi=1,...,n |xi| ≤ 1}. A scaling with the maximum of
the absolute values of the coefficients of frand(x) is used in numerical experiments.

The numerical results are shown in Tables 6.4, 6.5, and 6.6. Table 6.4 exhibits
how the sparse relaxation performs for a varying number of variables, Table 6.5 for
raising the degree of the unconstrained problems, and Table 6.6 for increasing bounds
of sizes of the cliques. For each choice of n, d, and max.cl, we generated 50 problems.
Each column of #solved indicates the number of the problems whose optimal solu-
tions were obtained with εobj ≤ 10−5 out of 50 problems. All problems tested were
solved.

In Table 6.4, we notice that the number of cliques increases with n. For problems
of large numbers of variables and cliques such as n = 100 and #clique= 80.3, the
sparse relaxation provides optimal solutions in 8.8 average cpu seconds.
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Table 6.6

Randomly generated polynomials with 2d = 4 and n = 30.

max.cl #clique max avr min #solved
4 22.7 1.1 0.6 0.3 50/50
6 20.0 31.5 6.4 1.3 50/50
8 17.3 497.9 79.8 4.0 50/50

The numerical results in Table 6.5 display the performance of the sparse relaxation
for the problem of n = 30 with degrees up to 8. The maximum size of cliques is fixed
to 4. As mentioned before, the size of the SDP relaxation of the POP of increasing
degree becomes large rapidly even if the POP remains correlatively sparse. When
2d = 8, the average cpu time is 74.7 and the maximum is 624.2.

A large size of cliques used during problem generation also increases the com-
plexity of the problem as shown in Table 6.6. We tested with the maximum size of
cliques 4, 6, and 8, and observe that cpu time to solve the corresponding problems
grows very rapidly, e.g., 79.8 average cpu seconds and 497.9 maximum cpu seconds
for max.cl = 8. From the increase of work measured by cpu time, we notice that the
impact of the maximum size of cliques is comparable to that of degree, and bigger
than that of the number of variables.

6.2. Constrained cases. In this subsection, we deal with the following con-
strained POPs:

• small-sized POPs from the literature [8],
• optimal control problems [2].

The numerical results on POPs from [8] are presented in Table 6.7. All problems are
quadratic optimization problems except “alkyl,” which involves polynomials of degree
3 in its equality constraints. We also added lower and upper bounds for the variables.
In preliminary numerical experiments for some of the test problems, severe numerical
difficulties occurred in badly scaled problems or problems with the complementarity
condition. We incorporate all the techniques in sections 5.4, 5.5, and 5.6 into the
dense and sparse relaxations for these problems.

In Table 6.7, ε′feas denotes the feasibility for the scaled problems at the approxi-
mate optimal solutions obtained by the sparse and dense relaxations. We see that ε′feas
is small in most of the problems while the feasibility εfeas for the original problems
at the approximate optimal solutions becomes larger. The lower bounds obtained by
the sparse relaxation are as good as the ones obtained by the dense relaxation except
for the five problems ex5 2 2 cases1, 2, and 3, ex5 3 2, and ex9 1 4. In the first three
cases, the dense relaxation with order ω = 2 succeeds in computing accurate bounds
while the sparse relaxation with order ω = 3 computes accurate bounds with the same
quality.

When we compare the performance of the sparse relaxation with the dense re-
laxation using these problems in Table 6.7, we observe that the sparse relaxation is
much faster than the dense relaxation in large-dimensional problems. In some prob-
lems, however, the technique given in section 5.3 for reducing the sizes of relaxations
worked so effectively that the difference between the dense and sparse relaxations
decreased. For example, without incorporating this reduction technique, the sparse
and dense relaxations of ex2 1 3 took 0.9 and 464.5 seconds, respectively, while 0.2
and 2.8 seconds, respectively, were consumed with the technique, as shown in Ta-
ble 6.7. We will present more detailed comparison between the dense relaxation with
the technique and the dense relaxation without the technique in section 6.3.
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Table 6.7

Small-sized POPs. “h.ac” stands for “highly accurate” and means that the absolute value of
the corresponding figure is less than 1.0e-9.

Sparse Dense

Problem n ω εobj εfeas ε′feas cpu εobj ε′feas cpu

ex2 1 1 5 2 2e+0 h.ac h.ac 0.1 2e+0 h.ac 0.1
ex2 1 1 5 3 3e-8 h.ac h.ac 1.1 3e-8 h.ac 1.1
ex2 1 2 6 2 h.ac h.ac h.ac 0.1 h.ac h.ac 0.2
ex2 1 3 13 2 h.ac h.ac h.ac 0.2 h.ac h.ac 2.8
ex2 1 4 6 2 h.ac h.ac h.ac 0.1 h.ac h.ac 0.1
ex2 1 5 10 2 h.ac -1e-9 h.ac 1.2 h.ac h.ac 1.2
ex2 1 8 24 2 h.ac -1e-8 h.ac 82.8 h.ac h.ac 419.3

ex3 1 1 8 2 9e-7 -2e+4 -6e-2 0.2 9e-7 -5e-2 0.9
ex3 1 1 8 3 9e-7 -1e-3 h.ac 3.3 9e-7 -3e-9 211.4
ex3 1 2 5 2 3e-8 h.ac h.ac 0.2 9e-7 h.ac 0.2

ex5 2 2 case1 9 2 h.ac -2e+1 -8e-2 1.0 h.ac -2e-8 1.6
ex5 2 2 case1 9 3 h.ac -7e-6 -5e-8 138.3 — — —
ex5 2 2 case2 9 2 h.ac -7e+1 -3e-4 0.9 h.ac -1e-7 1.4
ex5 2 2 case2 9 3 h.ac -4e-4 -3e-5 131.9 — — —
ex5 2 2 case3 9 2 h.ac -6e+1 -2e-1 0.8 h.ac -2e-7 1.0
ex5 2 2 case3 9 3 h.ac -3e-3 -1e-5 186.2 — — —

ex5 3 2 22 2 h.ac -4e+0 -2e-1 24.4 h.ac -6e-7 302.7
ex5 4 2 8 2 2e-6 -5e+5 -7e-1 0.3 2e-6 -7e-1 1.3
ex5 4 2 8 3 8e-7 -3e-2 -1e-7 4.0 8e-7 -3e-8 267.9

ex9 1 1 13 2 h.ac -7e-9 -2e-9 0.7 h.ac h.ac 2.7
ex9 1 2 10 2 h.ac -5e-8 -3e-8 0.5 h.ac h.ac 1.0
ex9 1 4 10 2 h.ac -3e+0 -1e+0 1.4 h.ac h.ac 1.2
ex9 1 4 10 3 h.ac -6e+1 -1e+0 180.9 — — —
ex9 1 5 13 2 h.ac -3e-6 -2e-6 0.7 h.ac -1e-6 3.3
ex9 1 8 14 2 h.ac -5e-9 -1e-9 0.3 h.ac h.ac 1.9
ex9 2 1 10 2 2e-9 -9e-9 -3e-9 0.5 h.ac h.ac 0.8
ex9 2 2 10 2 5e-6 -2e-5 -9e-6 0.5 5e-6 -8e-6 1.1
ex9 2 3 16 2 6e-4 -4e-2 -2e-2 0.8 6e-4 -1e-2 14.1
ex9 2 4 8 2 9e-6 -6e-8 -3e-8 0.2 9e-6 -1e-7 0.4
ex9 2 5 8 2 1e-9 -2e-9 h.ac 0.2 3e-9 -2e-9 0.3
ex9 2 6 16 2 2e-8 -2e-9 -1e-9 0.4 7e-4 -4e-5 2.4
ex9 2 7 10 2 h.ac -3e-9 -1e-9 0.5 h.ac h.ac 0.8
ex9 2 8 6 2 h.ac h.ac h.ac 0.1 h.ac h.ac 0.1

alkyl 14 2 1e-2 -7e-1 -5e-2 1.8 7e-3 -4e-2 14.4
alkyl 14 3 6e-6 h.ac h.ac 1923.1 — — —

st bpaf1a 10 2 h.ac -1e-8 -5e-9 0.6 h.ac -2e-9 1.1
st bpaf1b 10 2 h.ac h.ac h.ac 0.6 h.ac h.ac 1.0

st e05 5 2 1e-7 -4e-2 -2e-9 0.1 1e-7 h.ac 0.1
st e07 10 2 h.ac -9e-6 -1e-8 0.4 h.ac -3e-9 1.5

st jcbpaf2 10 2 h.ac h.ac h.ac 1.4 h.ac h.ac 1.3

We present numerical results from discrete-time optimal control problems in [2].
The problem tested first (Problem 1 of [2]) is

min

M−1∑
i=1

⎛⎝ ny∑
j=1

(
yi,j +

1

4

)4

+

nx∑
j=1

(
xi,j +

1

4

)4
⎞⎠

+

ny∑
j=1

(
yM,j +

1

4

)4

subject to yi+1 = Ayi + Bxi + (yT
i Cxi)e (i = 1, . . . ,M − 1),

y1 = 0, yi ∈ R
ny (i = 1, . . . ,M),

xi ∈ R
nx (i = 1, . . . ,M − 1),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.1)
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Table 6.8

Numerical results for the problem (6.1) with (nx, ny , μ) = (2, 4, 0). The relaxation order ω = 2.

M n cl.str εobj εfeas cpu

6 30 4*1+5*4+6*2+7*3+8*6 2.8e-09 -1.6e-11 13.2
12 66 4*1+5*4+6*2+7*9+8*18 2.9e-09 -7.4e-12 40.9
18 102 4*1+5*4+6*2+7*15+8*30 5.7e-09 -9.4e-12 67.8
24 138 4*1+5*4+6*2+7*21+8*42 7.7e-09 -9.3e-12 95.6
30 174 4*1+5*4+6*2+7*27+8*54 9.5e-09 -9.1e-12 122.7

Table 6.9

Numerical results for the problem (6.1) with (nx, ny , μ) = (2, 4, 0.5). The relaxation order ω = 2.

M n cl.str εobj εfeas cpu

6 30 5*2+7*4+10*3 3.4e-10 -1.0e-10 62.8
12 66 5*2+7*4+10*9 5.5e-09 -9.4e-10 168.8
18 102 5*2+7*4+10*15 8.1e-09 -9.7e-10 278.9
24 138 5*2+7*4+10*21 1.1e-08 -9.8e-10 390.2
30 174 5*2+7*4+10*27 1.3e-08 -9.9e-10 501.7

where A ∈ R
ny×ny , B ∈ R

ny×nx , and C ∈ R
ny×nx are given by

Ai,j =

⎧⎪⎪⎨⎪⎪⎩
0.5 if j = i,
0.25 if j = i + 1,
−0.25 if j = i− 1,

0 otherwise,

Bi,j =
i− j

ny + nx
, Ci,j = μ

i + j

ny + nx
,

respectively. Here, e denotes a vector of ones in R
ny .

The numerical results of the problem (6.1) are shown in Tables 6.8, 6.9, and 6.10,
which display the results of the problem (6.1) with (nx, ny, μ) = (2, 4, 0), the problem
(6.1) with (nx, ny, μ) = (2, 4, 0.5) and the problem (6.1) with (nx, ny, μ) = (1, 2, 1),
respectively. The values of nx, ny, and M determine the size of the problem, and μ
is a parameter in Ci,j . The relaxation order 2 was used for all cases. As we increase
M from 6 to 30, the number of variables becomes larger as indicated in the column
of n. In all cases, the optimal solutions are obtained with good accuracy.

Depending on the choice of μ, it results in different clique structures and the
size of the resulting SDP varies. This size can greatly affect the performance of the
relaxations. When we take μ = 0 in (6.1), the constraints are linear since C = O.
Then, the cliques have smaller numbers of elements than the ones from the constraints
with nonlinear terms, which enables the sparse relaxation to perform better in terms
of cpu time. To see this, compare the column of cl.str of Table 6.8 with that of
Table 6.9. For example, when M = 30 in Table 6.8, it took 122.7 cpu seconds to
have an optimal solution, whereas it took 501.7 seconds in Table 6.9. Similarly, if we
compare Tables 6.9 and 6.10, we notice that the size of the cliques in Table 6.10 is
half the size of those in Table 6.9, while the cpu time of Table 6.10 is 1/100 of the cpu
time of Table 6.9. This shows how much efficiency can be improved using appropriate
clique structures.

In [2], the optimal values of the problem (6.1) with μ = 0, 0.5, 1 and n = 10, 50
are shown as numerical results. We also solved the same problems with the sparse
relaxation and obtained the same optimal values for each problem. Efficiency could
not be compared because no cpu time was reported in [2].
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Table 6.10

Numerical results for the problem (6.1) with (nx, ny , μ) = (1, 2, 1). The relaxation order ω = 2.

M n cl.str εobj εfeas cpu

6 15 2*1+4*2+5*3 1.8e-10 -1.3e-10 0.4
12 33 2*1+4*2+5*9 1.1e-09 -3.8e-10 1.0
18 51 2*1+4*2+5*15 1.3e-09 -3.1e-10 1.7
24 69 2*1+4*2+5*21 7.6e-10 -1.6e-10 2.3
30 87 2*1+4*2+5*27 8.8e-10 -1.5e-10 3.0

Table 6.11

Numerical results from problem (6.2). The relaxation order ω = 1.

M n cl.str εobj εfeas cpu

600 1198 2*1+3*598 3.5e-09 -2.1e-11 2.8
700 1398 2*1+3*698 3.4e-09 -1.8e-11 3.5
800 1598 2*1+3*798 2.5e-09 -1.2e-11 4.1
900 1798 2*1+3*898 2.1e-09 -8.8e-12 5.0

1000 1998 2*1+3*998 2.6e-09 -9.3e-12 5.5

The second problem (Problem 5 of [2]) is

min
1

M

M−1∑
i=1

(
y2
i + x2

i

)
subject to yi+1 = yi +

1

M
(y2

i − xi) (i = 1, . . . ,M − 1), y1 = 1.

⎫⎪⎪⎬⎪⎪⎭(6.2)

Table 6.11 shows the results of (6.2) for various M .
From the column cl.str, we notice that the set of cliques has very few elements.

The sparse relaxation can solve large-sized problems since they have plenty of correla-
tive sparsity. In fact, the sparse relaxation provides optimal solutions for the problems
with almost 2000 variables, where the size of the clique is 2 or 3.

From all numerical experiments in subsections 6.1 and 6.2, we have observed that
the sparse relaxation is much faster than the dense relaxation with relatively accurate
solutions. The sparse relaxation can handle large POPs with more than a hundred
variables; this is impossible with the dense relaxation. The correlative sparsity has
been the key to solve such large problems.

6.3. Performance comparison with some optimization software. In Ta-
ble 6.12, we compare the performance of the sparse relaxation whose numerical results
have been reported in the previous two subsections with optimization solvers LINGO
(free version) [14], PENNON [16], LOQO [36], and GloptiPoly [9]. We have chosen
the test problems that can show differences for the optimization solvers. We use the
symbols ©, �, and × to denote the accuracy of the optimal value obtained:

©:
|known best value − obtained value|

max{1, |known best value|} < 1.0e-5,

�: 1.0e-5 <
|known best value − obtained value|

max{1, |known best value|} < 1.0e-3,

×: otherwise.

LINGO is a global optimizer. The free version of LINGO was not able to handle
large-sized problems; n = 20 was the largest size of the problems that it could handle.
Although PENNON and LOQO are local optimizers, we include these solvers because
they often attain global optimal values in the numerical experiments. We note that
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Table 6.12

Comparison of LINGO, PENNON, LOQO, GloptiPoly, and the sparse relaxation. Bt and
gR stand for Broyden tridiagonal and generalized Rosenbrock functions. The notation “na” is an
abbreviation for “not applicable,” and “-” means that “out of memory” resulted.

n LINGO PENNON LOQO GloptiPoly Sparse relax.
Bt 10 × © © © ©
Bt 20 × © © - ©
Bt 40 na © © - ©
Bt 60 na © × - ©
gR 10 © × × © �
gR 20 © × × - �
gR 40 na × × - �
gR 60 na × × - �

ex2 1 1 × × × © ©
ex5 2 2 case1 © © × � ©
ex5 2 2 case2 × × © © ©
ex5 2 2 case3 © © © © ©

ex9 2 5 © © × © ©
st e05 © × × × ©
st e07 × © © © ©

st bpaf1a × × × © ©
alkyl © © © - ©

Table 6.13

Comparison of our dense relaxation with reduction, without reduction, and GloptiPoly. “u.b”
means that GloptiPoly returned the warning message that SeDuMi dual may be unbounded. “h.ac”
stands for “highly accurate” and means that the absolute value of the corresponding figure is less
than 1.0e-9.

Dense w/reduction Dense w/o reduction GloptiPoly

Problem εobj ε′feas cpu εobj ε′feas cpu εobj ε′feas cpu

ex2 1 1 4e-8 h.ac 1.1 2e-7 h.ac 5.7 9e-8 h.ac 2.7

ex5 2 2 case1 h.ac -2e-8 1.5 h.ac -1e-2 15.4 1e-5 -7e-4 7.0
ex5 2 2 case2 h.ac -1e-7 1.4 h.ac -1e-3 14.5 4e-7 -9e-5 9.7
ex5 2 2 case3 h.ac -2e-7 1.0 h.ac -4e-5 15.1 5e-7 -2e-5 7.9

ex9 2 5 3e-9 -2e-9 0.3 h.ac h.ac 1.4 2e-9 h.ac 2.1

st e05 h.ac h.ac 0.2 h.ac h.ac 0.3 u.b — 2.7
st e07 h.ac -3e-9 1.6 h.ac -1e-6 34.8 2e-9 h.ac 18.9

st bpaf1a h.ac -2e-9 1.2 h.ac -2e-9 38.5 h.ac h.ac 21.1

× in a column of PENNON or LOQO does not necessarily mean that the correspond-
ing local optimizer fails to “solve” the problem in its own context. GloptiPoly is a
MATLAB implementation of the SDP relaxation method proposed by Lasserre [22]
for solving POPs.

GloptiPoly needed larger memory as the number of variables increased for the
Broyden tridiagonal and generalized Rosenbrock functions; hence, optimal values
could not be obtained for n ≥ 20. The problems ex5 2 2 case1 and st e05 are badly
scaled and could not be solved with GloptiPoly. We also note that the generalized
Rosenbrock function has two distinct minimizers. As a result, the sparse relaxation
with a perturbation resulted in less accurate approximate solutions. In contrast, Glop-
tiPoly can obtain more accurate optimal solutions because of the special technique for
detecting multiple optimal solutions developed by [10]. From Table 6.12, we observe
that the proposed sparse relaxation provides more accurate optimal values than other
software in most cases.

In Table 6.13, we compare our dense relaxation with that of GloptiPoly. Note that
the dense relaxation without the reduction technique [19] stated in section 5.3 and
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GloptiPoly are essentially the same relaxation; the difference lies in some additional
techniques given in section 5 such as adding valid inequalities and scaling. Our dense
relaxation was tested in two ways: with and without the reduction technique. In both
cases, we did not perturb the objective function. The relaxation order ω = 2 was used
for all the problems, except ex2 2 1 where ω = 3. It was shown that GloptiPoly is
faster than the dense relaxation without the reduction in obtaining optimal values
except for the problems ex9 2 5 and st e05, and that the dense relaxation with the
reduction is much faster than the others. The latter observation confirms that the
reduction technique [19] is very effective in the dense relaxation.

7. Concluding discussions. The computational efficiency of the proposed
sparse relaxations depends on the sparsity of a chordal extension of the csp graph.
We note that the following two conditions are equivalent: (i) a chordal extension of
the csp graph is sparse and (ii) Cholesky factorization of the Hessian matrix of the
generalized Lagrangian function, or the Hessian matrix of the objective function in
unconstrained problems, is sparse. When we compare the condition (ii) with the stan-
dard condition of traditional numerical methods, such as Newton’s method for convex
optimization, to be efficient for large-scale problems, we notice a difference between
the generalized Lagrangian function and the usual Lagrangian function in their multi-
pliers. SOS polynomials are the Lagrangian multipliers in the former whereas they are
nonnegative real numbers in the latter. If a linear inequality constraint, the simplest
polynomial constraint, is involved in a POP, it is multiplied by an SOS polynomial in
the former. As a result, the Hessian matrix of the former can become denser than the
Hessian matrix of the latter. In this sense, the condition (ii) in the proposed sparse
relaxations is a stronger requirement on the sparsity in the POP than the standard
condition for traditional numerical methods. This stronger requirement, however, can
be justified if we understand the study of nonconvex and large-scale POPs in global
optimization as a more complicated issue.

The proposed sparse relaxation for a correlatively sparse POP leads to an SDP
that can maintain the sparsity for primal-dual interior-point methods. This is due to
the fact that if a POP is correlatively sparse, the resulting SDP relaxation inherits the
structured sparsity. In each iteration of a primal-dual interior-point method for solving
an SDP, a system of linear equations, which is often called the Schur complement
equation, is solved to compute a search direction. The coefficient matrix of this system
is positive definite and fully dense in general. However, the sparse SDP relaxation
of a correlatively sparse POP possesses sparsity in the coefficient matrix. This is an
important advantage of our sparse relaxation. Among software packages implementing
primal-dual interior-point methods, SeDuMi [33] handles SDPs with this sparsity in
the coefficient matrix of the Schur complement equation while the current version of
Semidefinite Programming Algorithm (SDPA) [37] developed by the authors’ group
is not equipped with the sparse Cholesky factorization for the Schur complement
equation, showing slow performance for POPs with the correlative sparsity. This is
the main reason that SeDuMi has been a choice for the numerical experiments instead
of SDPA.

We encountered numerical difficulties during preliminary numerical experiments.
The techniques presented in section 5 were very effective in overcoming the difficulties
and in enhancing the performance of the sparse and dense relaxations. Some problems
from [8], however, could not be solved because of numerical troubles resulting from
SeDuMi. The failure has to be investigated more rigorously, but some SDPs generated
as relaxations of POPs may be very difficult to solve. Additional techniques for
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resolving this difficulty are to be developed, including the approach for formulating
the SDP differently that was proposed in [23].

We mention that the proposed sparse SOS relaxation can be applied to the prob-
lems with rational objective functions in [13]. It is also interesting to extend the
sparse SOS relaxation to optimization problems described with partially separable
polynomial functions [34, 35]. These will be a future subject of study.
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Abstract. In this paper, we consider Levitin–Polyak-type well-posedness for a general con-
strained optimization problem. We introduce generalized Levitin–Polyak well-posedness and strongly
generalized Levitin–Polyak well-posedness. Necessary and sufficient conditions for these types of
well-posedness are given. Relations among these types of well-posedness are investigated. Finally,
we consider convergence of a class of penalty methods and a class of augmented Lagrangian methods
under the assumption of strongly generalized Levitin–Polyak well-posedness.

Key words. constrained optimization, generalized minimizing sequence, generalized Levitin–
Polyak well-posedness, penalty-type methods

DOI. 10.1137/040614943

1. Introduction. The study of well-posedness originates from Tykhonov [26] in
dealing with unconstrained optimization problems. Its extension to the constrained
case was developed by Levitin and Polyak [18]. Since then, various notions of well-
posedness have been defined and extensively studied (see, e.g., [22, 6, 24, 28, 29, 9,
24, 30]). It is worth noting that recent research on well-posedness has been extended
to vector optimization problems (see, e.g., [3, 20, 21, 12, 13, 7]).

Let (X, d1) and (Y, d2) be two metric spaces, and let X1 ⊂ X and K ⊂ Y be two
nonempty and closed sets. Consider the following constrained optimization problem:

(P) min f(x)

s.t. x ∈ X1, g(x) ∈ K,

where f : X → R1 is a lower semicontinuous function and g : X → Y is a continuous
function. Denote by X0 the set of feasible solutions of (P), i.e.,

X0 = {x ∈ X1 : g(x) ∈ K}.

Denote by X̄ and v̄ the optimal solution set and the optimal value of (P), respectively.
Throughout the paper, we always assume that X0 �= ∅ and v̄ > −∞.

Let (Z, d) be a metric space and Z1 ⊂ Z. We denote by dZ1(z) = inf{d(z, z′) :
z′ ∈ Z1} the distance from the point z to the set Z1.

Levitin–Polyak (LP) well-posedness of (P) in the usual sense (when the optimal
set of (P) is not necessarily a singleton) says that, for any sequence {xn} ⊂ X1

satisfying (i) dX0
(xn) → 0 and (ii) f(xn) → v̄, there exist a subsequence {xnk

} of
{xn} and some x̄ ∈ X̄ such that xnk

→ x̄.
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It should be noted that many optimization algorithms, such as penalty-type meth-
ods, e.g., penalty function methods and augmented Lagrangian methods, terminate
when the constraint is approximately satisfied; i.e., dK(g(x̄)) ≤ ε for some ε > 0
sufficiently small, and x̄ is taken as an approximate solution of (P). These meth-
ods may generate sequences {xn} ⊂ X1 that satisfy dK(g(xn)) → 0, not necessarily
dX0

(xn) → 0, as shown in the following simple example.
Example 1.1. Let α > 0. Let X = R1, X1 = R1

+, K = R1
−, and

f(x) =

{
−xα if x ∈ [0, 1];
−1/xα if x ≥ 1,

g(x) =

{
x if x ∈ [0, 1];
1/x2 if x ≥ 1.

Consider the following penalty problem:

(PPα(n)) min
x∈X1

f(x) + n [max{0, g(x)}]α , n ∈ N.

It is easily verified that xn = 21/αn1/α is the unique global solution to (PPα(n)) for
each n ∈ N . Note that X0 = {0}. It follows that we have dK(g(xn)) = 1/(22/αn2/α) →
0, while dX0(xn) = 21/αn1/α → +∞.

Thus, it is useful to consider sequences that satisfy dK(g(xn)) → 0 instead of
dX0

(xn) → 0 as n → ∞ in order to study convergence of penalty-type methods.
The sequence {xn} satisfying (i) and (ii) above is called an LP minimizing se-

quence. In what follows, we introduce two more types of generalized LP well-posedness.
Definition 1.1. (P) is called LP well-posedness in the generalized sense if, for

any sequence {xn} ⊂ X1 satisfying (i) dK(g(xn)) → 0 and (ii) f(xn) → v̄, there exist
a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄. The sequence {xn}

is called a generalized LP minimizing sequence.
Definition 1.2. (P) is called LP well-posedness in the strongly generalized sense

if, for any sequence {xn} ⊂ X1 satisfying (i) dK(g(xn)) → 0 and (ii) lim supn→+∞ f(xn)
≤ v̄, there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.

The sequence {xn} is called a weakly generalized LP minimizing sequence.
Remark 1.1. (i) The study of well-posedness for optimization problems with

explicit constraints dates back to [17] when the abstract set X1 does not appear. In
[17], it was assumed that X is a Banach space and Y is a Banach space ordered by
a closed and convex cone with some special properties; see [17] for details. What is
worth emphasizing is that [17] studied only the case when (P) is a convex program.
However, it is well known that penalty-type methods such as penalization methods
and augmented Lagrangian methods are mostly developed for constrained nonconvex
optimization problems. This is the main motivation of this paper.

(ii) The LP well-posedness in the strongly generalized sense defined above was
called well-posedness in the strongly generalized sense in [17], while a weakly general-
ized LP minimizing sequence in the above definition is called a generalized minimizing
sequence in [17].

(iii) It is obvious that LP well-posedness in the strongly generalized sense im-
plies LP well-posedness in the generalized sense because a generalized LP minimizing
sequence is a weakly generalized LP minimizing sequence.

(iv) If there exists some δ0 > 0 such that g is uniformly continuous on the set

{x ∈ X1 : dX0(x) ≤ δ0},
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then it is not difficult to see that LP well-posedness in the generalized sense implies
LP well-posedness.

(v) Any one type of (generalized) LP well-posedness defined above implies that
the optimal set X̄ of (P) is nonempty and compact.

The paper is organized as follows. In section 2, we investigate characterizations
and criteria for the three types of (generalized) LP well-posednesses. In section 3,
we establish relations among the three types of (generalized) LP well-posednesses. In
section 4, we obtain convergence of a class of penalty methods and a class of augmented
Lagrangian methods under the assumption of strongly generalized LP well-posedness.

2. Necessary and sufficient conditions for three types of (generalized)
LP well-posedness. In this section, we present some criteria and characterizations
for the three types of (generalized) LP well-posedness defined in section 1.

Consider the following statement:

(1)

[X̄ �= ∅ and, for any LP minimizing sequence (resp.,

generalized LP minimizing sequence, weakly generalized LP minimizing sequence)

{xn}, we have dX̄(xn) → 0].

The proof of the following proposition is elementary and thus omitted.
Proposition 2.1. If (P) is LP well-posed (resp., LP well-posed in the generalized

sense and LP well-posed in the strongly generalized sense), then (1) holds. Conversely,
if (1) holds and X̄ is compact, then (P) is LP well-posed (resp., LP well-posed in the
generalized sense and LP well-posed in the strongly generalized sense).

Consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently small,
such that

c(t, s) ≥ 0 ∀t, s, c(0, 0) = 0,(2)

sk → 0, tk ≥ 0, c(tk, sk) → 0 imply tk → 0.(3)

Theorem 2.1. If (P) is LP well-posed, then there exists a function c satisfying
(2) and (3) such that

|f(x) − v̄| ≥ c(dX̄(x), dX0
(x)) ∀x ∈ X1.(4)

Conversely, suppose that X̄ is nonempty and compact, and (4) holds for some c sat-
isfying (2) and (3). Then (P) is LP well-posed.

Proof. Define

c(t, s) = inf{|f(x) − v̄| : x ∈ X1, dX̄(x) = t, dX0(x) = s}.

It is obvious that c(0, 0) = 0. Moreover, if sn → 0, tn ≥ 0 and c(tn, sn) → 0, then
there exists a sequence {xn} ⊂ X1 with

dX̄(xn) = tn,(5)

dX0(xn) = sn(6)

such that

|f(xn) − v̄| → 0.(7)
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Note that sn → 0. Equations (6) and (7) jointly imply that {xn} is an LP minimizing
sequence. By Proposition 2.1, we have tn → 0. This completes the proof of the first
half of the theorem. Conversely, let {xn} be an LP minimizing sequence. Then, by
(4), we have

|f(xn) − v̄| ≥ c(dX̄(xn), dX0(xn)) ∀x ∈ X1.(8)

Let

tn = dX̄(xn), sn = dX0(xn).

Then sn → 0. In addition, |f(xn) − v̄| → 0. These facts together with (8) as well as
the properties of the function c imply that tn → 0. By Proposition 2.1, we see that
(P) is LP well-posed.

Theorem 2.2. If (P) is LP well-posed in the generalized sense, then there exists
a function c satisfying (2) and (3) such that

|f(x) − v̄| ≥ c(dX̄(x), dK(g(x))) ∀x ∈ X1.(9)

Conversely, suppose that X̄ is nonempty and compact, and (9) holds for some c sat-
isfying (2) and (3). Then (P) is LP well-posed in the generalized sense.

Proof. The proof is almost the same as that of Theorem 2.1. The only difference
lies in the proof of the first part of Theorem 2.1. Here we define

c(t, s) = inf{|f(x) − v̄| : x ∈ X1, dX̄(x) = t, dK(g(x)) = s}.

Next we give a necessary and sufficient condition in the form of Furi and Vignoli
[10] to characterize the LP well-posedness in the strongly generalized sense.

Let

Ω(ε) = {x ∈ X1 : f(x) ≤ v̄ + ε, dK(g(x)) ≤ ε}.

Let (X, d1) be a complete metric space. Recall that the Kuratowski measure of
noncompactness for a subset A of X is defined as

α(A) = inf

⎧⎨⎩ε > 0 : A ⊂
⋃

1≤i≤n

Ci, for some Ci, diam(Ci) ≤ ε

⎫⎬⎭ ,

where diam(Ci) is the diameter of Ci defined by

diam(Ci) = sup{d1(x1, x2) : x1, x2 ∈ Ci}.

The next theorem can be proved analogously to [17, Theorem 5.5].
Theorem 2.3. Let (X, d1) be a complete metric space and f be bounded below

on X0. Then (P) is LP well-posed in the strongly generalized sense if and only if

α(Ω(ε))) → 0 as ε → 0.

Definition 2.1. Let Z be a topological space and Z1 ⊂ Z be nonempty. Suppose
that h : Z → R1 ∪ {+∞} is an extended real-valued function. h is said to be level-
compact on Z1 if, for any s ∈ R1, the subset {z ∈ Z1 : h(z) ≤ s} is compact.
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For any δ ≥ 0, define

X1(δ) = {x ∈ X1 : dK(g(x)) ≤ δ}.(10)

The following proposition gives sufficient conditions that guarantee LP well-
posedness in the strongly generalized sense.

Proposition 2.2. Let one of the following conditions hold.
(i) There exists δ0 > 0 such that X1(δ0) is compact.
(ii) f is level-compact on X1.
(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{f(x), dK(g(x))} = +∞.(11)

(iv) There exists δ0 > 0 such that f is level-compact on X1(δ0).
Then (P) is LP well-posed in the strongly generalized sense.

Proof. Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence. Then

lim sup
n→+∞

f(xn) ≤ v̄,(12)

dK(g(xn)) → 0.(13)

The proof of (i) is elementary. It is obvious that condition (ii) implies (iv). Now
we show that (iii) implies (iv). Indeed, we need only to show that for any s ∈ R1 and
any δ > 0, the set

A = {x ∈ X1(δ) : f(x) ≤ s}

is bounded since X is a finite dimensional space. Suppose to the contrary that there
exist δ > 0, s > 0, and {x′

n} ⊂ X1(δ) such that

‖x′
n‖ → +∞ and f(x′

n) ≤ s.

By {x′
n} ⊂ X1(δ), we have {x′

n} ⊂ X1 and

dK(g(x′
n)) ≤ δ.

As a result,

max{f(x′
n), dK(g(x′

n))} ≤ max{s, δ},

contradicting (11).
Thus, we need only to prove that if (iv) holds, then (P) is LP well-posed in the

strongly generalized sense. By (13), it is apparent that we can assume without loss
of generality that {xn} ⊂ X1(δ0). By (12), we can assume without loss of generality
that

{xn} ⊂ {x ∈ X1 : f(x) ≤ v̄ + 1}.

By the level-compactness of f on X1(δ0), we deduce that there exist a subsequence
{xnk

} of {xn} and x̄ ∈ X1 such that xnk
→ x̄. It is obvious from (13) that x̄ ∈ X0.

Furthermore, from (12), we deduce that f(x̄) ≤ v̄. So we have f(x̄) = v̄. That is,
x̄ ∈ X̄. Hence, (P) is LP well-posed in the strongly generalized sense.
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Now we consider the case when Y is a normed space and K is a closed and convex
cone with nonempty interior intK. Arbitrarily fix an e ∈ intK. Let t ≥ 0 and consider
the following perturbed problem of (P):

(Pt) min f(x)

s.t. x ∈ X1, g(x) ∈ K − te.(14)

Let

X2(t) = {x ∈ X1 : g(x) ∈ K − te}.(15)

Proposition 2.3. Let one of the following conditions hold.
(i) There exists t0 > 0 such that X2(t0) is compact.
(ii) f is level-compact on X1.
(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{f(x), dK(g(x))} = +∞.

(iv) There exists t0 > 0 such that f is level-compact on X2(t0).
Then (P) is LP well-posed in the strongly generalized sense.
Proof. The proof is similar to that of Proposition 2.2.
Now we make the following assumption.
Assumption 2.1. X is a finite dimensional normed space, Y is a normed space,

X1 ⊂ X is a nonempty, closed, and convex set, K ⊂ Y is a closed, and convex cone
with nonempty interior intK and e ∈ intK, f and g are continuous on X1, f is a
convex function on X1, and g is K-concave on X1 (namely, for any x1, x2 ∈ X1 and
any θ ∈ (0, 1), there holds that g(θx1 + (1 − θ)x2) − θg(x1) − (1 − θ)g(x2) ∈ K).

It is obvious that under Assumption 2.1, (P) is a convex program.
The next lemma can be proved similarly to that of [16, Proposition 2.4].
Lemma 2.1. Let Assumption 2.1 hold. Then the following two statements are

equivalent.
(i) The optimal set X̄ of (P) is nonempty and compact.
(ii) For any t ≥ 0, f is level-compact on the set X2(t).
Theorem 2.4. Let Assumption 2.1 hold. Then (P) is LP well-posed in the

strongly generalized sense if and only if the optimal set X̄ of (P) is nonempty and
compact.

Proof. The sufficiency part follows directly from Lemma 2.1 and Proposition 2.3,
while the necessity part is obvious by Remark 1.1.

The next two lemmas will be used to derive Theorem 2.5.
Lemma 2.2 (see [1]). Let (Z, d) be a complete metric space and h : Z → R1 ∪

{+∞} be lower semicontinuous and bounded below. Let ε > 0. Suppose that z0 ∈ Z
satisfies h(z0) ≤ inf{h(z) : z ∈ Z} + ε. Then there exists zε ∈ Z such that

(i) h(zε) ≤ h(z0);
(ii) d(zε, z0) ≤

√
ε;

(iii) h(zε) < h(z) +
√
εd(z, zε) ∀z ∈ Z\{zε}.

Lemma 2.3. Let Y be a normed space and K ⊂ Y be a closed and convex cone
with intK �= ∅ and e ∈ intK. Suppose that {yn} ⊂ Y . Then dK(yn) → 0 if and only
if there exists a sequence {tn} ⊂ R1

+ with tn → 0 such that yn ∈ K − tne.
Proof. For the necessity part, from dK(yn) → 0, we have {un} ⊂ K such that

‖yn−un‖ → 0. Let y′n = yn−un. Then ‖y′n‖ → 0. Let tn =
√
‖y′n‖. Then {tn} ⊂ R1

+,
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tn → 0 and y′n/tn → 0. Since e ∈ intK, it follows that e + y′n/tn ∈ K when n is
sufficiently large. Consequently, y′n ∈ K − tne. Hence, yn = un + y′n ∈ K − tne.

For the sufficiency part, as yn ∈ K − tne, we have yn + tne ∈ K. Thus,

dK(yn) ≤ ‖yn − (yn + tne)‖ = tn‖e‖.

Hence, dK(yn) → 0.
Suppose that K is a cone. We denote by K∗ the positive polar cone of K, i.e.,

K∗ = {μ ∈ Y ∗ : μ(u) ≥ 0 ∀u ∈ K}.

Theorem 2.5. Assume that X is a Banach space, Y is a normed space, and
X1 ⊂ X is nonempty, closed, and convex. K ⊂ Y is a closed and convex cone with
intK �= ∅ and e ∈ intK. Suppose that f : X → R1 is convex and continuously
differentiable on X1 and g : X → Y is K-concave and continuously differentiable on
X1. Let Slater constraint qualification for (P) hold: there exists x0 ∈ X1 such that
g(x0) ∈ intK. Assume that the optimal set X̄ of (P) is nonempty. Further assume
that there exists a convergent subsequence of {xn} for any sequences {xn} ⊂ X1 and
{μn} ⊂ K∗ satisfying the following.

(i) limn→+∞ dK(g(xn)) = 0.
(ii) There exists a subsequence {μnk

} such that μnk
= 0 ∀k or limn→+∞ μn(g(xn))/

‖μn‖ = 0.
(iii) limn→+∞ d(−NX1

(xn))(�f(xn) − μn(�g(xn))) = 0, where NX1
(xn) is the

normal cone of X1 at xn.
Then, (P) is LP well-posed in the strongly generalized sense.
Proof. Suppose that x̄ ∈ X̄. Since Slater constraint qualification holds, we have

μ̄ ∈ K∗ such that

f(x̄) ≤ f(x) − μ̄(g(x)) ∀x ∈ X1(16)

and

μ̄(g(x̄)) = 0.(17)

Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence for (P). Then, by
Lemma 2.3,

lim sup
n→+∞

f(xn) ≤ v̄(18)

and

g(xn) ∈ K − tne(19)

for some {tn} ⊂ R1
+ with tn → 0. From (16), we have

f(x̄) ≤ f(x) − μ̄(g(x)) ∀x ∈ X2(tn).

Note that

−μ̄(g(x)) ≤ tnμ̄(e) ∀x ∈ X2(tn).

Thus,

f(x̄) ≤ f(x) + tnμ̄(e) ∀x ∈ X2(tn).(20)
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Hence,

inf
x∈X2(tn)

f(x) > −∞.(21)

The combination of (19) and (20) gives

f(x̄) ≤ f(xn) + tnμ̄(e).

Consequently,

f(x̄) ≤ lim inf
n→+∞

f(xn).

This together with (18) yields

lim
n→+∞

f(xn) = f(x̄).(22)

This combined with (20) implies that there exists εn → 0+ such that

f(xn) ≤ f(x) + εn ∀x ∈ X2(tn).

Note that X2(tn) ⊂ X is nonempty and closed. (X2(tn), ‖ · ‖) can be seen as a
complete (metric) subspace of X. Applying Lemma 2.2, we obtain

x′
n ∈ X2(tn)(23)

such that

‖xn − x′
n‖ ≤ √

εn(24)

and

f(x′
n) ≤ f(x) +

√
εn‖x− x′

n‖ ∀x ∈ X2(tn).(25)

Note that Slater constraint qualification also holds for the following constrained op-
timization problem:

(Pn) min f(x) +
√
εn‖x− x′

n‖
s.t. x ∈ X1, g(x) ∈ K − tne,

and by (25), x′
n is an optimal solution of (Pn). Hence, there exists μn ∈ K∗ such that

0 ∈ �f(x′
n) − μn(�g(x′

n)) +
√
εnB

∗ + NX1
(x′

n)(26)

and

μn(g(x′
n) + tne) = μn(g(x′

n)) + tnμn(e) = 0,(27)

where B∗ is the closed unit ball of X∗. Equation (26) implies that

lim
n→+∞

d(−NX1
(x′

n))(�f(x′
n) − μn(�g(x′

n))) = 0.(28)

From (27), we see that if there does not exist a subsequence {μnk
} such that μnk

=
0 ∀k, then

lim
n→+∞

μn(g(xn))/‖μn‖ = 0.(29)

The combination of (24), (28), and (29) implies that {x′
n} and {μn} satisfy conditions

(i)–(iii) of the theorem. Thus, {x′
n} has a subsequence {x′

nk
} which converges to some

x̄′ ∈ X0. From (24), we deduce that xnk
→ x̄′ ∈ X0. This combined with (22) implies

x̄′ ∈ X̄. Hence, (P) is LP well-posed in the strongly generalized sense.
Remark 2.1. Conditions (i)–(iii) of Theorem 2.5 can be seen as the well-known

Palais–Smale condition (C) [1] in the case of constrained optimization.



WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 251

3. Relations among three types of (generalized) LP well-posedness.
Simple relationships among the three types of LP well-posedness were mentioned in
Remark 1.1. Now we investigate further relationships among them.

The proof of next theorem is elementary and is omitted.
Theorem 3.1. Suppose that there exist δ > 0, α > 0, and c > 0 such that

dX0
(x) ≤ cdαK(g(x)) ∀x ∈ X1(δ),(30)

where X1(δ) is defined by (10). If (P) is LP well-posed, then (P) is LP well-posed in
the generalized sense.

Remark 3.1. Equation (30) is an error bound condition for the set X0 in terms
of the residual function

r(x) = dK(g(x)) ∀x ∈ X1.

When X = Rl, Y = Rm, X1 = X, and X0 �= ∅, by Theorem 5 of [23], (30) holds
if and only if, for any y ∈ Rm with ‖y‖ ≤ δ,

Ψ(y) ⊂ Ψ(0) + c‖y‖αB,

where

Ψ(y) = {x ∈ Rl : g(x) ∈ K + y}, y ∈ Rm,

and B is the closed unit ball of Y . Sufficient conditions guaranteeing (30) were given
in numerous papers on error bounds for systems of inequalities and metric regularity of
set-valued maps (when (30) holds locally with α = 1) in finite and infinite dimensional
spaces (see, e.g., [5, 8, 18] and the references therein).

Definition 3.1 (see [4]). Let W be a topological space and F : W → 2X be a
set-valued map. F is said to be upper Hausdorff semicontinuous (u.H.c.) at w ∈ W
if, for any ε > 0, there exists a neighborhood U of w such that F (U) ⊂ B(F (w), ε),
where, for Z ⊂ X and r > 0,

B(Z, r) = {x ∈ X : dZ(x) ≤ r}.

Definition 3.2 (see [1]). Let W be a topological space and F : W → 2X be a
set-valued map. F is said to be upper semicontinuous (u.s.c.) in the Berge’s sense at
w ∈ W if, for any neighborhood Ω of F (w), there exists a neighborhood U of w such
that F (U) ⊂ Ω.

It is obvious that the notion of u.s.c. (in Berge’s sense) is stronger than u.H.c.
Clearly, X1(δ) given by (10) can be seen as a set-valued map from R1

+ to X. The
next two theorems use conditions similar to those for the general stability results pre-
sented in section 3 of [4], where the uniform continuity of the objective function around
the feasible set and the u.H.c. of the perturbation set-valued map were considered.

Theorem 3.2. Assume that the set-valued map X1(δ) defined by (10) is u.H.c. at
0 ∈ R1

+. If (P) is LP well-posed, then (P) is LP well-posed in the generalized sense.
Proof. Let {xn} ⊂ X1 be a generalized LP minimizing sequence. That is,

f(xn) → v̄,(31)

dK(g(xn)) → 0.(32)

Equation (32), together with the u.H.c. of X1(δ) at 0, implies that dX0(xn) → 0.
This fact combined with (31) implies that {xn} is an LP minimizing sequence. Thus,



252 X. X. HUANG AND X. Q. YANG

there exist a subsequence {xnk
} of {xn} and some x̄ ∈ X̄ such that xnk

→ x̄. Hence,
(P) is LP well-posed in the generalized sense.

Theorem 3.3. Assume that there exists ε0 > 0 such that f is uniformly continu-
ous on B(X0, ε0) and the set-valued map X1(δ) is u.H.c. at 0. If (P ) is LP well-posed,
then it is LP well-posed in the strongly generalized sense.

Proof. Let {xn} be a weakly generalized LP minimizing sequence. That is,

lim sup
n→+∞

f(xn) ≤ v̄,(33)

dK(g(xn)) → 0.(34)

Note that X1(δ) is u.H.c. at 0. This fact together with (34) implies that dX0(xn) → 0.
Note that f is uniformly continuous on B(X0, ε0). It follows that

lim inf
n→+∞

f(xn) ≥ v̄.(35)

The combination of (33) and (35) yields that

f(xn) → v̄.

Hence, {xn} is an LP minimizing sequence. Thus, there exist a subsequence {xnk
} of

{xn} and some x̄ ∈ X̄ such that xnk
→ x̄. So, (P) is LP well-posed in the strongly

generalized sense.
Let δ ≥ 0. Consider the perturbed problem of (P):

(Pδ) min f(x)

s.t. x ∈ X1, dK(g(x)) ≤ δ.

Denote by v1(δ) the optimal value of (Pδ). Clearly, v1(0) = v̄.
Theorem 3.4. Consider problems (P) and (Pδ). Suppose that (P) is LP well-

posed in the generalized sense and

lim inf
δ→0+

v1(δ) = v̄.(36)

Then (P) is LP well-posed in the strongly generalized sense.
Proof. Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence. Then

lim sup
n→+∞

f(xn) ≤ v̄(37)

and

lim
n→+∞

dK(g(xn)) = 0.

Let δn = dK(g(xn)). Then xn is feasible for (Pδn). Thus,

v1(δn) ≤ f(xn).

Passing to the lower limit, we get

lim inf
n→+∞

v1(δn) ≤ lim inf
n→+∞

f(xn).
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This together with (37) and (36) yields

lim
n→+∞

f(xn) = v̄.

It follows that {xn} is a generalized LP minimizing sequence. Thus, there exist a
subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄. So, (P) is LP

well-posed in the strongly generalized sense.
Remark 3.2. If the set-valued map X1(δ) defined by (10) is u.s.c. at 0 ∈ R1

+, by
Theorem 4.2.3 (1) of [2], (36) holds. In this case, the generalized LP well-posedness
of (P) implies the strongly generalized LP well-posedness of (P).

Now let Y be a normed space and y ∈ Y . Consider the following perturbed
problem of (P):

(Py) min f(x)

s.t. x ∈ X1, g(x) ∈ K + y.

Denote by

X3(y) = {x ∈ X1 : g(x) ∈ K + y}(38)

the feasible set of (Py) and v3(y) the optimal value of (Py). Here we note that if
X3(y) = ∅, we set v3(y) = +∞. It is obvious that X3(y) can be seen as a set-valued
map from Y to X. Corresponding to Theorems 3.2–3.4, respectively, we have the
following theorems.

Theorem 3.5. Assume that Y is a normed space and that the set-valued map
X3(y) is u.H.c. at 0 ∈ Y . If (P) is LP well-posed, then (P) is LP well-posed in the
generalized sense.

Theorem 3.6. Assume that Y is a normed space and that there exists ε0 > 0
such that f is uniformly continuous on B(X0, ε0) and the set-valued map X3(y) is
u.H.c. at 0 ∈ Y . If (P) is LP well-posed, then it is LP well-posed in the strongly
generalized sense.

Theorem 3.7. Assume that Y is a normed space. Consider problems (P) and
(Py). Suppose that (P) is LP well-posed in the generalized sense and

lim inf
y→0

v3(y) = v̄.(39)

Then (P) is LP well-posed in the strongly generalized sense.
Similar to Remark 3.2, when the set-valued map X3 is u.s.c. at 0 ∈ Y , then (39)

holds. Thus, the generalized LP well-posedness of (P) implies its strongly generalized
LP well-posedness.

In the special case when K is a closed and convex cone with nonempty interior
intK, arbitrarily fix an e ∈ intK. It is obvious that X2(t) defined by (15) can be seen
as a set-valued map from R1

+ to X. Denote by v2(t) the optimal value of (Pt).
Theorem 3.8. Assume that K is a closed and convex cone with nonempty in-

terior intK and that the set-valued map X2(t) is u.H.c. at 0 ∈ R1
+. If (P) is LP

well-posed, then (P) is LP well-posed in the generalized sense.
Theorem 3.9. Assume that K is a closed and convex cone with nonempty inte-

rior intK and that there exists ε0 > 0 such that f is uniformly continuous on B(X0, ε0)
and the set-valued map X2(t) is u.H.c. at 0 ∈ R1

+. If (P) is LP well-posed, then it is
LP well-posed in the strongly generalized sense.
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Theorem 3.10. Assume that K is a closed and convex cone with nonempty
interior intK. Consider problems (P) and (Pt). Suppose that (P) is LP well-posed in
the generalized sense and

lim inf
t→0+

v2(t) = v̄.(40)

Then (P) is LP well-posed in the strongly generalized sense.
Again, as noted in Remark 3.2, when the set-valued map X2 is u.s.c. at 0 ∈ R1

+,
then (39) holds. Thus, the generalized LP well-posedness of (P) implies its strongly
generalized LP well-posedness.

4. Applications to penalty-type methods. In this section, we consider the
convergence of a class of penalty methods and a class of augmented Lagrangian meth-
ods under the assumption of strongly generalized LP well-posedness of (P).

4.1. Penalty methods. Let α > 0. Consider the following penalty problem:

(PPα(r)) min
x∈X1

f(x) + rdαK(g(x)), r > 0.

Denote by v4(r) the optimal value of (PPα(r)). It is clear that

v4(r) ≤ v̄ ∀r > 0.(41)

Remark 4.1. When α ∈ (0, 1), X = Rl, Y = Rm, K = Rm1
− × {0m−m1}, where

m ≥ m1 and 0m−m1 is the origin of the space Rm−m1 , this class of penalty functions
was applied to the study of mathematical programs with equilibrium constraints [19].
Necessary and sufficient conditions for the exact penalization of this class of penalty
functions were derived in [14]. This class of penalty methods was also applied to math-
ematical programs with complementarity constraints [27] and nonlinear semidefinite
programs [15]. An important advantage of this class of penalty methods is that it
requires weaker conditions to guarantee its exact penalization property than the usual
l1 penalty function method (see [19]).

Theorem 4.1. Let 0 < rn → +∞. Consider problems (P) and (PPα(rn)).
Assume that there exist r̄ > 0 and m0 ∈ R1 such that

f(x) + r̄dαK(g(x)) ≥ m0 ∀x ∈ X1.(42)

Let 0 < εn → 0. Suppose that each xn ∈ X1 satisfies

f(xn) + rnd
α
K(g(xn)) ≤ v4(rn) + εn.(43)

Further assume that (P) is LP well-posed in the strongly generalized sense. Then
there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.

Proof. From (41) and (43), we have

f(xn) ≤ v̄ + εn.

Thus,

lim sup
n→+∞

f(xn) ≤ v̄.(44)

Moreover, from (41)–(43), we deduce that

f(xn) + r̄dαK(g(xn)) + (rn − r̄)dαK(g(xn)) ≤ v̄ + εn.
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Thus,

m0 + (rn − r̄)dαK(g(xn)) ≤ v̄ + εn,

implying

dK(g(xn)) ≤
[
v̄ + εn −m0

rn − r̄

]1/α

.

Passing to the limit, we get

lim
n→+∞

dK(g(xn)) = 0.(45)

It follows from (44) and (45) that {xn} is a weakly generalized LP minimizing se-
quence. Hence, there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that
xnk

→ x̄.

4.2. Augmented Lagrangian methods. Let (X, d1) be a metric space, let
Y = Rm, and let K ⊂ Y be a nonempty, closed, and convex set. Let σ : Rm →
R1 ∪ {+∞} be an augmenting function; namely, it is a lower semicontinuous, convex
function satisfying

min
y∈Rm

σ(y) = 0 and σ attains its unique minimum at y = 0.

Following Example 11.46 in [25], we define the dualizing parametrization function by
setting X = X1 and θ = δK :

f̄(x, u) = f(x) + δX1(x) + δK(g(x) + u),

where δA is the indicator function of a subset A of a space Z, i.e.,

δA(a) =

{
0 if a ∈ A,
+∞ if a ∈ Z\A.

Constructing the augmented Lagrangian as in Definition 11.55 of [25], we obtain the
augmented Lagrangian:

l̄(x, y, r) = inf
u∈Rm

{
f̄(x, u) + rσ(u) − 〈y, u〉

}
, x ∈ X, y ∈ Rm, r > 0.

The augmented Lagrangian problem is

(ALP (y, r)) min
x∈X

l̄(x, y, r), y ∈ Rm, r > 0.

Denote by v5(y, r) the optimal value of (ALP (y, r)).
We have the following result.
Theorem 4.2. Let {yn} ⊂ Rm be bounded and 0 < rn → +∞. Consider (P)

and (ALP (yn, rn)). Assume that there exist (ȳ, r̄) ∈ Rm× (0,+∞) and m0 ∈ R1 such
that

l̄(x, ȳ, r̄) ≥ m0 ∀x ∈ X.(46)

Let 0 < εn → 0. Suppose that each xn satisfies

l̄(xn, yn, rn) ≤ v5(yn, rn) + εn,(47)

v5(yn, rn) > −∞ ∀n, and (P) is LP well-posed in the strongly generalized sense. Then
there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.
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Proof. By the definition of l̄(x, y, r), it is easy to see that

l̄(x, y, r) = f(x) ∀x ∈ X0.

It follows that

v5(y, r) ≤ v̄ ∀y ∈ Rm, r > 0.

Thus,

v5(yn, rn) ≤ v̄ ∀n.(48)

By the definition of l̄(xn, yn, rn) and (47), {xn} ⊂ X1 and there exists {un} ⊂ Rm

satisfying

g(xn) + un ∈ K ∀n(49)

such that

f(xn) + rnσ(un) − 〈yn, un〉 ≤ v5(yn, rn) + 2εn.(50)

This combined with (46) and (48) implies that

(rn − r̄)σ(un) − 〈yn − ȳ, un〉 ≤ v̄ + 2εn −m0.(51)

We assert that {un} is bounded. Otherwise, we assume without loss of general-
ity that ‖un‖ → +∞. Since the lower semicontinuous and convex function σ has
a unique minimum, by Proposition 3.2.5 in IV of [11] and Corollary 3.27 of [25],
lim infn→+∞ σ(un)/‖un‖ > 0. As {yn} is bounded, (51) cannot hold. So, {un}
should be bounded. Assume without loss of generality that un → u0. We deduce
from (51) that

σ(u0) ≤ lim inf
n→+∞

σ(un) = 0.

It follows that u0 = 0. We deduce from (48) and (50) that

f(xn) − 〈yn, un〉 ≤ v̄ + 2εn.

Passing to the limit, we get

lim sup
n→+∞

f(xn) ≤ v̄.

From (49) and the fact that un → 0, we obtain

lim
n→+∞

dK(g(xn)) = 0.

Thus, {xn} is a weakly generalized LP minimizing sequence. Hence, there exist a
subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.
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Abstract. Recently, nonlinear programming solvers have been used to solve a range of math-
ematical programs with equilibrium constraints (MPECs). In particular, sequential quadratic pro-
gramming (SQP) methods have been very successful. This paper examines the local convergence
properties of SQP methods applied to MPECs. SQP is shown to converge superlinearly under rea-
sonable assumptions near a strongly stationary point. A number of examples are presented that
show that some of the assumptions are difficult to relax.

Key words. nonlinear programming, sequential quadratic programming (SQP), mathemati-
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1. Introduction. We consider mathematical programs with equilibrium con-
straints (MPECs) of the form

minimize f(z)
subject to cE(z) = 0,

cI(z) ≥ 0,
0 ≤ z1 ⊥ z2 ≥ 0,

(1.1)

where z = (z0, z1, z2) is a decomposition of the problem variables into controls z0 ∈ Rn

and states (z1, z2) ∈ R2p. The equality constraints ci(z) = 0, i ∈ E , are abbreviated
as cE(z) = 0, and similarly, cI(z) ≥ 0 represents the inequality constraints. Problems
of this type arise frequently in applications; see [7, 16, 17] for references. (Problem
(1.1) is also referred to as a mathematical program with complementarity constraints
(MPCC).)

Clearly, an MPEC with a more general complementarity condition such as

0 ≤ G(z) ⊥ H(z) ≥ 0(1.2)

can be written in the form (1.1) by introducing slack variables. One can easily show
that the reformulated MPEC has the same properties (such as constraint qualifications
or second-order conditions) as the original MPEC. In this sense, nothing is lost by
introducing slack variables.
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One attractive way of solving (1.1) is to consider its equivalent nonlinear pro-
gramming (NLP) formulation,

minimize f(z)

subject to cE(z) = 0,

cI(z) ≥ 0,

z1 ≥ 0,

z2 ≥ 0,

zT1 z2 ≤ 0,

(1.3)

and solve (1.3) with existing NLP solvers. This paper examines the local convergence
properties of sequential quadratic programming (SQP) methods applied to (1.3).

The NLP (1.3) obviously has no feasible point that satisfies the inequalities
strictly. This fact implies that the Mangasarian–Fromovitz constraint qualification
(MFCQ) is violated at every feasible point; see [4, 19]. There are other, MPEC-
specific constraint qualifications, such as the MPEC-LICQ explained below, which
guarantee the existence of multipliers at local optima of (1.3) and are not overly
stringent; see [21]. MFCQ, however, is a sufficient condition for stability of an NLP,
and the lack thereof has been advanced as a theoretical argument against the use of
standard NLP solvers for MPECs.

Numerical experience with (1.3) has also been disappointing. Bard [2] reports
failure on 50–70% of some bilevel problems for a gradient projection method. Conn,
Gould, and Toint [5] and Ferris and Pang [7] attribute certain failures of lancelot
to the fact that the problem contains a complementarity constraint. In contrast,
Fletcher and Leyffer [10] recently reported encouraging numerical results on a large
collection of MPECs [15]. They solved over 150 MPECs with an SQP solver and
observed quadratic convergence for all but two problems. The two problems that
did not give quadratic convergence violate certain MPEC regularity conditions and
are rather pathological. The present work complements these numerical observations
by giving a theoretical explanation for the good performance of the SQP method on
apparently ill-posed problems of the type (1.3). We show that SQP is guaranteed to
converge quadratically near a stationary point under relatively mild assumptions.

Recently, researchers have expressed renewed interest in the global convergence
of algorithms for MPECs. Scholtes [20] analyzes a regularization scheme in which
a sequence of parametric NLPs is solved. Fukushima and Tseng [11] analyze an
algorithm that computes approximate KKT points for a sequence of active sets.

The paper also complements the recently renewed interest in the convergence
properties of SQP under weaker assumptions. See, for example, [8, 13, 22]. These
studies suggest modifications to enable SQP solvers to handle NLP problems for which
the constraint gradients are linearly dependent at the solution and/or for which strict
complementarity fails to hold.

Anitescu [1] extends Wright’s analysis [22] to NLPs with unbounded multiplier
sets. The fact that (1.3) violates MFCQ implies that the multiplier set at stationary
solutions will be unbounded. Anitescu’s work therefore applies to MPECs in the given
form. However, his assumptions differ from ours, and neither set of assumptions is
implied by the others. Most notably, Anitescu assumes that the QP solver employs
an elastic mode, relaxing constraint linearizations if they are inconsistent. We do not
require such a modification and provide a local analysis of the SQP method in its
pure form.
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In this paper, we argue that the introduction of slack variables is not just a
convenience but plays an important role in ensuring convergence. In section 7.2
we present an example with a nonlinear complementarity constraint for which SQP
converges to a nonstationary point. All QP approximations remain consistent during
the solve. With the introduction of slack variables, on the other hand, SQP converges
to a stationary point. Of course, this does not mean that the use of slacks makes
an elastic mode or a feasibility restoration unnecessary. The example in section 2.2
clearly shows that NLP solvers must be able to handle inconsistent QPs.

This paper is organized as follows. The next section gives a few simple motivating
examples that highlight the key ideas of our approach and illustrate the numerical
difficulties associated with MPECs. In section 3 we review optimality conditions and
constraint qualifications for MPECs. Section 4 shows that the optimality conditions
of the MPEC and its equivalent NLP are related by a simple formula. In section 5
we show that SQP converges quadratically in two distinct situations. The first arises
when SQP is started close to a complementary stationary point. If the starting point
is not complementary, then we show convergence under the assumption that all QP
subproblems remain consistent. Sufficient conditions for this assumption are intro-
duced in section 6. In section 7 we present small examples that illustrate the necessity
of some of these assumptions. We conclude by briefly emphasizing the importance of
degeneracy handling at the QP level and pointing to future research directions.

Notation. Throughout the paper, g(z) = ∇f(z) is the objective gradient and the
constraint gradients are denoted by ai(z) = ∇ci(z). Superscripts refer to the point at

which functions or gradients are evaluated, for example, a
(k)
i = ai(z

(k)) = ∇ci(z
(k)).

The Jacobian matrices are denoted by AE := [ai]i∈E and AI := [ai]i∈I , respectively.

2. Examples. The fact that the NLP formulation (1.3) of an MPEC violates
MFCQ at any feasible point implies that (1.3) has certain features that pose numerical
challenges to NLP solvers.

1. The active constraint normals are linearly dependent at any feasible point.
2. The set of multipliers is unbounded.
3. Arbitrarily close to a stationary point, the linearizations of (1.3) can be in-

consistent.
These features are illustrated by the following examples. The examples also motivate
the analysis in subsequent sections. The main conclusion of this section is that while
MPECs possess these unpleasant properties, they arise in a well-structured way that
allows SQP solvers to tackle MPECs successfully.

In the remainder of this paper, *.mod refers to the AMPL model of the problem
in MacMPEC, an AMPL collection of MPECs [15].

2.1. Dependent constraint normals and unbounded multipliers. In this
section we use a small example from Jiang and Ralph [14] (see also jr*.mod) to
illustrate the key idea of our approach. Consider the two MPECs

{
minimize

z
fi(z)

subject to 0 ≤ z2 ⊥ z2 − z1 ≥ 0
(2.1)

with f1(z) = (z1 − 1)2 + z2
2 and f2(z) = z2

1 + (z2 − 1)2. The problems differ only in
their objectives. The solution to both problems is z∗ = (1/2, 1/2)T ; see Figure 1.
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z
1

f (z)
1

f (z)
2 z

1

z
2

z
2

1

1

Fig. 1. MPEC examples 1 and 2.

The equivalent NLP problem to these MPECs is given by⎧⎪⎪⎨⎪⎪⎩
minimize

z
fi(z) multiplier

subject to z2 ≥ 0, ν ≥ 0,
z2 − z1 ≥ 0, λ ≥ 0,
z2 (z2 − z1) ≤ 0, ξ ≥ 0.

(2.2)

The first-order conditions for these NLPs differ only in the objective gradient and are(
−1

1

)
or

(
1

−1

)
= λ∗

(
−1

1

)
− ξ∗

(− 1
2
1
2

)
.

Clearly, the two active constraint normals are linearly dependent. Since z∗2 = 1
2 > 0

it follows that ν∗ = 0. The multiplier sets, given by

M1 =

{
(λ, ξ) | ξ ≥ 0, λ− 1

2
ξ = 1

}
,

M2 =

{
(λ, ξ) | λ ≥ 0, −λ +

1

2
ξ = 1

}
,

are unbounded, as expected. The sets are shown in Figure 2.
This situation is typical for MPECs that satisfy a strong stationarity condition

(see Definition 3.3). The multiplier set is a ray, and there is exactly one degree of
freedom in the choice of multipliers.

Fig. 2. Multiplier sets of MPEC examples 1 and 2.
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Note, however, that if we restrict our attention to multipliers that correspond to
a linearly independent set of constraint normals, then the following reduced sets are
obtained:

M̃1 =

{(
1
0

)}
,

M̃2 =

{(
0
2

)}
.

These multipliers are bounded and well behaved. We should expect SQP to converge
if started near such a stationary point. The KKT multipliers that correspond to a
solution with linearly independent strictly active constraints are illustrated by the
black circles in Figure 2. The half-line shows the unbounded multiplier set.

Observe that in the first example, λ ≥ 0 at the solution, which implies that this
is also the solution for the NLP with the complementarity condition removed. In the
second example, no λ ≥ 0 can on its own satisfy the stationarity conditions, and ξ > 0
is required. If we had interpreted z2 − z1 ≥ 0 as an equality constraint, then we could
have chosen λ = −1 in the stationarity conditions. However, an NLP solver would
never return λ < 0 for an inequality constraint, and hence ξ = 2 ensures that the
stationarity conditions are satisfied.

The effect of the multiplier of the complementarity constraint is to relax the
condition that λ, ν ≥ 0 for what is essentially an equality constraint. This is exploited
in section 4, where we show that certain MPEC multipliers correspond to multipliers
of (1.3). This situation is typical for MPECs under certain assumptions. The key
idea is to show that SQP converges to a solution provided the QP solver chooses a
linearly independent basis.

2.2. Inconsistent linearizations. The following example illustrates a possible
pitfall for NLP solvers attempting to solve MPECs as NLPs. Consider sl4.mod:⎧⎨⎩

minimize
z

z1 + z2

subject to z2
2 ≥ 1,

0 ≤ z1 ⊥ z2 ≥ 0.

(2.3)

Its solution is z∗ = (0, 1)T with NLP multipliers λ∗ = 0.5 of z2
2 ≥ 1, ν∗1 = 1 of z1 ≥ 0,

and ξ∗ = 0 of z1z2 ≤ 0. In particular, this solution is a strongly stationary point (see
Definition 3.3). However, linearizing the constraints about a point that satisfies the
simple bounds and is arbitrarily close to the solution, such as z(0) = (ε, 1− δ)T (with
ε, δ > 0), gives a QP that is inconsistent. The linearizations are

(1 − δ)2 + 2(1 − δ)(z2 − (1 − δ)) ≥ 1,(2.4)

z1 ≥ 0,

z2 ≥ 0,

(1 − δ)ε + (1 − δ)(z1 − ε) + ε(z2 − (1 − δ)) ≤ 0.(2.5)

One can show that

(2.4) ⇒ z2 ≥ 1 + (1 − δ)2

2(1 − δ)
> 1,

(2.5) ⇒ z2 ≤ 1 − δ < 1,
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which indicates that the QP approximation is inconsistent. This is also observed
during our filter solves (we enter restoration at this point).

Clearly, any NLP solver hoping to tackle MPECs will have to deal with this
situation. The solver snopt [12] uses an elastic mode that relaxes the linearizations of
the QP; filter [9] has a restoration phase. In section 5 convergence of SQP methods
without modifications is analyzed. This analysis is closer in spirit to the results
obtained using filter.

3. Optimality conditions for MPECs. This section reviews stationarity con-
cepts for MPECs in the form (1.1) and introduces a second-order condition. It fol-
lows loosely the development of Scheel and Scholtes [19], although the presentation is
slightly different.

Given two index sets Z1, Z2 ⊂ {1, . . . , p} with

Z1 ∪ Z2 = {1, . . . , p} ,(3.1)

we denote their respective complements in {1, . . . , p} by Zc
1 and Zc

2 . For any such
pair of index sets, we define the relaxed NLP corresponding to the MPEC (1.1) as

minimize
z

f(z)

subject to cE(z) = 0,
cI(z) ≥ 0,

z1j = 0 ∀j ∈ Zc
2 ,

z2j = 0 ∀j ∈ Zc
1 ,

z1j ≥ 0 ∀j ∈ Z2,
z2j ≥ 0 ∀j ∈ Z1.

(3.2)

Concepts such as constraint qualifications, stationarity, and a second-order condition
for MPECs will be defined in terms of the relaxed NLPs. The term “relaxed NLP”
stems from the observation that if z∗ is a local solution of a relaxed NLP (3.2) and

satisfies complementarity z∗
T

1 z∗2 = 0, then z∗ is also a local solution of the original
MPEC (1.1). One can naturally associate with every feasible point ẑ = (ẑ0, ẑ1, ẑ2) of
the MPEC a relaxed NLP (3.2) by choosing Z1 and Z2 to contain the indices of the
vanishing components of ẑ1 and ẑ2, respectively. In contrast to [19], our definition
of the relaxed NLP is independent of a specific point; however, it will occasionally
be convenient to identify the above sets of vanishing components associated with
a specific point ẑ, in which case we denote them by Z1(ẑ), Z2(ẑ), or use suitable
superscripts. Note that for these sets the condition (3.1) is equivalent to ẑT1 ẑ2 = 0.

The indices that are both in Z1 and Z2 are referred to as the biactive components
(or second-level degenerate indices) and are denoted by

D(z) := Z1(z) ∩ Z2(z) or D := Z1 ∩ Z2.

Obviously, in view of (3.1), (Zc
1 ,Zc

2 ,D) is a partition of {1, . . . , p}. A solution z∗ to
the problem (1.1) is said to be second-level nondegenerate if D(z∗) = ∅.

First, the linear independence constraint qualification (LICQ) is extended to
MPECs.

Definition 3.1. Let z1, z2 ≥ 0, and define

Zj := {i : zji = 0} for j = 1, 2.

The MPEC (1.1) is said to satisfy an MPEC-LICQ at z if the corresponding relaxed
NLP (3.2) satisfies an LICQ.
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In [19], four stationarity concepts are introduced for MPEC (1.1). The stationar-
ity definition that allows the strongest conclusions is Bouligand or B-stationarity.

Definition 3.2. A point z∗ is called Bouligand, or B-stationary, if d = 0 solves
the linear program with equilibrium constraints (LPEC) obtained by linearizing f and
c about z∗,

minimize
d

g∗
T

d

subject to c∗E + A∗T

E d = 0,

c∗I + A∗T

E d ≥ 0,
0 ≤ z∗1 + d1 ⊥ z∗2 + d2 ≥ 0.

We note that B-stationarity implies feasibility because if d = 0 solves the above
LPEC, then c∗E = 0, c∗I ≥ 0, and 0 ≤ z∗1 ⊥ z∗2 ≥ 0. B-stationarity is difficult to check
because it involves the solution of an LPEC that is a combinatorial problem and may
require the solution of an exponential number of LPs, unless all these LPs share a
common multiplier vector. Such a common multiplier vector exists if an MPEC-LICQ
holds.

The results of this paper relate to the following notion of strong stationarity.
Definition 3.3. A point z∗ is called strongly stationary if there exist multipliers

λ, ν̂1, and ν̂2 such that

g∗ −
[
A∗T

E : A∗T

I
]
λ−

⎛⎝ 0
ν̂1

ν̂2

⎞⎠ = 0,

c∗E = 0,

c∗I ≥ 0,

z∗1 ≥ 0,

z∗2 ≥ 0,

z∗1j = 0 or z∗2j = 0,

λI ≥ 0,

c∗i λi = 0,

z∗1j ν̂1j = 0,

z∗2j ν̂2j = 0,

if z∗1j = z∗2j = 0, then ν̂1j ≥ 0 and ν̂2j ≥ 0,

(3.3)

where g∗ = ∇f(z∗), A∗
E = ∇cTE (x∗), and A∗

I = ∇cTI (x∗).
Note that (3.3) are the stationarity conditions of the relaxed NLP (3.2) at z∗. B-

stationarity is equivalent to strong stationarity if the MPEC-LICQ holds (e.g., [19]).
Next, a second-order sufficient condition (SOSC) for MPECs is given. Since

strong stationarity is related to the relaxed NLP (3.2), it seems plausible to use the
same NLP to define a second-order condition. For this purpose, let A∗ denote the set
of active constraints of (3.2) and A∗

+ ⊂ A∗ the set of active constraints with nonzero
multipliers (some could be negative). Let A denote the matrix of active constraint
normals, that is,

A =

⎡⎣A∗
E : A∗

I∩A∗ :
0
I∗1
0

:
0
0
I∗2

⎤⎦ =: [a∗i ]i∈A∗ ,
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where A∗
I∩A∗ are the active inequality constraint normals and

I∗1 := [ei]i∈Z∗
1

and I∗2 := [ei]i∈Z∗
2

are parts of the p × p identity matrices corresponding to active bounds. Define the
set of feasible directions of zero slope of the relaxed NLP (3.2) as

S∗ =
{
s | s = 0 , g∗

T

s = 0 , a∗
T

i s = 0 , i ∈ A∗
+ , a∗

T

i s ≥ 0 , i ∈ A∗\A∗
+

}
.

We can now give an MPEC-SOSC. This condition is also sometimes referred to as the
strong-SOSC.

Definition 3.4. A strongly stationary point z∗ with multipliers (λ∗, ν̂∗1 , ν̂
∗
2 ) sat-

isfies the MPEC-SOSC if for every direction s ∈ S∗ it follows that

sT∇2L∗s > 0,

where ∇2L∗ is the Hessian of the Lagrangian of (3.2) evaluated at (z∗, λ∗, ν̂∗1 , ν̂
∗
2 ).

The definitions of this section are readily extended to the case where a more
general complementarity condition such as (1.2) is used. Moreover, any reformulation
using slacks preserves all of these definitions. In that sense, there is no loss of generality
in assuming that slacks are being used.

4. Strong stationarity and NLP stationarity. This section shows that there
exists a relationship between strong stationarity of the MPEC (1.1) and NLP station-
arity conditions for (1.3). In particular, their respective multipliers are shown to be
related by a simple formula.

The NLP stationarity conditions of (1.3) are that there exist multipliers μ :=
(λ, ν1, ν2, ξ) such that

g(z) −
[
AT

E (z) : AT
I (z)

]
λ−

⎛⎝ 0
ν1

ν2

⎞⎠ + ξ

⎛⎝ 0
z2

z1

⎞⎠ = 0,

cE(z) ≥ 0,

cI(z) ≥ 0,

z1 ≥ 0,

z2 ≥ 0,

zT1 z2 ≤ 0,

λI ≥ 0,

ν1 ≥ 0,

ν2 ≥ 0,

ξ ≥ 0,

ci(z)λi = 0,

z1jν1j = 0,

z2jν2j = 0.

(4.1)

The complementarity condition ξzT1 z2 = 0 is implied by the feasibility of z1, z2.
This condition has been omitted.

We examine the difference between (4.1) and the strong-stationarity condition
(3.3). In (3.3), the multipliers ν̂1 and ν̂2 may be negative for components that satisfy
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second-level nondegeneracy, while in (4.1) ν1 ≥ 0, ν2 ≥ 0 is required. We will relate
the multipliers of (3.3) and (4.1) to show that stationarity in both senses is equivalent.

The main observation in proving the following result is that the first-order con-
dition of (4.1) can be written as

g(z) −
[
AT

E (z) : AT
I (z)

]
λ−

⎛⎝ 0
ν1 − ξz2

0

⎞⎠−

⎛⎝ 0
0

ν2 − ξz1

⎞⎠= 0,

which is equivalent to the corresponding first-order condition in (3.3) if

ν̂1 = ν1 − ξz2,(4.2)

ν̂2 = ν2 − ξz1.(4.3)

Proposition 4.1. A point z is strongly stationary in the MPEC (1.1) if and
only if it is a stationary point of the NLP (1.3).

Proof. First we show that (4.1) ⇒ (3.3) by distinguishing three cases:
(a) If z1j > 0, then z2j = 0 = ν1j from complementarity and slackness. From

(4.2) it follows that ν̂1j = 0 and ν̂2j = ν2j − ξz1j satisfies (3.3).
(b) If z2j > 0, then transpose the above argument.
(c) If z1j = z2j = 0, then (4.2) and (4.3) imply that ν̂1j = ν1j ≥ 0 and ν̂2j =

ν2j ≥ 0. Combining (a)–(c), one sees that (4.1) implies (3.3).
Next we show that (3.3) ⇒ (4.1) by distinguishing three cases:
(d) If z1j > 0, then ν̂1j = 0 and z2j = 0. This implies that ν1j = ξz2j+ν̂1j = 0 ≥ 0

for any ξ. To ensure that ν2j = ξz1j + ν̂2j is nonnegative, we need to choose ξ such
that ξz1j + ν̂2j ≥ 0 ∀j, or equivalently that ξ ≥ −ν̂2j/z1j ∀j.

(e) If z2j > 0, then transpose the above argument.
(f) If z1j = z2j = 0, then ν1j = ν̂1j ≥ 0 and ν2j = ν̂2j ≥ 0, for any ξ.
From parts (d) and (e) it follows that choosing ξ to be at least

ξ = max

{
0, max

i∈Zc
2

−ν̂1i

z∗2i
, max

i∈Zc
1

−ν̂2i

z∗1i

}
(4.4)

will ensure that ν1, ν2 ≥ 0. Examining the expressions on the right-hand side of (4.4),
one can see that ξ is bounded. Combining cases (d) to (f) it follows that (3.3) implies
(4.1).

The interesting point about the proof is that it relates the multiplier ξ to the
fact that the NLP conditions (4.1) are more restrictive in the sense that they enforce
ν1, ν2 ≥ 0, while ν̂1, ν̂2 may be negative. In a way, ξ compensates for this: if, for
instance, ν̂1j < 0, then z2j > 0, and we can get the corresponding NLP multiplier
ν1j = ν̂1j + ξz2j nonnegative by choosing ξ sufficiently large.

Clearly, any value ξ̂ > ξ in (4.4) would also satisfy the stationarity conditions
(4.1), and this is how the unboundedness of the multiplier set arises. However, any

such ξ̂ > ξ would not correspond to a basic solution, in the sense that the constraint
normals corresponding to nonzero multipliers are linearly dependent. The main ar-
gument in our convergence analysis is to show that an SQP solver that works with a
nonsingular basis will pick the multiplier defined in (4.4).

Definition 4.2. The multiplier defined by (4.4) is referred to as the basic mul-
tiplier.
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The terminology of this definition is justified by the following lemma, which shows
that if MPEC-LICQ holds, then the MPEC multipliers and the multiplier in (4.4) are
unique and correspond to a linearly independent set of constraint normals.

Lemma 4.3. If MPEC-LICQ holds at a local minimizer of (1.1), then it is strongly
stationary, and the multipliers in (3.3) and the basic multiplier defined by (4.4) are
unique. Moreover, the set of constraint normals corresponding to nonzero multipliers
is linearly independent.

Proof. MPEC-LICQ implies the uniqueness of the MPEC multipliers (3.3); see
[19]. The uniqueness of the MPEC multiplier implies that all expressions on the
right-hand side of (4.4) are unique, hence implying the uniqueness of ξ. Finally, the
uniqueness of the corresponding NLP multipliers follows from (4.2) and (4.3) (if the
NLP multipliers were not unique, then we could find other MPEC multipliers).

To show that the constraint normals corresponding to nonzero multipliers are
linearly independent, we distinguish two cases: ξ = 0 and ξ > 0.

If ξ = 0, then the linear independence of constraint normals corresponding to
nonzero multipliers follows from MPEC-LICQ.

If ξ > 0, then there exists at least one component i ∈ Zc
1 or i ∈ Zc

2 such that
ν2i = 0 or ν1i = 0.

It remains to show that the set of constraint normals corresponding to nonzero
multipliers is linearly independent. By MPEC-LICQ, this is true for all but the com-
plementarity constraint. Then we can exchange the normal of the complementarity
constraint for any normal whose multiplier is driven to zero by (4.4) and (4.2) or (4.3)
in the basis as explained in Lemma 5.8 below.

The conclusions of this section can be readily extended to cover the case where
the complementarity condition is of the more general form (1.2).

5. Local convergence of SQP methods. This section shows that SQP meth-
ods converge quadratically near a strongly stationary point under mild conditions.
Section 7 discusses the assumptions and provides counterexamples for situations where
(some of) these assumptions are not satisfied. In particular, we are interested in the

situation where z(k) is close to a strongly stationary point, z∗, but z
(k)T

1 z
(k)
2 is not nec-

essarily zero. SQP then solves a sequence of quadratic programming approximations,
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
d

g(k)T d + 1
2d

TW (k)d

subject to c
(k)
E + A

(k)T

E d = 0,

c
(k)
I + A

(k)T

I d ≥ 0,

z
(k)
1 + d1 ≥ 0,

z
(k)
2 + d2 ≥ 0,

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ 0,

(QP k)

where W (k) = ∇2L(z(k), μ(k)) is the Hessian of the Lagrangian of (1.3) and μ(k) =

(λ(k), ν
(k)
1 , ν

(k)
2 , ξ(k)). The last constraint of (QP k) is the linearization of the comple-

mentarity condition zT1 z2 ≤ 0.
Assumption 5.1. The following assumptions are made:

[A1] f and c are twice Lipschitz continuously differentiable.
[A2] The MPEC (1.1) satisfies an MPEC-LICQ (Definition 3.1).
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[A3] z∗ is a strongly stationary point of (1.1) with multipliers λ∗, ν∗1 , ν
∗
2 (Defini-

tion 3.3), and z∗ satisfies the MPEC-SOSC (Definition 3.4).
[A4] λ∗

i = 0 ∀i ∈ E∗, λ∗
i > 0 ∀i ∈ A∗ ∩ I, and both ν∗1j > 0 and ν∗2j > 0 ∀j ∈ D∗.

[A5] The QP solver always chooses a linearly independent basis.
The most restrictive assumption is strong stationarity in [A3], which follows if

z∗ is a local minimizer from [A2]. That is, [A3] (or [A2]) removes the combinatorial
nature of the problem. It is not clear that [A2] can readily be relaxed in the present
context, since it allows us to check B-stationarity by solving exactly one LP or QP.
Without assumption [A2] it would not be possible to verify B-stationarity without
solving several LPs (one for every possible combination of second-level degenerate
indices i ∈ D∗). It seems unlikely, therefore, that a method that solves only a single
LP or QP per outer iteration can be shown to be convergent to B-stationary points
for problems that violate MPEC-LICQ. Note that we do not assume that the MPEC
(1.1) is second-level nondegenerate; in other words, we do not assume that z∗1 +z∗2 > 0.

The strict complementarity Assumption [A4] can in fact be weakened for all the
results of section 5.1 to require positivity only of the biactive multipliers ν∗1j and ν∗2j ,
because Proposition 5.2, which underlies our convergence analysis there, does not
require λ∗

i = 0 ∀i ∈ E∗ and λ∗
i > 0 ∀i ∈ A∗ ∩ I; see [3]. Section 5.2, however, requires

all the conditions of [A4]. Assumption [A5] is a reasonable assumption in practice, as
most modern SQP solvers are based on active set QP solvers that guarantee this.

This section is divided into two parts. First, we consider the case where com-
plementarity is satisfied at a point sufficiently close to a stationary point. This case
corresponds to the situation where all iterates (ultimately) remain on the same face
of 0 ≤ z1 ⊥ z2 ≥ 0. The key idea is to show that SQP applied to (1.3) behaves
identical to SQP applied to (3.2).

The second case considered arises when z
(k)T

1 z
(k)
2 > 0 for all iterates k. In this

case, the previous ideas cannot be applied, and a separate proof is required. We
make the additional assumption that all QP subproblems remain consistent. This
assumption appears to be rather strong, especially in light of example (2.3), which
shows that the QP approximation may be inconsistent arbitrarily close to a solution.
However, we will give several sufficient conditions for it later that show that it is not
unduly restrictive.

5.1. Local convergence for exact complementarity. In this section we make
the following additional assumption:

[A6] For some k we have that z
(k)T

1 z
(k)
2 = 0 and (z(k), μ(k)) is sufficiently close to

a strongly stationary point.
Assumption [A6] implies that the correct face has been identified except for degen-

erate or biactive constraints. Thus, for given index sets Zj = {i : z
(k)
ji = 0}, j = 1, 2,

the following holds:

z
(k)
1j = 0 ∀j ∈ Zc

2 ,

z
(k)
2j = 0 ∀j ∈ Zc

1 ,

z
(k)
1j = 0 and z

(k)
2j = 0 ∀j ∈ D.

In particular, it is not assumed that the biactive complementarity constraints D∗

are active at z(k). Thus it may be possible that Z1 = Z∗
1 (and similarly for Z2).

However, it will be shown that the biactive constraints become active after one step
of the SQP method as a consequence of [A4] (the positivity of biactive multipliers);
see Proposition 5.2.
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An important consequence of [A6] is that Z1 and Z2 satisfy

Z∗c

1 ⊂ Zc
1 ⊂ Z∗c

1 ∪ D∗,

Z∗c

2 ⊂ Zc
2 ⊂ Z∗c

2 ∪ D∗,

D ⊂ D∗;

(5.1)

in other words, the indices Z∗c

1 and Z∗c

2 of the nondegenerate complementarity con-
straints have been identified correctly.

The key idea of the proof is to show that SQP applied to (1.3) is equivalent to
SQP applied to the relaxed NLP (3.2) on a face. For a given partition (Zc

1 ,Zc
2 ,D),

an SQP step for (3.2) is obtained by solving the following QP:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
d

g(k)T d + 1
2d

T Ŵ (k)d

subject to c
(k)
E + A

(k)T

E d = 0,

c
(k)
I + A

(k)T

I d ≥ 0,

d1j = 0 ∀j ∈ Zc
2 ,

d2j = 0 ∀j ∈ Zc
1 ,

z
(k)
1j + d1j ≥ 0 ∀j ∈ Z2,

z
(k)
2j + d2j ≥ 0 ∀j ∈ Z1,

(QPR(z(k))

where

Ŵ (k) = ∇2f(z(k)) −
∑

λ
(k)
i ∇2ci(z

(k)) = W (k) − ξ(k)

⎡⎣ 0 0 0
0 0 I
0 I 0

⎤⎦
is the Hessian of the Lagrangian of the relaxed NLP (3.2). Note that the relaxed
NLP (3.2) is never set up nor is (QPR(z(k))) ever solved. These two problems are
merely used in the convergence proof. The key idea is to show that SQP applied to
the ill-conditioned NLP (1.3) is equivalent to SQP applied to the well-behaved relaxed
NLP (3.2), given by the sequence defined by (QPR(z(k))).

The following proposition states the fact that SQP applied to the relaxed NLP
converges quadratically and identifies the correct index sets Z∗

1 and Z∗
2 in one step.

Proposition 5.2. Let Assumptions [A1]–[A6] hold, and consider the relaxed
NLP for any index sets Z1, Z2 (satisfying (5.1) by virtue of [A6]). Then it follows
that

1. there exists a neighborhood U of (z∗, λ∗, ν∗1 , ν
∗
2 ) and a sequence of iterates

generated by SQP applied to the relaxed NLP (3.2), {(z(l), λ(l), ν
(l)
1 , ν

(l)
2 )}l>k,

that lies in U and converges Q-quadratically to (z∗, λ∗, ν∗1 , ν
∗
2 );

2. the sequence {z(l)}l>k converges Q-superlinearly to z∗; and

3. Z(l)
1 = Z∗

1 and Z(l)
2 = Z∗

2 for l > k.
Proof. The relaxed NLP satisfies LICQ and an SOSC. Therefore, there exists

a neighborhood U of (z∗, λ∗, ν∗1 , ν
∗
2 ) such that for any (z(l), λ(l), ν

(l)
1 , ν

(l)
2 ) ∈ U , there

exists an SQP iterate (z(l+1), λ(l+1), ν
(l+1)
1 , ν

(l+1)
2 ) that also lies in U ; and any sequence

of SQP iterates {z(l)}l>k ⊂ U converges at second-order rate when applied to the
relaxed NLP. In fact part 1 is a standard result whose proof can be found, for instance,
in [6, Theorem 15.2.2] or in [3]. Part 2 is due to [3]. Part 3 follows from the fact
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that SQP identifies the correct active set in one step by the strict complementarity
assumption [A4].

Next, we show that the sequence of steps generated by SQP applied to the relaxed
NLP (3.2) is identical to the sequence of steps generated by applying SQP to the

equivalent NLP (1.3), provided that z
(k)T

1 z
(k)
2 = 0, that is, [A6] holds for some k. If

z
(k)T

1 z
(k)
2 = 0, then an SQP step for (1.3) is obtained by solving the following (QP k)

with z
(k)T

1 z
(k)
2 = 0 in the last constraint.

The two QPs (QP k) and (QPR(z(k))) have different constraints and Hessians.
The Hessian of (QP k) is

W (k) = Ŵ (k) + ξ(k)

⎡⎣ 0 0 0
0 0 I
0 I 0

⎤⎦.
Despite these differences, however, one can show that the two QPs have the same
solution (from which second-order convergence follows). The following lemma shows
that the constraint sets are the same.

Lemma 5.3. Let Assumptions [A1]–[A6] hold. Then, a step d is feasible in (QP k)
if and only if it is feasible in (QPR(z(k))).

Proof. The constraint sets differ only in the way in which indices j ∈ Zc
2 and

j ∈ Zc
1 are handled. Thus it suffices to consider those constraints.

(a) Let d be feasible in (QPR(z(k))). Then it follows in particular that d satisfies

d1j = 0 ∀j ∈ Zc
2 ,

d2j = 0 ∀j ∈ Zc
1 .

If these constraints are split into two inequalities, we have that d satisfies

d1j ≥ 0 ∀j ∈ Zc
2 ,(5.2)

d1j ≤ 0 ∀j ∈ Zc
2 ,(5.3)

d2j ≥ 0 ∀j ∈ Zc
1 ,(5.4)

d2j ≤ 0 ∀j ∈ Zc
1 .(5.5)

Summing (5.3) over all j ∈ Zc
2 weighted with z

(k)
2j > 0 and (5.5) over all j ∈ Zc

1

weighted with z
(k)
1j > 0, it follows that d satisfies the last constraint of (QP k) (the

simple bounds follow from (5.2) and (5.4)).

(b) Let d be feasible in (QP k). Since z
(k)
2j > 0 ∀j ∈ Zc

2 and z
(k)
1j > 0 ∀j ∈ Zc

1 ,

it follows from [A6] that z
(k)
1j = 0 ∀j ∈ Zc

2 and that z
(k)
2j = 0 ∀j ∈ Zc

1 . Thus, (QP k)
contains the constraints

d1j ≥ 0 ∀j ∈ Zc
2 and d2j ≥ 0 ∀j ∈ Zc

1 .

By [A6], the linearization of the complementarity constraint in (QP k) simplifies to∑
j∈Zc

2

z
(k)
2j d1j +

∑
j∈Zc

1

z
(k)
1j d2j ≤ 0.

Since z
(k)
2j > 0, and z

(k)
1j > 0 in this sum, it follows that

d1j ≤ 0 ∀j ∈ Zc
2 and d2j ≤ 0 ∀j ∈ Zc

1 .

Thus, d is feasible in (QPR(z(k))).
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Next, we show that near z∗, the stationary points of (QP k) and (QPR(z(k))) are
identical.

Lemma 5.4. Under Assumptions [A1]–[A6], any stationary point of (QPR(z(k)))
near zero is also a stationary point of (QP k), and vice versa.

Proof. From above, (QPR(z(k))) and (QPk) share the same feasible set. Consider
a feasible point d̄ that satisfies d̄ij = 0 for j ∈ D, i = 1, 2. Since all feasible points d
have d1j = 0 for j ∈ Zc

2 , then d̄1j = 0 for j ∈ Zc
2 ∪ D = Z1. Likewise, d̄2j = 0 for

j ∈ Z2. That is, we have orthogonality between d̄1 and d2, and between d̄2 and d1,
for any feasible d. Thus the gradients of the objective functions of (QPR(z(k))) and
(QPk) at d̄, which differ only by ξ(k)(0, d̄2, d̄1), cannot be distinguished on the feasible
set. It follows that d̄ is stationary for (QPR(z(k))) if and only if it is stationary for
(QPk). To complete the proof we show that any stationary point, near zero, of either
QP does indeed satisfy the above conditions on d̄.

From part 3 of Proposition 5.2, any stationary point d̄ of (QPR(z(k))), near zero,

satisfies z
(k)
ij + d̄ij = 0 for j ∈ D∗ and i = 1, 2. As D∗ ⊃ D ⊂ Z1, we get for j ∈ D

that d̄1j = 0. Likewise d̄2j = 0 for j ∈ D.
Conversely let d̄ be a stationary point, near zero, of (QPk). The associated KKT

conditions include

g(k) + W (k)d̄−
[
A

(k)
E

T
: A

(k)
I

T
]
λ̄−

⎛⎝ 0
ν̄1

ν̄2

⎞⎠ + ξ̄

⎛⎜⎝ 0

z
(k)
2

z
(k)
1

⎞⎟⎠ = 0

for some multipliers λ̄, ν̄1, ν̄2, ξ̄. As z(k) and d̄ approach z∗ and zero, respectively,
where μ(k) is within a given radius of (λ∗, ν∗1 , ν

∗
2 , 0), we deduce from MPEC-LICQ

and the first equation of (3.3) that ν̄1 − ξ̄z
(k)
2 and ν̄2 − ξ̄z

(k)
1 approach ν∗1 and ν∗2 ,

respectively. Therefore Assumption [A4], with nonnegativity of z
(k)
1 , z

(k)
2 , and ξ̄,

ensures that ν̄ij > 0, hence z
(k)
ij + d̄ij = 0, for j ∈ D∗ and i = 1, 2. The argument that

d̄ij = 0 for j ∈ D and i = 1, 2 is given in the previous paragraph.
Lemma 5.5. Let Assumptions [A1]–[A6] hold. Let (λ, ν̂1, ν̂2) be the multipliers of

(QPR(z(k))) (corresponding to a step d near zero). Then it follows that the multipliers
of (QP k), corresponding to the same step d, are μ = (λ, ν1, ν2, ξ), where

ξ = max

(
0, max

j∈Z1\D

−ν̂1j − ξ(k)d2j

z
(k)
2j

, max
j∈Z2\D

−ν̂2j − ξ(k)d1j

z
(k)
1j

)
,(5.6)

ν1j = ν̂1j > 0 ∀j ∈ D,(5.7)

ν2j = ν̂2j > 0 ∀j ∈ D,(5.8)

ν1j = ν̂1j + ξ(k)d2j + ξz
(k)
2j ∀j ∈ Z1\D,(5.9)

ν2j = ν̂2j + ξ(k)d1j + ξz
(k)
1j ∀j ∈ Z2\D.(5.10)

Conversely, given a solution d and multipliers μ of (QP k), (5.7)–(5.10) show how to
construct multipliers so that (d, λ, ν̂1, ν̂2) solves (QPR(z(k))).

Proof. If z(k) is sufficiently close to z∗, then the sign of the multipliers in (5.7) and
(5.8) follows from [A4], and the value for the multipliers of (QP k) follows similarly to
Proposition 4.1. Similarly, the multipliers of (QP k) in (5.9) and (5.10) are nonnegative
by construction and satisfy first-order conditions by Lemma 5.4.
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Next, we show that both QPs have the same (unique) solution in a neighborhood
of d = 0.

Lemma 5.6. The solution d of (QPR(z(k))) is the only strict local minimizer
in a neighborhood of d = 0 that is independent of k, and its corresponding multipli-
ers (λ, ν1, ν2) are unique. Moreover, d is also the only strict local minimizer in a
neighborhood of d = 0 of (QP k).

Proof. The result for (QPR(z(k))) is due to Robinson [18] (see also Conn, Gould,
and Toint [6]), since the relaxed NLP satisfies [A1]–[A4]. The statement for (QP k)
follows in two parts. First-order conditions are established in Lemma 5.5. Second-
order conditions for (QP k) follow from second-order conditions of (QPR(z(k))), as we
explain now. The critical cone at a stationary point is the set of directions in the
tangent cone to the feasible set that are orthogonal to the gradient of the objective
function. From Lemma 5.3 and the proof of Lemma 5.4, it can be seen that the critical
cones of (QPR(z(k))) and (QP k) coincide; denote this cone C. Next, we use a standard
fact that relates an inequality constraint with a positive multiplier to any direction d
in the critical cone of (QP k), namely, dij = 0 if ν̄ij > 0. Hence, using the proof of
Lemma 5.4, we have that dT1 d2 = 0 for d ∈ C. It follows that the Hessian matrices
of (QPR(z(k))) and (QP k) are indistinguishable on C, hence that the SOSC of the
former transfers to the latter, and the stationary point must be a local minimizer of
the latter.

The following theorem summarizes the results of this section. As remarked earlier,
these results holds under a weak version of Assumption [A4] in which only positivity
of the biactive multipliers ν∗1j and ν∗2j is required.

Theorem 5.7. If Assumptions [A1]–[A6] hold, then SQP applied to (1.3) gen-

erates a sequence {(z(k), λ(k), ν
(k)
1 , ν

(k)
2 , ξ(k))}l>k that converges Q-quadratically to a

solution {(z∗, λ∗, ν∗1 , ν
∗
2 , ξ

∗)} of (4.1), satisfying strong stationarity. Moreover, the

sequence {z(k)}l>k converges Q-superlinearly to z∗ and z
(l)T

1 z
(l)
2 = 0 ∀l ≥ k.

Proof. Under Assumptions [A1]–[A4], SQP converges quadratically when applied
to the relaxed NLP (3.2); see Proposition 5.2. Lemmas 5.3–5.6 show that the sequence
of iterates generated by this SQP method is equivalent to the sequence of steps gen-
erated by SQP applied to (1.3). This implies Q-superlinear convergence of {z(k)}l>k.
Convergence of the multipliers follows by considering (5.6)–(5.10). Clearly, the multi-
pliers in (5.7) and (5.8) converge, as they are just the multipliers of the relaxed NLP,
which converge by virtue of Proposition 5.2. Now observe that (5.6) becomes

ξ̂(k+1) = max

⎛⎝0, max
j∈Z∗c

2

−̂
ν

(k+1)
1j − ξ(k)d

(k)
2j

z
(k)
2j

, max
j∈Z∗c

1

−̂
ν

(k+1)
2j − ξ(k)d

(k)
1j

z
(k)
1j

⎞⎠.

The right-hand side of this expression converges, since
̂
ν

(k+1)
1j ,

̂
ν

(k+1)
2j and z

(k)
1j , z

(k)
2j

converge and d
(k)
1j , d

(k)
2j → 0. Note that the limit of (5.6) is the basic multiplier (4.4).

Finally, (5.9) and (5.10) converge to (4.2) and (4.3) by a similar argument.

Now z
(l)T

1 z
(l)
2 = 0 ∀l ≥ k follows from the convergence of SQP for the relaxed

NLP (3.2) and the fact that SQP retains feasibility with respect to linear constraints.

Assumption [A4] ensures that d
(k)
1j = d

(k)
2j = 0 ∀j ∈ D∗, since ν

(k)
1j , ν

(k)
2j > 0 for biactive

complementarity constraints. Thus SQP will not move out of the corner but will stay
on the same face.



274 R. FLETCHER, S. LEYFFER, D. RALPH, AND S. SCHOLTES

5.2. Local convergence for nonzero complementarity. This section shows
that SQP converges superlinearly even if complementarity does not hold at the start-

ing point, that is, if z
(k)T

1 z
(k)
2 > 0. Example (2.3) shows that the QP approximations

can be inconsistent arbitrarily close to a stationary point. To avoid this problem, we
make the following assumption, which often holds in practice.

[A7] All QP approximations (QP k) are consistent.
This is clearly an undesirable assumption because it makes an assumption about

the progress of the method. However, we show in the next section that this assumption
is satisfied for some important practical applications.

Without loss of generality, we assume that Z∗c

1 = ∅, that is, we will assume that
the solution has the form z∗1 = 0 and z∗2 = (0, z∗22) and that z∗22 > 0. This assumption
greatly simplifies the notation.

Our convergence analysis is concerned with showing that for any “basic” active
set, SQP converges. To this end, we introduce the set of basic constraints

B(z) := E ∪ I ∩ A∗ ∪ Z1(z) ∪ Z2(z) ∪ {zT1 z2 = 0}

and the set of strictly active constraints (defined in terms of the basic multiplier, μ)

B+(z) := {i ∈ B(z) | μi = 0} .

Moreover, we let B
(k)
+ denote the matrix of strictly active constraint normals at z =

z(k), namely,

B
(k)
+ :=

[
a
(k)
i

]
i∈B+(z(k))

.

Note that Lemma 4.3 shows that the optimal multiplier is unique. However, it may

be possible that for some iterates B(k)
+ = B+(z∗), and our analysis will have to allow

for this.
The failure of any constraint qualification at a solution z∗ of the equivalent NLP

(1.3) implies that the active constraint normals at z∗ are linearly dependent. However,
the linear dependence occurs in a special form that can be exploited to prove fast
convergence.

Lemma 5.8. Let Assumptions [A1]–[A4] hold, and let z∗ be a solution of the
MPEC (1.1). Let I∗ denote the set of active inequalities cI(x), and consider the
matrix of active constraint normals at z∗,

B∗ =

⎡⎢⎢⎢⎢⎣
0 0 0

A∗
E A∗

I∗ I 0

(
0
z∗22

)
0

[
I
0

] (
0
0

)
⎤⎥⎥⎥⎥⎦,(5.11)

where we have assumed without loss of generality that Zc∗

1 = ∅. Note that the last
column is the gradient of the complementarity constraint.

Then it follows that B is linearly dependent and any submatrix of columns of B
has full rank, provided that it contains [A∗

E A∗
I ] and that either the last column of B

is missing or any column corresponding to z12 = 0 is missing.
Proof. The fact that the columns of B are linearly dependent is clear by looking at

the last three columns of B. Assumption [A2], MPEC-LICQ, implies that B without
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the last column has full rank. The final statement follows by exchanging any column
corresponding to z∗12 = 0 with the final column of B and observing that z∗22 > 0.

The proof shows that in order to obtain a linearly independent basis, any column
of z12 = 0 can be exchanged with the normal of the complementarity constraint. This
idea is precisely what lies behind (4.2) and (4.3). The corresponding basic multipliers
are shown as dots in Figure 2.

Next, we show that if we are close to z∗ and the QP solver chooses the full basis
B, then exact complementarity holds for all subsequent iterations. Thus, in this case
the development of the previous section shows second-order convergence.

Lemma 5.9. Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–[A5]
and [A7] hold. If the QP solver chooses the full basis Bk, given by

B(k) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0

A
(k)
E A

(k)
I∗ I 0

(
z
(k)
21

z
(k)
22

)

0

[
I
0

] (
z
(k)
11

z
(k)
12

)
⎤⎥⎥⎥⎥⎥⎥⎦,

then it follows that z
(k)T

1 z
(k)
2 > 0 and that after the QP step, z

(k+1)T

1 z
(k+1)
2 = 0.

Proof. Assume that z
(k)T

1 z
(k)
2 = 0, and seek a contradiction. Since z(k) is suffi-

ciently close to z∗, it follows that there exists τ > 0 such that z
(k)
22 ≥ τ > 0. Hence,

z
(k)
12 = 0. Now consider the final three columns of B(k), and observe that if z

(k)
12 = 0,

then the last column lies in the range of the other two. Hence the basis would be

singular, thus contradicting Assumption [A5], and so z
(k)T

1 z
(k)
2 > 0.

Now, z
(k+1)T

1 z
(k+1)
2 = 0 follows simply by observing that the full basis B implies

that 0 = z
(k)
1 + d1 = z

(k+1)
1 .

Thus, once a full basis is chosen, the corresponding step will give z
(k+1)T

1 z
(k+1)
2 = 0

for a point close to z∗. Second-order convergence then follows from Theorem 5.7.
Corollary 5.10. Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–

[A5] and [A7] hold. If the QP solver chooses the full basis B, then it follows that SQP
converges quadratically from iteration k + 1.

In the remainder we can therefore concentrate on the case in which the full basis

B is never chosen and z
(k)T

1 z
(k)
2 > 0 for all iterates k (otherwise, we have convergence

from the results of the previous section).
Next, we show that for z(k) sufficiently close to z∗, the basis at z(k) contains both

E and I∗.
Lemma 5.11. Let z(k) be sufficiently close to z∗, and let Assumptions [A1]–[A5]

and [A7] hold. Then it follows that the optimal basis B of (QP k) contains the normals

A
(k)
E and A

(k)
I∗ of active constraints at the solution.

Proof. The proof follows by considering the gradient of the Lagrangian of (QP k),

0 = g(k) + Ŵ (k)d(k) −
[
A

(k)T

E : A
(k)T

I

]
λ(k+1) −

⎛⎜⎝ 0

ν
(k+1)
1 − ξ(k+1)z

(k)
2

ν
(k+1)
2 − ξ(k+1)z

(k)
1

⎞⎟⎠ + ξ(k)

⎛⎜⎝ 0

d
(k)
2

d
(k)
1

⎞⎟⎠,
where Ŵ (k) is the Hessian of the Lagrangian without the term corresponding to the
complementarity constraint (the last term above). For z(k) sufficiently close to z∗, it

follows from [A4] that λ
(k+1)
i = 0 ∀i ∈ E ∪ I∗.
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Thus, as long as the QP approximations remain consistent, the optimal basis of
(QP k) will be a subset of B satisfying the conditions in Lemma 5.9. The key idea is
now to show that for any such basis, there exists an equality constrained problem for
which SQP converges quadratically. Since there exist only a finite number of bases,
this implies convergence for SQP.

We now introduce the reduced NLP , which is an equality constraint NLP. Its
constraints correspond to a linearly independent subset of the basis B∗ in (5.11) of
Lemma 5.8:

minimize f(z)
subject to cE(z) = 0,

cI∗(z) = 0,
z11 = 0,
z21 = 0,
z12 = 0

zT1 z2 = 0

}
subset of B∗ satisfying Lemma 5.8.

(5.12)

The next lemma shows that any reduced NLP satisfies an LICQ and an SOSC.
Lemma 5.12. Let Assumptions [A1]–[A4] and [A7] hold. Then it follows that any

reduced NLP satisfies an LICQ and an SOSC.
Proof. Lemma 5.8 shows that the normals of the equality constraints of each

reduced NLP are linearly independent. The SOSC follows from the MPEC-SOSC and
the observation that the MPEC and the reduced NLP have the same nullspace.

Thus, applying SQP to the reduced NLP results in second-order convergence.
Proposition 5.13. Let Assumptions [A1]–[A4] and [A7] hold. Then it follows

that SQP applied to any reduced NLP converges locally and quadratically to (z∗, μ∗).
Proof. Lemma 5.12 shows that the reduced NLP satisfies LICQ and SOSC. There-

fore, convergence of SQP follows. In particular, it follows that for a given reduced
NLP corresponding to a basis B, there exists a constant cB > 0 such that∥∥(z(k+1), μ(k+1)

)
−

(
z∗, μ∗)∥∥ ≤ cB

∥∥(z(k), μ(k)
)
−

(
z∗, μ∗)∥∥2

.(5.13)

Summarizing the results of this section, we obtain the following theorem.
Theorem 5.14. Let Assumptions [A1]–[A5] and [A7] hold. Then it follows that

SQP applied to the NLP formulation (1.3) of the MPEC (1.1) converges quadratically
near a solution (z∗, μ∗).

Proof. Proposition 5.13 shows that SQP converges quadratically for any possible
choice of basis B, and Assumption [A7] shows that (QP k) is consistent and remains
consistent. Therefore, there exists a basis for which quadratic convergence follows.
Thus, for each basis, a step is computed that satisfies a contraction condition like
(5.13) for a constant cB > 0 that depends on the basis. Since there exists a finite
number of bases, this condition holds also for c = max cB independent of the basis,
and SQP converges quadratically independent of the basis.

5.3. Discussion of the proofs. An interesting observation about the conver-

gence proofs of this section is that if z
(k)T

1 z
(k)
2 = 0, then the actual value of ξ(k) has no

effect on the step computed by SQP. This shows that the curvature information con-
tained in the complementarity constraint zT1 z2 ≤ 0 is not important. Consequently,
one could omit this contribution to the Hessian of the Lagrangian. This can be easily
implemented, and convergence results follow along lines similar to the observation
above.
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The conclusions and proofs presented in this section also carry through for lin-
ear complementarity constraints but not for general nonlinear complementarity con-
straints. The reason is that the implication

z
(k)T

1 z
(k)
2 = 0 ⇒ z

(k+1)T

1 z
(k+1)
2 = 0

holds for linear complementarity problems but not for nonlinear complementarity
problems, because in general an SQP method would move off a nonlinear constraint.
This is one reason for introducing slacks to deal with complementarity of the form
(1.2).

Similar conclusions can easily be derived for other NLP formulations of the MPEC
(1.1). For instance, the complementarity constraint in (1.3) can be replaced by

z1jz2j ≤ 0 ∀j = 1, . . . , p.

In this case, a similar construction to (5.6) is possible, where ξ̂ is replaced by a vector
of complementarity multipliers, one for each constraint. Equations (4.2) and (4.3)
then become componentwise conditions and, similarly, (5.9) and (5.10). In addition,
one can now see that a basis that satisfies the conditions of Lemma 5.9 satisfies a
complementarity condition between the multipliers ξi and ν1i (and ν2i).

The strongest assumption in the present convergence analysis is Assumption [A7],
namely, that all (QP k) remain consistent. We show in the next section that this
assumption holds for several interesting cases. We also show that a simple restoration
procedure always ensures consistency after one step.

6. Sufficient conditions for consistency of (QP k). Example (2.3) shows
that the QP approximation to an MPEC can be inconsistent arbitrarily close to a
stationary point. This section gives two situations in which consistency of (QP k)
can be guaranteed under Assumptions [A1]–[A5]. The first such situation arises when
there are no general constraints on control and state variables. Next, we show that one

step of a simple restoration procedure is guaranteed to find an iterate with z
(k)T

1 z
(k)
2 =

0, thus ensuring consistency.

6.1. Vertical complementarity constraints. This section shows that the QP
approximations (QP k) are consistent arbitrarily close to a strongly stationary point,
provided that the MPEC has the following form:

minimize f(z)
subject to c(z0) = 0,

0 ≤ G(z) ⊥ H(z) ≥ 0,
(6.1)

where G,H : Rn+2p → Rp are twice continuously differentiable. We note that the
general constraints are on the control variables only and that the only complementarity
constraint takes the form of a vertical complementarity constraints. This case was
brought to our attention by Mihai Anitescu.

In this section, we make the following additional assumption, which is related to
the mixed P0 property (e.g., [16]).

[A8] The matrix [∇c(z∗0) : ∇G(z∗) : ∇H(z∗)] has full rank.
The motivation for considering this form of problem (6.1) is that the simple comple-
mentarity constraint 0 ≤ z1 ⊥ z2 ≥ 0 always produces feasible linearization if there
are no other constraints on z1, z2.
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To see the relationship between Assumption [A8] and the mixed P0 property,
consider the equivalent MPEC with slacks defined by

minimize f(z)
subject to F (z, s) = 0,

0 ≤ s1 ⊥ s2 ≥ 0,
(6.2)

where

F (z, s) =

⎛⎝ c(z0)
G(z) − s1

H(z) − s2.

⎞⎠.

One can see that a sufficient condition for Assumption [A8] is that the Jacobian matrix⎡⎣ ∇s1F
∇s2F
∇zF

⎤⎦ =

⎡⎣ 0 −I 0
0 0 −I

∇zF

⎤⎦
satisfy the mixed P0 property. This assumption has been used, for instance, in the
convergence analysis of MPEC solvers and holds for a range of test problems, such as
those arising from obstacle or packaging problems [17, Chapter 9].

Lemma 6.1. Let Assumptions [A1]–[A5] and [A8] hold. Then it follows that

(QP k) is consistent ∀z(k) in a neighborhood of z∗ where G(k)TH(k) ≥ 0. If, in addi-

tion, the functions G(z) and H(z) are convex, then G(k+1)TH(k+1) ≥ 0.
Proof. Let z(k) be sufficiently close to z∗ so that the Jacobian matrix[

∇c(z
(k)
0 ) : ∇G(z(k)) : ∇H(z(k))

]
has full rank.

The linearizations of the QP approximation to (6.1) has the following constraints:

c(k) + ∇c(k)T d0 = 0,(6.3)

G(k) + ∇G(k)T d ≥ 0,(6.4)

H(k) + ∇H(k)T d ≥ 0,(6.5)

G(k)TH(k) + G(k)T∇H(k)T d + H(k)T∇G(k)T d ≤ 0.(6.6)

We need to show that these constraints are consistent. By [A8] it follows that there

exists d̂ such that constraints (6.3)–(6.5) hold with equality (this corresponds to the
origin in the G−H coordinate system).

It can be shown that d̂ is also feasible in (6.6). The constraints (6.3) and (6.4)

hold with equality, thus implying that ∇G(k)T d̂ = −G(k) and ∇H(k)T d̂ = −H(k).
Substituting these last two equations into (6.6) simplifies that constraint to

G(k)TH(k) + G(k)T∇H(k)T d̂ + H(k)T∇G(k)T d̂ = −G(k)TH(k) ≤ 0,

where the last inequality follows from the assumption that G(k)TH(k) ≥ 0.
To show that the QP step d∗ maintains nonnegative complementarity, we observe

that for z(k) sufficiently close to z∗, SQP converges and identifies the correct active
set. Thus, there exists a partition

G := {i : Gi(z
∗) = 0} and H := {i : Hi(z

∗) = 0} ,
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and

G
(k)
i + ∇G

(k)T

i d∗ = 0, i ∈ G,(6.7)

H
(k)
i + ∇H

(k)T

i d∗ = 0, i ∈ H.(6.8)

Note that d∗ is feasible for an LPEC approximation, because G ∪ H ⊃ {1, . . . , p}
implies that (

G(k) + ∇G(k)T d∗
)T (

H(k) + ∇H(k)T d∗
)

= 0.(6.9)

Hence, if G(z) and H(z) are convex, it follows that

G(k+1) = G(z(k) + d) ≥ G(k) + ∇G(k)T d,

and similarly for H(k+1). Combining this with (6.9) implies that

G(k+1)TH(k+1) ≥
(
G(k) + ∇G(k)T d

)T (
H(k) + ∇H(k)T d

)
≥ 0.

The main conclusion of this section is that Assumption [A8] turns out to be
satisfied for a range of practical problems as long as the vertical complementarity
problem has certain properties. This assumption is satisfied, for instance, for obstacle
and packaging problems.

6.2. Feasibility restoration for complementarity. This section examines

the properties of (QP k) where z
(k)T

1 z
(k)
2 > 0. In this case, (QP k) may be inconsistent.

This section describes a simple restoration procedure that can be invoked if (QP k) is

inconsistent. The procedure finds a new iterate z(k+1) with z
(k+1)T

1 z
(k+1)
2 = 0. Thus,

after one step, all subsequent iterates retain feasibility of the QP approximations by
virtue of Theorem 5.7.

If (QP k) is inconsistent, then we consider solving the following LP:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
d,θ

θ

subject to c
(k)
E + A

(k)T

E d = 0,

c
(k)
I + A

(k)T

I d ≥ 0,

z
(k)
1 + d1 ≥ 0,

z
(k)
2 + d2 ≥ 0,

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ θ.

(LP k
F )

It follows from Assumption [A2] that any QP approximation to the relaxed NLP (3.2)
is consistent for z(k) sufficiently close to z∗ and thus that (LP k

F ) is consistent (since
it is a relaxation of the relaxed QP). If z(k) is far away from z∗, then clearly (LP k

F )
need not be consistent. In that case we enter a restoration phase.

The following lemma shows that the solution d of (LP k
F ) satisfies (z

(k)
1 +d1)

T (z
(k)
2 +

d2) = 0. The key idea of the proof is to show that the optimal active set includes Z1

and Z2.
Lemma 6.2. Let Assumptions [A1]–[A5] hold, and assume that z(k) is sufficiently

close to z∗ so that the linearizations of cE(z), cI(z) are consistent and z
(k)
1 , z

(k)
2 ≥ 0.
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Then it follows that (LP k
F ) has a solution d such that z(k+1) = z(k) + d satisfies

z
(k+1)T

1 z
(k+1)
2 = 0.

Proof. Assume without loss of generality that Zc
1 = ∅, namely, that z∗1 = 0,

and consider the dual feasibility conditions of (LP k
F ) (primal feasibility follows from

Assumption [A2]),⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠−

⎡⎢⎢⎢⎣
0 0 0

A
(k)
A I1 0 z

(k)
2

0 I2 z
(k)
1

0 0 0 −1

⎤⎥⎥⎥⎦
⎛⎜⎜⎝

λA
ν1

ν2

ξ

⎞⎟⎟⎠ = 0,(6.10)

where A
(k)
A is the matrix of active constraint normals of cE(z), cI(z) at z∗, I2 = [ei]i∈Z2

and I1 = [ei]i∈Z1
.

It follows immediately that ξ = −1 and that this active set gives rise to a primal
feasible solution. Moreover, the columns of the basis matrix in (6.10) are linearly
independent by Assumption [A2]. Thus there exists a unique solution to (6.10).
Assumption [A2] implies in particular that the following block of (6.10) has full column
rank: ⎡⎣ 0 0

A
(k)
A I1 0

0 I2

⎤⎦.
This implies that the block of A

(k)
A corresponding to the first equation in (6.10) has

full column rank, and thus λA = 0 follows. This implies that

ν1 = z
(k)
2 ≥ 0 and ν2 = z

(k)
1 ≥ 0.

Complementary slackness of (LP k
F ) implies that z

(k+1)T

1 z
(k+1)
2 = 0. To see how this

follows, consider three cases:

Case 1. i ∈ Zc
2 implies that z

(k)
2i > 0. This implies that ν1i > 0, and thus

z
(k)
1i + d1i = 0.

Case 2. i ∈ Z2 and z
(k)
1i , z

(k)
2i > 0. This implies that ν1i, ν2i > 0, and thus

z
(k)
1i + d1i = 0 and z

(k)
2i + d2i = 0.

Case 3. i ∈ Z2 and z
(k)
1i > 0 but z

(k)
2i = 0. This implies that ν2i > 0, and thus

z
(k)
1i + d1i = 0. The case where z

(k)
1i = 0 but z

(k)
2i > 0 is analogous.

Putting all three cases together and recalling that Z1 = ∅, one then has that

z
(k+1)T

1 z
(k+1)
2 = 0.

It remains to prove that there exist multipliers λ with λI ≥ 0 such that (6.10)
holds. If λI∩A ≥ 0, there is nothing to show. Hence assume that there exists a
multiplier λi < 0 for i ∈ I ∩ A. Then one can perform an iteration of an active set
method on (LP k

F ) that will not remove any columns of I1 or I2 from the basis. Since
(LP k

F ) is bounded (θ > 0, since (QP k) is inconsistent), after a finite number of such
pivots a basis is found with ν1, ν2 as above, and the conclusion follows.

Solving (LP k
F ), if (QP k) is inconsistent, is related to the elastic mode of snopt.

In the elastic mode, some of the constraints are relaxed and an l∞-QP is solved. The
application of snopt to MPECs is explored in [1]. Unlike snopt, however, the present
restoration will occur only at one iteration.
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An alternative to solving (LP k
F ) would be to move z(k) onto the “nearest” axis.

This is the effect of (LP k
F ), as can be seen from Lemma 6.2. However, solving (LP k

F )
avoids the need to choose tolerances to break ties between “close” values.

We note that this restoration does not address the wider issue of global conver-
gence. It may be possible that the solution to (LP k

F ) is not acceptable to the global
convergence criterion of the SQP method. Clearly, this possibility has to be taken into
account in designing a globally convergent SQP method. This is beyond the scope of
the present paper, which deals exclusively with local convergence issues.

7. Discussion of assumptions. This section discusses some of the assumptions
made in the proof above. In particular, examples are presented showing that SQP will
fail to converge at second-order rate if some or all of the assumptions are removed.
The following table shows which assumptions seem difficult to remove. Below, each
example is presented in turn.

Example [A2] MFCQ [A3] Slacks SOSC Comments
scholtes4 no yes no yes yes ξ → ∞, linear convergence
sl2 yes yes yes no yes ξ → ∞, nonstationary limit
ralph2 yes yes yes yes no ξ < ∞, linear convergence

7.1. Unbounded multipliers and slow convergence. The following MPEC
shows that if we remove Assumption [A2] and, in particular, Assumption [A3], then
the NLP multipliers are not bounded (and may not even exist). Despite this, SQP
converges linearly to the solution in the example presented here, although quadratic
convergence is lost.

Consider the following MPEC (scholtes4.mod) from MacMPEC (see also [19]):⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize

z
z1 + z2 − z0

subject to −4z1 + z0 ≤ 0,

−4z2 + z0 ≤ 0,

0 ≤ z1 ⊥ z2 ≥ 0 ,

(P )

whose optimal solution is z∗ = (0, 0, 0)T . Writing (P ) as an NLP gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
z

z1 + z2 − z0 multiplier

subject to −4z1 + z0 ≤ 0, λ1 ≥ 0,

−4z2 + z0 ≤ 0, λ2 ≥ 0,

z1z2 ≤ 0, ξ ≥ 0,

z1 ≥ 0, ν1 ≥ 0,

z2 ≥ 0, ν2 ≥ 0.

(P ′)

Next, we show that SQP converges linearly for this problem.
Proposition 7.1. SQP applied to (P ′) generates the following sequence of iter-

ates:

z(k) =

⎛⎝ 22−k

2−k

2−k

⎞⎠, λ(k) =

(
1
2
1
2

)
, ξ(k) = 2k−1 + ξ(k−1)/2 =

k−1∑
j=0

2(k−1)−2j

for suitable starting values (e.g., z = (4, 1, 1)T ). Moreover, SQP converges linearly.
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Proof. the proof is by induction. The assertion holds trivially for k = 0 (i.e., the
starting point). Now assume the assertion holds for k, and show that it also holds for
k + 1. At iteration k, SQP solves the following QP for a step d:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
z

d1ξ
(k)d2 + d1 + d2 − d0

subject to −4d1 + d0 ≤ 0,
−4d2 + d0 ≤ 0,

z
(k)
1 z

(k)
2 + z

(k)
2 d1 + z

(k)
1 d2 ≤ 0,

z
(k)
1 + d1 ≥ 0,

z
(k)
2 + d2 ≥ 0.

(QP (k))

We note that all QP approximations are consistent and that the first three constraints
are active. Subtracting the second from the first constraint, we have that d1 = d2.
Substituting into the third constraint, we get d1 = d2 = −2−(k+1), from which it
follows that d0 = 4(−2−(k+1)). We verify the KKT conditions of (QP (k)):

0 =

⎛⎝−1
1
1

⎞⎠ +

⎛⎝ 0
−2−(k+1)ξ(k)

−2−(k+1)ξ(k)

⎞⎠ + λ1

⎛⎝ 1
−4

0

⎞⎠ + λ2

⎛⎝ 1
0

−4

⎞⎠ + ξ

⎛⎝ 0
2−k

2−k

⎞⎠.

Subtracting the second from the first equation shows that λ1 = λ2. Substituting into

the third equation then verifies that λ
(k+1)
1 = λ

(k+1)
2 = 1

2 .

Finally, the second equation shows ξ(k) = 2k−1 +ξ(k−1)/2, the recurrence relation
for ξ. The explicit formula for ξ follows easily. The iterates clearly converge linearly
to the solution.

Note that (P ) satisfies an MPEC-MFCQ [20] but violates an MPEC-LICQ (as
can be seen easily by observing that four constraints are active at the solution). In
addition, (P ) fails to satisfy strong complementarity. For strong complementarity, it
would be necessary that λi ≥ 0 and νi ≥ 0, since z1 = z2 = 0. Checking the first-order
condition,

0 =

⎛⎝−1
1
1

⎞⎠ + λ1

⎛⎝ 1
−4

0

⎞⎠ + λ2

⎛⎝ 1
0

−4

⎞⎠ − ν̂1

⎛⎝ 0
1
0

⎞⎠ − ν̂2

⎛⎝ 0
0
1

⎞⎠,

one can see that the system is underdetermined. Setting λ1 = t, we obtain λ2 = 1− t,
ν1 = 1 − 4t, and ν2 = −3 + 4t. The condition νi ≥ 0 now implies that t ≤ 1

4 and
t ≥ 3

4 , which cannot hold simultaneously. Thus the solution of (P ) is not strongly
stationary.

The linear inequalities always ensure that z
(0)
1 = z

(0)
2 ≥ 0, and the above analysis

goes through for alternative starting points. It is not clear what would happen if we
allowed z1 < 0, but sensible NLP solvers will always project the starting point into
the set of linear constraints (or at least the set of box constraints). The solvers filter,
snopt, and lancelot behave in this way.

7.2. Formulations without slacks. The next example shows that SQP meth-
ods can converge to nonstationary points if slacks are not added to replace non-
linear complementarity conditions. Consider the following MPEC (sl2.mod) from
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1

2

1 2

2

z
1

z

f-

z(0)

zoo

Fig. 3. Example sl2.

MacMPEC, which involves a nonlinear expression in the complementarity condition:⎧⎨⎩
minimize

z
−z1 − 1

2z2

subject to z1 + z2 ≤ 2,
0 ≤ z2

1 − z1 ⊥ z2 ≥ 0.

(P )

The problem has a global solution at z∗ = (2, 0)T with f∗ = −2 and a local solution
at z∗ = (0, 2)T with f∗ = −1. Both solutions satisfy Assumptions [A1]–[A4]. The
feasible set is illustrated by the bold lines in Figure 3.

Starting at z(0) = (−ε, t)T gives convergence to the nonstationary point z∞ =
(0, t)T , where t ≥ 0 is arbitrary. Moreover, one can show that ξ → ∞ and that both
the complementarity constraint and 0 ≤ z2

1 + z1 remain in the active set. Thus, the
active set is singular in the limit. Nevertheless, second-order convergence is observed!

It is straightforward to prove quadratic convergence to a nonstationary limit. Let
z(k) = (−ε, t)T with t ≤ 1. Then the following problem is solved for a step of the SQP
method: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimize
d

−d1 − 1
2d2

subject to d1 + d2 ≤ 2 + ε− t,
(ε2 + ε) − (2ε + 1)d1 ≥ 0,

t + d2 ≥ 0,
t(ε2 + ε) − t(2ε + 1)d1 + (ε2 + ε) ≤ 0,

(P )

whose solution is

d =

(
ε2+ε
2ε+1

0

)
, ξ =

1

2(ε2 + ε)
, ν1 =

1

2ε + 1
+ ξt.

One can see that z(k+1) = (−O(ε2), t)T and quadratic convergence occurs to z∞ =
(0, t)T . On the other hand, the multiplier ξ clearly diverges to infinity. Note that
including the Hessian of the Lagrangian leads to a similar conclusion. This example
shows that it is not sufficient to trigger the elastic mode only when QP become
inconsistent. Clearly, the elastic mode is also required if the multipliers become too
large. The introduction of slacks avoids the need for the elastic mode in this example.

When a slack variable is introduced, SQP converges quadratically. The SQP
solver filter exhibits this behavior, while lancelot and loqo converge even for the
problem without slacks. The reason for this apparently better behavior is that both
introduce slacks internally before solving the problem!
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Another reason for using slacks (rather than linear or even nonlinear comple-
mentarity) is that SQP solvers maintain linear feasibility throughout the iteration.

Thus they guarantee that z
(k)
1 ≥ 0, z

(k)
2 ≥ 0 for all iterations k in exact arithmetic.

In inexact arithmetic, one can truncate QP steps such that z
(k)
1 ≥ 0, z

(k)
2 ≥ 0 for

all iterations k. This approach is not possible for general linear complementarity
conditions even if iterative refinement were used.

Thus the use of slacks ensures that z
(k)T

1 z
(k)
2 ≥ 0 for all iterations k, and the

trivial pitfall of [4], where it was observed that perturbing the right-hand side of the
complementarity constraint to −ε renders an inconsistent QP, cannot occur.

7.3. Lack of second-order condition. The following MPEC (ralph2.mod)
shows that if the second-order sufficient condition [A3] is violated, then SQP may
converge only linearly: {

minimize
z

z2
1 + z2

2 − 4z1z2

subject to 0 ≤ z1 ⊥ z2 ≥ 0.
(P )

The problem has a global solution at (0, 0). Starting at z = (1, 1) causes SQP to
converge linearly to the solution. Note that (P ) also violates any upper-level strict
complementarity condition.

The MPEC-SOSC is stronger than needed for MPECs in the sense that the set
of directions over which positive curvature is required for SQP is larger than the set
of MPEC-feasible directions. We illustrate this by the following example. The set of
MPEC-feasible directions at (0, 0) is

S∗
M =

{(
1
0

)
,

(
0
1

)}
,

while the set of directions over which curvature is required to be positive for SQP to
converge is the whole positive orthant (i.e., conv(S∗

M )). The linear rate of convergence
is due to the fact that the curvature in the direction (1, 1) is negative.

8. Conclusions and future work. We have presented a convergence analy-
sis that shows that SQP methods converge quadratically when applied to the NLP
equivalent of an MPEC. This analysis goes some way toward explaining the extraor-
dinary success of SQP solvers applied to MPECs, as we have observed. The result is
remarkable because MPECs violate the MFCQ.

Conditions are identified under which local second-order convergence occurs.
These conditions include the assumption that all QP approximations remain con-

sistent. It can be shown that this assumption always holds if z
(k)T

1 z
(k)
2 = 0 (i.e., for

iterates which satisfy complementarity), and this is often observed in practice. We
have also shown that MPECs whose lower-level problem is a certain vertical comple-
mentarity problem generate consistent QP approximations. Further we have given a
restoration phase that ensures that this can always be guaranteed sufficiently close to
a solution.

We have also experimented with an alternative to the restoration problem. In
this approach, the linearization of the complementarity condition is relaxed as

z
(k)T

1 z
(k)
2 + z

(k)T

2 d1 + z
(k)T

1 d2 ≤ δ
(
z
(k)T

1 z
(k)
2

)1+κ

,(8.1)
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where 0 < δ, κ < 1 are constants. Note that the perturbation to the right-hand side of
the complementarity condition is o(‖dNR‖), where dNR is the Newton step. This form
of perturbation allows the superlinear convergence proof to be extended by virtue of
the Dennis–Moré characterization theorem.

However, the perturbation alone is not sufficient to guarantee consistency of
(QP k). The following example illustrates the need for further assumptions. Con-
sider the following feasible set:

z1 + z2 − 1 ≥ 0 , 0 ≤ z1 ⊥ z2 ≥ 0.

It is easy to see that for any z = (ε4, 1 − ε), the (QP k) relaxed by using (8.1) with
δ = κ = 0.5 is inconsistent. Note that if we restrict our attention to points z that
satisfy the linear constraints (e.g., z = (ε, 1− ε)), then (QP k) using (8.1) is consistent
in a neighborhood of z = (0, 1). Thus (8.1) seems to ensure consistency of (QP k) as
long as z(k) satisfies the linearizations of cE(z), cI(z) about z(k−1). Unfortunately, we
have been unable to prove any general results along those lines. Such a proof would
clearly allow us to bootstrap a convergence of SQP for MPECs with the relaxed
equation (8.1).

We finish this paper with some observations on the role of degeneracy and point
to some future work. It has been observed that any QP approximation about a
feasible point of (1.3) is degenerate. Moreover, approximations about points that
satisfy zT1 z2 = ε > 0 are near-degenerate, and we would expect this property to play a
role in the SQP method. In our numerical experiment we use two SQP solvers, snopt
and filter.

The solver snopt uses EXPAND to handle degeneracy. This procedure perturbs
the bounds of (QP k) to remove degeneracy. Some numerical experiments suggest
that this is not the best way to handle degeneracy in the case of MPECs. The QP
solver in filter, bqpd, applies a different methodology to handle degeneracy. It creates
degeneracy whenever near-degeneracy is detected and then handles the degenerate
situation. This approach has two implications:

1. If exact degeneracy exists (i.e., if z
(k)T

1 z
(k)
2 = 0), then bqpd will deal with it.

2. If near-degeneracy exists (i.e., if z
(k)T

1 z
(k)
2 = ε > 0), then bqpd creates degen-

eracy by perturbing the bound ε to zero. This has the effect of pushing the
solution onto the axis. As we have shown, this is a favorable situation for
SQP methods.

Future work will focus on relaxing some assumptions and providing a global con-
vergence analysis. Some numerical results suggest that SQP converges under even
weaker assumptions than those made above, and it may be possible to pursue the
ideas of [22] in this context. Another important question concerns the global conver-
gence of SQP methods. Anitescu [1] provides a framework for convergence (possibly
under additional assumptions) of Sl∞QP methods. However, the numerical results
suggest that a similar proof may be possible for filter methods.
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Abstract. In this paper we develop a long-step primal-dual infeasible path-following algorithm
for convex quadratic programming (CQP) whose search directions are computed by means of a
preconditioned iterative linear solver. We propose a new linear system, which we refer to as the aug-
mented normal equation (ANE), to determine the primal-dual search directions. Since the condition
number of the ANE coefficient matrix may become large for degenerate CQP problems, we use a
maximum weight basis preconditioner introduced in [A. R. L. Oliveira and D. C. Sorensen, Linear
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Illinois at Urbana-Champaign, Urbana, IL, 1990] to precondition this matrix. Using a result obtained
in [R. D. C. Monteiro, J. W. O’Neal, and T. Tsuchiya, SIAM J. Optim., 15 (2004), pp. 96–100], we
establish a uniform bound, depending only on the CQP data, for the number of iterations needed by
the iterative linear solver to obtain a sufficiently accurate solution to the ANE. Since the iterative
linear solver can generate only an approximate solution to the ANE, this solution does not yield a
primal-dual search direction satisfying all equations of the primal-dual Newton system. We propose
a way to compute an inexact primal-dual search direction so that the equation corresponding to
the primal residual is satisfied exactly, while the one corresponding to the dual residual contains a
manageable error which allows us to establish a polynomial bound on the number of iterations of
our method.
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1. Introduction. In this paper we develop an interior-point long-step primal-
dual infeasible path-following (PDIPF) algorithm for convex quadratic programming
(CQP) whose search directions are computed by means of an iterative linear solver.
We will refer to this algorithm as an inexact algorithm, in the sense that the Newton
system which determines the search direction will be solved only approximately at
each iteration. The problem we consider is

min
x

{
1

2
xTQx + cTx : Ax = b, x ≥ 0

}
,(1)

∗Received by the editors May 3, 2004; accepted for publication (in revised form) December 5,
2005; published electronically May 19, 2006.

http://www.siam.org/journals/siopt/17-1/60771.html
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890

(zhaolu@andrew.cmu.edu). This author was supported in part by NSF grant CCR-0203113 and ONR
grant N00014-03-1-0401.

‡School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
30332-0205 (monteiro@isye.gatech.edu). This author was supported in part by NSF grants CCR-
0203113, CCF-0430644, and INT-9910084 and ONR grants N00014-03-1-0401 and N00014-05-1-0183.

§Research, Modelling, & Design Group, Delta Technology, 1001 International Boulevard, Depart-
ment 709, Atlanta, GA 30354 (jerome.w.oneal@delta.com). This author was supported in part by
the NDSEG Fellowship Program sponsored by the Department of Defense.

287



288 Z. LU, R. D. C. MONTEIRO, AND J. W. O’NEAL

where the data are Q ∈ �n×n, A ∈ �m×n, b ∈ �m, and c ∈ �n, and the decision vector
is x ∈ �n. We also assume that Q is positive semidefinite and that a factorization
Q = V E2V T is explicitly given, where V ∈ �n×l and E is an l × l positive diagonal
matrix.

A similar algorithm for solving the special case of linear programming (LP), i.e.,
problem (1) with Q = 0, was developed by Monteiro and O’Neal in [16]. The algorithm
studied in [16] is essentially the long-step PDIPF algorithm studied in [9, 28], the
only difference being that the search directions are computed by means of an iterative
linear solver. We refer to the iterations of the iterative linear solver as the inner
iterations and to the ones performed by the interior-point method itself as the outer
iterations. The main step of the algorithm studied in [9, 16, 28] is the computation
of the primal-dual search direction (Δx,Δs,Δy), whose Δy component can be found
by solving a system of the form AD2ATΔy = g, referred to as the normal equation,
where g ∈ �m and the positive diagonal matrix D depends on the current primal-dual
iterate. In contrast to [9, 28], the algorithm studied in [16] uses an iterative linear
solver to obtain an approximate solution to the normal equation. Since the condition
number of the normal matrix AD2AT may become excessively large on degenerate
LP problems (see e.g., [13]), the maximum weight basis (MWB) preconditioner T
introduced in [19, 22, 25] is used to better condition this matrix, and an approximate
solution of the resulting equivalent system with coefficient matrix TAD2ATTT is then
computed. By using a result obtained in [17], which establishes that the condition
number of TAD2ATTT is uniformly bounded by a quantity depending only on A,
Monteiro and O’Neal [16] showed that the number of inner iterations of the algorithm
in [16] can be uniformly bounded by a constant depending on n and A.

In the case of CQP, the standard normal equation takes the form

A(Q + X−1S)−1ATΔy = g(2)

for some vector g. When Q is not diagonal, the matrix (Q+X−1S)−1 is not diagonal,
and hence the coefficient matrix of (2) does not have the form required for the result
of [17] to hold. To remedy this difficulty, we develop in this paper a new linear
system, referred to as the augmented normal equation (ANE), to determine a portion
of the primal-dual search direction. This equation has the form ÃD̃2ÃTu = w, where
w ∈ �m+l, D̃ is an (n + l) × (n + l) positive diagonal matrix, and Ã is a 2 × 2 block
matrix of dimension (m+ l)× (n+ l) whose blocks consist of A, V T , the zero matrix,
and the identity matrix (see (21)). As was done in [16], a MWB preconditioner T̃ for
the ANE is computed and an approximate solution of the resulting preconditioned
equation with coefficient matrix T̃ ÃD̃2ÃT T̃T is generated using an iterative linear
solver. Using the result of [17], which claims that the condition number of T̃ ÃD̃2ÃT T̃T

is uniformly bounded regardless of D̃, we obtain a uniform bound (depending only on
Ã) on the number of inner iterations performed by the iterative linear solver to find
a desirable approximate solution to the ANE (see Theorem 3.5).

Since the iterative linear solver can generate only an approximate solution to the
ANE, it is clear that not all equations of the Newton system, which determines the
primal-dual search direction, can be satisfied simultaneously. In the context of LP,
Monteiro and O’Neal [16] proposed a recipe to compute an inexact primal-dual search
direction so that the equations of the Newton system corresponding to the primal
and dual residuals were both satisfied. In the context of CQP, such an approach is
no longer possible. Instead, we propose a way to compute an inexact primal-dual
search direction so that the equation corresponding to the primal residual is satisfied
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exactly, while the one corresponding to the dual residual contains a manageable error
which allows us to establish a polynomial bound on the number of outer iterations
of our method. Interestingly, the presence of this error on the dual residual equation
implies that the primal and dual residuals go to zero at different rates. This is a
unique feature of the convergence analysis of our algorithm in that it contrasts with
the analysis of other interior-point PDIPF algorithms, where the primal and dual
residuals are required to go to zero at the same rate.

The use of inexact search directions in interior-point methods has been extensively
studied in the context of cone programming problems (see e.g., [1, 2, 7, 11, 12, 15, 18,
29]). Moreover, the use of iterative linear solvers to compute the primal-dual Newton
search directions of interior-point path-following algorithms has also been extensively
investigated in [1, 3, 4, 7, 12, 18, 19, 20, 22, 24]. For feasibility problems of the form
{x ∈ H1 : Ax = b, x ∈ C}, where H1 and H2 are Hilbert spaces, C ⊆ H1 is a closed
convex cone satisfying some mild assumptions, and A : H1 → H2 is a continuous
linear operator, Renegar [21] has proposed an interior-point method where the Newton
system that determines the search directions is approximately solved by performing
a uniformly bounded number of iterations of the conjugate gradient (CG) method.
To our knowledge, no one has used the ANE system in the context of CQP to obtain
either an exact or inexact primal-dual search direction.

Our paper is organized as follows. In subsection 1.1, we give the terminology
and notation which will be used throughout our paper. Section 2 describes the outer
iteration framework for our algorithm and the complexity results we have obtained for
it, along with presenting the ANE as a means to determine the search direction. In
section 3, we discuss the use of iterative linear solvers to obtain a suitable approximate
solution to the ANE and the construction of an inexact search direction based on this
solution. Section 4 gives the proofs of the results presented in sections 2 and 3. Finally,
we present some concluding remarks in section 5.

1.1. Terminology and notation. Throughout this paper, uppercase roman
letters denote matrices, lowercase roman letters denote vectors, and lowercase Greek
letters denote scalars. We let �n, �n

+, and �n
++ denote the set of n-dimensional vectors

having real, nonnegative real, and positive real components, respectively. Also, we
let �m×n denote the set of m × n matrices with real entries. For a vector v ∈ �n,
we let |v| denote the vector whose ith component is |vi| for every i = 1, . . . , n, and
we let Diag(v) denote the diagonal matrix whose ith diagonal element is vi for every
i = 1, . . . , n. In addition, given vectors u ∈ �m and v ∈ �n, we denote by (u, v) the
vector (uT , vT )T ∈ �m+n.

Certain matrices bear special notation, namely the matrices X, ΔX, S, D, and
D̃. These matrices are the diagonal matrices corresponding to the vectors x, Δx, s,
d, and d̃, respectively, as described in the previous paragraph. The symbol 0 will be
used to denote a scalar, vector, or matrix of all zeros; its dimensions should be clear
from the context. Also, we denote by e the vector of all 1’s, and by I the identity
matrix; their dimensions should be clear from the context.

For a symmetric positive definite matrix W , we denote its condition number
by κ(W ), i.e., its maximum eigenvalue divided by its minimum eigenvalue. We will
denote sets by uppercase calligraphic letters (e.g., B, N ). For a finite set B, we denote
its cardinality by |B|. Given a matrix A ∈ �m×n and an ordered set B ⊆ {1, . . . , n},
we let AB denote the submatrix whose columns are {Ai : i ∈ B} arranged in the same
order as B. Similarly, given a vector v ∈ �n and an ordered set B ⊆ {1, . . . , n}, we let
vB denote the subvector consisting of the elements {vi : i ∈ B} arranged in the same
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order as B.
We will use several different norms throughout the paper. For a vector z ∈ �n,

‖z‖ =
√
zT z is the Euclidian norm, ‖z‖1 =

∑n
i=1 |zi| is the “1-norm,” and ‖z‖∞ =

maxi=1,...,n |zi| is the “infinity norm.” For a matrix V ∈ �m×n, ‖V ‖ denotes the
operator norm associated with the Euclidian norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖. Finally,

‖V ‖F denotes the Frobenius norm: ‖V ‖F = (
∑m

i=1

∑n
j=1 V

2
ij)

1/2.

2. Outer iteration framework. In this section, we introduce our PDIPF algo-
rithm based on a class of inexact search directions and discuss its iteration complexity.
This section is divided into two subsections. In subsection 2.1, we discuss an exact
PDIPF algorithm, which will serve as the basis for the inexact PDIPF algorithm
given in subsection 2.2, and we give its iteration complexity result. We also present
an approach based on the ANE to determine the Newton search direction for the ex-
act algorithm. To motivate the class of inexact search directions used by our inexact
PDIPF algorithm, we describe in subsection 2.2 a framework for computing an inexact
search direction based on an approximate solution to the ANE. We then introduce
the class of inexact search directions, state a PDIPF algorithm based on it, and give
its iteration complexity result.

2.1. An exact PDIPF algorithm and the ANE. Consider the following
primal-dual pair of CQP problems:

min
x

{
1

2
xTV E2V Tx + cTx : Ax = b, x ≥ 0

}
,(3)

max
(x̂,s,y)

{
−1

2
x̂TV E2V T x̂ + bT y : AT y + s− V E2V T x̂ = c, s ≥ 0

}
,(4)

where the data are V ∈ �n×l, E ∈ Diag(�l
++), A ∈ �m×n, b ∈ �m, and c ∈ �n, and

the decision variables are x ∈ �n and (x̂, s, y) ∈ �n ×�n ×�m. We observe that the
Hessian matrix Q is already given in factored form Q = V E2V T .

It is well known that if x∗ is an optimal solution for (3) and (x̂∗, s∗, y∗) is an
optimal solution for (4), then (x∗, s∗, y∗) is also an optimal solution for (4). Now, let
S denote the set of all vectors w := (x, s, y, z) ∈ �2n+m+l satisfying

Ax = b, x ≥ 0,(5)

AT y + s + V z = c, s ≥ 0,(6)

Xs = 0,(7)

EV Tx + E−1z = 0.(8)

It is clear that w ∈ S if and only if x is optimal for (3), (x, s, y) is optimal for (4),
and z = −E2V Tx. (Throughout this paper, the symbol w will always denote the
quadruple (x, s, y, z), where the vectors lie in the appropriate dimensions; similarly,
Δw = (Δx,Δs,Δy,Δz), wk = (xk, sk, yk, zk), w̄ = (x̄, s̄, ȳ, z̄), etc.)

We observe that the presentation of the PDIPF algorithm based on exact Newton
search directions in this subsection differs from the classical way of presenting it in
that we introduce an additional variable z as above. Clearly, it is easy to see that
the variable z is completely redundant and can be eliminated, thereby reducing the
method described below to the usual way of presenting it. The main reason for
introducing the variable z is due to the development of the ANE presented at the end
of this subsection.
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We will make the following two assumptions throughout the paper.
Assumption 1. A has full row rank.
Assumption 2. The set S is nonempty.
For a point w ∈ �2n

++ ×�m+l, let us define

μ := μ(w) = xT s/n,(9)

rp := rp(w) = Ax− b,(10)

rd := rd(w) = AT y + s + V z − c,(11)

rV := rV (w) = EV Tx + E−1z,(12)

r := r(w) = (rp(w), rd(w), rV (w)).(13)

Moreover, given γ ∈ (0, 1) and an initial point w0 ∈ �2n
++ × �m+l, we define the

following neighborhood of the central path:

Nw0(γ) :=

{
w ∈ �2n

++ ×�m+l : Xs ≥ (1 − γ)μe, r = ηr0(14)

for some 0 ≤ η ≤ min

[
1,

μ

μ0

]}
,

where r := r(w), r0 := r(w0), μ := μ(w), and μ0 := μ(w0).
We are now ready to state the PDIPF algorithm based on exact Newton search

directions.
Exact PDIPF algorithm.
1. Start: Let ε > 0 and 0 < σ ≤ σ < 1 be given. Let γ ∈ (0, 1) and w0 ∈

�2n
++ ×�m+l be such that w0 ∈ Nw0(γ). Set k = 0.

2. While μk := μ(wk) > ε do
(a) Let w := wk and μ := μk; choose σ := σk ∈ [σ, σ].
(b) Let Δw = (Δx,Δs,Δy,Δz) denote the solution of the linear system

AΔx = −rp,(15)

ATΔy + Δs + V Δz = −rd,(16)

XΔs + SΔx = −Xs + σμe,(17)

EV TΔx + E−1Δz = −rV .(18)

(c) Let α̃ = argmax {α ∈ [0, 1] : w + α′Δw ∈ Nw0(γ), ∀α′ ∈ [0, α]}.
(d) Let ᾱ = argmin

{
(x + αΔx)T (s + αΔs) : α ∈ [0, α̃]

}
.

(e) Let wk+1 = w + ᾱΔw, and set k ← k + 1.
End (while)

A proof of the following result, under slightly different assumptions, can be found
in [28].

Theorem 2.1. Assume that the constants γ, σ, and σ are such that

max
{
γ−1, (1 − γ)−1, σ−1, (1 − σ)−1

}
= O(1),

and that the initial point w0 ∈ �2n
++ × �m+l satisfies (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S. Then, the exact PDIPF algorithm finds an iterate wk ∈ �2n
++ × �m+l

satisfying μk ≤ εμ0 and ‖rk‖ ≤ ε‖r0‖ within O(n2 log(1/ε)) iterations.
A few approaches have been suggested in the literature for computing the Newton

search direction (15)–(18). Instead of using one of them, we will discuss below a new
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approach, referred to in this paper as the ANE approach, that we believe to be suitable
not only for direct solvers but especially for iterative linear solvers, as we will see in
section 3.

Let us begin by defining the following matrices:

D := X1/2S−1/2,(19)

D̃ :=

(
D 0
0 E−1

)
∈ �(n+l)×(n+l),(20)

Ã :=

(
A 0
V T I

)
∈ �(m+l)×(n+l).(21)

Suppose that we first solve the following system of equations for (Δy,Δz):

ÃD̃2ÃT

(
Δy
Δz

)
= Ã

(
x− σμS−1e−D2rd

0

)
+

(
−rp

−E−1rV

)
=: h.(22)

This system is what we refer to as the ANE. Next, we obtain Δs and Δx according
to

Δs = −rd −ATΔy − V Δz,(23)

Δx = −D2Δs− x + σμS−1e.(24)

Clearly, the search direction Δw = (Δx,Δs,Δy,Δz) computed as above satisfies (16)
and (17) in view of (23) and (24). Moreover, it also satisfies (15) and (18) due to the
fact that by (20)–(24), we have that

Ã

(
Δx

E−2Δz

)
= Ã

(
−D2Δs− x + σμS−1e

E−2Δz

)
= Ã

(
D2rd + D2ATΔy + D2V Δz − x + σμS−1e

E−2Δz

)
= Ã

(
D2ATΔy + D2V Δz

E−2Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
= ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
=

(
−rp

−E−1rV

)
.(25)

Theorem 2.1 assumes that Δw is the exact solution of (22), which is usually
obtained by computing the Cholesky factorization of the coefficient matrix of the
ANE. In this paper, we will consider a variant of the exact PDIPF algorithm whose
search directions are approximate solutions of (22) and ways of determining these
inexact search directions by means of a suitable preconditioned iterative linear solver.

2.2. An inexact PDIPF algorithm for CQP. In this subsection, we describe
a PDIPF algorithm based on a family of search directions that are approximate solu-
tions to (15)–(18) and discuss its iteration complexity properties.

Clearly, an approximate solution to the ANE can yield only an approximate
solution to (15)–(18). In order to motivate the class of inexact search directions used
by the PDIPF algorithm presented in this subsection, we present a framework for
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obtaining approximate solutions to (15)–(18) based on an approximate solution to
the ANE.

Suppose that the ANE is solved only inexactly, i.e., that the vector (Δy,Δz)
satisfies

ÃD̃2ÃT

(
Δy
Δz

)
= h + f(26)

for some error vector f . If Δs and Δx were computed by (23) and (24), respectively,
then it is clear that the search direction Δw would satisfy (16) and (17). However,
(15) and (18) would not be satisfied, since by an argument similar to (25), we would
have that

Ã

(
Δx

E−2Δz

)
= · · · = ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
=

(
−rp

−E−1rV

)
+ f.

Instead, suppose we use (23) to determine Δs as before, but now we determine Δx as

Δx = −D2Δs− x + σμS−1e− S−1p,(27)

where the correction vector p ∈ �n will be required to satisfy some conditions which
we will now describe.

To motivate the conditions on p, we note that (23), (26), and (27) imply that

(28)

Ã

(
Δx

E−2Δz

)
+

(
rp

E−1rV

)
= Ã

(
−D2Δs− x + σμS−1e− S−1p

E−2Δz

)
+

(
rp

E−1rV

)
= Ã

(
D2rd + D2ATΔy + D2V Δz − x + σμS−1e− S−1p

E−2Δz

)
+

(
rp

E−1rV

)
= ÃD̃2

(
ATΔy + V Δz

Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
− Ã

(
S−1p

0

)
+

(
rp

E−1rV

)
= ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
− Ã

(
S−1p

0

)
+

(
rp

E−1rV

)
= f − Ã

(
S−1p

0

)
.

Based on the above equation, one is naturally tempted to choose p so that the right-
hand side of (28) is zero, and consequently (15) and (18) are satisfied exactly. However,
the existence of such p cannot be guaranteed and, even if it exists, its magnitude might
not be sufficiently small to yield a search direction which is suitable for the develop-
ment of a polynomially convergent algorithm. Instead, we consider an alternative
approach where p is chosen so that the first component of (28) is zero and the second
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component is small. More specifically, by partitioning f = (f1, f2) ∈ �m × �l, we
choose p ∈ �n such that

AS−1p = f1.(29)

It is clear that p is not uniquely defined. Note that (21) implies that (29) is equivalent
to

f = Ã

(
S−1p
E−1q

)
,(30)

where q := E(f2 − V TS−1p). Then, using (21), (28), and (30), we conclude that

Ã

(
Δx

E−2Δz

)
+

(
rp

E−1rV

)
= f − Ã

(
S−1p
E−1q

)
+ Ã

(
0

E−1q

)
= Ã

(
0

E−1q

)
=

(
0

E−1q

)
,(31)

from which we see that the first component of (28) is set to 0 and the second component
is exactly E−1q.

In view of (23), (27), and (31), the above construction yields a search direction
Δw satisfying the following modified Newton system of equations:

AΔx = −rp,(32)

ATΔy + Δs + V Δz = −rd,(33)

XΔs + SΔx = −Xs + σμe− p,(34)

EV TΔx + E−1Δz = −rV + q.(35)

As far as the outer iteration complexity analysis of our algorithm is concerned,
all we require of our inexact search directions is that they satisfy (32)–(35) and that
p and q be relatively small in the following sense.

Definition 1. Given a point w ∈ �2n
++ ×�m+l and positive scalars τp and τq, an

inexact direction Δw is referred to as a (τp, τq)-search direction if it satisfies (32)–(35)
for some p and q satisfying ‖p‖∞ ≤ τpμ and ‖q‖ ≤ τq

√
μ, where μ is given by (9).

We next define a generalized central path neighborhood which is used by our
inexact PDIPF algorithm. Given a starting point w0 ∈ �2n

++ ×�m+l and parameters
η ≥ 0, γ ∈ [0, 1], and θ > 0, define the following set:

(36)

Nw0(η, γ, θ) =

{
w ∈ �2n

++ ×�m+l :
Xs ≥ (1 − γ)μe, (rp, rd) = η(r0

p, r
0
d),

‖rV − ηr0
V ‖ ≤ θ

√
μ, η ≤ μ/μ0

}
,

where μ = μ(w), μ0 = μ(w0), r = r(w), and r0 = r(w0). The generalized central
path neighborhood is then given by

Nw0(γ, θ) =
⋃

η∈[0,1]

Nw0(η, γ, θ).(37)

We observe that the neighborhood given by (37) agrees with the neighborhood given
by (15) when θ = 0.

We are now ready to state our inexact PDIPF algorithm.
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Inexact PDIPF algorithm.
1. Start: Let ε > 0 and 0 < σ ≤ σ < 4/5 be given. Choose γ ∈ (0, 1), θ > 0,

and w0 ∈ �2n
++ ×�m+l such that w0 ∈ Nw0(γ, θ). Set k = 0.

2. While μk := μ(wk) > ε do
(a) Let w := wk and μ := μk; choose σ ∈ [σ, σ].
(b) Set

τp = γσ/4 and(38)

τq =
[√

1 + (1 − 0.5γ)σ − 1
]
θ.(39)

(c) Set rp = Ax − b, rd = AT y + s + V z − c, rV = EV Tx + E−1z, and
η = ‖rp‖/‖r0

p‖.
(d) Compute a (τp, τq)-search direction Δw.
(e) Compute α̃ := argmax{α ∈ [0, 1] : w + α′Δw ∈ Nw0(γ, θ), ∀α′ ∈ [0, α]}.
(f) Compute ᾱ := argmin{(x + αΔx)T (s + αΔs) : α ∈ [0, α̃]}.
(g) Let wk+1 = w + ᾱΔw, and set k ← k + 1.

End (while)
The following result gives a bound on the number of iterations needed by the

inexact PDIPF algorithm to obtain an ε-solution to the KKT conditions (5)–(8). Its
proof will be given in subsection 4.2.

Theorem 2.2. Assume that the constants γ, σ, σ, and θ are such that

max

{
γ−1 , (1 − γ)−1 , σ−1 ,

(
1 − 5

4
σ

)−1
}

= O(1), θ = O(
√
n),(40)

and that the initial point w0 ∈ �2n
++ × �m+l satisfies (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S. Then, the inexact PDIPF algorithm generates an iterate wk ∈ �2n
++ × �m+l

satisfying μk ≤ εμ0, ‖(rkp , rkd)‖ ≤ ε‖(r0
p, r

0
d)‖, and ‖rkV ‖ ≤ ε‖r0

V ‖ + ε1/2θμ
1/2
0 within

O
(
n2 log(1/ε)

)
iterations.

3. Determining an inexact search direction via an iterative solver. The
results in subsection 2.2 assume we can obtain a (τp, τq)-search direction Δw, where
τp and τq are given by (38) and (39), respectively. In this section, we will describe
a way to obtain a (τp, τq)-search direction Δw using a uniformly bounded number
of iterations of a suitable preconditioned iterative linear solver applied to the ANE.
It turns out that the construction of this Δw is based on the recipe given at the
beginning of subsection 2.2, together with a specific choice of the perturbation vector
p.

This section is divided into two subsections. In subsection 3.1, we introduce the
MWB preconditioner which will be used to precondition the ANE. In addition, we
also introduce a family of iterative linear solvers used to solve the preconditioned
ANE. Subsection 3.2 gives a specific approach for constructing a pair (p, q) satisfying
(30), and an approximate solution to the ANE so that the recipe described at the
beginning of subsection 2.2 yields a (τp, τq)-search direction Δw. It also provides a
uniform bound on the number of iterations that any member of the family of iterative
linear solvers needs to perform to obtain such a direction Δw when applied to the
preconditioned ANE.

3.1. MWB preconditioner and a family of solvers. In this subsection we
introduce the MWB preconditioner, and we discuss its use as a preconditioner in
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solving the ANE via a family of iterative linear solvers. Since the condition number
of the ANE matrix ÃD̃2ÃT may “blow up” for points w near an optimal solution,
the direct application of a generic iterative linear solver for solving the ANE without
first preconditioning it is generally not effective. We discuss a natural remedy to this
problem which consists of using a preconditioner T̃ , namely the MWB preconditioner,
such that κ(T̃ ÃD̃2ÃT T̃T ) remains uniformly bounded regardless of the iterate w.
Finally, we analyze the complexity of the resulting approach to obtain a suitable
approximate solution to the ANE.

We start by describing the MWB preconditioner. Its construction essentially
consists of building a basis B of Ã which gives higher priority to the columns of Ã
corresponding to larger diagonal elements of D̃. More specifically, the MWB precon-
ditioner is determined by the following algorithm.

Maximum weight basis algorithm.
Start: Given d̃ ∈ �(n+l)

++ , and Ã ∈ �(m+l)×(n+l) such that rank(Ã) = m + l,

1. Order the elements of d̃ so that d̃1 ≥ · · · ≥ d̃n+l; order the columns of Ã
accordingly.

2. Let B = ∅, j = 1.
3. While |B| < m + l do

(a) If Ãj is linearly independent of {Ãi : i ∈ B}, set B ← B ∪ {j}.
(b) j ← j + 1.

4. Return to the original ordering of Ã and d̃; determine the set B according to
this ordering and set N := {1, . . . , n + l}\B.

5. Set B := ÃB and D̃B := Diag(d̃B).
6. Let T̃ = T̃ (Ã, d̃) := D̃−1

B B−1.
end

Note that the above algorithm can be applied to the matrix Ã defined in (21)
since this matrix has full row rank due to Assumption 1. The MWB preconditioner
was originally proposed by Vaidya [25] and Resende and Veiga [22] in the context of
the minimum cost network flow problem. In this case, Ã = A is the node-arc incidence
matrix of a connected digraph (with one row deleted to ensure that Ã has full row
rank), the entries of d̃ are weights on the edges of the graph, and the set B generated
by the above algorithm defines a maximum spanning tree on the digraph. Oliveira
and Sorensen [19] later proposed the use of this preconditioner for general matrices
Ã. Boman et al. [5] have proposed variants of the MWB preconditioner for diagonally
dominant matrices, using the fact that they can be represented as D1+AD2A

T , where
D1 and D2 are nonnegative diagonal and positive diagonal matrices, respectively, and
A is a node-arc incidence matrix.

For the purpose of stating the next result, we now introduce some notation. Let
us define

ϕÃ := max{‖B−1Ã‖F : B is a basis of Ã}.(41)

The constant ϕÃ is related to the well-known condition number χ̄Ã (see [26]), defined
as

χ̄Ã := sup{‖ÃT (ÃẼÃT )−1ÃẼ‖ : Ẽ ∈ Diag(�(n+l)
++ )}.

Specifically, ϕÃ ≤ (n + l)1/2χ̄Ã, in view of the facts that ‖C‖F ≤ (n + l)1/2 ‖C‖ for
any matrix C ∈ �(m+l)×(n+l) and, as shown in [23] and [26],

χ̄Ã = max{‖B−1Ã‖ : B is a basis of Ã}.
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The following result, which establishes the theoretical properties of the MWB
preconditioner, follows as a consequence of Lemmas 2.1 and 2.2 of [17].

Proposition 3.1. Let T̃ = T̃ (Ã, d̃) be the preconditioner determined according to
the maximum weight basis algorithm, and define W := T̃ ÃD̃2ÃT T̃T . Then, ‖T̃ ÃD̃‖ ≤
ϕÃ and κ(W ) ≤ ϕ2

Ã
.

Note that the bound ϕ2
Ã

on κ(W ) is independent of the diagonal matrix D̃ and

depends only on Ã. This will allow us to obtain a uniform bound on the number of
iterations needed by any member of the family of iterative linear solvers described
below to obtain a suitable approximate solution of (22). This topic is the subject of
the remainder of this subsection.

Instead of dealing directly with (22), we consider the application of an iterative
linear solver to the preconditioned ANE:

Wu = v,(42)

where

W := T̃ ÃD̃2ÃT T̃T , v := T̃ h.(43)

For the purpose of our analysis below, the only thing we will assume regarding the
iterative linear solver when applied to (42) is that it generates a sequence of iterates
{uj} such that

‖v −Wuj‖ ≤ c(κ)

[
1 − 1

ψ(κ)

]j
‖v −Wu0‖ ∀ j = 0, 1, 2, . . . ,(44)

where c and ψ are positive, nondecreasing functions of κ ≡ κ(W ).

Examples of solvers which satisfy (44) include the steepest descent (SD) and CG
methods, with the values for c(κ) and ψ(κ) given in Table 3.1.

Table 3.1

Solver c(κ) ψ(κ)
SD

√
κ (κ + 1)/2

CG 2
√
κ (

√
κ + 1)/2

The justification for Table 3.1 follows from section 7.6 and Exercise 10 of section
8.8 of [14].

The following result gives an upper bound on the number of iterations that any
iterative linear solver satisfying (44) needs to perform to obtain a ξ-approximate so-
lution of (42), i.e., an iterate uj such that ‖v − Wuj‖ ≤ ξ

√
μ for some constant

ξ > 0.

Proposition 3.2. Let u0 be an arbitrary starting point. Then, a generic iterative
linear solver with a convergence rate given by (44) generates an iterate uj satisfying
‖v −Wuj‖ ≤ ξ

√
μ in

O
(
ψ(κ) log

(
c(κ)‖v −Wu0‖

ξ
√
μ

))
(45)

iterations, where κ ≡ κ(W ).
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Proof. Let j be any iteration such that ‖v −Wuj‖ > ξ
√
μ. We use relation (44)

and the fact that 1 + ω ≤ eω for all ω ∈ � to observe that

ξ
√
μ < ‖v −Wuj‖ ≤ c(κ)

[
1 − 1

ψ(κ)

]j
‖v −Wu0‖ ≤c(κ) exp

{
−j

ψ(κ)

}
‖v −Wu0‖.

Rearranging the first and last terms of the inequality, it follows that

j < ψ(κ) log

(
c(κ)‖v −Wu0‖

ξ
√
μ

)
,

and the result is proven.
From Proposition 3.2, it is clear that different choices of u0 and ξ lead to differ-

ent bounds on the number of iterations performed by the iterative linear solver. In
subsection 3.2, we will describe a suitable way of selecting u0 and ξ so that (i) the
bound (45) is independent of the iterate w and (ii) the approximate solution T̃Tuj

of the ANE, together with a suitable pair (p, q), yields a (τp, τq)-search direction Δw
through the recipe described in subsection 2.2.

3.2. Computation of the inexact search direction Δw. In this subsection,
we use the results of subsections 2.2 and 3.1 to build a (τp, τq)-search direction Δw,
where τp and τq are given by (38) and (39), respectively. In addition, we describe a
way of choosing u0 and ξ which ensures that the number of iterations of an iterative
linear solver satisfying (44) applied to the preconditioned ANE is uniformly bounded
by a constant depending on n and ϕÃ.

Suppose that we solve (42) inexactly according to subsection 3.1. Then our final
solution uj satisfies Wuj − v = f̃ for some vector f̃ . Letting(

Δy
Δz

)
= T̃Tuj ,(46)

we easily see from (43) that (26) is satisfied with f := T̃−1f̃ . We can then apply the
recipe of subsection 2.2 to this approximate solution, using the pair (p, q) which we
will now describe.

First, note that (30) with f as defined above is equivalent to the system

f̃ = T̃ Ã

(
S−1p
E−1q

)
= T̃ ÃD̃

(
(XS)−1/2 0

0 I

)(
p
q

)
.(47)

Now, let B = (B1, . . . ,Bm+l) be the ordered set of basic indices computed by the
MWB algorithm applied to the pair (Ã, d̃) and note that, by step 6 of this algorithm,
the Bith column of T̃ ÃD̃ is the ith unit vector for every i = 1, . . . ,m + l. Then,
the vector t ∈ �n+l defined as tBi

= f̃i for i = 1, . . . ,m + l and tj = 0 for every
j /∈ {B1, . . . ,Bm+l} clearly satisfies

f̃ = T̃ ÃD̃ t.(48)

We then obtain a pair (p, q) ∈ �n ×�l satisfying (30) by defining(
p
q

)
:=

(
(XS)1/2 0

0 I

)
t.(49)
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It is clear from (49) and the fact that ‖t‖ = ‖f̃‖ that

‖p‖ ≤ ‖XS‖1/2‖f̃‖, ‖q‖ ≤ ‖f̃‖.(50)

As an immediate consequence of this relation, we obtain the following result.
Lemma 3.3. Suppose that w ∈ �2n

++ × �m+l and positive scalars τp and τq are

given. Assume that uj is a ξ-approximate solution of (42) or, equivalently, f̃ ≤ ξ
√
μ,

where ξ := min{n−1/2τp, τq}. Let Δw be determined according to the recipe given in
subsection 2.2 using the approximate solution (46) and the pair (p, q) given by (49).
Then Δw is a (τp, τq)-search direction.

Proof. It is clear from the previous discussion that Δw and the pair (p, q) satisfy
(32)–(35). Next, relation (50) and the facts that ξ ≤ n−1/2τp and ‖XS‖1/2 ≤ √

nμ
imply that

‖p‖∞ ≤ ‖p‖ ≤ ‖XS‖1/2‖f̃‖ ≤ √
nμ ξ

√
μ ≤ τpμ.

Similarly, (50) and the fact that ξ ≤ τq imply that ‖q‖ ≤ τq
√
μ. Thus, Δw is a

(τp, τq)-search direction as desired.
Lemma (3.3) implies that to construct a (τp, τq)-search direction Δw as in step

2(d) of the inexact PDIPF algorithm, it suffices to find a ξ-approximate solution to
(42), where

ξ := min

{
γσ

4
√
n
,

[√
1 +

(
1 − γ

2

)
σ − 1

]
θ

}
.(51)

We next describe a suitable way of selecting u0 so that the number of iterations
required by an iterative linear solver satisfying (44) to find a ξ-approximate solution
of (42) can be uniformly bounded by a universal constant depending only on the
quantities n and ϕÃ. First, compute a point w̄ = (x̄, s̄, ȳ, z̄) such that

Ã

(
x̄

E−2z̄

)
=

(
b

0

)
, AT ȳ + s̄ + V z̄ = c.(52)

Note that vectors x̄ and z̄ satisfying the first equation in (52) can be easily computed
once a basis of Ã is available (e.g., the one computed by the maximum weight basis
algorithm in the first outer iteration of the inexact PDIPF algorithm). Once ȳ is
arbitrarily chosen, a vector s̄ satisfying the second equation of (52) is immediately
available. We then define

u0 = −η T̃−T

(
y0 − ȳ
z0 − z̄

)
.(53)

The following lemma gives a bound on the size of the initial residual ‖Wu0 − v‖. Its
proof will be given in subsection 4.1.

Lemma 3.4. Assume that T̃ = T̃ (Ã, d̃) is given and that w0 ∈ �2n
++ × �m+l and

w̄ are such that (x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Further,
assume that w ∈ Nw0(γ, θ) for some γ ∈ [0, 1] and θ > 0, and that W , v, and u0

are given by (43) and (53), respectively. Then, the initial residual in (44) satisfies
‖v −Wu0‖ ≤ Ψ

√
μ, where

Ψ :=

[
7n + θ2/2√

1 − γ
+ θ

]
ϕÃ.(54)
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As an immediate consequence of Proposition 3.2 and Lemmas 3.3 and 3.4, we can
bound the number of inner iterations required by an iterative linear solver satisfying
(44) to yield a (τp, τq)-search direction Δw.

Theorem 3.5. Assume that ξ is defined in (51), where σ, γ, θ are such that

max{σ−1, γ−1, (1 − γ)−1, θ, θ−1}

is bounded by a polynomial of n. Assume also that w0 ∈ �2n
++ × �m+l and w̄ are

such that (x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Then, a generic
iterative linear solver with a convergence rate given by (44) generates a ξ-approximate
solution, which leads to a (τp, τq)-search direction Δw in

O
(
ψ(ϕ2

Ã
) log

(
c(ϕ2

Ã
)nϕÃ

))
(55)

iterations. As a consequence, the SD and CG methods generate this approximate
solution uj in O(ϕ2

Ã
log(nϕÃ)) and O(ϕÃ log(nϕÃ)) iterations, respectively.

Proof. The proof of the first part of Theorem 3.5 immediately follows from Propo-
sitions 3.1 and 3.2 and Lemmas 3.3 and 3.4. The proof of the second part of Theorem
3.5 follows immediately from Table 3.1 and Proposition 3.1.

Using the results of sections 2 and 3, we see that the number of “inner” itera-
tions of an iterative linear solver satisfying (44) is uniformly bounded by a constant
depending on n and ϕÃ, while the number of “outer” iterations in the inexact PDIPF
algorithm is polynomially bounded by a constant depending on n and log ε−1.

4. Technical results. This section is devoted to the proofs of Lemma 3.4 and
Theorem 2.2. Subsection 4.1 presents the proof of Lemma 3.4, and subsection 4.2
presents the proof of Theorem 2.2.

4.1. Proof of Lemma 3.4. In this subsection, we will provide the proof of
Lemma 3.4. We begin by establishing three technical lemmas.

Lemma 4.1. Suppose that w0 ∈ �2n
++×�m+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1],

γ ∈ [0, 1], and θ > 0, and w∗ ∈ S. Then

(x− ηx0 − (1 − η)x∗)T (s− ηs0 − (1 − η)s∗) ≥ −θ2

4
μ.(56)

Proof. Let us define w̃ := w−ηw0−(1−η)w∗. Using the definitions of Nw0(η, γ, θ),
r, and S, we have that

Ax̃ = 0,

AT ỹ + s̃ + V z̃ = 0,

V T x̃ + E−2z̃ = E−1(rV − ηr0
V ).

Multiplying the second relation by x̃T on the left and using the first and third relations
along with the fact that w ∈ Nw0(η, γ, θ), we see that

x̃T s̃ = −x̃TV z̃ = [E−2z̃ − E−1(rV − ηr0
V )]T z̃ = ‖E−1z̃‖2 − (E−1z̃)T (rV − ηr0

V )

≥ ‖E−1z̃‖2 − ‖E−1z̃‖‖rV − ηr0
V ‖ =

(
‖E−1z̃‖ − ‖rV − ηr0

V ‖
2

)2

− ‖rV − ηr0
V ‖2

4

≥ −‖rV − ηr0
V ‖2

4
≥ −θ2

4
μ.
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Lemma 4.2. Suppose that w0 ∈ �2n
++ × �m+l such that (x0, s0) ≥ (x∗, s∗) for

some w∗ ∈ S. Then, for any w ∈ Nw0(η, γ, θ) with η ∈ [0, 1], γ ∈ [0, 1], and θ > 0,
we have

η(xT s0 + sTx0) ≤
(

3n +
θ2

4

)
μ.(57)

Proof. Using the fact w ∈ Nw0(η, γ, θ) and (56), we obtain

xT s− η(xT s0 + sTx0) + η2x0T

s0 − (1 − η)(xT s∗ + sTx∗)

+ η(1 − η)(x∗T

s0 + s∗
T

x0) + (1 − η)2x∗T

s∗ ≥ −θ2

4
μ.

Rearranging the terms in this equation and using the facts that η ≤ xT s/x0T

s0,

x∗T

s∗ = 0, (x, s) ≥ 0, (x∗, s∗) ≥ 0, (x0, s0) > 0, η ∈ [0, 1], x∗ ≤ x0, and s∗ ≤ s0, we
conclude that

η(xT s0 + sTx0) ≤ η2x0T

s0 + xT s + η(1 − η)(x∗T

s0 + s∗
T

x0) +
θ2

4
μ

≤ η2x0T

s0 + xT s + 2η(1 − η)x0T

s0 +
θ2

4
μ

≤ 2ηx0T

s0 + xT s +
θ2

4
μ

≤ 3xT s +
θ2

4
μ =

(
3n +

θ2

4

)
μ.

Lemma 4.3. Suppose w0 ∈ �2n
++ × �m+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1],

γ ∈ [0, 1], and θ > 0, and w̄ satisfies (52). Let W , v, and u0 be given by (43) and
(53), respectively. Then,

Wu0 − v = T̃ Ã

(
−x + σμS−1e + η(x0 − x̄) + ηD2(s0 − s̄)

E−1(rV − ηr0
V )

)
.(58)

Proof. Using the fact that w ∈ Nw0(η, γ, θ) along with (21), (36), and (52), we
easily obtain that

(
rp

E−1rV

)
=

(
ηr0

p

ηE−1r0
V + E−1(rV − ηr0

V )

)
= ηÃ

(
x0 − x̄

E−2(z0 − z̄)

)
+ Ã

(
0

E−1(rV − ηr0
V )

)
,(59)

s0 − s̄ = −AT (y0 − ȳ) − V (z0 − z̄) + r0
d.(60)
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Using relations (20), (21), (43), (36), (53), (59), and (60), we obtain

Wu0 − v = T̃ ÃD̃2ÃT T̃Tu0 − T̃ Ã

(
x− σμS−1e−D2rd

0

)
+ T̃

(
rp

E−1rV

)
= − ηT̃ ÃD̃2ÃT

(
y0 − ȳ
z0 − z̄

)
− T̃ Ã

(
x− σμS−1e− ηD2r0

d

0

)
+ T̃

(
rp

E−1rV

)

= − ηT̃ Ã

(
D2AT (y0 − ȳ) + D2V (z0 − z̄) −D2r0

d

E−2(z0 − z̄)

)
− T̃ Ã

(
x− σμS−1e

0

)
+ T̃

(
rp

E−1rV

)
,

= − ηT̃ Ã

(
−D2(s0 − s̄)
E−2(z0 − z̄)

)
− T̃ Ã

(
x− σμS−1e

0

)
+ ηT̃ Ã

(
x0 − x̄

E−2(z0 − z̄)

)
+ T̃ Ã

(
0

E−1(rV − ηr0
V )

)
,

which yields (58), as desired.
We now turn to the proof of Lemma 3.4.
Proof. Since w ∈ Nw0(γ, θ), we have that xisi ≥ (1 − γ)μ for all i, which implies

‖(XS)−1/2‖ ≤ 1√
(1 − γ)μ

.(61)

Note that ‖Xs−σμe‖, when viewed as a function of σ ∈ [0, 1], is convex. Hence, it is
maximized at one of its endpoints, which, together with the facts ‖Xs− μe‖ < ‖Xs‖
and σ ∈ [σ, σ] ⊂ [0, 1], immediately implies that

‖Xs− σμe‖ ≤ ‖Xs‖ ≤ ‖Xs‖1 = xT s = nμ.(62)

Using the fact that (x0, s0) ≥ |(x̄, s̄)| together with Lemma 4.2, we obtain that

η‖S(x0 − x̄) + X(s0 − s̄)‖ ≤ η
{
‖S(x0 − x̄)‖ + ‖X(s0 − s̄)‖

}
≤ 2η

{
‖Sx0‖ + ‖Xs0‖

}
≤ 2η(xT s0 + xT s0) ≤

(
6n +

θ2

2

)
μ.(63)

Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ). It is clear that
the requirements of Lemma 4.3 are met, so (58) holds. By (19), (20), and (58), we
see that

‖v −Wu0‖ =

∥∥∥∥T̃ ÃD̃

(
(XS)−1/2{Xs− σμe− η[S(x0 − x̄) + X(s0 − s̄)]}

rV − ηr0
V

)∥∥∥∥
≤ ‖T̃ ÃD̃‖

{
‖(XS)−1/2‖

[
‖Xs− σμe‖ + η‖X(s0 − s̄) + S(x0 − x̄)‖

]
+ ‖rV − ηr0

V ‖
}
,

≤ ϕÃ

{
1√

(1 − γ)μ

[
nμ +

(
6n +

θ2

2

)
μ

]
+ θ

√
μ

}
= Ψ

√
μ,

where the last inequality follows from Proposition 3.1, relations (61), (62), (63), and
the assumption that w ∈ Nw0(γ, θ).
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4.2. “Outer” iteration results—Proof of Theorem 2.2. In this subsection,
we will present the proof of Theorem 2.2. Specifically, we will show that the inexact
PDIPF algorithm obtains an ε-approximate solution to (5)–(8) in O(n2 log(1/ε)) outer
iterations.

Throughout this section, we use the following notation:

w(α) := w + αΔw, μ(α) := μ(w(α)), r(α) := r(w(α)).

Lemma 4.4. Assume that Δw satisfies (32)–(35) for some σ ∈ �, w ∈ �2n+m+l,
and (p, q) ∈ �n ×�l. Then, for every α ∈ �, we have

(a) X(α)s(α) = (1 − α)Xs + ασμe− αp + α2ΔXΔs;
(b) μ(α) = [1 − α(1 − σ)]μ− αpT e/n + α2ΔxTΔs/n;
(c) (rp(α), rd(α)) = (1 − α)(rp, rd);
(d) rV (α) = (1 − α)rV + αq.
Proof. Using (34), we obtain

X(α)s(α) = (X + αΔX)(s + αΔs)

= Xs + α(XΔs + SΔx) + α2ΔXΔs

= Xs + α(−Xs + σμe− p) + α2ΔXΔs

= (1 − α)Xs + ασμe− αp + α2ΔXΔs,

thereby showing that (a) holds. Left multiplying the above equality by eT and dividing
the resulting expression by n, we easily conclude that (b) holds. Statement (c) can be
easily verified by means of (32) and (33), while statement (d) follows from (35).

Lemma 4.5. Assume that Δw satisfies (32)–(35) for some σ ∈ �, w ∈ �2n
++ ×

�m+l, and (p, q) ∈ �n × �l such that ‖p‖∞ ≤ γσμ/4. Then, for every scalar α
satisfying

0 ≤ α ≤ min

{
1 ,

σμ

4 ‖ΔXΔs‖∞

}
,(64)

we have

μ(α)

μ
≥ 1 − α.(65)

Proof. Since ‖p‖∞ ≤ γσμ/4, we easily see that

|pT e/n| ≤ ‖p‖∞ ≤ σμ/4.(66)

Using this result and Lemma 4.4(b), we conclude for every α satisfying (64) that

μ(α) = [1 − α(1 − σ)]μ− αpT e/n + α2ΔxTΔs/n

≥ [1 − α(1 − σ)]μ− 1

4
ασμ + α2ΔxTΔs/n

≥ (1 − α)μ +
1

4
ασμ− α2‖ΔXΔs‖∞

≥ (1 − α)μ.

Lemma 4.6. Assume that Δw is a (τp, τq)-search direction, where τp and τq are
given by (38) and (39), respectively. Assume also that σ > 0 and that w ∈ Nw0(γ, θ)
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with w0 ∈ �2n
++ × �m+l, γ ∈ [0, 1], and θ ≥ 0. Then, w(α) ∈ Nw0(γ, θ) for every

scalar α satisfying

0 ≤ α ≤ min

{
1 ,

γσμ

4 ‖ΔXΔs‖∞

}
.(67)

Proof. Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ). We
will show that w(α) ∈ Nw0((1 − α)η, γ, θ) ⊆ Nw0(γ, θ) for every α satisfying (67).

First, we note that (rp(α), rd(α)) = (1 − α)η(r0
p, r

0
d) by Lemma 4.4(c) and the

definition of Nw0(η, γ, θ). Next, it follows from Lemma 4.5 that (65) holds for every
α satisfying (64), and hence (67) due to γ ∈ [0, 1]. Thus, for every α satisfying (67),
we have

(1 − α)η ≤ μ(α)

μ
η ≤ μ(α)

μ

μ

μ0
=

μ(α)

μ0
.(68)

Now, it is easy to see that for every u ∈ �n and τ ∈ [0, n], there holds ‖u −
τ(uT e/n)e‖∞ ≤ (1+τ)‖u‖∞. Using this inequality twice, the fact that w ∈ Nw0(η, γ, θ),
relation (38), and statements (a) and (b) of Lemma 4.4, we conclude for every α sat-
isfying (67) that

X(α)s(α) − (1 − γ)μ(α)e

= (1 − α) [Xs− (1 − γ)μe] + αγσμe− α

[
p− (1 − γ)

(
pT e

n

)
e

]
+ α2

[
ΔXΔs− (1 − γ)

(
ΔxTΔs

n

)
e

]
≥ α

[
γσμ−

∥∥∥∥p− (1 − γ)
pT e

n
e

∥∥∥∥
∞

− α

∥∥∥∥ΔXΔs− (1 − γ)
ΔxTΔs

n
e

∥∥∥∥
∞

]
e

≥ α (γσμ− 2‖p‖∞ − 2α‖ΔXΔs‖∞) e ≥ α

(
γσμ− 1

2
γσμ− 1

2
γσμ

)
e = 0.

Next, by Lemma 4.4(d), we have that

rV (α) = (1 − α)rV + αq = (1 − α)ηr0
V + â,

where â = (1 − α)(rV − ηr0
V ) + αq. To complete the proof, it suffices to show that

‖â‖ ≤ θ
√

μ(α) for every α satisfying (67). By using equation (39) and Lemma 4.4(b)
along with the facts that ‖rV − ηr0

V ‖ ≤ θ
√
μ and α ∈ [0, 1], we have

‖â‖2 − θ2μ(α) = (1 − α)2‖rV − ηr0
V ‖2 + 2α(1 − α)[rV − ηr0

V ]T q + α2‖q‖2 − θ2μ(α)

≤ (1 − α)2θ2μ + 2α(1 − α)θ
√
μ‖q‖ + α2‖q‖2

− θ2

{
[1 − α(1 − σ)]μ− α

pT e

n
+ α2 ΔxTΔs

n

}
≤ α2‖q‖2 + 2αθ

√
μ‖q‖ − αθ2σμ + αθ2 p

T e

n
− α2θ2 ΔxTΔs

n

≤ α
[
‖q‖2 + 2θ

√
μ‖q‖ −

(
1 − γ

4

)
θ2σμ + θ2α‖ΔXΔs‖∞

]
≤ α

[
‖q‖2 + 2θ

√
μ‖q‖ −

(
1 − γ

2

)
θ2σμ

]
≤ 0,
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where the last inequality follows from the quadratic formula and the fact that ‖q‖ ≤ τq,
where τq is given by (39).

Next, we derive a lower bound on the step size of the inexact PDIPF algorithm.
Lemma 4.7. In every iteration of the inexact PDIPF algorithm, the step length

ᾱ satisfies

ᾱ ≥ min

{
1,

min{γσ, 1 − 5
4σ}μ

4 ‖ΔXΔs‖∞

}
(69)

and

μ(ᾱ) ≤
[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ.(70)

Proof. We know that Δw is a (τp, τq)-search direction in every iteration of the
inexact PDIPF algorithm, where τp and τq are given by (38) and (39). Hence, by
Lemma 4.6, the quantity α̃ computed in step (g) of the inexact PDIPF algorithm
satisfies

α̃ ≥ min

{
1,

γσμ

4 ‖ΔXΔs‖∞

}
.(71)

Moreover, by (66), it follows that the coefficient of α in the expression for μ(α) in
Lemma 4.4(b) satisfies

−(1 − σ)μ− pT e

n
≤ −(1 − σ)μ + ‖p‖∞ ≤ −(1 − σ)μ +

1

4
γσμ(72)

= −
(

1 − 5

4
σ

)
μ < 0,

since σ ∈ (0, 4/5). Hence, if ΔxTΔs ≤ 0, it is easy to see that ᾱ = α̃ and hence that
(69) holds in view of (71). Moreover, by Lemma 4.4(b) and (72), we have

μ(ᾱ) ≤ [1 − ᾱ(1 − σ)]μ− ᾱ
pT e

n
≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

]
μ ≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ,

showing that (70) also holds. We now consider the case where ΔxTΔs > 0. In this
case, we have ᾱ = min{αmin , α̃}, where αmin is the unconstrained minimum of μ(α).
It is easy to see that

αmin =
nμ(1 − σ) + pT e

2ΔxTΔs
≥

n[μ(1 − σ) − 1
4σμ]

2ΔxTΔs
≥

μ(1 − 5
4σ)

2 ‖ΔXΔs‖∞
.

The last two observations together with (71) imply that (69) holds in this case too.
Moreover, since the function μ(α) is convex, it must lie below the function φ(α) over
the interval [0, αmin], where φ(α) is the affine function interpolating μ(α) at α = 0
and α = αmin. Hence,

μ(ᾱ) ≤ φ(ᾱ) =
[
1 − (1 − σ)

ᾱ

2

]
μ− ᾱ

pT e

2n
≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ,(73)

where the second inequality follows from (72). We have thus shown that ᾱ satisfies
(70).
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Our next task will be to show that the step size ᾱ remains bounded away from
zero. In view of (69), it suffices to show that the quantity ‖ΔXΔs‖∞ can be suitably
bounded. The next lemma addresses this issue.

Lemma 4.8. Let w0 ∈ �2n
++ × �m+l be such that (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S, and let w ∈ Nw0(γ, θ) for some γ ≥ 0 and θ ≥ 0. Then, the inexact search
direction Δw used in the inexact PDIPF algorithm satisfies

max(‖D−1Δx‖, ‖DΔs‖) ≤
(

1 − 2σ +
σ2

1 − γ

)1/2 √
nμ

+
1√

1 − γ

(
γσ

4

√
n + 6n +

θ2

2

)
√
μ + θ

√
μ.(74)

Proof. Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ).

Let Δ̃w := Δw + η(w0 − w∗). Using relations (32), (33), (35), and the fact that
w ∈ Nw0(η, γ, θ), we easily see that

AΔ̃x = 0,(75)

AT Δ̃y + Δ̃s + V Δ̃z = 0,(76)

V T Δ̃x + E−2Δ̃z = E−1(q − rV + ηr0
V ).(77)

Premultiplying (76) by Δ̃x
T

and using (75) and (77), we obtain

Δ̃x
T
Δ̃s = −Δ̃x

T
V Δ̃z = [E−2Δ̃z − E−1(q − rV + ηr0

V )]T Δ̃z

= ‖E−1Δ̃z‖2 − (q − rV + ηr0
V )T (E−1Δ̃z)

≥ ‖E−1Δ̃z‖2 − ‖q − rV + ηr0
V ‖ ‖E−1Δ̃z‖ ≥ −‖q − rV + ηr0

V ‖2

4
.(78)

Next, we multiply (34) by (XS)−1/2 to obtain D−1Δx+DΔs = H(σ)−(XS)−1/2p,
where H(σ) := −(XS)1/2e + σμ(XS)−1/2e. Equivalently, we have that

D−1Δ̃x + DΔ̃s = H(σ) − (XS)−1/2p + η
[
D(s0 − s∗) + D−1(x0 − x∗)

]
=: g.

Taking the squared norm of both sides of the above equation and using (78), we obtain

‖D−1Δ̃x‖2 + ‖DΔ̃s‖2 = ‖g‖2 − 2Δ̃x
T
Δ̃s ≤ ‖g‖2 +

‖q − rV + ηr0
V ‖2

2

≤
(
‖g‖ +

‖q‖ + ‖rV − ηr0
V ‖√

2

)2

≤ (‖g‖ + θ
√
μ)

2
,

since ‖q‖ + ‖rV − ηr0
V ‖ ≤

[√
2 − 1

]
θ
√
μ + θ

√
μ =

√
2θ
√
μ by (36), (39), and the fact

that 1 + (1 − γ/2)σ ≤ 2. Thus, we have

max(‖D−1Δ̃x‖ , ‖DΔ̃s‖) ≤ ‖g‖ + θ
√
μ

≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + η
[
‖D(s0 − s∗)‖ + ‖D−1(x0 − x∗)‖

]
+ θ

√
μ.
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This, together with the triangle inequality, the definitions of D and Δ̃w, and the fact
that w ∈ Nw0(η, γ, θ), implies that

(79)

max(‖D−1Δx‖, ‖DΔs‖)
≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + 2η

[
‖D(s0 − s∗)‖ + ‖D−1(x0 − x∗)‖

]
+ θ

√
μ

≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + 2η‖(XS)−1/2‖
[
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

]
+ θ

√
μ

≤ ‖H(σ)‖ +
1√

(1 − γ)μ

[
‖p‖ + 2η

(
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

)]
+ θ

√
μ.

It is well known (see, e.g., [10]) that

‖H(σ)‖ ≤
(

1 − 2σ +
σ2

1 − γ

)1/2 √
nμ.(80)

Moreover, using the fact that s∗ ≤ s0 and x∗ ≤ x0 along with Lemma 4.2, we obtain

η
(
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

)
≤ η(sTx0 + xT s0) ≤

(
3n +

θ2

4

)
μ.(81)

The result now follows by noting that ‖p‖ ≤
√
n‖p‖∞ and by incorporating inequali-

ties (80), (81), and (38) into (79).
We are now ready to prove Theorem 2.2.
Proof. Let Δwk denote the search direction, and let rk = r(wk) and μk = μ(wk)

at the kth iteration of the inexact PDIPF algorithm. Clearly, wk ∈ Nw0(γ, θ). Hence,
using Lemma 4.8, assumption (40), and the inequality

‖ΔXkΔsk‖∞ ≤ ‖ΔXkΔsk‖ ≤ ‖(Dk)−1Δxk‖ ‖DkΔsk‖,

we easily see that ‖ΔXkΔsk‖∞ = O(n2)μk. Using this conclusion together with
assumption (40) and Lemma 4.7, we see that, for some universal constant β > 0, we
have

μk+1 ≤
(

1 − β

n2

)
μk ∀k ≥ 0.

Using this observation and some standard arguments (see, for example, Theorem
3.2 of [27]), we easily see that the inexact PDIPF algorithm generates an iterate
wk ∈ Nw0(γ, θ) satisfying μk/μ0 ≤ ε within O

(
n2 log(1/ε)

)
iterations. The theorem

now follows from this conclusion and the definition of Nw0(γ, θ).

5. Concluding remarks. We have shown that the long-step PDIPF algorithm
for LP based on an iterative linear solver presented in [16] can be extended to the
context of CQP. This was not immediately obvious at first since the standard normal
equation for CQP does not fit into the mold required for the results of [17] to hold. By
considering the ANE, we were able to use the results about the MWB preconditioner
developed in [17] in the context of CQP. Another difficulty we encountered was the
proper choice of the starting iterate u0 for the iterative linear solver. By choosing
u0 = 0 as in the LP case, we obtain ‖v−Wu0‖ = ‖v‖, which can only be shown to be
O(max{μ,√μ}). In this case, for every μ > 1, Proposition 3.2 would guarantee that
the number of inner iterations of the iterative linear solver is

O
(
ψ(ϕ2

Ã
) max

{
log

(
c(ϕ2

Ã
)nϕÃ

)
, logμ

})
,
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a bound which depends on the logarithm of the current duality gap. On the other
hand, Theorem 3.5 shows that choosing u0 as in (53) results in a bound that does not
depend on the current duality gap.

We observe that under exact arithmetic, the CG algorithm applied to Wu = v
generates an exact solution in at most m + l iterations (since W ∈ �(m+l)×(m+l)).
It is clear, then, that the bound (55) is generally worse than the well-known finite
termination bound for CG. However, our results in section 3 were given for a family of
iterative linear solvers, only one member of which is CG. Also, under finite precision
arithmetic, the CG algorithm loses its finite termination property, and its convergence
rate behavior in this case is still an active topic of research (see, e.g., [8]). Certainly,
the impact of finite precision arithmetic on our results is an interesting open issue.

Clearly, the MWB preconditioner is not suitable for dense CQP problems since,
in this case, the cost to construct the MWB is comparable to the cost to form and
factorize ÃD̃2ÃT , and each inner iteration would require Θ((m + l)2) arithmetic op-
erations, the same cost as a forward and backward substitution. There are, however,
some classes of CQP problems for which the method proposed in this paper might
be useful. One class of problems for which PDIPF methods based on MWB precon-
ditioners might be useful are those for which bases of Ã are sparse, but the ANE
coefficient matrices ÃD̃2ÃT are dense; this situation generally occurs in sparse CQP
problems for which n is much larger than m + l. Other classes of problems for which
our method might be useful are network flow problems. The paper [22] developed
interior-point methods for solving the minimum cost network flow problem based on
iterative linear solvers with maximum spanning tree preconditioners. Related to this
work, we believe that the following two issues could be investigated: (i) whether the
incorporation of the correction term p defined in (29) in the algorithm implemented
in [22] will improve the convergence of the method; (ii) whether our algorithm might
be efficient for network flow problems where the costs associated with the arcs are
quadratic functions of the arc flows. Identification of other classes of CQP problems
which could be efficiently solved by the method proposed in this paper is another
topic for future research.

Regarding the second question above, it is easy to see (after a suitable permutation
of the variables) that V T =

(
I 0

)
and E2 is a positive diagonal matrix whose

diagonal elements are the positive quadratic coefficients. In this case, it can be shown
that Ã is totally unimodular; hence ϕ2

Ã
≤ (m + l)(n −m + 1) by Cramer’s rule (see

[17]).
The usual way of defining the dual residual is as the quantity

Rd := AT y + s− V E2V Tx− c,

which, in view of (11) and (12), can be written in terms of the residuals rd and rV as

Rd = rd − V ErV .(82)

Note that, along the iterates generated by the inexact PDIPF algorithm, we have rd =
O(μ) and rV = O(

√
μ), implying that Rd = O(

√
μ). Hence, while the usual primal

residual converges to 0 according to O(μ), the usual dual residual does so according
to O(

√
μ). This is a unique feature of the convergence analysis of our algorithm in

that it contrasts with the analysis of other interior-point PDIPF algorithms, where
the primal and dual residuals are required to go to zero at the same rate. The
convergence analysis under these circumstances is possible due to the specific form of
the O(

√
μ)-term present in (82), i.e., one that lies in the range space of V E.
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CQP problems where V is explicitly available arise frequently in the literature.
One important example arises in portfolio optimization (see [6]), where the rank of V
is often small. In such problems, l represents the number of observation periods used
to estimate the data for the problem. We believe that the inexact PDIPF algorithm
could be of particular use for this type of application.
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OPTIMIZING OVER CONSECUTIVE 1’S
AND CIRCULAR 1’S CONSTRAINTS∗

DORIT S. HOCHBAUM† AND ASAF LEVIN‡

Abstract. We consider packing and covering optimization problems over constraints in consec-
utive and circular 1’s. Such problems arise in the context of shift scheduling, and in problems related
to interval graphs. Previous approaches to this problem depended on solving several minimum cost
network flow problems. We devise here substantially more efficient and strongly polynomial algo-
rithms based on parametric shortest paths approaches. The objective function in the covering and
packing problems is to either minimize or maximize the number of sets that satisfy the constraints.
The various problems studied are classified according to whether the constraints are all consecutive
1’s or if there are also circular 1’s constraints, and according to whether the constraints are all of
covering type; all of packing type, or mixed. The running time of our algorithm for a pure covering
all consecutive 1’s constraints problem on n variables and m constraints is O(m + n). For the pure
packing problem with consecutive 1’s constraints we present an O(m + n logn) time algorithm. For
the “mixed” case with both covering and packing consecutive 1’s constraints we present an O(mn)
time algorithm. An O(mn+ n2 logn)-time algorithm is presented for the case where the constraints
are circular (consecutive 1’s constraint is also circular) of pure type—either all covering constraints
or all packing constraints. Finally, we show an O(nmin{mn,n2 logn + m log2 n}) time algorithm
for the most general problem of mixed covering and packing case where the constraints are circular.
All our algorithms are strongly polynomial and improve on the nonstrongly polynomial parametric
minimum cost network flow or the (strongly polynomial) linear programming known approaches.

Key words. circular scheduling problems, consecutive 1’s constraints, parametric optimization,
parametric shortest path

AMS subject classifications. 90C27, 68Q25

DOI. 10.1137/040603048

1. Introduction. Here we study optimization problems over constraints with
0, 1 coefficients that have the consecutive and circular 1’s property. The basic consec-
utive 1’s problem is formulated for a given set of m pairs, or intervals, A = Acover ∪
Apack. Each interval (p, q) for p < q corresponds to the 0, 1 vector, [0, . . . , 0, 1, . . . , 1,
0, . . . , 0] with the positions p+1, . . . , q with value 1 and all others with value 0. A con-
straint (p, q) is said to be in consecutive 1’s if it is of the covering form

∑q
j=p+1 xj ≥ bpq

or packing form,
∑q

j=p+1 xj ≤ bpq. The formulation of the consecutive 1’s problem
on a mixed set of covering and packing constraints is

(Consec)

min
∑n

j=1 xj

subject to:
∑q

j=p+1 xj ≥ bpq for 0≤p<q≤n and (p, q) ∈ Acover∑q
j=p+1 xj ≤ bpq for 0≤p<q≤n and (p, q) ∈ Apack

xj ≥ 0 integer j = 1, . . . , n.

Although not explicitly stated, the packing and covering constraints allow modeling
of upper and lower bounds on the variables, respectively. So the nonnegativity need

∗Received by the editors January 11, 2004; accepted for publication (in revised form) December
6, 2005; published electronically May 19, 2006. Research supported in part by NSF awards DMI-
0085690 and DMI-0084857.

http://www.siam.org/journals/siopt/17-2/60304.html
†Department of Industrial Engineering and Operations Research and Walter A. Haas School of

Business, University of California, Berkeley, CA 94720 (hochbaum@ieor.berkeley.edu).
‡Department of Statistics, The Hebrew University, Jerusalem, Israel (levinas@mscc.huji.ac.il).

311



312 DORIT S. HOCHBAUM AND ASAF LEVIN

not be listed explicitly, as we have in the formulation. When Apack = ∅ the problem
is the well known set cover problem.

When substituting the variables yq =
∑q

i=1 xi in (Consec) the constraints of
the problem become yq − yp ≥ bpq and yq − yp ≤ bpq. (Detailed discussion of this
transformation is provided in section 2.) Such constraints are recognized as the dual
of the minimum cost network flow problem, and previous techniques for solving the
problem are indeed based on solving minimum cost network flow problems.

The circular 1’s problem (Circular) includes, in addition to consecutive 1’s con-
straints, also at least one constraint of the type

q′∑
j=1

xj +

n∑
j=p′+1

xj ≥ bq′p′ for 0 ≤ q′ < p′ ≤ n,

or

q′∑
j=1

xj +

n∑
j=p′+1

xj ≤ bq′p′ for 0 ≤ q′ < p′ ≤ n.

Such constraints, called circular, are characterized by having an entry 1 in the first and
last columns of the constraint coefficient. That is, a circular constraint corresponding
to (p′, q′) for p′ > q′ is represented by a 0, 1 vector [1, . . . , 1, 0, . . . , 0, 1, . . . , 1] with
positions q′ +1 through p′ having 0 value, and the rest are 1. We refer to the problem
with constraints that include consecutive 1’s and circular 1’s as (Circular).

We study here problems (Consec) and (Circular) with either max
∑n

j=1 xj or

min
∑n

j=1 xj as the objective function. These problems have applications ranging
from problems on interval and circular-arc graphs, to staff scheduling. Problems on
interval and circular-arc graphs that can be modeled using (Consec) and (Circular)
include the minimum dominating set where all the constraints are covering constraints
with the right-hand side equaling 1, and the maximum independent set where all the
constraints are packing constraints with the right-hand side equaling 1. The reader
is referred to [BOR80] for details on the application of staff scheduling.

The recognition problem of whether the constraint matrix is of consecutive 1’s
or circular 1’s type is polynomially solvable. Booth and Lueker, [BL76] showed that
given a 0, 1 matrix of size m×n with f 1’s, one can verify in linear time, O(m+n+f),
whether the matrix has the consecutive 1’s property . It is also possible to test quickly
whether the matrix has the circular 1’s property in O(m+n+2f), [Boo75].

We present here combinatorial and strongly polynomial time algorithms which
are not based on flow and yield improved run times for (Consec) and (Circular) as
reported in Table 1.1.

Veinott and Wagner [VW62] studied the problem (Consec) and established its
relationship to the minimum cost network flow problem. We use this relationship to
conclude the known result for mixed (Consec) problem reported in Table 1.1. The
pure covering (Consec) problem and the pure packing (Consec) problem were solved by
Tamir [Ta03]. He considered these problems when each row of the constraint matrix
corresponds to a neighborhood in a tree. For this general problem he designed an
O((m+n) log2 n) time algorithm, and noted that in the special case of neighborhoods
on a line (i.e., each row is consecutive 1’s) the time complexity reduced to O((m +
n) log n). His results were obtained for the problem where the coefficient matrix is
not given as a set of intervals of the consecutive 1’s, and therefore the logn factor
is essential to transform the problem into the set of intervals we have as our input.
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Table 1.1

Complexity of algorithms for optimizing over consecutive 1’s and circular 1’s matrices.

Problem Known best result Running time here

Consecutive covering constraints O((m + n) logn) [Ta03] O(m + n)

Consecutive packing constraints O((m + n) logn) [Ta03] O(m + n logn)

Consecutive packing and covering MCNF [VW62] O(mn)
constraints

Circular covering constraints O(mn logn) [KO81] O(nm + n2 logn)

Circular packing constraints LP, or O(nm + n2 logn)
O(log b ·MCNF ) [BOR80]

Circular packing and covering LP, or O(n2 min{m,n logn})
constraints O(log b ·MCNF ) [BOR80]

Legend: MCNF, the complexity of solving minimum cost network flow. LP, the
complexity of linear programming with 0, 1 constraint coefficients. b =

∑
(p,q)∈A

bpq .

Shah and Farach-Colton [SF02] presented an O((m + n) log n) time algorithm that
finds the optimal solution value (not the solution itself) of the pure covering and
pure packing problems where each row of the constraint matrix corresponds to a
neighborhood in a tree.

Bartholdi, Orlin, and Ratliff [BOR80] were the first to propose a polynomial time
algorithm for a generalization of the (Circular) problem in which the cost coefficients
are not identical, and demonstrated that the linear optimization problem over con-
straints with circular 1’s is solvable in polynomial time as well although the constraint
matrix is no longer totally unimodular. Although they studied the problem with only
covering constraints, their results hold also for problems with packing constraints as
well, as we show in section 4. The running time of their algorithm is log b times the
complexity of solving a minimum cost network flow problem (MCNF), where b is the
sum of the right-hand sides. A second algorithm they devised solves the problem by
calling twice to the linear programming relaxation (in the second linear programming
relaxation they fix the value of

∑
j xj). They showed that for the special objective

function min
∑

j xj and pure covering, it is enough to solve a single linear program-
ming relaxation and then round-up the fractional solution vector to obtain an optimal
integral solution. A similar result holds also for pure packing constraints but the frac-
tional solution vector is rounded-down. For the mixed case we need to check the
two possible solutions obtained by rounding-up and by rounding-down the optimal
fractional solution. One of these solutions is guaranteed to be feasible if the problem
itself is feasible. Then, we need to check whether these solutions are feasible, and if
both are feasible the optimal integral solution is the better one.

A combinatorial linear program with all entries in the constraint matrix that are
“small” is solvable in strongly polynomial time, [Tar86]. Thus the second, LP-based
algorithm of [BOR80] is strongly polynomial. The drawback of employing this linear
programming algorithm is that in order to achieve strongly polynomial time one has
to use the Ellipsoid method which is neither efficient nor practical. We will show how
the first algorithm of [BOR80] that is based on MCNF can be transformed into a
strongly-polynomial time algorithm, albeit with run time that is still inferior to the
run time of the algorithm reported here.

Karp and Orlin [KO81] solved problem (Circular) when all the constraints are
covering constraints using parametric shortest path method in O(mn log n) time.

A related problem to the ones studied here is the optimization over constraints
with circular 1’s in columns. Hochbaum and Levin [HL03] showed that this problem is
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at least as difficult as the exact matching problem, and thus harder than the problem
in circular 1’s in rows investigated here. They gave a 2-approximation algorithm for
the problem, and presented an O(n3 logB + n4)-time algorithm for the special case
where right-hand sides are uniform and equal to B.

Paper overview. In section 2 we provide a description of Veinott and Wagner’s
[VW62] transformation. In section 3, we describe the parametric method of Megiddo
[Meg83] and Cole [Col87] which is used to improve the running time of several of the
algorithms presented. In section 4 and in the appendix we show how the results of
Bartholdi, Orlin, and Ratliff [BOR80] are extended to the mixed case where there are
packing constraints and covering constraints (rather than the pure covering constraints
they investigated). We also devise a strongly-polynomial variant of the [BOR80]’s
algorithm based on the parametric method. In section 5, we address the problem
(Consec) with pure covering constraints and present an O(m + n)-time algorithm
that solves it, and in section 6 we derive for (Consec) with pure packing constraints
an O(m + n log n)-time algorithm. In section 7 we show that pure packing problems
are at least as difficult as pure covering problems. In section 8 we show an O(mn)-time
algorithm for the mixed problem (Consec). In section 9 we discuss the pure packing
circular 1’s problem and present an algorithm with complexity O(mn + n2 log n).
Finally, in section 10 we present an algorithm for the general circular 1’s case with
both covering and packing constraints. The total time complexity of that algorithm
is O(nmin{mn, n2 log n + m log2 n}).

Notation. For i < j, [i, j] is the interval of integers {i, i + 1, . . . , j}. We use the
notation convention x to refer to the vector {xj}nj=1. The vector ej is the vector of
n− 1 zeros and one 1 in the jth position.

2. The transformation and definitions. Veinott and Wagner [VW62] sug-
gested the following transformation for problems on consecutive ones. Let the set of
variables yj be defined as follows: y0 = x0 ≡ 0, yj =

∑j
i=0 xi for j = 1, 2, . . . , n. The

set of constraints of (Consec) in terms of the new variables are

yj − yi ≥ bij ∀ (i, j) ∈ Acover,

yj − yi ≤ bij ∀ (i, j) ∈ Apack,

yj − yj−1 ≥ 0 ∀j.

This set of constraints has one 1 and one −1 in each row. The coefficient matrix of
such a set of constraints is totally unimodular, and furthermore it forms the constraints
of the dual of MCNF problem. This implies the following polynomial time algorithm
for (Consec): Take the dual of the transformed problem, solve it with a minimum
cost network flow procedure, and construct the dual solution (node potentials, in
minimum cost network flow terminology) by a shortest paths procedure. We note that
the dual node potentials are computed explicitly as part of Orlin’s [Orl93] minimum
cost network flow procedure. Therefore, if we use Orlin’s algorithm, then the last step
of computing the shortest paths is redundant.

Using the transformation above for the (Circular) problem, a circular 1’s covering

constraint
∑q′

j=1 xj +
∑n

j=p′+1 xj ≥ bq′p′ is mapped into yq′ − yp′ + yn ≥ bq′p′ . So cir-
cular constraints have, in addition to one 1 and one −1, also an additional coefficient
1 for the variable yn. This renders the constraint matrix no longer totally unimod-
ular. Writing the transformed constraint as yq′ − yp′ ≥ bq′p′ − yn, or equivalently as
yp′ − yq′ ≤ yn − bq′p′ , it is possible to treat yn as a parameter and solve the problem
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as a parametric dual of minimum cost network flow. Thus a parametric approach
plays a crucial role in solving circular problems.

3. The parametric method. In a parametric optimization problem some right-
hand sides and some cost coefficients are given as linear functions of a single common
parameter λ. The parametric method, introduced by Megiddo [Meg83] and improved
for some special cases by Cole [Col87], solves a parametric optimization problem. The
goal is to find an optimal value λ∗ so that for the instance of the optimization problem
where each linear function of λ is evaluated at λ∗ the optimal solution has a maximum
cost (among all values of λ).

The parametric shortest path problem and the parametric minimum cost network
flow problem are defined on a graph G = (V,E), where each arc e ∈ E has a cost
ce that is a linear function of a common parameter λ. In the minimum cost network
flow we are also given a demand vector d. The goal in the parametric shortest path
problem is to compute a value λ∗ for which the length of the shortest path between
s and t is maximized. Similarly, the goal for the parametric MCNF problem is to
compute a value λ∗ that maximizes the optimal cost of the minimum cost network
flow problem instance.

The methods of [Col87, Meg83] both use a parallel algorithm with O(f(n)) pro-
cessors and O(g(n)) parallel time that solves the optimization problem for a single
value of λ (the nonparametric problem). The method “simulates” the execution of
this parallel algorithm for λ = λ∗ without the knowledge of λ∗. A rough sketch
of the idea is as follows: In each parallel time unit a set of O(f(n)) comparisons
needs to be answered. For a single comparison, Megiddo [Meg83] proposed to use
an algorithm that solves the nonparametric problem in the breakpoint of the two
linear functions (of λ) that we have to compare (this is done by a call to a serial
algorithm with time complexity T (n)). Megiddo [Meg83] suggested using a binary
search over these comparisons to evaluate the O(f(n)) comparisons of a single paral-
lel time unit using only O(log f(n)) comparisons. This results in time complexity of
O(f(n)g(n) + (log f(n))g(n)T (n)) for the parametric problem.

Cole [Col87] suggested that one should “slow down” the comparisons that this al-
gorithm evaluates, and use a sorting network instead of the comparisons. Using Cole’s
method the number of comparisons that the algorithm evaluates is only O(log f(n) +
g(n)). Therefore, the total complexity is O(f(n)g(n) + [log f(n) + g(n)]T (n)). Cole’s
improvement is suitable only for cases when the parallel algorithm is based on sorting.
Cole explicitly stated that his improvement cannot be applied to a general parametric
problem but only to special cases. Cole also designed an algorithm with time com-
plexity of O(n3 log n + (log2 n)T (n)) for the parametric shortest path problem where
T (n) is the time complexity of a single comparison. His algorithm was designed for
the minimum ratio cycle problem where a comparison is answered using a negative
cycle detector. The result, however, holds also for other applications of the parametric
shortest path problem.

Since Orlin’s [Orl93] algorithm for the minimum cost network flow uses O(n log n)
shortest path computations, the parametric MCNF problem can be solved in
O(n4 log2 n+n log3 nT (n)), where T (n) is the time complexity of a single comparison;
using Orlin’s serial algorithm for the MCNF problem T (n) = O(n log n(m+n log n)).
Therefore, the parametric MCNF problem can be solved in O(n4 log2 n+n2m log4 n)
time.

We conclude this discussion with the following theorem.
Theorem 3.1.The parametric shortest path problem can be solved in O(n3 log n+
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(log2 n)T (n)) time where T (n) is the time complexity of a single comparison. The
parametric MCNF problem can be solved in O(n4 log2 n + n2m log4 n) time.

4. Extensions on the algorithm to solve the general linear objective
function of (Circular). The algorithm of Bartholdi, Orlin, and Ratliff is based on
treating the transformed circular problem, as explained in section 2, as a parametric
MCNF problem. The algorithm of [BOR80] consists of a binary search for the optimal
value of λ = yn where in each call a MCNF problem is solved for a specific value of
λ = yn. That algorithm is applicable to (Circular) with a general linear objective
function, min

∑n
j=1 cjxj .

The algorithm in [BOR80] is given for the pure covering problem. We show in
the appendix how to extend it to the mixed packing and covering constraints. A
second modification we propose is a strongly polynomial time algorithm based on the
parametric network flow algorithm in Theorem 3.1.

With these modifications we establish the following theorem (proved in the ap-
pendix).

Theorem 4.1. There is an O(n4 log2 n + n2m log4 n)-time algorithm that solves
problem (Circular) with a general linear cost function.

In the remainder of this paper we consider the unweighted objective function case
cj = 1 ∀j, and present faster algorithms for this problem and its special cases.

5. Covering consecutive 1’s constraints. For the pure covering problem with
A = Acover, only a minimization objective is meaningful since the maximization
problem max

∑
i xi is trivially unbounded.

Consider the minimum longest path problem in an acyclic graph. This is an
optimization problem in which the objective is to find the smallest bound within
which we can traverse every path in a network where each arc (i, j) has a cost, or
distance, bij . The formulation of the longest path problem is precisely the transformed
formulation of the problem (Consec) on pure covering constraints. In the transformed
problem variable yi corresponds to node i and bij represents the distance between
nodes i and j. The objective function of the minimum longest path problem is to
minimize yn which is equivalent to the objective function

∑n
j=1 xj in the formulation

of (Consec).
Construct a graph G = (V,A) corresponding to the formulation with a node

i ∈ V for each variable yi. For every constraint of the type yj − yi ≥ bij there is
a directed arc (i, j) ∈ A with weight bij . Arcs (i − 1, i) correspond to the variable
xi = yi−yi−1 and can have length 0 for every nonnegativity constraint, or other lower
bound constraint. The graph is illustrated in Figure 1. Since for every arc (i, j), i < j
the graph G is necessarily acyclic, or directed acyclic graph (DAG).

To demonstrate that our problem is indeed the longest path problem on the DAG
G, let P be any path from 0 to n in G. Consider the inequality which is the sum of
the constraints that correspond to the arcs of P . This inequality has a left-hand side
yn − y0, and its right-hand side equals the length of P . Since y0 = 0, we conclude
that yn is at least as large as the total length of P . Since P is an arbitrary path from
0 to n, yn is at least the length of the longest path from 0 to n. Because our objective
is to minimize yn, the optimal value of yn equals the length of the longest path from
0 to n.

The longest path problem is solvable in polynomial time on a DAG using dynamic
programming (DP). Let the distance labels y∗

j
be the length of the longest path from

0 to j. We compute lower bounds y∗
j

on the partial sum variables yj .
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Fig. 1. Directed Acyclic Graph (DAG ).

Let y∗
0

= 0. Then, once y∗
1
, y∗

2
, . . . , y∗

j−1
has been computed, we evaluate y∗

j
using

the following forward recursion:

Forward recursion y∗
j

= max(i,j)∈A{y∗i + bij}

Every feasible solution with partial sums vector y obviously must satisfy yj ≥ y∗
j

for j = 1, . . . , n. Since the solution xj = y∗
j
− y∗

j−1
is feasible with objective value

y∗
n
, it is an optimal solution. The validity of this DP recursion implies the following

theorem.
Theorem 5.1. Problem (Consec) with pure covering constraints is solved in

O(m + n) time.

6. Packing consecutive 1’s constraints. For the pure packing problem A =
Apack, only a maximization objective is meaningful as the minimization problem
min

∑
j xj is trivially solved by xj = 0 ∀j.

For the transformed problem there is a corresponding graph G = (V,A) with one
node i corresponding to each variable yi and an arc (i, j) of weight bij corresponding
to each constraint yj − yi ≤ bij . A nonnegativity constraint xj ≥ 0 is transformed
into yj −yj−1 ≥ 0, and is represented by a backward zero arc directed from j to j−1.

The graph G contains cycles but the lengths of arcs are all nonnegative.
Our problem is the shortest path problem on G from 0 to n. To see this let P be

any path from 0 to n in G. Consider the inequality which is the sum of the constraints
that correspond to the arcs of P . This inequality has a left-hand side yn − y0, and its
right-hand side equals the length of P . Since y0 = 0, we conclude that yn is at most as
large as the total length of P . Since P is an arbitrary path from 0 to n, yn is at most
the length of the shortest path from 0 to n. Because our objective is to maximize yn,
the optimal value of yn equals the length of the shortest path from 0 to n.

Since the lengths are nonnegative we can apply Dijkstra’s algorithm [Dij59] to
find the shortest path from 0 to n in G:

Theorem 6.1. Problem (Consec) with pure packing constraints is solved in
O(m + n log n) time.

7. The relation between the pure packing problem and the pure cov-
ering problem. In this section we consider problems (Consec) and (Circular) with
pure covering constraints or pure packing constraints. We note that for the pure
packing problem the meaningful objective function is max

∑n
j=1 xj as a minimization
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problem is trivially solved by the zero vector, and for the pure covering problem the
meaningful objective function is min

∑n
j=1 xj as a maximization problem is trivially

unbounded.
Given a “pure” problem we let M ≥

∑m
i=1 bi, and consider the transformation of

the variables (x1, . . . , xn) to (x′
1, . . . , x

′
n) defined by x′

j = M − xj for all j.
A covering constraint

∑
j∈S xj ≥ b is transformed to

∑
j∈S(M − x′

j) ≥ b which
is equivalent to the packing constraint

∑
j∈S x′

j ≤ M |S| − b. Similarly, a packing
constraint

∑
j∈S xj ≤ b is transformed to the covering constraint

∑
j∈S x′

j ≥ M |S|−b.
This transformation maps a consecutive (circular) constraint to a consecutive (cir-

cular) constraint. The objective function max
∑n

j=1 xj is mapped to nM +max
∑n

j=1

(−x′
j) which is equivalent to min

∑n
j=1 x

′
j . Similarly, the objective function min

∑n
j=1

xj is mapped to nM + min
∑n

j=1(−x′
j) which is equivalent to max

∑n
j=1 x

′
j .

This transformation maps a pure covering problem into a pure packing problem.
However, a pure packing problem is mapped into a pure covering problem with addi-
tional upper bounds constraints. These upper bounds result from the nonnegativity
constraints in the pure packing formulation. This also explains the different time
complexities for solving the pure covering (Consec) problem and the pure packing
(Consec) problem.

This simple transformation proves the following theorem.
Theorem 7.1. Let T (n,m) be a function that grows at least at a linear rate,

T (n,m) = Ω(n). Then,
1. If there is an algorithm of complexity T (n,m) that solves the pure packing

(Circular) problem, then there is an algorithm of complexity T (n,m) that
solves the pure covering (Circular) problem.

2. There is an algorithm of complexity T (n,m) that solves the mixed (Consec)
problem with a maximization objective if and only if there is an algorithm of
complexity T (n,m) that solves the mixed (Consec) problem with a minimiza-
tion objective.

3. There is an algorithm of complexity T (n,m) that solves the mixed (Circular)
problem with a maximization objective if and only if there is an algorithm of
complexity T (n,m) that solves the mixed (Circular) problem with a minimiza-
tion objective.

8. The mixed (Consec) problem. In this section we present an O(mn) time
algorithm for problem (Consec) with both covering and packing constraints.

We begin by applying Veinott and Wagner’s [VW62] transformation, getting a
transformed constraint of the type yq − yp ≤ bpq for each packing constraint (p, q) ∈
Apack, and yq −yp ≥ bpq for each covering constraint (p, q) ∈ Acover (or nonnegativity
constraint). By multiplying each covering constraint by −1, yp − yq ≤ −bpq, all
constraints become uniformly of packing type, albeit no longer with positive right-
hand sides.

We claim that the sum of variables at the optimum is the length of the shortest
path from node 0 to n in the corresponding network, which is possibly cyclic and
contains negative arc lengths. The network G = (V,A) is composed of a node set
V = {0, 1, . . . , n}. The set of arcs A consists of three types of arcs: For every pack-
ing constraint (p, q) ∈ Apack there is an arc (p, q) of length bpq; for every covering
constraint (p, q) ∈ Acover there is an arc (q, p) of length −bpq (note that such an arc
is in the reverse direction and has a negative length), and for every nonnegativity
constraint yj − yj−1 ≥ 0 there is an arc (j, j − 1) of zero length.

To see that our problem is the shortest path from 0 to n in the resulting network
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x1 ≤ 1 x2 + x3 ≤ 1

x1 + x2 + x3 ≥ 3
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Fig. 2. The graph G with a negative length cycle that corresponds to the set of constraints
x1 ≤ 1, x2 + x3 ≤ 1, and x1 + x2 + x3 ≥ 3.

we use an argument similar to the one in section 5. Let P = [jo, j1, j2, . . . , jk−1, jk],
where j0 = 0 and jk = n be an arbitrary path from 0 to n in G. Consider the
inequality which is the sum of the constraints that correspond to the arcs of P ,

(yj1 − y0) + (yj2 − yj1) + · · · + (yn − yjk−1
) ≤

n∑
�=1

bj�−1j� = BP .

This constraint has a left-hand side yn − y0, and its right-hand side equals the length
of P , BP . Since y0 = 0, we conclude that yn is at most as large as the total length of
P . Since P is an arbitrary path from 0 to n, yn is at most the length of a shortest path
from 0 to n, yn ≤ minP BP . Because our objective is to maximize yn, the optimal
value of yn equals the length of a shortest path from 0 to n.

We now argue that the existence of a negative length cycle C in G implies that
the original (Consec) problem is infeasible (as illustrated in an example in Figure 2).
Summing up the constraints that correspond to the arcs of C we get 0 on the left-hand
side, and the length of C on the right-hand side. That is, the aggregate constraint is
0 ≤ a negative number. Therefore, the original problem is infeasible.

To solve problem (Consec) we can therefore use the Bellman–Ford algorithm for
computing the shortest path from 0 to n in G. If there is a negative length cycle,
then (Consec) is provably infeasible. Otherwise, the shortest path distance from node
0 to i is the value of the variable yi in the optimal solution. All these distances are
computed by the Bellman–Ford’s algorithm in O(mn) time.

Theorem 8.1. There is an O(mn)-time algorithm that solves mixed (Consec)
problem.

Remark 8.1. Under a restriction about the relative values of the coefficients of
the objective function, the algorithm above can also solve (Consec) with nonuniform
coefficients. The transformed constraints of (Consec) are monotone as in each row
of the constraint matrix there is at most one positive coefficient and at most one
negative coefficient. It is well known [HN94] that the feasible integral solution set on
monotone constraints forms a lattice. In this lattice there is a least element and a
largest element. The least element solves the problem of minimizing

∑
j c̄jyj for all

nonnegative c̄. The largest element of the lattice solves the problem of maximizing∑
j c̄jyj for all nonnegative c̄. The transformed problem (Consec) has nonnegative cost

coefficients if the original cost coefficients are monotone nondecreasing. In this case
we now show that our solution for problem (Consec) finds the least or largest element
of the lattice. For the pure covering (Consec) problem our algorithm finds the least
element of the lattice. To see this note that for each i yi is the length of the longest
path in G from 0 to i. Therefore, it is the optimal solution cost of min yi subject to
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the same transformed constraint matrix. This shows that the solution returned by
the algorithm is the least element of the lattice. For pure packing (Consec) and mixed
(Consec) our algorithms find the largest element of the lattice. To see this note that in
both cases yi is set to the length of a shortest path from 0 to i in G (or G̃). Therefore,
it is the optimal solution value of max yi subject to the same transformed constraint
matrix. This shows that the solution returned by the algorithm is the largest element
of the lattice.

If the cost coefficients are monotone nonincreasing we can reverse the order of
the variables xj (i.e., let x′

j = xn+1−j ∀j), and then use the result in the previous
paragraph.

9. Pure packing and pure covering (Circular). In this section we consider
the pure cases of (Circular) with either all packing constraints or all consecutive
constraints. We present an O(n3 log n+mn log2 n) time algorithm for the pure packing
problem, and show how to improve it to an O(mn+n2 log n)-time algorithm. For the
pure covering problem the same algorithms are derived analogously.

Applying Veinott and Wagner’s [VW62] transformation we get a problem where
the objective function is max yn, and there are three types of constraints:

1. yj − yk ≤ bkj (n ≥ j > k) for each consecutive ones constraint.
2. yk−yj +yn ≤ bkj (n > j > k) for each circular ones constraint. Here we move

yn to the right-hand side to get a constraint yk − yj ≤ bkj − yn (n > j > k).
3. yj − yj−1 ≥ 0 for each nonnegativity constraint. Multiplying by −1 the

constraint is yj−1 − yj ≤ 0.

The resulting formulation is of the shortest path from 0 to n in a graph G̃ = (V,A),
with nodes corresponding to the n variables and one additional node corresponding to
y0 = 0, and the set of arcs has all the consecutive constraints represented by forward
arcs, (i, j) for i < j, each of cost bij (the circular constraints are represented by
backward arcs (p, q) for p > q of cost bqp − yn and the nonnegativity constraints, are
represented by zero cost backward arcs (j, j − 1)). A graph of this type is displayed
in Figure 3. Thus G̃ contains cycles, and parameterized arc costs with λ = yn the
parameter. For values of yn that are large enough there could be negative cost arcs.

Consider applying Cole’s algorithm for computing the parametric shortest path
from 0 to n in a parametric network in order to compute the optimal value of the
parameter y∗n for which the shortest path is maximum (see section 3). To apply this
algorithm, we need a serial algorithm that resolves, for a given parameter value λ,
whether y∗n is greater than λ, equal to λ, or smaller than λ.

The selected serial algorithm is the Bellman–Ford algorithm computing a shortest
path from 0 to n for the parameter value λ in T (n) = O(mn) time. Note that
decreasing λ increases all the arc lengths, and the length of the shortest path can thus
only increase. Respectively, increasing λ only decreases the arc lengths, and the length
of the shortest path can only decrease. Therefore, when applying a parametric shortest
path algorithm in the network G̃ for a parameter λ, only the following outcomes are
possible.

Lemma 9.1. Either y∗n ≤ λ if there is a negative cycle or the shortest path is at
most λ; or y∗n > λ if the shortest path is longer than λ.

Using Theorem 3.1 with T (n) = O(mn) we conclude that the resulting algorithm
for computing y∗n has a total time complexity of O(n3 log n + log2 n(mn)).

Theorem 9.1. Problem (Circular) where all constraints are packing constraints
can be solved in O(n3 log n + mn log2 n) time.

Corollary 9.1. Problem (Circular) where all constraints are covering con-
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Fig. 3. A graph G̃ with the corresponding function F (λ) = min{8, 13 − λ, 19 − 2λ}.

straints can be solved in O(n3 log n + mn log2 n) time.
Proof. By Theorems 7.1 and 9.1.
If there were a faster single-source shortest path algorithm that can run in poly-

log parallel time, we could have gotten a faster algorithm for this case. However, we
are not aware of such an algorithm.

An alternative algorithm with better run time to solve the parametric shortest
path from 0 to n in G̃ is shown next.

We observe that the length of any path P in G̃ from 0 to n is a linear function
of yn with a slope −k where k is the number of circular arcs in P . The key idea of
the improved algorithm is to compute the entire lower envelope of the 0 to n shortest
path length as a function of the parameter λ = yn. For that we apply the algorithm
of Young, Tarjan, and Orlin [YTO91], (YTO-algorithm) which computes the entire
lower envelope F (λ) of the 0 to n shortest path length when each arc has length that
is a linear function of a common parameter λ with slope that is either 0 or −1. The
time complexity of YTO-algorithm is O(mn + n2 log n).

The lower envelope F (λ) is a list of O(n) linear functions of λ each representing
the length of a shortest path from 0 to n in G̃ using k circular arcs (for some k ∈
{0, 1, 2, . . . , n − 1}). In Figure 3 we present a graph G̃ and the corresponding F (λ).
In this example the shortest path from 0 to 5 that uses only consecutive arcs is 8,
with one circular arc is 13 − λ, and two circular arcs is 19 − 2λ.

By Lemma 9.1 and since F (λ) is continuous monotone nonincreasing, then if
a fixed point solution to the equation y∗n = F (y∗n) exists, it is the correct optimal
fractional solution to (Circular). Therefore, in order to find an optimal fractional
solution, we seek the value y∗n such that y∗n = F (y∗n). It remains to consider the case
in which there is no fixed point solution.

A feasible value of λ is a value for which the network G̃ does not contain a
negative length cycle. Suppose that a fixed point solution y∗n does not exist. For
λ = 0, F (0) ≥ 0 since for λ = 0 the network does not contain a negative length
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arc. Since there is no fixed point solution, for all feasible values of λ, F (λ) > λ.
Then, by Lemma 9.1, we can resolve comparisons, and therefore conclude that the
optimal fractional solution is the maximum value for which the resulting network has
no negative cycle. We denote this value by y∗n as well.

The value of y∗n can be deduced from the lower envelope in O(n) time as follows:
We traverse the list of intervals forming the linear sections of the lower envelope, seek-
ing whether each intersects with the linear function λ. If such intersection exists, then
this is the value y∗n. Otherwise, y∗n does not belong to this interval. For each interval
we spend O(1) time, and since there are O(n) intervals, the total time complexity of
this procedure is O(n). If we traverse the entire lower envelope F (λ) without reaching
to a fixed point solution, then such a fixed point does not exist and we can compute
the maximum value for which the resulting network has no negative cycle.

We next use the value of y∗n to compute for each u, the shortest length of a
path from 0 to u in G̃ where the length of the arcs are set using the parameter value
λ = y∗n. This can be done by using a single application of the Bellman–Ford algorithm
on the graph where the values of λ are substituted by y∗n, in O(mn) time. Denote the
resulting distance vector by y∗ = (y∗1 , y

∗
2 , . . . , y

∗
n).

If y∗n is an integer, then y∗ is an optimal integral solution. To see this note that
when we substitute λ = y∗n we obtain a right-hand side that is an integral vector and
the constraint matrix is totally unimodular, and therefore the resulting solution is
integral. This solution is obtained by the Bellman–Ford algorithm, and therefore it
equals y∗. This solution has a value y∗n that is the optimal value.

Otherwise, y∗ is an optimal fractional solution which is an optimal solution for
the linear programming relaxation of the problem. Reference [BOR80] proved for the
unweighted case (as we have) and pure covering problem, that an optimal integral so-
lution is obtained from an optimal fractional solution by rounding-up all the elements
of the solution vector y. Using the relation between pure covering problems and pure
packing problems, the optimal solution for our problem is obtained by rounding-down
y∗; i.e., the optimal solution is (	y∗1
, 	y∗2
, . . . , 	y∗n
). The total time complexity of the
algorithm is therefore dominated by the complexity of finding F (λ), O(mn+n2 log n).

Theorem 9.2. Problem (Circular) where all constraints are packing constraints
that can be solved in O(mn + n2 log n) time.

Corollary 9.2. Problem (Circular) where all constraints are covering con-
straints that can be solved in O(mn + n2 log n) time.

Proof. By Theorems 7.1 and 9.2.

10. An O(n min{mn, n2 log n + m log2 n}) time algorithm for the mixed
(Circular) problem. In this section we show an O(nmin{mn, n2 log n+m log2 n})-
time algorithm that solves problem mixed (Circular). We first present an O(n3 log n +
mn log2 n)-time algorithm based on the parametric method, and then an alternative
O(mn2)-time algorithm. Together these yield the stated running time.

10.1. An O(n3 log n + mn log2 n) time algorithm for mixed (Circular).

Consider a covering constraint with circular 1’s
∑q′

j=1 xj +
∑n

j=p′+1 xj ≥ bq′p′ . Let y∗n
be the value of

∑n
j=1 xj in an optimal solution. Suppose we knew what y∗n is, then

this constraint can be written as

p′∑
j=q′+1

xj ≤ y∗n − bq′p′ .
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Fig. 4. Examples of L(λ).

Similarly, a packing constraint with circular 1’s
∑q′

j=1 xj +
∑n

j=p′+1 xj ≤ bq′p′ can be
written as

p′∑
j=q′+1

xj ≥ y∗n − bq′p′ .

Thus the problem becomes a parameterized instance of (Consec) with mixed packing
and covering constraints.

Let the right-hand side of a circular constraint (either covering or packing) be
denoted by bq′p′ = y∗n − bq′p′ and for a consecutive constraint bq′p′ = bq′p′ . The
right-hand sides in this formulation are linear functions of y∗n with slope 1 or 0. We
now convert the covering constraints (and the nonnegativity constraints) into packing
constraints, as in section 8, by multiplying these constraints by −1. This result in
a formulation of the shortest path from 0 to n where the arcs’ lengths are linear
functions of the parameter λ = y∗n with slopes −1 or 0 or 1. Note that the YTO-
algorithm [YTO91] cannot be applied to solve this parametric shortest path problem
as their algorithm is suitable only to the cases where the slopes of λ are either 0 or
−1 (by changing the definition of λ it can work also for cases where the slopes are
either 0 or +1 but not for networks where arcs’ lengths are linear functions of the
parameter with slopes in {−1, 0,+1}).

Let the length of a shortest path from 0 to n as a function of λ = yn be as before,
F (λ). This function is piecewise linear with integer slopes in the range [−n+1, n−1].
Since it is a lower envelope of the shortest paths functions of λ, F (λ) is a concave
function. F (λ) is defined for an interval I = [ymin, ymax], where for λ ∈ I the network
does not contain a negative length cycle. In I we define the function L(λ) = F (λ)−λ
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which is also a piecewise linear concave function with integer slopes in the range
[−n, n− 2]; Figure 4 shows typical cases of L(λ).

Theorem 10.1. For any λ ∈ I, L(λ) ≥ 0 if and only if there is a feasible
(fractional) solution vector y(λ) to problem (Circular) whose objective value is λ.

Proof. Let Gλ be the network where the arcs lengths are set to the parameter
value λ. The constraints in (Circular) for λ ∈ I are equivalent to requiring for each
arc (u, v) in Gλ that yv − yu is at most the length of (u, v).

Assume first that L(λ) ≥ 0. We add a constraint of the form yn ≤ λ, and find a
feasible solution to this augmented set of constraints. Let G′

λ be the corresponding
network resulting from adding to Gλ an arc from 0 to n whose length is λ.

Let y(λ) be the shortest paths vector in G′
λ. Then, y(λ)n ≤ λ because the new

arc is a possible path from 0 to n. However, since L(λ) ≥ 0, the length of the shortest
path from 0 to n in Gλ is at least λ. Therefore, the length of the shortest path from
0 to n in G′

λ is exactly λ, and y(λ)n = λ. Thus y(λ) is a feasible solution to problem
(Circular) whose cost is exactly λ.

Now suppose that there is a feasible solution y(λ) to problem (Circular) whose
cost is exactly λ, so y(λ)n = λ. Therefore, the shortest path in the network Gλ from
0 to n is of length at least λ, and F (λ) ≥ λ. Thus L(λ) ≥ 0.

As a concave function, L(λ) satisfies the following lemma.
Lemma 10.1. L() has a single maximizer ỹ ∈ I and at most two zeros z1 ≤ z2.

Also, L(λ) is increasing for λ ∈ [ymin, ỹ), and L(λ) is decreasing for λ ∈ (ỹ, ymax].
If L(ỹ) ≥ 0, we let ŷmin = z1. We let ŷmax be the maximum value in I for which

L(λ) ≥ 0, ŷmax = max{λ ∈ I|L(λ) ≥ 0}.
If L(ỹ) < 0, then by Theorem 10.1, problem (Circular) is infeasible. In this case

we do not define ŷmin and ŷmax.
If L(λ) > 0 for all λ ∈ I such that λ ≥ ỹ, then we set ŷmax = ymax. It follows then

from Theorem 10.1 that ŷmax is well-defined for all feasible instances of (Circular).
Since our objective is max yn, an optimal solution is ŷmax = max{λ ∈ I|L(λ) ≥

0}. This is derived by first finding a fractional value ŷmax that is an optimal fractional
solution value of the linear programming relaxation of (Circular), and then generating
from it an optimal integral solution.

We now show how to use Cole’s method for computing the parametric shortest
path from 0 to n in order to find ŷmax, which is the solution of the linear programming
relaxation of (Circular). The use of this algorithm requires the resolution of O(log2 n)
questions of the type, “is y∗n ≤ λc?”. In order to resolve such a comparison we apply
the Bellman–Ford algorithm to find the 0 to n shortest path where the arcs lengths
are evaluated for λ=λc. The time complexity of this algorithm is O(mn). The result
obtained from the Bellman–Ford algorithm is either a negative length cycle C in the
network or a shortest path P from 0 to n if a negative length cycle does not exist.

We now show how to resolve the comparison using the output of the Bellman–Ford
algorithm.

1. If the Bellman–Ford algorithm finds a negative length cycle C, then we com-
pute the linear function fC(λ) that defines its length. Since this is a negative
cycle, we know that fC(λc) < 0. We compute the slope (derivative) of fC(λ)
at λc, f

′
C(λc).

• If f ′
C(λc) ≥ 0, then for every λ ≤ λc the length of C remains negative,

and therefore if (Circular) is feasible, then y∗n > λc.
• If f ′

C(λc) < 0, then for every λ ≥ λc the length of C remains negative,
and therefore if (Circular) is feasible, then y∗n < λc.
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• If f ′
C(λc) = 0, then for all λ the length of C remains negative and there-

fore (Circular) is infeasible (because the maximum of F (λ) is attained
at λc).

2. If the Bellman–Ford algorithm finds a shortest path P from 0 to n, then there
are no negative cycles and λc ∈ I. We compute the linear function fP (λ) for
the length of P . Since P is a shortest path for λ = λc, there is a sufficiently
small interval that contains λc such that P is the shortest path for λ in that
interval, and fP (λ)− λ and L(λ) coincide in that interval. The slope of L(λ)
in this interval is L′(λ) = f ′

P (λ) − 1.
• If f ′

P (λc) − 1 > 0, then L is increasing in λc, and therefore by Lemma
10.1, λc ∈ [ymin, ỹ). Therefore, if (Circular) is feasible, then y∗n ≥ ỹ, and
thus y∗n > λc.
If (Circular) is infeasible, then I �= ∅ as for λc the network does not
contain negative length cycles so λc ∈ I. Hence, from Theorem 10.1,
L(λ) < 0 ∀λ ∈ I. In this case it is correct to resolve the comparison in
an arbitrary way as all possibilities will be infeasible. Therefore, it is
correct to resolve the comparison with y∗n > λc. Therefore, if the slope
of fP (λ) − λ = L(λ) is positive at λ = λc we conclude that y∗n > λc.

• If f ′
P (λc) − 1 ≤ 0, then L(λ) is nonincreasing at λc.

– If fP (λc) > λc, then L(λc) > 0, and therefore λc ∈ [ỹ, ŷmax). Hence
y∗n > λc.

– If fP (λc) = λc, then L(λc) = 0, and therefore y∗n = λc.
– If fP (λc) < λc, then L(λc) < 0. Hence λc ∈ (ŷmax, ymax], and

therefore if (Circular) is feasible, then y∗n < λc. Even if (Circular)
is infeasible we may resolve the comparison as y∗n < λc (because in
this case we can resolve any comparison in an arbitrary way).

We thus showed a T (n) = O(mn)-time algorithm that resolves a single compari-
son. By Theorem 3.1 it then follows that ŷmax is found in O(n3 log n+mn log2 n) time.
This value may be fractional as it is an optimal solution to the linear programming
relaxation.

Using the optimal solution ŷmax, if fractional, we get an optimal integer solution
by rounding down the solution cost to 	ŷmax
. This is the optimal value of an integral
solution, but we still need to find a corresponding integral solution. We substitute

the value of y∗n = 	ŷmax
 in the circular constraints:
∑p′

j=q′+1 xj ≤ y∗n − bq′p′ and∑p′

j=q′+1 xj ≥ y∗n − bq′p′ . The resulting constraints are exactly the constraints of
mixed (Consec) which we solve with the algorithm of section 8. This computation
is done in O(mn) time and results in an integer solution. Therefore, we have the
following theorem.

Theorem 10.2. There is an O(n3 log n + mn log2 n)-time algorithm that solves
problem (Circular) with both covering and packing constraints.

10.2. An O(mn2) time algorithm for mixed (Circular). We use the fol-
lowing facts obtained in the previous subsection.

• If the value of y∗n is given, then an optimal solution can be found in O(mn)
time using the Bellman–Ford algorithm in a network where the arc lengths
depend on y∗n.

• For a given value of λ = yn, one can check in O(mn) time if (Circular) is
feasible for this parameter value, and if so obtain a feasible solution of this
value.
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We next show how to implement the algorithm of the previous subsection for all
values of yn simultaneously in O(mn2) time. The idea is to construct the entire lower
envelope of the shortest path lengths as a function of the parameter value λ. This is
similar to the idea used by Young, Tarjan, and Orlin [YTO91] except that their algo-
rithm constructs solutions for a sequence of different values of the parameter one after
the other, whereas our algorithm constructs the entire lower envelope simultaneously.
Our algorithm is based on implementing the Bellman–Ford algorithm for all values of
λ simultaneously with an increase of run time compared to the nonparametric case
of factor O(n). We first present the nonparametric Bellman–Ford algorithm for arc
costs cij , and then its adjustment to the parametric case.

Bellman–Ford algorithm:
Input: A graph G = ({0, 1, 2, . . . , n}, E) with arc lengths cij .
Output: Either a certificate of a negative length cycle, or for each i, the length of a
shortest path from 0 to i in G.

Initialization: u1
0 = 0, u1

i = c0i ∀i.
For m = 2 to n + 1 do
For i = 0 to n do
um
i = min{um−1

i ,minj �=i{um−1
j + cji}}.

Negative cycle detector: If there is i such that un+1
i < un

i , then return G has a
negative length cycle.
Otherwise, return (un

i )ni=1.
For the parametric problem each arc cost is of the form b̄i,j = bi,j + cλ for

c ∈ {−1, 0, 1}. The length of the shortest path from 0 to i is therefore a concave
piecewise linear lower envelope with up to 2n+ 1 linear functions with integer slopes
in [−n, n]. We retain these functions as an array u of 2n + 1 entries. Each entry
j ∈ [−n, n] has a linear function a + jλ with the least constant value a among all
functions of the same slope j, as only the one with the least constant can be on the
lower envelope. Note that the lower envelope does not necessarily contain all the
functions in the array, but possibly only a strict subset of them. The adjustments
made in the parametric version of the Bellman–Ford algorithm are:

• Initialization u1
0 = 0, u1

i = b̄0,i ∀i: This is implemented in the same time
complexity as the initialization step in the Bellman–Ford algorithm.

• Computing um−1
j + b̄j,i: This requires computing the piecewise linear function

array obtained from another function array by adding a linear function cλ+d
with c ∈ {−1, 0, 1} and d = b̄j,i. This is done by adding d to all the constants
of the linear functions of the array and then shift the array functions by one
position to the right if c = 1, or to the left if c = −1, in O(n) time. A faster way
to implement this step is by using dynamic trees data structure in O(log n).
This, however, is not going to affect the overall complexity, and thus is not
discussed in detail.

• Minimum of a pair of piecewise linear functions: This operation is used in the
line um

i = min{um−1
i ,minj �=i{um−1

j + b̄j,i}} of the Bellman–Ford algorithm.
For the parametric version this is done by comparing two entries of the same
slope in the two arrays and take the one with the lower constant term. If only
one of the arrays has a linear function, then that function becomes the one
corresponding entry of the minimum array. This operation is implemented in
O(n) time.
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So the main part of the parametric algorithm has complexity O(mn2). We now
need to address the negative cycle detection. A negative cycle is identified, when the
piecewise linear concave lower envelope Un+1

i is strictly below Un
i for some i.

To find the representation of the lower envelope of the linear functions as a se-
quence of O(n) breakpoints and the slopes of the lines between them, we scan the
array progressing from the largest slope linear function to lower slope functions. Hav-
ing evaluated the jth lower envelope including the functions with slopes from n to j,
we find the intersection of the jth lower envelope with the next linear function of slope
j − 1 or less. If the breakpoint of the intersection of the linear function of slope j − 1
with the rightmost linear function in the envelope is left of the previously evaluated
rightmost breakpoint br, then br and the slope of the line adjacent to br’s right are
omitted from the jth lower envelope and the intersection step of the rightmost linear
function with the linear function of slope j − 1 or less is repeated. If the intersection
is to the right of all previously evaluated breakpoints it is added with the new linear
function to the j − 1st lower envelope. Each step involves finding the intersection
of two linear functions in O(1) and is associated either with proceeding to the next
iteration, or else in the elimination of a breakpoint previously evaluated. Since there
are at most O(n) breakpoints, the total number of operations is O(n).

We thus find the lower envelopes of Un
i and Un+1

i in O(n2) operations for all i.
Note that Un+1

i () ≤ Un
i (). For values of λ such that Un+1

i (λ) < Un
i (λ), there is a

negative length cycle that contains i. If (Circular) is feasible, then there is an interval
[yimin, y

i
max] such that for yn ∈ [yimin, y

i
max], the network does not contain a negative

length cycle that contains i. If there exists i such that Un+1
i (λ) < Un

i (λ) for all λ,
then (Circular) is infeasible and we can identify such cases in O(n) time (for each i)
by computing the (empty) intersection of Un

i and Un+1
i . Therefore, the two functions

Un
i and Un+1

i intersect in at most two points yimin < yimax, and we can compute these
points in O(n) time for each i.

Let [ymin, ymax] =
⋂

i[y
i
min, y

i
max]. To find this interval of parameter values

for which the network does not contain a negative cycle, we initialize the interval
[ymin, ymax] to [0,∞) and intersect it for each i with the interval [yimin, y

i
max]. This

requires additional run time not exceeding O(n2).
Therefore, the total complexity of this procedure is O(mn2). At termination we

have an interval [ymin, ymax], such that for each integer value in this interval there is
a feasible solution to (Circular) with this cost. We set the value of yn to be 	ymax
,
and then apply the algorithm for mixed (Consec) problem in O(mn)-time complexity
using Theorem 8.1. This algorithm outputs the solution with cost 	ymax
.

Theorem 10.3. There is an O(mn2)-time algorithm that solves problem (Circu-
lar) with both covering and packing constraints.

11. Conclusions. We address here covering and packing problems on circular
1’s constraints. We show how to solve such problems efficiently and in strongly polyno-
mial time, thereby improving on the method of solving these problems as a parametric
dual of minimum cost network flow.

Appendix: Extensions of Bartholdi, Orlin, and Ratliff.

Extension to mixed problems. In applying the transformation of Veinott and

Wagner to the constraint matrix of the problem, let
[
Acover,A.,ncover

Apack,A.,npack

]
be the result-

ing transformed constraint matrix where
[
A.,ncover

A.,npack

]
is the transformed column that
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corresponds to yn. Let
[
bcover

bpack

]
denote the right-hand side vector. For ci =

∑i
j=1 cj ,

[c, cn] is the transformed cost coefficient vector where cn is the coefficient of yn.
Let y = [y1, y2, . . . , yn−1], then, the transformed problem is

min cy + cnyn

subject to :

Acovery + A.,ncoveryn ≥ bcover

Apacky + A.,npack
yn ≤ bpack

y, yn unrestricted integer.

For a specified integer value of yn we get the problem

P (yn) = cnyn + min cy

subject to :

Acovery ≥ bcover −A.,ncoveryn

Apacky ≤ bpack −A.,npack
yn

y unrestricted.

Although the integrality constraints for y are dropped here, it is shown in what follows
that it does not affect the algorithm.

Multiplying the packing constraints by −1 we get

P (yn) = cnyn + min cy

subject to :

Acovery ≥ bcover −A.,ncoveryn

(−Apack)y ≥ A.,npack
yn − bpack

y unrestricted.

The dual of this problem is

D(yn) = cnyn + maxλcover(bcover −A.,ncoveryn)

+λpack(A.,npack
yn − bpack)

subject to :

λcoverAcover − λpackApack = c

λcover, λpack ≥ 0.

D(yn) is a MCNF problem, where the arcs’ cost are parameterized by a common
parameter yn. Then, as in Lemmas 1.1 and 1.2 in [BOR80], the optimal solution cost
is a convex function of yn and the optimal solution satisfies y∗n ≤

∑
i bi. One can thus

apply binary search using O(log
∑

i bi) applications of a MCNF algorithm. The total
complexity of the resulting algorithm when we use Orlin’s [Orl93] algorithm for the
MCNF is O(log(

∑
i bi)[n log n(m + n log n)]).

It remains to show that when we find the optimal integer value y∗n, we can find a
feasible integral solution y with this cost. We use Orlin’s algorithm for solving D(y∗n).
Orlin’s algorithm produces both primal solution (λcover, λpack) (i.e., a solution to
D(y∗n)) and a dual solution y (i.e., a solution to P (y∗n)). For an integer value of y∗n,
both the right-hand side and the objective function of D(y∗n) are integral. Therefore,
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Orlin’s algorithm produces an integer solution for both P (y∗n) and D(y∗n), and the
above algorithm produces an integer optimal solution.

A modified strongly polynomial time algorithm. From the previous sub-
section it follows that problem (Circular) can be solved by solving a parametric
MCNF problem where the costs are parameterized by the single common parame-
ter λ = y∗n. The use of the parametric method described in section 3 results in an
O(n4 log2 n + n2m log4 n)-time algorithm. Thus we show the following theorem.

Theorem. There is an O(n4 log2 n + n2m log4 n)-time algorithm that solves
problem (Circular) with a general linear cost function.
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PACKING AND COVERING PROBLEM∗
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Abstract. We propose an approximation algorithm based on the Lagrangian or price-directive
decomposition method to compute an ε-approximate solution of the mixed fractional packing and
covering problem: find x ∈ B such that f(x) ≤ (1+ ε)a, g(x) ≥ (1− ε)b, where f(x), g(x) are vectors
with M nonnegative convex and concave functions, a and b are M -dimensional nonnegative vectors,
and B is a convex set that can be queried by an optimization oracle. We propose an algorithm
that needs only O(Mε−2 ln(Mε−1)) iterations or calls to the oracle. The main contribution is that
the algorithm solves the general mixed fractional packing and covering problem (in contrast to pure
fractional packing and covering problems and to the special mixed packing and covering problem
with B = RN

+ ) and runs in time independent of the so-called width of the problem.
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1. Introduction. We study mixed fractional packing and covering problems
(MPCε) of the following form: Given a vector f : B → RM

+ of M nonnegative
continuous convex functions and a vector g : B → RM

+ of M nonnegative continuous
concave functions, two M -dimensional nonnegative vectors a, b, a nonempty convex
compact set B, and a relative tolerance ε ∈ (0, 1), find an approximately feasible
vector x ∈ B such that f(x) ≤ (1 + ε)a and g(x) ≥ (1 − ε)b or find a proof that no
vector is feasible (that satisfies x ∈ B, f(x) ≤ a, and g(x) ≥ b). Without loss of
generality we may assume that a and b are equal to the vector e of all ones.

The fractional packing problem with convex constraints, i.e., to find x ∈ B such
that f(x) ≤ (1+ ε)a, is solved in [3, 4, 7] by the Lagrangian decomposition method in
O(M(ε−2 + lnM)) iterations where each iteration requires a call to an approximate
block solver ABS(p, t) of the form: find x̂ ∈ B such that pT f(x̂) ≤ (1 + t)Λ(p)
where Λ(p) = minx∈B pT f(x). Furthermore, Grigoriadis et al. [5] also proposed an
approximation algorithm for the fractional covering problem with concave constraints,
i.e., to find x ∈ B such that g(x) ≥ (1−ε)b, within O(M(ε−2+lnM)) iterations where
each iteration requires here a call to an approximate block solver ABS(q, t) of the
form: find x̂ ∈ B such that qT g(x̂) ≥ (1− t)Λ(q), where Λ(q) = maxx∈B qT g(x). Both
algorithms also solve the corresponding min-max and max-min optimization variants
within the same number of iterations. Furthermore, the algorithms can be generalized
to the case where the block solver has arbitrary approximation ratio [6, 7, 8].
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Further interesting algorithms for the fractional packing and fractional covering
problem with linear constraints were developed by Plotkin, Shmoys, and Tardos [10]
and Young [11]. These algorithms have a running time that depends linearly on the
width—an unbounded function of the input instance. Several relatively complicated
techniques were proposed to reduce this dependence. Garg and Könemann [2] and
Könemann [9] described a nice algorithm for the fractional packing problem with
linear constraints that needs only O(Mε−2 lnM) iterations. On the other hand, the
algorithm by Grigoriadis et al. [5] is the only known algorithm that solves the frac-
tional covering problem with a number of iterations independently of the width.

For the mixed packing and covering problem (with linear constraints), Plotkin,
Shmoys, and Tardos [10] also proposed approximation algorithms where the running
time depends on the width. Young [12] described an approximation algorithm for
a special mixed packing and covering problem with linear constraints and special
convex set B = RN

+ . The algorithm has a running time of O(M2ε−2 lnM). Recently,
Fleischer [1] gave an approximation scheme for the optimization variant (minimizing
cTx such that Cx ≥ b, Px ≤ a, and x ≥ 0 where a, b, and c are nonnegative
integer vectors and P and C are nonnegative integer matrices). Young [12] posed the
following interesting open problem: find an efficient width-independent Lagrangian-
relaxation algorithm for the abstract mixed packing and covering problem, find x ∈ B
such that Px ≤ (1 + ε)a, Cx ≥ (1 − ε)b, where P,C are nonnegative matrices, a, b
are nonnegative vectors, and B is a polytope that can be queried by an optimization
oracle (given a vector c, return x ∈ B minimizing cTx) or some other suitable oracle.

New result. Our contribution here is to present an efficient width-independent
Lagrangian-relaxation algorithm for the mixed packing and covering problem that
uses a suitable optimization oracle of the form: given two vectors c, d, return x ∈ B,
cTx ≥ 1, minimizing dTx. Interestingly, it is also sufficient to use a feasibility oracle
of the form: given two vectors c, d, return x ∈ B such that cTx ≥ 1 and dTx ≤ 1.
This solves the open problem by Young [12]. Interestingly, our algorithm also works
for a more general problem with a convex set B and nonnegative convex packing and
concave covering constraints.

The algorithm uses a variant of the Lagrangian or price-directive decomposition
method. This is an iterative strategy that solves (MPCε) by computing a sequence
of triples (p, q, x) as follows. A coordinator uses the current vector x ∈ B to compute

two price vectors p = p(x) ∈ RM
+ and q = q(x) ∈ RM

+ with
∑M

m=1 pm + qm = 1. Then
the coordinator calls an optimization oracle to compute a solution x̂ ∈ B of the block
problem (BP )

Λ(p, q) = min

{
pT f(y)|y ∈ B, qT g(y) ≥

M∑
m=1

qm

}
,

and makes a move from x to (1− τ)x+ τ x̂ with an appropriate step length τ ∈ (0, 1).
Such an iteration is called a coordination step. For our algorithm, we require only an
approximate block solver (ABS) that solves the underlying block problem to a given
relative tolerance t ∈ (0, 1):

ABS(p, q, t) : compute x̂ = x̂(p, q) ∈ B such that

pT f(x̂) ≤ (1 + t)Λ(p, q),

qT g(x̂) ≥ 1
1+t

M∑
m=1

qm.
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Our main result is the following theorem.
Theorem 1.1. There is an approximation algorithm that for any given accuracy

ε ∈ (0, 1) solves the mixed fractional packing and covering problem (MPCε) within

N = O(Mε−2 ln(Mε−1))

iterations or coordination steps, each of which requires a call to ABS(p, q,Θ(ε)) and
a coordination overhead of O(M ln(Mε−1)) arithmetic operations.

Alternatively, instead of using the approximate block solver, an approximate fea-
sibility oracle of the form compute x̂ ∈ B such that pT f(x̂) ≤ (1 + t)

∑M
m=1 pm and

qT g(x̂) ≥ 1
1+t

∑M
m=1 qm is also sufficient.

Main ideas. If the mixed packing and covering problem has a solution, then
there is a vector y ∈ B with f(y) ≤ e and g(y) ≥ e. This vector satisfies qT g(y) =∑M

m=1 qmgm(y) ≥
∑M

m=1 qm and pT f(y) =
∑M

m=1 pmfm(y) ≤
∑M

m=1 pm. This implies

that the block problem has a solution of value at most
∑M

m=1 pm. Furthermore if there

is a feasible solution, then the objective value Λ(p, q) ≤
∑M

m=1 pm and pT f(x̂) ≤
(1+ t)

∑M
m=1 pm. In other words, if pT f(x̂) > (1+ t)

∑M
m=1 pm, then we can conclude

that there is no solution of the mixed packing and covering problem.
Suppose now that there is a feasible solution of our mixed packing and covering

problem. For a given vector x ∈ B, the objective value can be defined by

λ(x) = max{f1(x), . . . , fM (x), 1/g1(x), . . . , 1/gM (x)}.

If gm(x) = 0 for one component m ∈ {1, . . . ,M}, then we define λ(x) = ∞.
One of the main ideas is to combine two different potential functions that were

proposed for pure fractional packing and covering problems [4, 5]. We associate here
with the packing and covering constraints f(x) ≤ λe and g(x) ≥ (1/λ)e the following
potential function:

Φ′
t(θ, x) = (2 + t) ln θ − t

M

M∑
m=1

ln(θ − fm(x)) − t
M

M∑
m=1

ln(gm(x)θ − 1)

= 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x)) − t
M

M∑
m=1

ln(gm(x) − 1
θ ),

where θ ∈ R+ and t > 0 is a tolerance that depends on ε and is used in the approximate
block solver. The function Φ′ can be extremely small, since there is no upper bound
on the function values gm(x). Let A be a nonempty subset of M = {1, . . . ,M}.
To control the values of the covering functions gm(x) and to have a lower bound for
the potential function, we eliminate functions gm (and the corresponding index in
A) when the function value gm(x) is larger than a prespecified threshold value T and
modify the potential function. Let A(x) denote the index set corresponding to a given
vector x ∈ B. Then the modified potential function has the form

Φt(θ, x,A(x)) = 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x)) − t
M

∑
m∈A(x)

ln(gm(x) − 1
θ )

− t
M

∑
m�∈A(x)

ln(T ).

The potential function Φt has a unique minimum θA(x)(x) that approximates the
objective value λA(x)(x) = max(maxm∈M fm(x),maxm∈A(x) 1/gm(x)). This potential
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function Φt and the minimizer θA(x)(x) are used to define the price vectors p = p(x)
and q = q(x) for the current vector x ∈ B and to optimize in the correct direction.
Another important parameter for the convergence of the algorithm is the reduced
potential value φt(x,A(x)) = Φt(θA(x)(x), x, A(x)) for x ∈ B and A(x) ⊂ {1, . . . ,M}
(see the discussion below). Since we cannot control the values of eliminated functions
gm for m �∈ A(x) (after the elimination), at the end of each phase s we take a convex
combination over different computed vectors.

The step length τ is defined carefully in dependence on the minimizer θA(x)(x) of
the potential function. In the general case, the coordinator moves from solution x to
(1 − τ)x + τ x̂ and sets the index set A(x′) = {m ∈ A(x)|gm(x′) < T}. In the case
where maxm∈A gm(x)(1−τ)+gm(x̂)τ > T , we reduce the step length from τ to τ̄ and
use as next vector x′ = (1− τ̄)x+ τ̄ x̂. This is important for the convergence analysis.

Our algorithm computes solutions within different phases. Starting with an initial
solution x(0) with objective value λ(x(0)) = O(M), we compute in phase s a solution
x(s) with objective value λ(x(s)) ≤ 1/(1 − εs), where ε1 = 1/2 and εs = εs−1/2 for
s ≥ 2. In the potential function, the parameters t and T are replaced by parameters ts
and T (s) (that depend on phase s), respectively. We stepwise decrease the objective
values until εs ≤ ε/2. The solution x(s) in the last phase satisfies fm(x(s)) ≤ 1/(1 −
ε/2) ≤ 1+ ε and 1/gm(x(s)) ≤ 1/(1− ε/2) or, equivalently, gm(x(s)) ≥ 1− ε/2 > 1− ε.

The main argument in the proof of the convergence is to show that the reduced po-
tential values φt(x,A(x)) (that approximate the objective values λA(x)(x)) are mono-
tone decreasing. If we do not eliminate a covering function gm (i.e., A(x) = A(x′)),
then the difference

φt(x,A(x)) − φt(x
′, A(x′)) ≥ t3/(4M).

In the case where we eliminate a covering function gm (i.e., A(x) �= A(x′)), the
difference

φt(x,A(x)) − φt(x
′, A(x′)) ≥ 0.

To show this inequality, we use the fact that the step length τ is reduced to τ̄ when
maxm∈A gm(x)(1 − τ) + gm(x̂)τ > T . This enables us to prove that

φt(y,A(y)) − φt(ȳ, A(ȳ)) ≥ Θ(t3/M)(Ns −M − 1),

where Ns is the number of iterations, y is the initial solution, and ȳ is the solution
after Ns − 1 iterations in phase s. Using the modification of the potential function
and the implied lower bound for φt(ȳ, A(ȳ)), the difference φt(y,A(y)) − φt(ȳ, A(ȳ))
is at most O(t ln(M/t)) (where t = ts = Θ(εs) depends on phase s). This gives us an
upper bound for the number Ns of iterations in phase s and the total number N of
iterations.

The paper is organized as follows. In section 2 we show some properties of the
used potential function and define the price vectors p(x) and q(x). In section 3 we
describe our approximation algorithm. After giving the algorithm we describe the
main techniques in detail. We show how to compute an initial solution in subsection
3.1. In subsection 3.2 we describe the stopping rules and prove some properties. In
subsections 3.3 and 3.4 we define the step lengths depending on the cases described
above, and we prove that the decrease in the reduced potential is sufficiently large.
After that in subsection 3.5 we show how to get a good solution for all constraints
using the convex combination. Finally in section 4 we determine the total number of
iterations and show how to approximate the minimizer of the potential function.
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2. Potential function and price vectors. Let A be a nonempty subset of
M = {1, . . . ,M}. During a phase, we eliminate a concave function gm (and the
corresponding index in A) when the function value gm(x) ≥ T . Let A(x) denote the
index set corresponding to a given vector x ∈ B.

2.1. Potential function. The used potential function has the form

Φt(θ, x,A(x)) = 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x)) − t
M

∑
m∈A(x)

ln(gm(x) − 1
θ )

− t
M

∑
m�∈A(x)

ln(T ).

For simplicity we use A = A(x) (if the dependence is clear). The potential
function Φt is well defined for λA(x) < θ < ∞, where

λA(x) = max

(
max

1≤m≤M
fm(x),max

m∈A

1

gm(x)

)
.

If gm(x) = 0 for at least one index m ∈ A, then we define λA(x) = ∞. Furthermore,
Φt has the barrier property (i.e., Φt(θ, x,A) → ∞ for θ → ∞ and for θ → λA(x)).
We define the reduced potential function φt(x,A) as the minimum value Φt(θ, x,A)
over θ ∈ (λA(x),∞) for a given x ∈ B. The minimizer θA(x) can be determined from
the first-order optimality condition:

tθ

M

M∑
m=1

1

θ − fm(x)
+

t

Mθ

∑
m∈A

1

gm(x) − 1/θ
= 2.(2.1)

Consider the function h(θ) = t
M (

∑M
m=1

θ
θ−fm(x) + 1

θ

∑
m∈A

1
gm(x)−1/θ ). Notice

that h(θ) → ∞ for θ → λA(x) and h(θ) → t < 1 for θ → ∞. Since θ
θ−fm(x) and

1
gm(x)θ−1 are decreasing in θ, the function h(θ) is also decreasing for θ ∈ (λA(x),∞).

Therefore, we have a unique minimum θA(x). The implicit function θA(x) approxi-
mates λA(x). This is important for the further analysis.

Lemma 2.1.

θA(x)

(1 + t/(2M))
≥ λA(x) ≥ θA(x)

(
1 − t

2
− t|A|

2M

)
≥ θA(x)(1 − t).

Proof. First, we consider a function value fm(x). Since fm(x) ≤ λA(x), we have
θA(x) − fm(x) ≥ θA(x) − λA(x). This implies

θA(x)

θA(x) − fm(x)
≤ θA(x)

θA(x) − λA(x)
.

Furthermore, gm(x) ≥ 1/λA(x) for each m ∈ A. This gives

gm(x) − 1

θA(x)
≥ θA(x) − λA(x)

λA(x)θA(x)

or, equivalently,

1
θA(x)

gm(x) − 1
θA(x)

≤ λA(x)

θA(x) − λA(x)
<

θA(x)

θA(x) − λA(x)
.
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Combining both inequalities we obtain

1 = t
2M

M∑
m=1

θA(x)
θA(x)−fm(x) + t

2M

∑
m∈A

1/θA(x)
gm(x)−1/θA(x)

≤ t
2M (M + |A|) θA(x)

θA(x)−λA(x) .

This implies now

θA(x) − λA(x) ≤ t(M + |A|)
2M

θA(x)

or

λA(x) ≥ θA(x)

(
1 − t

2
− t|A|

2M

)
≥ θA(x)(1 − t).

On the other hand, (using the definition of λA(x)), there is an index m ∈
{1, . . . ,M} with λA(x) = fm(x) or an index m ∈ A with λA(x) = 1/gm(x).

Case 1. λA(x) = fm(x). In this case tθA(x)
2M(θA(x)−λA(x)) ≤ 1, which is equivalent to

λA(x) ≤ θA(x)

(
1 − t

2M

)
.

Case 2. λA(x) = 1/gm(x). Here we have t/θA(x)
2M(1/λA(x)−1/θA(x)) ≤ 1. This implies

λA(x) ≤ θA(x)/(1 + t
2M ).

Notice that (1 − t/(2M)) ≤ 1/(1 + t/(2M)) for any t ≥ 0. Therefore, λA(x) can be
bounded in both cases by ≤ θA(x)/(1 + t/(2M)).

Lemma 2.1 shows that the value θA(x) approximates the objective value λA(x)
for small t. Interestingly, the reduced potential function φt(x,A) also can be bounded
in terms of θA(x).

Lemma 2.2. If gm(x) ≤ T for each m ∈ A, then

φt(x,A) ≥ (2 − t) ln θA(x) − t lnT.

Furthermore, if T > 1/λA(x), then

φt(x,A) ≤ 2 ln θA(x) + 2t ln

(
2M

t

)
+ t ln

(
1 +

t

2M

)
.

Proof.

2 ln θA(x) = φt(x,A) + t
M

M∑
m=1

ln(θA(x) − fm(x)) + t
M

∑
m∈A

ln(gm(x) − 1/θA(x))

+ t
M

∑
m�∈A

ln(T )

≤ φt(x,A) + t
M

M∑
m=1

ln θA(x) + t
M

M∑
m=1

ln(T )

= φt(x,A) + t ln θA(x) + t ln(T ).
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This implies the lower bound. On the other hand, fm(x) ≤ λA(x) for each m ∈
{1, . . . ,M} and gm(x) ≥ 1/λA(x) for each m ∈ A. This gives 2 ln θA(x) ≥ φt(x,A) +
t
M

∑M
m=1 ln(θA(x)−λA(x))+ t

M

∑
m∈A ln(1/λA(x)−1/θA(x))+ t

M

∑
m�∈A ln(T ). For

T > 1/λA(x), this sum is at least φt(x,A)+2t ln(θA(x)−λA(x))+t ln(1/(λA(x)θA(x))).
Now we use the upper bound λA(x) ≤ θA(x)/(1+t/(2M)) or, equivalently, θA(x)−

λA(x) ≥ θA(x)(1 − 1/(1 + t/(2M))) = t/(2M)θA(x)
1+t/(2M) . In addition 1/(λA(x)θA(x)) ≥

(1 + t/(2M))/θA(x)2. As a consequence we get

2 ln θA(x) ≥ φt(x,A) + 2t ln

(
t

2M
· θA(x)

1 + t/(2M)

)
+ t ln

(
1 + t/(2M)

θA(x)2

)
.

Using ln(1+t/(2M)
θA(x)2 ) = ln(1 + t/(2M)) − 2 ln θA(x),

2 ln θA(x) ≥ φt(x,A) + 2t ln
(

t
2M · 1

1+t/(2M)

)
+ t ln

(
1 + t

2M

)
= φt(x,A) + 2t ln

(
t

2M

)
− t ln

(
1 + t

2M

)
.

This gives the desired upper bound

φt(A, x) ≤ 2 ln θA(x) + 2t ln

(
2M

t

)
+ t ln

(
1 +

t

2M

)
.

2.2. Price vectors. Given an x ∈ B and a subset A ⊂ {1, . . . ,M}, the price
vector p(x,A) is defined by

pm(x,A) =
t

2M

θA(x)

θA(x) − fm(x)
(2.2)

and the price vector q(x,A) is given by

qm(x,A) =

{ t
2M

1
gm(x)θA(x)−1 , m ∈ A,

0 otherwise.
(2.3)

Using the first-order condition,
∑M

m=1 pm(x,A) +
∑M

m=1 qm(x,A) = 1 and each com-
ponent pm(x,A), qm(x,A) is nonnegative.

Lemma 2.3.

(a) p(x,A)T f(x) = θA(x)(
∑M

m=1 pm(x,A) − t/2) ≤ θA(x)(1 − t/2),

(b) q(x,A)T g(x) = (
∑

m∈A qm(x,A) + t|A|/(2M))/θA(x) ≤ (
∑

m∈A qm(x,A) +

t/2)/θA(x) ≤ (1 + t/2)/θA(x).
Proof. The (in-)equalities corresponding to p(x,A)T f(x) follow from

p(x,A)T f(x) = tθA(x)
2M

M∑
m=1

fm(x)
θA(x)−fm(x)

= tθA(x)
2M

M∑
m=1

(
−1 + θA(x)

θA(x)−fm(x)

)
= − tθA(x)

2 + θA(x)

M∑
m=1

pm(x,A)

= θA(x)

(
M∑

m=1

pm(x,A) − t
2

)
≤ θA(x)

(
1 − t

2

)
.
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For q(x,A)T g(x) we argue as follows:

q(x,A)T g(x) = t
2M

∑
m∈A

gm(x)/θA(x)
gm(x)−1/θA(x)

= t
2MθA(x)

∑
m∈A

(
1 + 1/θA(x)

gm(x)−1/θA(x)

)

= t|A|
2MθA(x) + t

2MθA(x)

∑
m∈A

1/θA(x)
gm(x)−1/θA(x)

=

(∑
m∈A

qm(x,A) + t|A|
2M

)
/θA(x)

≤
(∑

m∈A

qm(x,A) + t/2

)
/θA(x)

≤ (1 + t/2)/θA(x).

Notice that Lemma 2.3(a) implies that
∑M

m=1 pm(x,A) ≥ t/2 (using p(x,A)T f(x) ≥
0). Let p̄(x) =

∑M
m=1 pm(x,A) and use p̄ = p̄(x) if the dependence on x is clear.

3. Our approximation algorithm. In this section we describe the approxi-
mation algorithm for the mixed fractional packing and covering problem. First we
suppose that there exists a feasible solution x ∈ B with f(x) ≤ e and g(x) ≥ e. Then
the approximation algorithm works as follows:
(1) compute initial solution x(0), s := 0, ε0 := 1;
(2) repeat {scaling phase}

(2.1) s := s + 1; εs := εs−1/2; x := x(s−1); T (s) := 2112(M3ε−2
s )/λM(x);

A := {m ∈ {1, . . . ,M}|gm(x) < T (s)}; finished := false; k := 0;
(2.2) if A �= {1, . . . ,M} then begin k := k + 1; xk := x end;
(2.3) if stopping rule 1 is satisfied for x then finished := true; y := x end;
(2.4) while not(finished) do begin

(2.4.1) compute θA(x), p(x,A) and q(x,A);
(2.4.2) x̂ := ABS(p(x,A), q(x,A), εs/32);
(2.4.3) if one of the stopping rules is satisfied

then begin finished := true; y := x end
else begin
(2.4.3.1) compute step length τ and x′ := (1 − τ)x + τ x̂;
(2.4.3.2) if maxm∈A gm(x)(1 − τ) + gm(x̂)τ > T (s) then reduce

τ to τ̄ and x′ := (1 − τ̄)x + τ̄ x̂;
(2.4.3.3) A′ := A \ {m|gm(x′) ≥ T (s)}; x := x′;
(2.4.3.4) if A �= A′ then begin k := k + 1; xk = x′;

A := A′ end
end

end;
(2.5) compute convex combination of x1, . . . , xk, y to get x(s);
(2.6) until εs ≤ ε/2 or λ(x(s)) ≤ 1 + ε;

(3) return(x(s)).
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The details of the algorithm are described later in this section (how to compute
an initial solution, the stopping rules, the choice of the step length, and the reduction
of the step length).

For the case where the set of feasible solutions {x ∈ B|f(x) ≤ e, g(x) ≥ e}
is empty, we have to modify the program above. If an inequality p(x,A)T f(x̂) >
(1 + t)

∑
pm(x,A) holds for a block solution x̂, then we can conclude that there is no

feasible solution.

3.1. Initial solution. For each m ∈ {1, . . . ,M}, we consider the block problem
(Bm) with price vectors p = (1/M, . . . , 1/M) and q = em, where em is the unit vector
with all zero coordinates except for its mth component which is 1:

min 1
M

M∑
�=1

f�(x),

gm(x) ≥ 1,

x ∈ B.

(Bm)

If there is a solution x̄ ∈ B with f(x̄) ≤ e and g(x̄) ≥ e, then this solution

satisfies (1/M)
∑M

�=1 f�(x̄) ≤ 1 and gm(x̄) ≥ 1. Let x̂[m] ∈ B be an approxi-
mate solution of the block problem (Bm) with tolerance t = 1/2, and let x(0) =

(1/M)
∑M

m=1 x̂
[m]. Using the convexity of B, x(0) ∈ B. If the approximate solution

satisfies (1/M)
∑M

�=1 f�(x̂
[m]) > 1 + t, then we can conclude that the solution set of

the mixed problem is empty.
Lemma 3.1. If there exists a feasible solution of the mixed packing and covering

problem, then λ(x(0)) ≤ 3M/2.

Proof. If there is a feasible solution, then (1/M)
∑M

�=1 f�(x̂
[m]) ≤ (1 + t) = 3/2

and gm(x[m]) ≥ 1/(1 + t) = 2/3 (using the approximate block solver ABS(p, q, 1/2)
above). Then using the concavity and nonnegativity of gm,

gm(x(0)) = gm

(
1

M

M∑
�=1

x̂[�]

)
≥ 1

M

M∑
�=1

gm(x̂[�]) ≥ 1

M
gm(x̂[m]) ≥ 2

3M
.

Using the convexity and nonnegativity of fm,

fm(x(0)) = fm

(
1

M

M∑
�=1

x̂[�]

)
≤ 1

M

M∑
�=1

fm(x̂[�]) ≤ 1

M

M∑
m=1

M∑
�=1

fm(x̂[�]) ≤ 3M

2
.

Combining both inequalities, λ(x(0)) ≤ 3M/2.

3.2. Stopping rules. In the algorithm we stepwise decrease the objective value
λ from 3M/2 to 1/(1 − ε/2). In the first phase we decrease 3M/2 to ε1 = 1/2.
After that we set εs = εs−1/2. The goal in phase s is to obtain a solution x(s) with
λ(x(s)) ≤ 1/(1 − εs). In order to get such a solution we need at the end of phase s a
solution y with λA(y) ≤ 1/(1 − εs/4).

To obtain the solution and to show the convergence we use three stopping rules.
For the first rule we simply test whether

λA(x) ≤ 1 + εs/4(3.1)
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for the current solution x. For this rule we immediately get the following lemma.
Lemma 3.2. If λA(x) ≤ 1 + εs/4, then fm(x) ≤ 1 + εs/4 ≤ 1/(1− εs/4) for each

m ∈ {1, . . . ,M}, and gm(x) ≥ 1/(1 + εs/4) ≥ 1 − εs/4 for each m ∈ A.
For the second rule we define a parameter ν that depends on the current iterate

x and the approximate block solution x̂ as follows:

ν = ν(x, x̂) =
(pT f(x) − pT f(x̂))/θ + θ(qT g(x̂) − qT g(x))

(pT f(x) + pT f(x̂))/θ + θ(qT g(x̂) + qT g(x))
,(3.2)

where p = p(x,A), q = q(x,A), and θ = θA(x). Clearly, ν(x, x̂) ≤ 1. The lemma
below states that x is an approximate solution of the phase s corresponding to subset
A, when ν is bounded by ts = Θ(εs). Therefore, for the second rule we test whether

ν(x, x̂) ≤ t(3.3)

for the current solution x and the block solution x̂.
Lemma 3.3. Suppose εs ∈ (0, 4) and ts = εs/32. For a given x ∈ B, let p, q

be computed by (2.2), (2.3) and x̂ computed by ABS(p, q, ts). If ν(x, x̂) ≤ ts, then
fm(x) ≤ 1+ εs/4 ≤ 1/(1− εs/4) for each m ∈ {1, . . . ,M} and gm(x) ≥ 1/(1+ εs/4) ≥
(1 − εs/4) for each m ∈ A.

Proof. Use (3.2) to rewrite ν(x, x̂) ≤ t = ts as follows:

(pT f(x)−pT f(x̂))/θ+θ(qT g(x̂)−qT g(x)) ≤ t[(pT f(x)+pT f(x̂))/θ+θ(qT g(x̂)+qT g(x))].

Since pT f(x) = θ(p̄ − t/2), qT g(x) = (1 − p̄ + t|A|/(2M))/θ ≤ (1 − p̄ + t/2)/θ,

pT f(x̂) ≤ (1 + t)p̄, and qT g(x̂) ≥ (1 − p̄)/(1 + t), we obtain θ (1−p̄)(1−t)
(1+t) ≤ (1 − p̄)(1 +

t) + t + p̄(t + t/θ) + p̄(1/θ − 1) + tp̄/θ(1 + t).
In the case θ ≤ 1+8t we can prove the lemma directly as follows. Using λA(x) < θ

and t = ts, we obtain

λA(x) < (1 + 8ts) = (1 + εs/4)

for ts = εs/32. This implies fm(x) ≤ 1+ εs/4 ≤ 1/(1− εs/4) for each m ∈ {1, . . . ,M}
and gm(x) ≥ 1/(1 + εs/4) ≥ (1 − εs/4) for each m ∈ A.

Now suppose that θ > 1 + 8t ≥ 1. Then using the inequality above we obtain

θ
(1 − p̄)(1 − t)

(1 + t)
≤ (1 − p̄)(1 + t) + t + 3p̄t− p̄

8t

1 + 8t
.

Now we get (using t < 1/8) 3p̄t− 8t
1+8t p̄ = p̄t−5+24t

1+8t < −p̄t. This implies

θ
(1 − p̄)(1 − t)

(1 + t)
< (1 − p̄)(1 + t) + t− tp̄.

If p̄ = 1, we obtain with 0 < 0 a contradiction. If p̄ �= 1, then we get

θ ≤ (1 + t)2

(1 − t)
+

(t− tp̄)(1 + t)

(1 − p̄)(1 − t)
=

(1 + 2t)(1 + t)

(1 − t)
.

The right-hand side can be bounded by (1 + 2t)(1 + 3t) ≤ (1 + 6t) for t ≤ 1/6. But
again this is a contradiction.

The third stopping rule is used to control the number of iterations during one
phase. Here we use a parameter ωs that depends on the phase s:
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ωs =

⎧⎪⎨⎪⎩
2

3M(1−ε1/4)
, s = 1,

1−εs−1

1−εs/4
, s > 1.

Then the third rule is defined by

λA(x) ≤ ωsλM(x(s−1)),(3.4)

where x(s−1) is the solution of phase s− 1 that satisfies λ(x(s−1)) ≤ 1/(1 − εs−1).
Lemma 3.4. Let x(s−1) be the initial solution and x be a vector in phase s ≥ 1

with λA(x) ≤ ωsλ(x(s−1)) for A ⊂ M. If

λA(x(s−1)) ≤
{

3M/2 for s = 1,
1/(1 − εs−1) for s ≥ 2,

then we get

λA(x) ≤ 1/(1 − εs/4).

Proof. For s = 1 we obtain

λA(x) ≤ 2

3M(1 − ε1/4)
· λ(x(0)) ≤ 2

3M(1 − ε1/4)
· 3M

2
=

1

(1 − ε1/4)

and for s ≥ 2 we get

λA(x) ≤ ωsλ(x(s−1)) ≤ 1 − εs−1

1 − εs/4
· 1

1 − εs−1
=

1

1 − εs/4
.

Notice that in both cases of the proof (s = 1 and s ≥ 2), fm(x) ≤ 1/(1 − εs/4)
for each m ∈ M, and gm(x) ≥ (1 − εs/4) for each m ∈ A.

3.3. Choice of the step length. In this subsection we describe the choice of
the step length τ . We suppose that we have computed a vector x and an approximate

block solution x̂ in a phase s such that ν(x, x̂) > t, pT f(x̂) ≤ (1 + t)
∑M

m=1 pm, and

qT g(x̂) ≥ 1
1+t

∑M
m=1 qm (where t = ts, p = p(x,A(x)), and q = q(x,A(x))). Let

x′ = (1 − τ)x + τ x̂. First we focus on the case where gm(x′) < T = T (s) for each
m ∈ A(x). In this case we do not eliminate a component (i.e., A(x′) = A(x)). The
other case will be discussed later (in some cases we also have to reduce the step
length).

For simplification we use θ = θA(x)(x).
Since each function fm is convex, we get independently of the choice of τ the

following inequality:

θ − fm(x′) ≥ θ − (1 − τ)fm(x) − τfm(x̂)

= (θ − fm(x))
(
1 + τ fm(x)−fm(x̂)

θ−fm(x)

)
= (θ − fm(x))

(
1 + 2τM

tθ pm(fm(x) − fm(x̂))
)

for each m ∈ M. Since each function gm is concave, we obtain

gm(x′) − 1
θ ≥ (1 − τ)gm(x) + τgm(x̂) − 1

θ

=
(
gm(x) − 1

θ

) (
1 + τ gm(x̂)−gm(x)

gm(x)−1/θ

)
=

(
gm(x) − 1

θ

) (
1 + 2τMθ

t qm(gm(x̂) − gm(x))
)
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for each m ∈ A. We call a step length τ feasible if τ ∈ (0, 1) and if the following
bound is satisfied:

max

(
max
m∈M

∣∣∣∣2τMtθ pm(fm(x) − fm(x̂))

∣∣∣∣, max
m∈A(x)

∣∣∣∣ 2τMθ

t
qm(gm(x̂) − gm(x))

∣∣∣∣) ≤ 1/2.

(3.5)

Suppose from now on that τ is a feasible step length. Later we will specify a step
length τ with τ ∈ (0, 1) to obtain the bound (3.5). Then using θ − fm(x) > 0 and
gm(x)−1/θ > 0 we obtain θ−fm(x′) > 0 and gm(x′)−1/θ > 0 for the next computed
vector x′ ∈ B. This implies that the objective value λA(x′)(x

′) for the next vector x′

is at most θA(x)(x), where here A(x′) = A(x).

Lemma 3.5. For any two consecutive iterations in a phase with computed vectors
x, x′ and A(x′) = A(x) and any feasible step length τ , the difference φt(x,A(x)) −
φt(x

′, A(x′)) is at least

+ 2τ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ2

t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2,

where θ = θA(x)(x), p = p(x,A(x)), and q = q(x,A(x)).

Proof. Using the definition of the reduced potential function and λA(x′)(x
′) ≤

θA(x)(x), we get φt(x
′, A(x′)) = minλA(x′)(x

′)≤ξ Φt(ξ, x
′, A(x′)) ≤ Φt(θ, x

′, A(x)). The

inequality above implies the following upper bound for φt(x
′, A(x′)):

φt(x
′, A(x′)) ≤ Φt(θ, x

′, A(x))

= 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x′)) − t
M

∑
m∈A(x)

ln
(
gm(x′) − 1

θ

)
− t

M

∑
m�∈A(x)

ln(T )

≤ 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x)) − t
M

M∑
m=1

ln
(
1 + 2τM

tθ pm(fm(x) − fm(x̂))
)

− t
M

∑
m∈A(x)

ln
(
gm(x) − 1

θ

)
− t

M

∑
m∈A(x)

ln
(
1 + 2τMθ

t qm(gm(x̂) − gm(x))
)

− t
M

∑
m�∈A(x)

ln(T )

= φt(x,A(x)) − t
M

M∑
m=1

ln
(
1 + 2τM

tθ pm(fm(x) − fm(x̂))
)

− t
M

∑
m∈A(x)

ln
(
1 + 2τMθ

t qm(gm(x̂) − gm(x))
)
.

Above we have used the lower bounds for θ − fm(x′) and gm(x′) − 1/θ. The
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calculation above shows that the difference φt(x,A(x)) − φt(x
′, A(x′)) is at least

t
M

M∑
m=1

ln
(
1 + 2τM

tθ pm(fm(x) − fm(x̂))
)

+ t
M

∑
m∈A(x)

ln
(
1 + 2τMθ

t qm(gm(x̂) − gm(x))
)
.

Now we can use the inequality ln(1 + z) ≥ z − z2 for z ≥ −1/2:

ln
(
1 + 2τM

tθ pm(fm(x) − fm(x̂))
)
≥ 2τM

tθ pm(fm(x)−fm(x̂))−
(

2τM
tθ pm(fm(x) − fm(x̂))

)2
and

ln(1+2τMθ
t qm(gm(x̂)−gm(x))) ≥ 2τMθ

t qm(gm(x̂)−gm(x))−( 2τMθ
t qm(gm(x̂)−gm(x)))2.

Using both inequalities above and qm = 0 for m �∈ A(x), the difference φt(x,A(x))−
φt(x

′, A(x′)) is at least

≥ + 2τ
θ (pT f(x) − pT f(x̂)) + 2τθ(qT g(x̂) − qT g(x))

− 4Mτ2

tθ2 (pT f(x) + pT f(x̂))2 + 4Mτ2θ2

t (qT g(x̂) + qT g(x))2

= + 2τ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ2

t [(pT f(x) + pT f(x̂))2/θ2 + (qT g(x̂) + qT g(x))2θ2]

≥ + 2τ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ2

t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2.

In our algorithm we use the following feasible step length.
Lemma 3.6. The following step length is feasible for any t < 1:

τ = t2

4M [(pT f(x)+pT f(x̂))/θ+(qT g(x̂)+qT g(x))θ]

where θ = θA(x) and ν = ν(x, x̂).
Proof. Since pT f(x)/θ+ θqT g(x) = 1− t/2+ t|A|/(2M) > 1− t/2 ≥ 1/2, the step

length τ is at most t2/(2M) < 1. Furthermore,∣∣ 2τM
tθ pm(fm(x) − fm(x̂))

∣∣ ≤ 2τM
tθ (pT f(x) + pT f(x̂))

= 2M
t

t2

4M
(pT f(x)+pT f(x̂))/θ

[(pT f(x)+pT f(x̂))/θ+(qT g(x̂)+qT g(x))θ]

≤ t
2 < 1

2

and

∣∣ 2τMθ
t qm(gm(x̂) − gm(x))

∣∣ ≤ 2τMθ
t (qT g(x̂) + qT g(x))

= 2M
t

t2

4M
(qT g(x̂)+qT g(x))θ

[(pT f(x)+pT f(x̂))/θ+(qT g(x̂)+qT g(x))θ]

≤ t
2 < 1

2 .
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The main goal now is to prove the following result.
Theorem 3.7. For any two consecutive iterations in a phase with computed

vectors x, x′ and A(x) = A(x′) we obtain

φt(x,A(x)) − φt(x
′, A(x′)) ≥ t3

4M
.

Proof. Since the second stopping rule is not satisfied we have ν(x, x̂) > t. This
implies the following inequality:

[(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ](3.6)

≥ t[(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ].

Then we obtain for the difference φt(x,A(x)) − φt(x
′, A(x′)) of the potential values

the following lower bound:

2τ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ2

t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2

≥ 2τt[(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]

− τt[(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]

= τt[(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]

= t3

4M .

We used above the inequality (3.6) and inserted the step length τ .

3.4. Reducing the step length. Let x′ = (1−τ)x+τ x̂, where x is the current
vector, x̂ is the block solution, and τ is the step length as used in the previous
subsection. Consider a phase s with threshold value T (s). For simplicity we use
T = T (s). If gm(x′) ≤ T for each m ∈ A(x), then we use x′ as the next iterate and set
A(x′) = {m ∈ A(x)|gm(x′) < T}. In this case some components may be eliminated,
but we use the original step length. Now we consider the case that gm(x′) > T for at
least one coordinate m ∈ A(x). Let

γ(τ̃) = max
m∈A(x)

gm(x)(1 − τ̃) + gm(x̂)τ̃

for 0 ≤ τ̃ ≤ 1. If γ(τ) > T , then we reduce the step length τ . In this case we compute
τ̄ < τ such that γ(τ̄) = T . Using gm(x) < T for each m ∈ A(x) and γ(τ) > T , there
is at least one component m ∈ A(x) such that gm(x̂) > T . In addition, the value τ̄
is unique and can be computed in O(M) time. We use here x′ = x(1 − τ̄) + x̂τ̄ as
next iterate and set A(x′) = {m ∈ A(x)|gm(x′) < T}. If γ(τ) ≤ T , then we do not
have to reduce the step length τ and use again x′ = x(1 − τ) + x̂τ . But we eliminate
as above all components m ∈ A(x) with gm(x′) ≥ T . Notice that the case with
gm(x′) > T > gm(x)(1− τ)+ gm(x̂)τ is possible (since the functions gm are concave).

For each m ∈ A(x′) we have gm(x′) < T . If we use a reduced step length τ̄ < τ ,
then A(x) �= A(x′). But A(x) �= A(x′) also can happen when γ(τ) < T or gm(x′) ≤ T
for each m ∈ A(x). The new potential value for x′ and A(x′) is

φt(x
′, A(x′)) = 2 ln θ′ − t

M

M∑
m=1

ln(θ′ − fm(x′))

− t

M

∑
m∈A(x′)

ln(gm(x′) − 1/θ′) − t

M

∑
m�∈A(x′)

ln(T ),
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where θ′ = θA(x′)(x
′).

Now we consider two cases depending on whether we use the original step length
τ or the reduced step length τ̄ .

Theorem 3.8. For any two consecutive iterations with computed vectors x, x′,
index sets A(x) �= A(x′), and maxm∈A(x) gm(x)(1 − τ) + gm(x̂)τ ≤ T , we have

φt(x,A(x)) − φt(x
′, A(x′)) ≥ t3

4M
.

Proof. If gm(x)(1 − τ) + gm(x̂)τ ≤ T for each m ∈ A(x), then − ln(T ) ≤
− ln(gm(x)(1−τ)+gm(x̂)τ−1/θ), where θ = θA(x)(x). Furthermore, for each feasible
choice for τ , we have θ − fm(x′) > 0 for each m ∈ {1, . . . ,M} and gm(x′) − 1/θ > 0
for each m ∈ A(x). This implies λA(x′)(x

′) ≤ λA(x)(x
′) < θA(x)(x). Then using the

definition of the potential function and gm(x′) − 1/θ ≥ gm(x)(1 − τ) + gm(x̂)τ − 1/θ
(concavity of functions gm),

φt(x
′, A(x′)) = minλA(x′)(x

′)≤ξ Φt(ξ, x
′, A(x′)) ≤ Φt(θ, x

′, A(x′))

= 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x′)) − t
M

∑
m∈A(x′)

ln(gm(x′) − 1
θ )

− t
M

∑
m�∈A(x′)

ln(T )

≤ 2 ln θ − t
M

M∑
m=1

ln(θ − fm(x′))

− t
M

∑
m∈A(x)

ln(gm(x)(1 − τ) + gm(x̂)τ − 1
θ )

− t
M

∑
m�∈A(x)

ln(T )

≤ 2 ln θ − t
M

M∑
m=1

ln
(
(θ − fm(x))

(
1 + τ fm(x)−fm(x̂)

θ−fm(x)

))

− t
M

∑
m∈A(x)

ln
((

gm(x) − 1
θ

) (
1 + τ gm(x̂)−gm(x)

gm(x)−1/θ

))
− t

M

∑
m�∈A(x)

ln(T ).

Using the same arguments as in Lemma 3.5, the difference of the potential values
φt(x,A(x)) − φt(x

′, A(x′)) is at least

2τ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ2

t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2.

The remaining analysis goes in the same way as for A(x) = A(x′).
Theorem 3.9. For any two consecutive iterations with computed vectors x, x′,

index sets A(x) �= A(x′), and maxm∈A(x) gm(x)(1 − τ) + gm(x̂)τ > T , we have

φt(x,A(x)) − φt(x
′, A(x′)) ≥ 0.
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Proof. If maxm∈A(x) gm(x)(1 − τ) + gm(x̂)τ > T, then we use the reduced step
length τ̄ . In this case gm(x)(1− τ̄)+ gm(x̂)τ̄ is also bounded by T for each m ∈ A(x).
This implies − ln(T ) ≤ − ln(gm(x)(1 − τ̄) + gm(x̂)τ̄ − 1/θA(x)). Since τ̄ is also a
feasible choice, λA(x′)(x

′) < θA(x). Using the definition of the potential function and
an analysis similar to the one above, we get with θ = θA(x) the following:

φt(x
′, A(x′)) ≤ 2 ln θ − t

M

M∑
m=1

ln
(
(θ − fm(x))

(
1 + τ̄ fm(x)−fm(x̂)

θ−fm(x)

))

− t
M

∑
m∈A(x)

ln
((

gm(x) − 1
θ

) (
1 + τ̄ gm(x̂)−gm(x)

gm(x)−1/θ

))

− t
M

∑
m�∈A(x)

ln(T )

≤ φt(x,A(x)) − t
M

M∑
m=1

ln(1 + 2τ̄M
tθ pm(fm(x) − fm(x̂)))

− t
M

∑
m∈A(x)

ln
(
1 + 2τ̄Mθ

t qm(gm(x̂) − gm(x))
)
.

Again, since τ̄ < τ is a feasible choice,

φt(x,A(x)) − φt(x
′, A(x′)) ≥ 2τ̄ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ̄2

t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2

≥ 2τ̄ [(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 4Mτ̄τ
t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2

= 2τ̄ [[(pT f(x) − pT f(x̂))/θ + (qT g(x̂) − qT g(x))θ]

− 2Mτ
t [(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ]2].

Now we use the inequality (3.6), insert step length τ , and get φt(x,A(x)) −
φt(x

′, A(x′)) ≥ τ̄ t[(pT f(x) + pT f(x̂))/θ + (qT g(x̂) + qT g(x))θ] ≥ 0.

3.5. Convex combination of different vectors. First we prove an upper
bound for the packing constraints.

Lemma 3.10. For any iteration of the phase s with computed vector x, λf (x) =
max1≤m≤M fm(x) is bounded by 4M/ts.

Proof. For the initial solution, fm(x(0)) ≤ 3M/2 for m = 1, . . . ,M . This implies
λf (x(0)) ≤ 3M/2 ≤ 3M/(2ts) (for any ts ∈ (0, 1)). Note that ts < ts−1 and t1 < 1.
For each block solution x̂ in phase s we have

p(x,A)T f(x̂) ≤ (1 + ts)

M∑
m=1

pm(x,A) < 2

M∑
m=1

pm(x,A(x)) ≤ 2,

where A = A(x). Suppose that λf (x̂) > 4M/ts. Then, there is an index m ∈
{1, . . . ,M} such that fm(x̂) = λf (x̂). We note that

pm(x,A) =
ts

2M

θA(x)

θA(x) − fm(x)
>

ts
2M

.
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Then we obtain a contradiction using

2 =
ts

2M

4M

ts
< pm(x,A)fm(x̂) ≤ p(x,A)T f(x̂) ≤ 2.

In other words fm(x̂) ≤ 4M/ts for each m ∈ {1, . . . ,M}. Since each vector x′

computed by the algorithm is the linear combination of the previous vector x and a
block solution x̂, and using the convexity of function fm,

fm(x′) = fm((1 − τ)x + τ x̂) ≤ (1 − τ)fm(x) + τfm(x̂) ≤ max{fm(x), fm(x̂)}.

Then, the lemma follows by induction on the number of iterations.
Lemma 3.10 shows that the values fm(x) are not arbitrarily large in the algorithm.

Notice that this is independent from the chosen step length τ ∈ (0, 1). We use this
bound for the convex combination below. Notice that, in addition, the components
pm(x,A(x)) of the price vector p(x,A(x)) are not arbitrarily small (i.e., pm(x,A(x)) >
ts/(2M)).

At the end of phase s we have computed a vector y ∈ B with λA(y)(y) ≤ 1/(1 −
εs/4). This implies fm(y) ≤ 1/(1 − εs/4) for each m ∈ {1, . . . ,M}, and gm(y) ≥
1 − εs/4 for each m ∈ A(y). The goal is now to compute a vector x(s) ∈ B with
λM(x(s)) ≤ 1/(1 − εs). The key idea is to use a convex combination over several
vectors computed during the phase. Let x1, . . . , xk be the vectors in phase s where
at least one function gm is eliminated (i.e., where gm(xi) ≥ T (s)). Clearly, k ≤ M .
We have x1 = x(s−1) if gm(x(s−1)) ≥ T (s) for at least one m ∈ M (here x(s−1) is the
solution of the previous phase).

Take the following convex combination:

x(s) =

k∑
i=1

ε2s
264M2 xi +

(
1 − kε2s

264M2

)
y.

Since the set B is convex and x1, . . . , xk, y ∈ B, we obtain x(s) ∈ B. Since the
functions gm are concave and the functions fm are convex,

gm(x(s)) ≥ ε2s
264M2

k∑
i=1

gm(xi) +
(
1 − kε2s

264M2

)
gm(y),

fm(x(s)) ≤ ε2s
264M2

k∑
i=1

fm(xi) +
(
1 − kε2s

264M2

)
fm(y).

Our threshold value T (s) is given by

T (s) = 2112

(
M3

ε2s

)
· 1

λM(x(s−1))
.

Notice that T (s) ≤ 2112M3/ε2s, since λM(x(s−1)) ≥ 1 (otherwise we are done).
Lemma 3.11. The computed solution x(s) satisfies λM(x(s)) ≤ 1/(1 − εs).
Proof. First we consider the concave functions gm. For each eliminated function

gm we have

gm(x(s)) ≥ ε2s
264M2

gm(xi) ≥
ε2s

264M2
T (s) =

8M

λM(x(s−1))
,
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since all other functions are nonnegative. This implies for s > 1 that

gm(x(s)) ≥ 8(1 − εs−1) = 8(1 − 2εs) ≥ 1 − εs

for 8 − 16εs ≥ 1 − εs or, equivalently, εs ≤ 7/15 < 1/2. In addition we get for s = 1
that

gm(x(1)) ≥ 4M/(3M) ≥ 1 − εs.

For each remaining component m ∈ A(y) we have

gm(x(s)) ≥
(

1 − kε2s
264M2

)
gm(y) ≥

(
1 − ε2s

264M

)(
1 − εs

4

)
> 1 − εs.

The last inequality holds for each εs ≤ 1.
Next we consider the convex functions fm. Here we use Lemma 3.10. For each

iterate x we have λf (x) ≤ 4M/ts. This implies the following upper bound:

fm(x(s)) ≤ ε2s
264M2

· 4kM

ts
+

(
1 − kε2s

264M2

)
fm(y).

Since ts = εs/32, k ≤ M , and fm(y) ≤ 1/(1 − εs/4), we get

fm(x(s)) ≤ 32εs
66

+

(
1 − kε2s

264M2

)
1

1 − εs/4
.

The first term is at most εs/2, and the second term can be bounded by 1 + εs/2
(for εs ≤ 2). This gives fm(x(s)) ≤ 1 + εs. All three cases together imply that
λM(x(s)) ≤ max{1 + εs, 1/(1 − εs)} = 1/(1 − εs).

4. Analysis of the approximation algorithm.

4.1. Number of iterations. In this subsection we determine the total number
of iterations of our algorithm. To do this we first calculate the number of iterations Ns

in a single phase s. Let y, ỹ denote the initial and final iterate of phase s. Furthermore,
let ȳ be the solution after N̄s = Ns − 1 iterations. For consecutive iterations with
computed vectors x, x′ in a phase and A(x) = A(x′), the difference in the potential

values φt(x,A(x)) − φt(x
′, A(x′)) ≥ ct3

M , where c is a positive constant and t = ts =
εs/32. In addition, there are at most M iterations with consecutive vectors x, x′ and
different subsets A(x) �= A(x′) (i.e., in these iterations at least one component is
eliminated). In these cases, we have φt(x,A(x)) − φt(x

′, A(x′)) ≥ 0. Therefore,

φt(y,A(y)) − φt(ȳ, A(ȳ)) ≥ ct3

M
(N̄s −M).

Next we determine an upper bound for the difference φt(y,A(y)) − φt(ȳ, A(ȳ)).
Using Lemma 2.2,

φt(y,A(y)) ≤ 2 ln θA(y)(y) + 2t ln(2M/t) + t ln(1 + t/(2M)),

φt(ȳ, A(ȳ)) ≥ (2 − t) ln θA(ȳ)(ȳ) − t ln(T ),

where T = T (s).
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This gives

φt(y,A(y)) − φt(ȳ, A(ȳ)) ≤ (2 − t) ln
θA(y)(y)

θA(ȳ)(ȳ) + t ln θA(y)(y) + t ln(T )

+ 2t ln
(

2M
t

)
+ t ln

(
1 + t

2M

)
.

Notice that θA(y)(y) ≤ λA(y)(y)/(1 − t) ≤ O(M) for the initial solution y of
each phase. This together with the definition of T = T (s) and t = ts implies that
t ln θA(y)(y) + 2t ln(2M/t) + t ln(T ) + t ln(1 + t/(2M)) is bounded by O(ts ln(M/ts)).

Now we need a bound for ln(θA(y)(y)/θA(ȳ)(ȳ)). Using θA(y)(y) < λA(y)(y)/(1− t)
and θA(ȳ)(ȳ) > λA(ȳ)(ȳ)(1 + t/(2M)) > λA(ȳ)(ȳ), we get

ln
θA(y)(y)

θA(ȳ)(ȳ)
< ln

λA(y)(y)

λA(ȳ)(ȳ)
+ ln

1

1 − t
≤ ln

λA(y)(y)

λA(ȳ)(ȳ)
+ ln (1 + 2t).

Notice that λA(ȳ)(ȳ) > ωsλM(y) ≥ ωsλA(y)(y), since ȳ does not satisfy the second
stopping rule. Therefore,

φt(y,A(y)) − φt(ȳ, A(ȳ)) ≤ (2 − t) ln

(
1

ωs

)
+ O

(
ts ln

(
M

ts

))
.

The term ln( 1
ωs

) depends on the scaling phase s. For s = 1, ln( 1
ωs

) = O(lnM). For

the other phases, ln( 1
ωs

) ≤ ln(1 + 4εs) ≤ O(εs) (using εs ≤ 1/4). This implies that
the difference in the potential function is at most O(lnM) for s = 1 and at most
O(εs ln(M/εs)) for s ≥ 2. The lower and upper bounds for φt(y,A(y)) − φt(ȳ, A(ȳ))
imply

N̄s ≤ O(Mε−2
s ln(Mε−1

s )).

Summing over all phases, the total number of iterations (calls to the block solver) is

O

⎛⎝M ln(Mε−1)

�log(1/ε)	∑
k=0

(2k)2

⎞⎠ .

Since
∑�log(1/ε)	

k=0 (2k)2 ≤ O(ε−2), the total number of iterations is

O(Mε−2 ln(Mε−1)).

4.2. How to compute the minimizer θA(x). We assumed in the sections
above that the price vectors p = p(x,A) and q = q(x,A) are computed exactly from
(2.2), (2.3) in each iteration. But this is impractical since (2.2), (2.3) requires the
root θA(x) of (2.1). However, an approximation of the price vectors is sufficient.
Suppose that p̃, q̃ is an approximation of the exact vectors p, q with relative accuracy
δ ∈ (0, 1/2), i.e.,

(1 − δ)p ≤ p̃ ≤ (1 + δ)p,

(1 − δ)q ≤ q̃ ≤ (1 + δ)q.
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Let x̂ ∈ B be computed by ABS(p̃, q̃, t) with p̃T f(x̂) ≤ (1+t)
∑M

m=1 p̃m and q̃T g(x̂) ≥
1

(1+t)

∑M
m=1 q̃m. This implies for the original price vectors that

pT f(x̂) ≤ (1+t)(1+δ)
(1−δ)

M∑
m=1

pm ≤ (1 + t + 4δ)

M∑
m=1

pm,

qT g(x̂) ≥ (1−δ)
(1+δ)(1+t)

M∑
m=1

qm ≥ 1
1+t+4δ

M∑
m=1

qm

for t, δ ≤ 1/3. Using δ = t/4 = Θ(ε), we obtain a relative accuracy of 2t. This shows
that (2.2), (2.3) need only the price components pm, qm up to a relative accuracy of
δ = Θ(ε).

Notice that the minimizer θA(x)[f, g] (that also depends on the functions f and
g) satisfies the condition θA(x)[f ·s, g/s] = s θA(x)[f, g] where s is a positive scalar. In
addition the price components are independent of a positive scalar s; i.e., pm(x,A)[f ·
s] = pm(x,A)[f ] and qm(x,A)[g/s] = qm(x,A)[g]. This helps to prescale locally the
f and g vectors such that λA(x)[f, g] = 1. Suppose that λA(x)[f, g] �= 1. Then define
f̄m(x) = fm(x)/λA(x)[f, g] and ḡm(x) = gm(x)λA(x)[f, g]. This gives λA(x)[f̄ , ḡ] =
max(maxm∈M f̄m(x),maxm∈A 1/ḡm(x)) = 1, and the price vectors for (f̄ , ḡ) are the
same. Using this prescaling, we can suppose that the minimizer θ = θA(x) lies in the
interval [1 + t/(2M), 1 + 2t].

Now we estimate the influence of a small absolute error in θ for the price vectors
p, q. Suppose that θ̃ is an approximation of the correct minimizer θ, i.e., |θ̃− θ| ≤ Δ.
The modified price vectors p̃, q̃ are given by

p̃m = t
2M

θ̃

θ̃−fm(x)
,

q̃m = t
2M

1/θ̃

gm(x)−1/θ̃
.

These price vectors have to satisfy the following inequalities in order to obtain a
relative accuracy of δ:

| p̃m−pm

pm
| ≤ δ,

| q̃m−qm
qm

| ≤ δ.

These are equivalent to

∣∣∣∣∣ θ̃θ θ − fm(x)

θ̃ − fm(x)
− 1

∣∣∣∣∣ ≤ δ,

∣∣∣∣gm(x)θ − 1

gm(x)θ̃ − 1
− 1

∣∣∣∣ ≤ δ.
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These inequalities hold if we can prove the following stronger inequalities:

(θ + Δ)(θ − fm(x))

θ(θ − Δ − fm(x))
− 1 ≤ δ,

1 − (θ − Δ)(θ − fm(x))

θ(θ + Δ − fm(x))
≤ δ,

gm(x)θ − 1

gm(x)(θ − Δ) − 1
− 1 ≤ δ,

1 − gm(x)θ − 1

gm(x)(θ + Δ) − 1
≤ δ.

The first type of inequality is equivalent to

Δ ≤ δθ(θ − fm(x))

2θ − fm(x) + δθ
.

Since θ ≥ 1, fm(x) ≤ λA(x) = 1, θ ≤ 1 + 2t, and t, δ < 1/6, we have δθ(θ − fm(x)) ≥
δ(θ−fm(x)) ≥ δ(θ−1) and 2θ−fm(x)+δθ ≤ (2+δ)(1+2t) ≤ 3. Using θ ≥ 1+t/(2M),
this gives

δθ(θ − fm(x))

2θ − fm(x) + δθ
≥ δ

3
(θ − 1) ≥ δt

6M
.

In other words, Δ ≤ δ
6M is a sufficient condition that the first type of inequality is

satisfied. The same holds for the inequalities of the second type. Since δ and t are of

order Θ(ε), the absolute error Δ should be Θ( ε2

M ).
The third type of inequality is equivalent to

Δ ≤ δ

1 + δ

gm(x)θ − 1

gm(x)
=

δ

1 + δ

(
θ − 1

gm(x)

)
.

Since 1/gm(x) ≤ λA(x) = 1, δ ≤ 1, and θ ≥ 1 + t/(2M), the right-hand side is at

least δ
1+δ (θ − 1) ≥ δt

4M . This implies that Δ ≤ δt
4M is a sufficient condition that the

third type of inequality is satisfied. The same holds for the inequalities of the fourth

type. This analysis shows that an absolute error Δ = Θ( ε2

M ) in the computation of
θA(x)[f, g] results in a relative error of δ = Θ(ε) in the value of each pm and qm.

To compute the value θA(x)(f, g) ∈ [1 + t/(2M), 1 + 2t] approximately with an
absolute error of Δ, we can use binary search. Since the length of the interval is Θ(ε),
there are at most O(ln(M/ε)) steps necessary. In each step, we have to compute the
sum

tθ

M

M∑
m=1

1

θ − fm(x)
+

t

Mθ

∑
m∈A(x)

1

gm(x) − 1/θ

for a candidate θ ∈ [1+t/(2M), 1+2t]. Therefore, at most O(M ln(Mε−1)) arithmetic
operations per iteration are necessary. Using Newton’s method this probably can be
improved to O(M ln ln(Mε−1)) (see the analysis in [4, 5]).
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Abstract. In the paper, we first compare the concepts of calmness, local error bound, and locally
linear regularity. Second, we present some dual sufficient conditions for local error bound and local
linear regularity. By using a characterization of the locally linear regularity for a collection of finite
nonempty closed and convex subsets, we prove that the sufficient conditions provided in [R. Henrion
and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110–130; R. Henrion and A. Jourani, SIAM
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convex constraint system in an infinite-dimensional setting.
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1. Introduction. The concept of calmness or error bound plays an important
role in various branches of the theory of constrained optimization such as nondegen-
erate multiplier rules (e.g., [7, 14, 28]), exactly penalty functions, and stability of
constraint systems (e.g., [13, 27, 21, 5, 19]).

We recall (see [1, 28]) that a set-valued mapping M : Y ⇒ X between metric
spaces Y,X is called pseudo-Lipschitz (or has Aubin property) at some point (ȳ, x̄) of
its graph if there exist neighborhoods V,U of ȳ, x̄, respectively, and some γ > 0 such
that

d(x,M(y′)) ≤ γd(y, y′) ∀y, y′ ∈ V ,∀x ∈ M(y) ∩ U ,

or equivalently,

M(y) ∩ U ⊂ M(y′) + γd(y, y′)BX ∀y, y′ ∈ V,

where BX denotes the closed unit ball of X. When fixing y′ = ȳ in the above
definition, M is called calm at (ȳ, x̄) (see [28, 9]), i.e., there exist neighborhoods V,U
of ȳ, x̄, respectively, and some γ > 0 such that

d(x,M(ȳ)) ≤ γd(y, ȳ) ∀x ∈ M(y) ∩ U ,∀y ∈ V,

or equivalently,

M(y) ∩ U ⊂ M(ȳ) + γd(y, ȳ)BX ∀y ∈ V.

When U = X, the calmness reduces to the upper Lipschitz property of set-valued
mapping introduced by Robinson [27]. Obviously, either the pseudo-Lipschitz prop-
erty or the upper Lipschitz property implies calmness, but the converse is not true in
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general (see [19, 11]). The pseudo-Lipschitz property and the upper Lipschitz prop-
erty for a set-valued mapping have been extensively studied in the literature (see
[1, 14, 23, 24, 15, 17, 19, 8]).

Sufficient conditions for calmness in a finite-dimensional setting have been derived
in [9, 11] for set-valued maps of the type

M(y) = S(y) ∩ C,(1)

where S : Y ⇒ X is a set-valued map with closed graph and C ⊂ X is closed. For
instance, S(y) may be a solution set of a constraint system

S(y) = {x ∈ X | f(x) ∈ y −K},(2)

where a function f : X → Y and a nonempty subset K ⊂ Y are given. In particular,
when Y = R ∪ {+∞} and K = R+

S(y) = {x ∈ X | f(x) ≤ y}.(2′)

In the convex case, a subdifferential condition for calmness of the constraint system
(1) and (2′) has been given by Henrion and Jourani [10] in infinite-dimensional spaces.

We say that M has a local error bound at (ȳ, x̄) if there exist δ, γ > 0 such that

d(x,M(ȳ)) ≤ γ max{d(x,C), d(ȳ, S−1(x))} ∀x ∈ B(x̄, δ).

Clearly, when S is given by (2) or (2′), M has a local error bound (ȳ, x̄) if and only
if there exist positive scalars γ and δ such that

d(x,M(ȳ)) ≤ γ max{d(x,C), d(f(x), ȳ −K)} ∀x ∈ B(x̄, δ)(3)

or

d(x,M(ȳ)) ≤ γ max{d(x,C), (f(x) − ȳ)+} ∀x ∈ B(x̄, δ),(3′)

where r+ = max{r, 0} for r ∈ R.
Existence of error bounds for constraint systems has been extensively studied by

many authors (see [13, 27, 20, 21, 26]).
The collection of closed convex sets {C1, . . . , Cn} is called locally linearly regular

around x̄ ∈ C = ∩n
i=1Ci if there exist δ, γ > 0 such that

d(x,C) ≤ γ max{d(x,C1), . . . , d(x,Cn)} ∀x ∈ B(x̄, δ).

This notion is a special case of so-called bounded linear regularity introduced in
[2]. It is known that bounded linear regularity is very useful in various branches of
convex optimization, such as convex feasibility problem, constrained approximation,
Fenchel duality, systems of convex inequalities and associated with error bounds, and
subdifferential calculus (see [2, 3, 10, 13, 29, 15]).

In this paper, we first compare the concepts of calmness, local error bound, and
local linear regularity. Second, we present some dual sufficient conditions for local
error bound and local linear regularity. By using a characterization of the local linear
regularity, we prove that the sufficient conditions provided in [9, 10, 11] imply not only
the calmness but also the existence of local error bounds for the convex constraint
system in an infinite-dimensional setting.
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2. Notation and basic results. Let X be a normed space with topological dual
space X∗. Denote by BX and BX∗ the closed unit ball of X and X∗, respectively.
We write B(x, δ) for x + δBX , where x ∈ X and δ > 0. Let A be a nonempty subset
of X. Denote by Ā and intA, respectively, the closure and the interior of A. The cone
generated by A is cone(A) = ∪λ≥0λA. For a nonempty closed convex subset C of X
and x̄ ∈ C, define the tangent cone to C at x̄ by TC(x̄) = cone(C− x̄) and the normal
cone to C at x̄ by

NC(x̄) = (TC(x̄))0 = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0 ∀x ∈ C}.

Let f : X → R ∪ {+∞} be a lower semicontinuous proper convex function. By epif ,
∂f(x̄), and ∂∞f(x̄) we denote the epigraph, the usual, and the singular subdifferentials
of f , respectively, in the sense of convex analysis. It is well known that

∂f(x̄) = {x∗ ∈ X∗ | (x∗,−1) ∈ Nepif (x̄, f(x̄))},

∂∞f(x̄) = {x∗ ∈ X∗ | (x∗, 0) ∈ Nepif (x̄, f(x̄))}.

Let IC(·) be the indicator function of C, i.e.,

IC(x) =

{
0 if x ∈ C,

+∞ if x �∈ C.

It is obvious that NC(x) = ∂IC(x).
Let us recall some notation and basic results on linear regularity of sets in X (see

[3, 29]).
Definition 2.1. Suppose that C1, . . . , Cn are subsets of a normed space X with

C = ∩n
i=1Ci �= ∅.

(i) The collection {C1, . . . , Cn} is linearly regular if there exists k > 0 such that
d(x,C) ≤ kmax{d(x,C1), . . . , d(x,Cn)} for every x ∈ X.

(ii) The collection {C1, . . . , Cn} is boundedly linearly regular if for every bounded
set S, there exists kS > 0 such that

d(x,C) ≤ kS max{d(x,C1), . . . , d(x,Cn)} ∀x ∈ S.

(iii) The collection {C1, . . . , Cn} is locally linearly regular around some point x̄ ∈
C if there exist δ, γ > 0 such that d(x,C) ≤ γ max{d(x,C1), . . . , d(x,Cn)} for
every x ∈ B(x̄, δ).

It is trivial that linear regularity implies bounded linear regularity, which, in turn,
implies locally linear regularity around every point of C.

In the following we assume that X is a Banach space. We recall the following
result, which can be proved by Lemma 1.1 and Proposition 1.3 in [26]; for completeness
we give its proof here.

Lemma 2.1. Let S be a closed convex subset of X and x̄ ∈ S. Then for every
δ > 0, 0 < σ < 1 and every x ∈ B(x̄, δ/3), there exists z ∈ bdS ∩B(x̄, δ) such that

σd(x, S) ≤ d(x− z, TS(z)).

Proof. Let x ∈ B(x̄, δ/3) \ S, let d = d(x, S), and take ε > 0 such that σ ≤
d−

√
ε(d+ε+

√
ε)

(1+
√
ε)(d+ε+

√
ε)

and ε +
√
ε ≤ δ/3. By the separation theorem, there exists x∗

0 ∈ X∗

with ‖x∗
0‖ = 1 such that

sup
u∈S

〈x∗
0, u〉 = inf

u∈BX

〈x∗
0, x + du〉 = 〈x∗

0, x〉 − d.
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Take x0 ∈ S such that ‖x− x0‖ ≤ d + ε. Then

sup
u∈S

〈x∗
0, u〉 = 〈x∗

0, x〉 − d ≤ ‖x∗
0‖‖x− x0‖ + 〈x∗

0, x0〉 − d ≤ ε + 〈x∗
0, x0〉.

By Phelps, Brøndsted, and Rockafellar’s lemma (see [12]), there exist z ∈ bdS, x∗ ∈
X∗ such that

sup
u∈S

〈x∗, u〉 = 〈x∗, z〉 (equivalently, x∗ ∈ NS(z))

and

‖z − x0‖ ≤
√
ε, ‖x∗ − x∗

0‖ ≤
√
ε.

This implies that

‖x∗‖ ≤ 1 +
√
ε, ‖z − x‖ ≤ d + ε +

√
ε

and

〈x∗, z − x〉 = 〈x∗ − x∗
0, z − x〉 + 〈x∗

0, z − x〉 ≤
√
ε(d + ε +

√
ε) − d.

It follows that

〈x∗, x− z〉 ≥ d−
√
ε(d + ε +

√
ε) ≥ d−

√
ε(d + ε +

√
ε)

(1 +
√
ε)(d + ε +

√
ε)
‖x∗‖‖z − x‖ ≥ σ‖x∗‖d(x, S).

Note that TS(z) ⊂ {u ∈ X | 〈x∗, u〉 ≤ 0} =: D. Hence, we can deduce that

σd(x, S) ≤ 〈x∗, x− z〉
‖x∗‖ = d(x− z,D) ≤ d(x− z, TS(z)).

It is clear that

‖z − x̄‖ ≤ ‖z − x‖ + ‖x− x̄‖ < d + ε +
√
ε +

δ

3
< δ,

i.e., z ∈ B(x̄, δ).
Theorem 2.1. Let C1, . . . , Cn be closed convex subsets of X with C = ∩iCi �= ∅

and let x̄ ∈ C. The following statements are equivalent:
(i) There exist δ, γ > 0 such that for every u ∈ C ∩B(x̄, δ)

NC(u) ∩BX∗ ⊂ γ
∑
i

(NCi(u) ∩BX∗).

(ii) There exist δ, γ > 0 such that

d(h, TC(u)) ≤ γ max{d(h, TC1(u)), . . . , d(h, TCn(u))} ∀h ∈ X,u ∈ B(x̄, δ) ∩ C.

(iii) There exist δ̂, γ̂ > 0 such that

d(x,C) ≤ γ̂ max{d(x,C1), . . . , d(x,Cn)} ∀x ∈ B(x̄, δ̂).
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Proof. (i) ⇒ (ii) For every u ∈ C ∩B(x̄, δ), since NC(u) ∩BX∗ ⊂ γ
∑

i(NCi
(u) ∩

BX∗), we have that NC(u) ⊂
∑

i NCi(u). The converse inclusion is obvious. Hence
NC(u) =

∑
i NCi(u) and hence

∑
i NCi(u) is weakly star closed. By Jameson’s The-

orem 2.1 in [16] (see also Proposition 6 in [3]), we have

d(h, TC(u)) ≤ γ max{d(h, TCi(u)), . . . , d(h, TCn
(u))} ∀h ∈ X.

(ii) ⇒ (i) Condition (ii) implies that for every u ∈ C∩B(x̄, δ), TC(u) = ∩n
i=1TCi(u)).

By the bipolar theorem, we have NC(u) = cl∗(
∑

i NCi(u)). Again, by Jameson’s The-
orem 2.1 in [16] (see also Proposition 6 in [3]), we see that

∑
i NCi

(u) is weakly star
closed and NC(u) ∩BX∗ ⊂ γ

∑
i(NCi(u) ∩BX∗). Hence, we obtain (i).

(ii) ⇒ (iii) If x ∈ C, then the assertion is obvious. Suppose that x ∈ B(x̄, δ̂) \ C,

where δ̂ = δ
3 . From Corollary 2 in [6], i.e., for every closed convex subset D in X and

u ∈ D, d
′
(·, D)(u, h) = d(h, TD(u)) for all h ∈ X, one has d

′
(·, Ci)(u, h) = d(h, TCi(u)

for all h ∈ X, i = 1, . . . , n. By the convexity of the distance function, we have

d′(·, Ci)(u, x− u) ≤ d(x,Ci) − d(u,Ci) = d(x,Ci) ∀u ∈ C.

Consequently,

d(x− u, TCi(u)) ≤ d(x,Ci) ∀u ∈ C.(4)

For 0 < σ < 1, by Lemma 2.1, there exists u ∈ bdC ∩B(x̄, δ) such that

σd(x,C) ≤ d(x− u, TC(u)).(5)

It follows from (4), (5), and (ii) that

σd(x,C) ≤ γ max{d(x,C1), . . . , d(x,Cn)}.

Let σ tend to 1. We have

d(x,C) ≤ γ max{d(x,C1), . . . , d(x,Cn)}.

(iii) ⇒ (ii) Let δ = δ̂/2, γ = γ̂, and let u ∈ bdC ∩ B(x̄, δ) and h �∈ TC(u) with

‖h‖ = 1. Then u+ th �∈ C for all t > 0. Since, ‖u+ th− x̄‖ ≤ ‖u− x̄‖+ t‖h‖ ≤ δ̂ for
all t ∈ (0, δ), we have

d(u + th, C) ≤ γ max{d(u + th, C1), . . . , d(u + th, Cn)}.

Noticing that u ∈ C = ∩n
i=1Ci, it follows from taking the limit that

d′(·, C)(u, h) ≤ γ max{d′(·, C1)(u, h), . . . , d
′
(·, Cn)(u, h)}.

That is

d(h, TC(u)) ≤ γ max{d(h, TC1
(u)), . . . , d(h, TCn

(u))}.

For the other case, the conclusion is obviously true.
Remark 1. Condition (i) is equivalent to each of the following conditions:
(i

′
) There exist δ, γ > 0 such that for every u ∈ C ∩B(x̄, δ)

NC(u) =
∑
i

NCi
(u),

(∑
i

NCi
(u)

)
∩BX∗ ⊂ γ

∑
i

(NCi
(u) ∩BX∗).
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(i
′′
) There exist δ, γ > 0 such that for every u ∈ C ∩B(x̄, δ)

TC(u) = ∩iTCi(u),

(∑
i

NCi(u)

)
∩BX∗ ⊂ γ

∑
i

(NCi(u) ∩BX∗).

Indeed, (i) implies that NC(u) ⊂
∑

i NCi(u), and the converse inclusion is obvi-

ously true. Hence (i
′
) is true. It clear that (i

′
) implies (i

′′
). By the bipolar theorem,

TC(u) = ∩iTCi(u) implies that NC(u) = cl∗(
∑

i NCi(u)). By Proposition 5 in [16],
(
∑

i NCi(u)) ∩ BX∗ ⊂ γ
∑

i(NCi
(u) ∩ BX∗) implies that

∑
i NCi

(u) is weakly star
closed. Hence NC(u) =

∑
i NCi(u) and (i) is true.

The equivalence of (i
′′
), (ii), and (iii) has been proved in [29]. From the proof of

Theorem 2.1, we can see that the following result concerning the linear regularity is
also true.

Corollary 2.1. Let C1, . . . , Cn be closed convex subsets of X with C = ∩iCi �=
∅. The following statements are equivalent:

(i) There exist γ > 0 such that for every u ∈ C

NC(u) ∩BX∗ ⊂ γ
∑
i

(NCi(u) ∩BX∗).

(i
′
) There exists γ > 0 such that for every u ∈ C

NC(u) =
∑
i

NCi
(u),

(∑
i

NCi(u)

)
∩BX∗ ⊂ γ

∑
i

(NCi(u) ∩BX∗).

(i
′′
) There exists γ > 0 such that for every u ∈ C

TC(u) = ∩iTCi(u),

(∑
i

NCi(u)

)
∩BX∗ ⊂ γ

∑
i

(NCi(u) ∩BX∗).

(ii) There exists γ > 0 such that

d(h, TC(u)) ≤ γ max{d(h, TC1(u)), . . . , d(h, TCn(u))} ∀h ∈ X,u ∈ C.

(iii) There exists γ̂ > 0 such that

d(x,C) ≤ γ̂ max{d(x,C1), . . . , d(x,Cn)} ∀x ∈ X.

The equivalence of (i
′
), (ii), and (iii) has been proved in Theorem 2.6 in [26].

3. Calmness and error bounds. In the following we assume that X and Y
are Banach spaces. Consider now a set-valued mapping M : Y ⇒ X defined as the
intersection M(y) = S(y) ∩ C, where S : Y ⇒ X is a set-valued mapping and C is a
subset of X.

Theorem 3.1. Let the set-valued mapping M defined as above and let (ȳ, x̄) ∈
grM . Consider the following conditions:

(i) The set-valued mapping M is calm at (ȳ, x̄).
(ii) There exist δ, γ > 0 such that

d(x,M(ȳ)) ≤ γd(ȳ, S−1(x)) ∀x ∈ C ∩B(x̄, δ).
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(iii) There exist δ, γ > 0 such that

d(x,M(ȳ)) ≤ γ max{d(x,C), d(ȳ, S−1(x))} ∀x ∈ B(x̄, δ).

(iv) There exist δ, γ > 0 such that

d(x,M(ȳ)) ≤ γ max{d((x, ȳ), C × {ȳ}), d((x, ȳ), grS−1)} ∀x ∈ B(x̄, δ).

Then

(iv) =⇒ (iii) =⇒ (ii) ⇐⇒ (i).

When C = X, all the conditions are equivalent.
Proof. It is obvious that

(iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

(i) ⇒ (ii) By the calmness of M at (ȳ, x̄), fix some positive numbers δ, γ̂ (γ̂ ≥ 1)
such that

d(x,M(ȳ)) ≤ γ̂‖ȳ − y‖ ∀y ∈ B(ȳ, δ), x ∈ S(y) ∩ C ∩B(x̄, δ).

Let x ∈ B(x̄, δ) ∩ C, y ∈ S−1(x). If y ∈ B(ȳ, δ) as well, then d(x,M(ȳ)) ≤ γ̂‖ȳ − y‖.
Otherwise we get the desired estimate that

d(x,M(ȳ)) ≤ ‖x− x̄‖ ≤ δ ≤ γ̂‖ȳ − y‖.

Consequently, we have

d(x,M(ȳ)) ≤ γ̂d(ȳ, S−1(x)) ∀x ∈ B(x̄, δ) ∩ C.

Suppose C = X. It is trivial that (iii) ⇐⇒ (ii). For the proof of (iii) =⇒ (iv),
see Proposition 4 in [15]. For the completeness, we include the proof. Fix x ∈ B(x̄, δ)
and consider any (y′, x′) ∈ grS with y′ ∈ B(ȳ, δ), x′ ∈ B(x̄, δ). Then

d(x,M(ȳ)) ≤ ‖x− x′‖ + d(x′,M(ȳ))

≤ ‖x− x′‖ + γ‖ȳ − y′‖
≤ max{1, γ}(‖x− x′‖ + ‖ȳ − y′‖).

So, putting γ̂ = max{1, γ} we obtain

d(x,M(ȳ)) ≤ γ̂ inf{‖x− x′‖ + ‖ȳ − y′‖ | (x′, y′) ∈ (grS−1) ∩B(x̄, δ) ×B(ȳ, δ)}.

Since for any (x′, y′) ∈ X × Y with ‖x′ − x̄‖ ≥ δ and ‖y′ − ȳ‖ ≥ δ we have

‖x− x′‖ + ‖ȳ − y′‖ ≥ ‖x′ − x̄‖ − ‖x− x̄‖ + ‖y′ − ȳ‖ ≥ 2δ − δ ≥ d((x, ȳ), grS−1).

Hence

d(x,M(ȳ)) ≤ γ̂d((x, ȳ), grS−1) ∀x ∈ B(x̄, δ).

Remark 2. (a) The equivalence between (i) and (ii) shows that there is no need
at all to restrict y to a neighborhood V of ȳ in the description of calmness (this
equivalence was also proved in [8] under some additional condition). Moreover, the



360 WEN SONG

equivalence between (i) and (ii) also shows that the calmness of M at (ȳ, x̄) amounts
to the existence of a local error bound of M at the same point whenever C = X.

(b) Condition (ii) implies (iii) whenever S−1 is pseudo-Lipschitz at (x̄, ȳ).
Indeed, if S−1(x) is pseudo-Lipschitz at (x̄, ȳ), then the function ρ(x) := d(ȳ, S−1(x))

is locally Lipschitz at x̄. Without loss of generality, we may assume that

|ρ(x1) − ρ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ B(x̄, δ)

for some δ > 0 and L > 0. By the nonexpansivity of distance function and (ii), for
every x1 ∈ C ∩B(x̄, δ), x ∈ B(x̄, δ), we have

0 ≤ γd(ȳ, S−1(x1)) − d(x1,M(ȳ)) ≤ γd(ȳ, S−1(x)) − d(x,M(ȳ)) + (γL + 1)‖x− x1‖.

This implies that

d(x,M(ȳ)) ≤ γd(ȳ, S−1(x)) + (γL + 1)d(x,C ∩B(x̄, δ)).

Hence,

d(x,M(ȳ)) ≤ γ̂ max{d(ȳ, S−1(x)), d(x,C)} ∀x ∈ B(x̄, δ/3),

where γ̂ = max{γL + 1, γ}.
(c) When C = X, the equivalence between (i) and (iv) implies that if S is calm at

(ȳ, x̄) and x̄ is a locally minimizer of a locally Lipschitz function f : X → R on S(ȳ),
then x̄ is a free local minimizer of p(x) := f(x) + αpS(x) whenever α is sufficiently
large, where pS(x) = d((x, ȳ), grS−1) = d((ȳ, x), grS). This result has been proved by
Klatte and Kummer in [19] by constructing a locally upper Lipschitz submapping.

Proposition 3.1. The condition (iv) in Theorem 3.1 holds if and only if {C ×
{ȳ}, grS−1} is locally linear regular around (x̄, ȳ).

Proof. The implication “⇐” is trivial. Suppose (iv) holds, i.e., there exist δ, γ > 0
such that

d(x,M(ȳ)) ≤ γ max{d((x, ȳ), C × {ȳ}), d((x, ȳ), grS−1)} ∀x ∈ B(x̄, δ).

This implies that

d((x, y), (C × {ȳ}) ∩ grS−1) ≤ γd((x, y), grS−1) ∀(x, y) ∈ (C × {ȳ}) ∩B((x̄, ȳ), δ).

By the nonexpansivity of the distance function, we can deduce that for all (x, y) ∈
B((x̄, ȳ), δ/3)

d((x, y), (C × {ȳ}) ∩ grS−1) ≤ (2γ + 1) max{d((x, y), C × {ȳ}), d((x, y), grS−1)}

(see Proposition 6 in [29] and also Proposition 2.43 in [7]). Hence {C × {ȳ}, grS−1}
is locally linear regular around (x̄, ȳ).

We recall the following notions of normal cones (see [23, 24]). Let Ω ⊂ X and
ε ≥ 0. Given x ∈ clΩ, the nonempty set

N̂ε(x,Ω) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖ ≤ ε

}

is called the set of (Fréchet) ε-normal cones to Ω at x. When ε = 0, the set N̂0(x,Ω)
is called the Fréchet normal cone to Ω at x and is denoted by N̂(x,Ω). If x �∈ clΩ, we
set N̂ε(x,Ω) = ∅ for all ε ≥ 0.
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The nonempty cone

N(x,Ω) := lim sup
x→x̄,ε↘0

N̂ε(x,Ω)

is called the normal cone to Ω at x, where

lim sup
x→x̄,ε↘0

N̂ε(x,Ω) = {x∗ ∈ X∗ | ∃ sequences xk → x̄, εk ↘ 0

and x∗
k

w∗
→ x∗ with x∗

k ∈ N̂εk(xk,Ω)}.

We set N(x,Ω) = ∅ for x̄ �∈ clΩ.
It is well known that for a convex set Ω, both the Fréchet normal cone N̂(x,Ω)

and normal cone N(x,Ω) coincide with the normal cone NΩ(x) in the sense of convex
analysis, i.e.,

NΩ(x) = {x∗ ∈ X∗ | 〈x∗, u− x〉 ≤ 0 ∀u ∈ Ω}.

A closed set Ω in X is called normally compact around x̄ ∈ Ω (see [22, 23]) if
there exist positive numbers γ, σ and a compact subset K of X such that

N̂(x,Ω) ⊂
{
x∗ ∈ X∗ | σ‖x∗‖ ≤ max

z∈K
|〈x∗, z〉|

}
∀x ∈ Bγ(x̄) ∩ Ω.

It is clear that if Ω is convex and normally compact around x̄ ∈ Ω, then for any net

x∗
i ∈ NΩ(xi) with xi → x̄ and x∗

i
w∗
→ 0

one has x∗
i → 0 in the norm topology of X∗ (see [22, 25]).

Observe that each closed set Ω in a finite-dimensional space is normally compact
around every point x̄ ∈ Ω. Loewen [22] shows that Ω is normally compact around x̄ ∈
Ω if Ω is compactly epi-Lipschitzian at x̄ ∈ Ω in the sense of Borwein and Strojwas [4].
The latter means that there exist a neighborhood Nx of x, a neighborhood U of the
origin, a positive number ε, and a compact set K such that

C ∩Nx + λU ⊂ C + λK ∀0 < λ < ε.

For a set-valued map S : X → Y and some point (x, y) ∈ grS, the coderivative
D∗S(x, y) : Y ∗ → X∗ is defined by

D∗S(x, y)(u∗) := {v∗ ∈ X∗ | (v∗,−u∗) ∈ N((x, y), grS}.

If S is single-valued, we simply write D∗S(x) instead of D∗S(x, S(x)).
A set-valued mapping S : X → Y is said to be partially ∂-coderivatively compact

at (x̄, ȳ) ∈ grS (see [18]) if for every net {(xi, yi)} ⊂ grS converging to (x̄, ȳ) and

every net {(x∗
i , y

∗
i )} satisfying x∗

i ∈ D∗S(xi, yi)(y
∗
i ), ‖x∗

i ‖ → 0, and y∗i
w∗
→ 0 we have

‖y∗i ‖ → 0.
Observe that the above property always holds when Y is finite-dimensional. It

has been proved that S : X → Y is partially ∂-coderivatively compact at (x̄, ȳ) if
the graph of S is closed and convex and ȳ ∈ intS(X) (see [18]) or if S is partially
compactly epi-Lipschitz at (x̄, ȳ) in the sense of Jourani and Thibault (see [18]) or if
the graph of S is closed and S partially normally compact with respect to y around
(x̄, ȳ) in the sense of Mordukhovich and Shao (see [25]).

Lemma 3.1. Let S : X → Y be a set-valued mapping with closed and convex
graph, let C be a closed convex subset of X, let D be a closed convex subset of Y , and
let (x̄, ȳ) ∈ grS ∩ (C ×D). Suppose that one of the following conditions holds:
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(i) Either C ×D or grS is normally compact around (x̄, ȳ).
(ii) C is normally compact around x̄ and S is partially ∂-coderivatively compact

at (x̄, ȳ).
Then NgrS((x̄, ȳ))∩ (−NC×D((x̄, ȳ))) = {(0, 0)} if and only if (0, 0) ∈ int[grS − (C ×
D)], which implies that there exist δ, γ > 0 such that

d((x, y), (C ×D) ∩ grS) ≤ γ max{d((x, y), C ×D), d((x, y), grS} ∀(x, y) ∈ B((x̄, ȳ), δ).

Proof. “=⇒” Denote by E the product space X×Y with the norm ‖u‖ = ‖x‖+‖y‖
for every u = (x, y) ∈ E. Assume that (0, 0) �∈ int[grS − (C ×D)]. For an arbitrary
positive sequence εk → 0 as k → ∞, we can find sequence {ūk} = {(x̄k, ȳk)} ∈ E
with ‖ūk‖ ≤ ε2k such that ūk �∈ grS − (C × D). Set A = grS − ūk, B = C × D,
and ū = (x̄, ȳ), and equip E with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖ for every u, v ∈ E.
Applying Ekeland’s variational principle to the function f(u, v) := ‖u − v‖ on the
complete metric space A×B, since

f(ū− ūk, ū) = ‖ūk‖ ≤ inf{f(u, v) | (u, v) ∈ A×B} + ε2k,

there exists (uk, vk) ∈ A×B such that

‖uk − ū + ūk‖ + ‖vk − ū‖ ≤ εk(6)

and

f(uk, vk) ≤ f(u, v) + εk(‖u− uk‖ + ‖v − vk‖) ∀(u, v) ∈ A×B.

This implies that

(0, 0) ∈ ∂f(uk, vk) + εkBE∗ ×BE∗ + NA(uk) ×NB(vk).

Hence there exist w∗
k ∈ E∗ with ‖w∗

k‖ = 1 and 〈w∗
k, uk − vk〉 = ‖uk − vk‖ such that

(0, 0) ∈ (w∗
k,−w∗

k) + εkBE∗ ×BE∗ + NA(uk) ×NB(vk).

It follows that there exist {w∗
ik} ⊂ E∗, i = 1, 2, with w∗

1k ∈ NA(uk), w
∗
2k ∈ NB(vk)

such that

1 − εk ≤ ‖w∗
ik‖ ≤ 1 + εk, i = 1, 2, and ‖w∗

1k + w∗
2k‖ ≤ 2εk.(7)

Let {(x1k, y1k)} ⊂ grS, {(x2k, y2k)} ⊂ C be such that uk = (x1k, y1k) − ūk, vk =
(x2k, y2k) and let {(x∗

ik, y
∗
ik)} ⊂ E∗ be such that w∗

ik = (x∗
ik, y

∗
ik), i = 1, 2. Then

(x∗
1k, y

∗
1k) ∈ NA(uk) = NgrS((x1k, y1k)) and (x∗

2k, y
∗
2k) ∈ NC((x2k, y2k)), and by (6)

and (7), we get that

(xik, yik) → (x̄, ȳ) (i = 1, 2) and (x∗
1k + x∗

2k, y
∗
1k + y∗2k) → (0, 0) as k → ∞.

(8)

Since ‖(x∗
ik, y

∗
ik)‖ → 1 as k → ∞, i = 1, 2, and by taking into account that the closed

unit ball BE∗ is weak-star compact, without of loss of generality we may assume that

(x∗
ik, y

∗
ik)

w∗
→ (x∗

i , y
∗
i ) as k → ∞, i = 1, 2.

Thus

(x∗
1, y

∗
1) ∈ NgrS((x̄, ȳ)), (x∗

2, y
∗
2) ∈ NC×D((x̄, ȳ)), and (x∗

1 + x∗
2, y

∗
1 + y∗2) = (0, 0).
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Let us denote (x∗, y∗) = (x∗
1, y

∗
1) = −(x∗

2, y
∗
2). To finish the proof it remains to

show that (x∗, y∗) �= (0, 0). It is clear that this is true if (i) holds since ‖(x∗
ik, y

∗
ik)‖ → 1

as k → ∞, i = 1, 2. Suppose that (ii) holds. If ‖x∗
2k‖ �→ 0, then by the normal

compactness of C around x̄, we have x∗ = −x∗
2 �= 0; if ‖x∗

2k‖ → 0, noticing that
‖(x∗

2k, y
∗
2k)‖ → 1, then ‖y∗2k‖ → 1. It follows from (8) that ‖x∗

1k‖ → 0 and ‖y∗1k‖ → 1.
Since S is partially ∂-coderivatively compact at (x̄, ȳ), we obtain y∗ = y∗1 �= 0.

“⇐=” Choose arbitrary (x∗, y∗) ∈ NgrS(x̄, ȳ) ∩ (−NC×D(x̄, ȳ)). Then

〈(x∗, y∗), (x1 − x̄, y1 − ȳ)〉 ≤ 0 ∀(x1, y1) ∈ grS,

〈(x∗, y∗), (x2 − x̄, y2 − ȳ)〉 ≥ 0 ∀(x2, y2) ∈ C ×D.

In other words,

〈(x∗, y∗), (x1 − x2, y1 − y2)〉 ≤ 0 ∀(x1, y1) ∈ grS, (x2, y2) ∈ C ×D.

However, by assumption (0, 0) ∈ int[grS − (C ×D)], one has that (x∗, y∗) = (0, 0).
The last implication is well known. For instance, see Theorem 4.1 in [10] or

Theorem 1 in [29].
The conclusion of Lemma 3.1 was proved by Henrion and Jourani [10] under the

assumption that either C ×D or grS is compactly epi-Lipschitzian at (x̄, ȳ).
Theorem 3.2. Consider the set-valued mapping M : Y ⇒ X defined as M(y) =

S(y) ∩ C, where S : Y ⇒ X is a set-valued mapping with closed convex graph and C
is a closed convex set of X. Let (ȳ, x̄) ∈ grM . Then the following statements hold:

(i) If there exist positive numbers γ, δ such that

BX∗ ∩NM(ȳ)(u) ⊂ γ[BX∗ ∩NC(u) + BX∗ ∩D∗S−1(u, ȳ)(BY ∗)](9)

for all u ∈ B(x̄, δ) ∩M(ȳ), then M has a local error bound at (ȳ, x̄).
(ii) If either C is normally compact around x̄ and S−1 is partially ∂-coderivatively

compact at (x̄, ȳ) or grS−1 is normally compact around (x̄, ȳ), and if

D∗S−1(x̄, ȳ)(y∗) ∩ (−bdNC(x̄)) =

{
∅ or

{0} if y∗ = 0,
(10)

then {C × {ȳ}, grS−1} is locally linearly regular around (x̄, ȳ).
Proof. (i) Suppose (9) holds. Let x ∈ B(x̄, δ

3 ) \ M(ȳ) and σ ∈ (0, 1). From the
proof of Lemma 2.1, one sees that there exist z ∈ bdM(ȳ)∩B(x̄, δ) and x∗ ∈ NM(ȳ)(z)
with ‖x∗‖ = 1 such that

σ‖x− z‖ ≤ 〈x∗, x− z〉.

According to (9), there exist u∗ ∈ BX∗∩NC(z), y∗ ∈ BY ∗ , v∗ ∈ BX∗∩D∗S−1(z, ȳ)(y∗)
such that x∗ = γ(u∗ + v∗). It follows that

σ‖x− z‖ ≤ γ(〈u∗, x− z〉 + 〈v∗, x− z〉).

Noticing that u∗ ∈ ∂d(·, C)(z) and (v∗,−y∗) ∈ NgrS−1(z, ȳ), one has that

〈u∗, x− z〉 ≤ d(x,C)



364 WEN SONG

and

〈v∗, x− z〉 ≤ 〈y∗, y − ȳ〉 ≤ ‖y − ȳ‖ ∀y ∈ S−1(x).

Hence, we get that

σd(x,M(ȳ)) ≤ 2γ max{d(x,C), d(ȳ, S−1(x))}.

Letting σ → 1, we obtain the desired result.
(ii) If 0 �∈ −bdNC(x̄)), then NC(x̄) = X∗, which implies that C = {x̄}. In this

case, the conclusion is obvious. We assume that 0 ∈ −bdNC(x̄)). This, together with
(10), implies that D∗S−1(x̄, ȳ)(0) ∩ (−bdNC(x̄)) = {0} and that

NgrS−1((x̄, ȳ)) ∩ (−bdNC×{ȳ}((x̄, ȳ))) = {(0, 0)}.

If

NgrS−1((x̄, ȳ)) ∩ −int(NC×{ȳ}((x̄, ȳ))) �= ∅,(11)

then there exists (x∗, y∗) ∈ NgrS−1((x̄, ȳ)) such that −B((x∗, y∗), δ) ⊂ NC×{ȳ}((x̄, ȳ))
for some δ > 0. In other words,

〈−x∗, x− x̄〉 + δ‖x− x̄‖ ≤ 0 ∀x ∈ C,

〈x∗, x− x̄〉 + 〈y∗, y − ȳ〉 ≤ 0 ∀(x, y) ∈ grS−1.

Hence for any x ∈ M(ȳ), i.e., (x, ȳ) ∈ grS−1 ∩ C × {ȳ}, we have

δ‖x− x̄‖ ≤ 〈−x∗, x− x̄〉 + δ‖x− x̄‖ ≤ 0,

and hence x = x̄. This shows that M(ȳ) = {x̄}. Hence

NM(ȳ)×{ȳ}((x̄, ȳ)) = X∗ × Y ∗.

On the other hand, formula (11) implies

NgrS−1((x̄, ȳ)) + NC×{ȳ}((x̄, ȳ)) = X∗ × Y ∗.

Hence,

NgrS−1((u, v)) + NC×{ȳ}((u, v)) = X∗ × Y ∗ = NM(ȳ)×{ȳ}((u, v))(12)

for all (u, v) ∈ (M(ȳ)×{ȳ})∩B((x̄, ȳ), δ) = {(x̄, ȳ)}, where δ is an arbitrary positive
number.

By Proposition 4 in [16], (12) implies that there exists some γ > 0 such that

NM(ȳ)×{ȳ}((u, v)) ∩BX∗×Y ∗ ⊂ γ(NC×{ȳ}((u, v)) ∩BX∗×Y ∗ + NgrS−1((u, v)) ∩BX∗×Y ∗)

for all (u, v) ∈ (M(ȳ) × {ȳ}) ∩ B((x̄, ȳ), δ). It follows from Theorem 2.1 that there

exists some δ̂ > 0 such that

d(x,M(ȳ) ≤ γ max{d((x, ȳ), C × {ȳ}), d((x, ȳ), grS−1)} ∀x ∈ B(x̄, δ̂).

Hence, the conclusion follows from Proposition 3.1.
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Otherwise, we have

NgrS−1((x̄, ȳ)) ∩ −NC×{ȳ}((x̄, ȳ)) = {(0, 0)}.

Then the conclusion follows from Lemma 3.1.
Remark 3. From the proof, it is easy to see that the hypotheses of (ii) imply

(9). The second part of Theorem 3.2 generalizes Theorem 3.2 in [11] to the infinite-
dimensional space in the case when the set C and the graph of the set-valued map S
are convex.

When C = X, obviously, C is normally compact around x̄ and condition (10)
reduces to

kerD∗S−1(x̄, ȳ) = {0},

or equivalently,

D∗S(ȳ, x̄)(0) = {0}.(13)

It has been proved that (see [18]) S is pseudo-Lipschitz at (ȳ, x̄) under the as-
sumption of (ii) with C = X, which, in turn, implies the conclusion of (ii); when
X and Y are finite-dimensional spaces, condition (13) is equivalent to the pseudo-
Lipschitz property of S at (ȳ, x̄). The above-mentioned results are valid even in the
nonconvex case.

Let K ⊂ Y be a closed convex cone. A single-valued map f : X → Y is said to
be K-convex if its epigraph

epiKf = {(x, y) | f(x) ∈ y −K}

is a convex set in X × Y .
Corollary 3.1. Let X, Y be Asplund spaces, let C be a closed convex subset of

X, and let K be a closed convex cone of Y . Consider the set-valued maps S,M : Y ⇒
X defined as

S(y) = {x ∈ X | f(x) ∈ y −K}

and M(y) = C ∩S(y), where f : X → Y is a continuous K-convex map. Suppose that
(0, x̄) ∈ grM and that K is normally compact around −f(x̄) (especially intK �= ∅).
Then the following statements hold:

(i) If there exist positive numbers γ, δ such that

BX∗ ∩NM(0)(u) ⊂ γ[BX∗ ∩NC(u) + BX∗ ∩D∗(f + K)(u, 0)(BY ∗)]

for all u ∈ B(x̄, δ) ∩M(0), then M has a local error bound at (0, x̄).
(ii) If either C is normally compact around x̄ and 0 ∈ int(f(X) + K) or epif is

normally compact around (x̄, f(x̄)), and if for every y∗ ∈ N−K(f(x̄)),

D∗f(x̄)(y∗) ∩ (−bdNC(x̄)) =

{
∅ or

{0} if y∗ = 0,

then {C × {0}, grS−1} is locally linearly regular around (x̄, 0) (where the
coderivative D∗f(x̄)(y∗) is defined in the sense of limit Fréchet).



366 WEN SONG

Proof. It is easy to see that S−1(x) = f(x) + K is a set-valued map with closed
convex graph. (i) follows from Theorem 3.2 directly.

(ii) The case in which 0 �∈ bdNC(x̄) is trivial, so assume that 0 ∈ bdNC(x̄). Define
a mapping g : X × Y → Y by

g(x, y) = f(x) − y.

Then grS−1 = g−1(−K). Applying the coderivative sum rule (see Theorem 3.5 in
[24]), we get

D∗g(x̄, 0)(y∗) = {(x∗,−y∗) | x∗ ∈ D∗f(x̄)(y∗)}

(where the coderivative is defined in the sense of limit Fréchet). It is clear that

N−K(g(x̄, 0)) = N−K(f(x̄)), kerD∗g(x̄, 0) = {0}

and so that N−K(g(x̄, 0)) ∩ kerD∗g(x̄, 0) = {0}. By Corollary 6.9 of [23], under the
hypotheses of Corollary 3.1, we have

NgrS−1(x̄, 0) ⊂
⋃{

D∗g(x̄, 0))(y∗) | y∗ ∈ N−K(g(x̄, 0)
}

=
⋃{

{(x∗,−y∗) | x∗ ∈ D∗f(x̄)(y∗)} | y∗ ∈ N−K(f(x̄)
}
.

It follows that

D∗S−1(x̄, 0)(y∗) ⊂
{
D∗f(x̄)(y∗) if y∗ ∈ N−K(f(x̄)),

∅ otherwise.

Thus, the conclusion follows from Theorem 3.2.
Corollary 3.2. Let X, Y be Banach spaces, let C be a closed convex subset of

X, and let K be a closed convex cone of Y . Consider the set-valued maps S,M : Y ⇒
X defined as

S(y) = {x ∈ X | T (x) ∈ y −K}

and M(y) = C ∩S(y), where T : X → Y is a continuous linear operator. Let (0, x̄) ∈
grM . Then the following statements hold:

(i) M has a local error bound at (0, x̄) if and only if there exist positive numbers
γ, δ such that

BX∗ ∩NM(0)(u) ⊂ γ[BX∗ ∩NC(u) + T ∗(BY ∗ ∩N−K(T (x̄)))](14)

for all u ∈ B(x̄, δ) ∩M(0).
(ii) If C is normally compact around x̄ and 0 ∈ int(T (X) + K), and if

T ∗(y∗) ∈ −bdNC(x̄)
y∗ ∈ N−K(f(x̄))

}
=⇒ y∗ = 0,

then {C × {ȳ}, grS−1} is locally linearly regular around (x̄, 0).
Proof. (i) Noticing that S−1(x) = T (x)+K, we have that grS−1 = grT +{0}×K.

It is easy to verify that

NgrS−1(u, 0) =
⋃{

(−T ∗(y∗), y∗) | y∗ ∈ NK(−T (u))
}

∀u ∈ S−1(0).
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It follows that

D∗S−1(u, 0)(y∗) =

{
T ∗(y∗) if y∗ ∈ N−K(T (u)),

∅ otherwise.

If condition (14) is satisfied, then

BX∗ ∩NM(0)(u) ⊂ τ(‖T ∗‖ + 1)[BX∗ ∩NC(u) + BX∗ ∩D∗S−1(u, 0)(BY ∗)]

for all u ∈ B(x̄, δ) ∩ M(0). By Theorem 3.2, M has a local error bound at (0, x̄).
Conversely, suppose that M has a local error bound at (0, x̄). Then there exist positive
scalars γ and δ1 such that

d(x,M(0)) ≤ γ(d(x,C) + d(T (x),−K)) ∀x ∈ B(x̄, δ1).

Hence

d(x,M(0)) ≤ γ(d(x,C) + d(T (x),−K)) + IintB(x̄,δ1)(x) ∀x ∈ X.

As both functions on the two sides of the above inequality are 0 at each u ∈ M(0) ∩
intB(x̄, δ1), we obtain that

NM(0)(u) ∩BX∗ = ∂d(·,M(0))(u) ⊂ ∂[γ(d(·, C) + d(T (·),−K)) + IintB(x̄,δ1)(·)](u)

= γ[∂d(·, C)(u) + ∂d(T (·),−K)(u)] + ∂IintB(x̄,δ1)(u)

= γ[BX∗ ∩NC(u) + T ∗(BY ∗ ∩N−K(T (x̄)))].

By taking δ > 0 such that B(x̄, δ) ⊂ intB(x̄, δ1), we get (14).
The assertion of (ii) follows directly from Theorem 3.2 and the calculation of

D∗S−1(u, 0)(y∗).
Consider the set-valued map S defined by a convex inequality system, i.e.,

S(y) := {x ∈ X | f(x) ≤ y},

where f : X → R ∪ {+∞} is a lower semicontinuous proper convex function. Let
x̄ ∈ M(0) = C ∩ S(0). If f(x̄) < 0, then it is easy to show that M is calm at (0, x̄)
by the Robinson–Ursescu theorem (see [27, 10]). In this special case, the conditions
of Theorem 3.2 can be refined.

Theorem 3.3. Consider the set-valued maps S,M : Y ⇒ X defined as

S(y) = {x ∈ X | f(x) ≤ y}

and M(y) = C∩S(y), where C is a closed convex subset of X and f : X → R∪{+∞}
is a lower semicontinuous proper convex function. Let x̄ ∈ C be a given point such
that f(x̄) = 0. Consider the following conditions:

(a) M has a local error bound at (0, x̄).
(b) {C × {0}, epif} is locally linearly regular around (x̄, 0).
(c) There exist δ, γ > 0 such that for all h ∈ X, u ∈ B(x̄, δ) ∩M(0),

d(h, TM(0)(u)) ≤ γ max{d(h, TC(u)), d((h, 0), Tepif ((u, 0)))}.

(d) There exist δ, γ > 0 such that for all u ∈ M(0) ∩B(x̄, δ),

(NM(0)(u) ∩BX∗) ×BR ⊂ γ[(NC(u) ∩BX∗) ×BR + Nepif ((u, 0)) ∩BX∗×R].
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(e) Either (i) or (ii) holds:
(i) bd∂f(x̄) ∩ −bdNC(x̄) �= ∂f(x̄) ∩ −NC(x̄);
(ii) bd∂f(x̄) ∩ (−bdNC(x̄)) = ∅, ∂∞f(x̄) ∩ −NC(x̄) = {0} and either C is

normally compact around x̄ or epif is normally compact around (x̄, 0).
Then (e) =⇒ (d) ⇐⇒ (c) ⇐⇒ (b) =⇒ (a).

Proof. It is clear that conditions (c) and (d) can be rewritten as

d(h, TM(0)(u)) = d((h, 0), T(C×{0})∩epif ((u, 0)))

≤ γ max{d((h, 0), TC×{0}((u, 0))), d((h, 0), Tepif ((u, 0)))}(15)

and

NM(0)×{0}((u, 0)) ∩BX∗×R ⊂ γ(NC×{0}((u, 0)) ∩BX∗×R + Nepif ((u, 0)) ∩BX∗×R).
(16)

We can see from Theorem 2.1 that conditions (15) and (16) are equivalent to the
condition that there exist δ, γ > 0 such that

d((x, 0), C × {0} ∩ epif) ≤ γ max{d(x,C), d((x, 0), epif)} ∀x ∈ B(x̄, δ),

which is equivalent to (b) and implies (a) by Proposition 3.1 and Theorem 3.1.
In the following we shall prove that (e) implies (d). Suppose that (i) of (e) is

satisfied. Then, since both ∂f(x̄) and NC(x̄) are strongly closed in X∗, it follows that

int∂f(x̄) ∩ −NC(x̄) �= ∅ or ∂f(x̄) ∩ −intNC(x̄) �= ∅.(17)

We now show that M(0) = {x̄}, i.e., C × {0} ∩ epif = {(x̄, 0)}. Indeed, if the first
condition of (17) holds, then there exist x∗ ∈ int∂f(x̄)∩−NC(x̄) and δ > 0 such that
B(x∗, δ) ⊂ ∂f(x̄). In other words,

δ‖x− x̄‖ + 〈x∗, x− x̄〉 ≤ f(x) − f(x̄) ∀x ∈ X,

〈x∗, x− x̄〉 ≥ 0 ∀x ∈ C.

Hence for any x with (x, 0) ∈ C × {0} ∩ epif , we have

δ‖x− x̄‖ ≤ δ‖x− x̄‖ + 〈x∗, x− x̄〉 ≤ f(x) − f(x̄) ≤ 0,

and hence x = x̄. This shows our claim. If the second condition of (17) holds, we can
prove our claim similarly. Therefore, M(0) ∩ B(x̄, δ) = {x̄}. On the other hand, the
condition (17) yields that

0 ∈ int(∂f(x̄) + NC(x̄)).

Hence, there exists ε > 0 such that for any x∗ ∈ εBX∗ there exist x∗
1 ∈ ∂f(x̄),

x∗
2 ∈ NC(x̄) such that x∗ = x∗

1 + x∗
2, and hence for every r ∈ R with |r| ≤ ε,

(x∗, r) = (x∗
1,−1) + (x∗

2, r + 1) ∈ Nepif (x̄, 0) + NC×{0}(x̄, 0).

This implies that

Nepif (x̄, 0) + NC×{0}(x̄, 0) = X∗ × R.

Therefore, for every u ∈ M(0) ∩B(x̄, δ), we have

Nepif (u, 0) + NC(u) × R = X∗ × R = NM(0)(u) × R.(18)
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By Proposition 4 in [16], (18) implies that there exists some γ > 0 such that

(NM(0)(u) ∩BX∗) ×BR ⊂ γ((NC(u) ∩BX∗) ×BR + Nepif ((u, 0)) ∩BX∗×R).

Finally, assume that (ii) of (e) holds. If 0 ∈ int∂f(x̄), then 0 ∈ int∂f(x̄)∩−NC(x̄).
This means that the first case of (17) is satisfied and that the conclusion follows.
Suppose that 0 ∈ bd∂f(x̄). If 0 ∈ −intNC(x̄), the case reduces to the second case of
(17); if 0 ∈ −bdNC(x̄), then it leads to a contradiction. It remains to check the case
of 0 �∈ ∂f(x̄). Then one has

∂f(x̄) ∩ −NC(x̄) = ∅ or ∂f(x̄) ⊂ −intNC(x̄).(19)

Suppose that the second case of (19) holds. If ∂f(x̄) = ∅, then we are back to the
first case of (19). Hence, assume that ∂f(x̄) �= ∅. Then the second case of (19), along
with (ii), yields (i).

We now consider the first case of (19). We claim, in this case, that

Nepif ((x̄, 0)) ∩ (−NC×{0}((x̄, 0))) = {(0, 0)}.(20)

Indeed, ∂∞f(x̄) ∩ (−NC(x̄)) = {0} is equivalent to Nepif (x̄, 0) ∩ (−NC(x̄) × {0}) =
{(0, 0)}; ∂f(x̄)∩(−NC(x̄)) = ∅ is equivalent to Nepif (x̄, 0)∩−(NC(x̄)×(0,+∞)) = ∅.
Let (x∗, r) ∈ Nepif (x̄, 0) ∩ (−NC×{0}(x̄, 0)). Then x∗ ∈ −NC(x̄) and r ≥ 0, and then

〈x∗, x− x̄〉 + r(f(x) + ε) ≤ 0 ∀x ∈ domf, ε > 0.

Taking x = x̄ in the above inequality, one deduces that r = 0. This, together with
∂∞f(x̄) ∩ −NC(x̄) = {0}, implies that x∗ = 0. Hence, our claim is proved and hence
(d) is true by Lemma 3.1.

It has been proved by Henrion and Jourani [10, Theorem 3.3] that M is calm at
(0, x̄) if condition (e) is satisfied.

The following example in [10] will show that (d) does not imply (e), in general.
Example. Let X = C = R, x̄ = 0, and f(x) = max{x, 0}. Then

M(y) =

{
∅ if y < 0,

(−∞, y] if y ≥ 0.

Hence x̄ ∈ M(0) = −R+. It is obvious that

NM(0)(x̄) = R+, NC(x̄) = {0}, and Nepif ((x̄, 0)) = {(r1, r2) | r2 ≤ −r1, r1 ≥ 0}.

It is easy to verify that

NM(0)(x̄) × R = NC(x̄) × R + Nepif ((x̄, 0)) = R+ × R

and

(NM(0)(x̄) ∩ [−1, 1]) × [−1, 1] ⊂ 2((NC(x̄) ∩ [−1, 1]) × [−1, 1] + Nepif ((x̄, 0))

∩ ([−1, 1] × [−1, 1])).

Let δ be an arbitrary positive number. For every u ∈ M(0) ∩B(x̄, δ) with u �= x̄, we
have

NM(0)(u) = {0}, NC(u) = {0}, and Nepif ((u, 0)) = {(0, r2) | r2 ≤ 0}.



370 WEN SONG

Hence

NM(0)(u) × R = NC(u) × R + Nepif ((u, 0)) = {0} × R

and

(NM(0)(u) ∩ [−1, 1]) × [−1, 1] ⊂ ((NC(u) ∩ [−1, 1]) × [−1, 1] + Nepif ((u, 0))

∩ ([−1, 1] × [−1, 1])).

Therefore condition (d) in Theorem 3.3 holds true. On the other hand, since ∂f(x̄) =
[0, 1] and NC(x̄) = {0}, we have bd∂f(x̄) ∩ −bdNC(x̄) = ∂f(x̄) ∩ −NC(x̄) = {0}.
This shows that conditions (i) and (ii) of (e) do not hold.
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CONVERGENT LAGRANGIAN AND CONTOUR CUT METHOD
FOR NONLINEAR INTEGER PROGRAMMING WITH A

QUADRATIC OBJECTIVE FUNCTION∗
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Abstract. In this paper we present an efficient exact solution method for solving nonlinear
separable integer programming problems with a quadratic objective function. The proposed method
combines the Lagrangian dual method with a duality reduction scheme using contour cut. At each
iteration of the algorithm, lower and upper bounds of the problem are determined by the Lagrangian
dual search. To eliminate the duality gap, a novel cut-and-partition scheme is derived by exploring
the special structure of the quadratic contour. The method finds an exact solution of the problem
in a finite number of iterations. Computational results are reported for problems with up to 2000
integer variables. Comparison results with other methods are also presented.

Key words. nonlinear integer programming, quadratic integer programming, Lagrangian relax-
ation, duality theory, objective contour cut
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1. Introduction. Consider the following nonlinear integer programming prob-
lem with a quadratic objective function:

(P ) min q(x) =

n∑
j=1

(
1

2
cjx

2
j + djxj

)

s.t. gi(x) =

n∑
j=1

gij(xj) ≤ bi, i = 1, . . . ,m,

x ∈ X = {x | lj ≤ xj ≤ uj , xj integer, j = 1, . . . , n},

where gij ’s are continuous functions and lj and uj are integer lower and upper bounds
of xj for j = 1, . . . , n. Two cases of quadratic objective functions are considered first
in this paper: (a) q(x) is a convex function, i.e., cj > 0 for j = 1, . . . , n, and (b)
q(x) is a concave function, i.e., cj < 0 for j = 1, . . . , n. Problems with an indefinite
quadratic objective function will be considered later in the paper as an extension.

Integer programming models with a convex quadratic objective function have
various applications, including capital budgeting [27], [36], capacity planning [9], and
optimization problems from graph theory [2], [26]. An important class of applications
of problem (P ) arises in portfolio selection models with discrete features (see [1], [6],
[23], [31]). It was shown in [41], [42] that the Markowitz mean-variance model [33]
can be simplified to a separable problem formulation of (P ) by using market indices
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together with some additional variables and constraints. A method for reformulating
general nonlinear programs to separable forms is discussed in [37].

Concave quadratic cost functions are often encountered in real-world integer pro-
gramming models involving economies of scale (see [19], [39]), which corresponds to
the economic phenomenon of “decreasing marginal cost.” The continuous version of
problem (P ) with q(x) being concave and gi(x) linear or convex quadratic has been
extensively studied (see, e.g., [7], [14], [39], [24], [43], [48]) and has been considered the
standard test problem in concave minimization. Its methods exploit the special struc-
tures of quadratic functions and the extreme point property of concave programming
in which the minimum of a concave function over a polyhedron is always achieved
at one of its extreme points. There are, however, few methods in the literature for
concave integer programming. Branch-and-bound methods based on continuous re-
laxation and convex underestimating were proposed in [4], [5], [8], [9], [11] for solving
concave integer problems over a polyhedron.

Existing methods in the literature for nonlinear separable integer programming
problems are mainly dynamic programming–based methods and continuous relaxation–
based branch-and-bound methods. When an integer programming problem is sepa-
rable, dynamic programming can be used to find its optimal solution (see [12], [13],
[25]). Dynamic programming, however, suffers from the curse of dimensionality when
m is large. Marsten and Morin [34] proposed a method that uses a dynamic pro-
gramming technique to generate efficient feasible solutions and prunes nonpromising
incomplete feasible solutions by a branch-and-bound strategy. Various branch-and-
bound methods and their combination with dynamic programming were proposed for
nonlinear knapsack-type problems (see [9], [10], [22], [35], [46])—in particular, con-
vex quadratic knapsack problems [15], [36]. To guarantee the global optimality, the
continuous relaxation–based branch-and-bound methods often require the convexity
of all q and gi’s.

The Lagrangian dual method has been a powerful method in dealing with discrete
optimization problems. The separability of the primal problem, when it exists, allows
one to solve the Lagrangian relaxation by decomposition, thus searching efficiently
for the dual optimal solution. The optimal dual value provides a lower bound for the
optimal value of the objective function of the primal problem. The Lagrangian dual
method, however, does not provide an optimal solution or even a feasible solution to
the primal problem, in most situations, due to the existence of a duality gap (see [3],
[17], [18], [20], [40]). Nonlinear Lagrangian formulations and convexification methods
were proposed as attempts to eliminate the duality gap [29], [32], [44], [45]. In spite of
a theoretical advantage of achieving a zero duality gap, certain computational issues
in the implementation of the nonlinear Lagrangian dual methods remain unsolved due
to the destruction of the separability in the primal problem when adopting a nonlinear
Lagrangian formulation.

In this paper we develop a new exact method for problem (P ). The framework
of the proposed algorithm is a combination of the Lagrangian dual method and an
objective contour cut-and-partition approach. The key motivation behind our method
is an observation that cutting certain integer boxes inside and outside the ellipsoids
formed by the objective contours still retains the optimal solution to (P ) in the revised
domain. This in turn leads to successive reductions of the duality gap of the primal
problem. At each iteration, the algorithm first finds a lower bound of the problem
using the Lagrangian dual search. To reduce the duality gap, a novel contour cut
method is used to remove certain integer boxes that do not contain any feasible
solution better than the incumbent. The revised integer domain is then partitioned
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into a union of integer subboxes to facilitate the dual search on the revised integer
domain in the next iteration. Numerical results show that the proposed algorithm
is efficient and robust in solving large-scale instances of (P ) with up to 2000 integer
variables.

The paper is organized as follows. In section 2, we first introduce some pre-
liminary results in Lagrangian duality theory for general singly constrained integer
programming. New solution properties of the Lagrangian relaxation problem are pre-
sented. An exact dual search procedure is also described in section 2. In section
3, the quadratic contour cuts and the partition scheme are derived. We motivate
the algorithm in section 4 by a small numerical example. The algorithm for singly
constrained problem (P ) is then formally described. Extensions to problems with
multiple constraints and problems with an indefinite quadratic objective function are
discussed in sections 5 and 6, respectively. Computational results are reported in
section 7 for problems with different types of objective functions and constraint func-
tions. Comparison results with other existing methods are also presented in section
7. Finally, a short concluding remark is given in section 8.

2. Lagrangian duality and dual search. In this section, we present some
basic properties of the Lagrangian dual for general singly constrained integer pro-
gramming. The relationship between the perturbation function and the Lagrangian
dual is established. Solution properties of the Lagrangian relaxation problem are also
derived. Furthermore, we will describe an exact dual search scheme specifically for
singly constrained integer programming.

2.1. Lagrangian dual. Consider the following singly constrained integer pro-
gram:

(P1) min
x∈X

{f(x) | g(x) ≤ b},(2.1)

where f and g are continuous functions on Rn and X is an arbitrary finite integer set.
The Lagrangian relaxation of (P1) is

(Lλ) d(λ) = min
x∈X

L(x, λ),(2.2)

where

L(x, λ) = f(x) + λ(g(x) − b)), λ ≥ 0.(2.3)

Let

S = {x ∈ X | g(x) ≤ b},
f∗ = min

x∈S
f(x).

The following weak duality holds:

d(λ) ≤ f(x) ∀x ∈ S, λ ≥ 0.(2.4)

Therefore d(λ) always provides a lower bound for f∗. The Lagrangian dual problem
of (P1) is

(D) max
λ≥0

d(λ).(2.5)
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Let λ∗ be the optimal solution to (D). The nonnegative constant f∗ − d(λ∗) is called
the duality gap of the problem and f(x)−d(λ∗) is called a duality bound for any x ∈ S.

We assume in the following that S �= ∅. Define the perturbation function of (P1)
as

w(y) = min
x∈X

{f(x) | g(x) ≤ y}, y ∈ R.(2.6)

The domain of w is Y = [τ,+∞), where τ = minx∈X g(x). It is easy to see that w is
a nonincreasing function on Y and it is continuous from the right. Since X is finite,
there exists a finite number of points ai ∈ [τ,+∞) (i = 1, . . . ,K) such that w can be
expressed as

w(y) = fi for ai ≤ y < ai+1, i = 1, . . . ,K,(2.7)

where τ = a1 < a2 < · · · < aK < aK+1 = +∞, and f1 > f2 > · · · > fK . By the
assumption that S �= ∅, we have a1 ≤ b. If we further assume that X \ S �= ∅ and
minx∈X f(x) < f∗, we then have b < aK . Let

Φ = {(ai, fi) | i = 1, . . . ,K}.

A point in Φ is called a corner point of w(y).
Define the convex envelope function of w to be the maximum convex function

underestimating w:

ψ(y) = max{h(y) | h is convex on Y, h(ỹ) ≤ w(ỹ) ∀ỹ ∈ Y }.(2.8)

It is easy to see that ψ is a nonincreasing piecewise linear functions on Y . We have

ψ(y) = max
λ,r∈R

{λy + r | λỹ + r ≤ w(ỹ) ∀ỹ ∈ Y },

or equivalently,

ψ(y) = max
λ∈R−,r∈R

(λy + r)(2.9)

s.t. λai + r ≤ fi, i = 1, . . . ,K.

For any fixed y ∈ Y , a dual variable μi ≥ 0 is introduced for each constraint λai +r ≤
fi, i = 1, . . . ,K. Dualizing the linear program (2.9) yields

ψ(y) = min

{
K∑
i=1

μifi

∣∣∣∣∣
K∑
i=1

μiai ≤ y,

K∑
i=1

μi = 1, μi ≥ 0, i = 1, . . . ,K

}
.(2.10)

The perturbation function characterizes the duality by the following theorem.
Theorem 1. Let (−λ∗, r∗) and μ∗ be optimal solutions to (2.9) and (2.10) with

y = b, respectively. Then
(i) λ∗ is an optimal solution to the dual problem (D) and

ψ(b) = max
λ≥0

d(λ) = d(λ∗).(2.11)

(ii) for each i with μ∗
i > 0, any x̄ ∈ X satisfying (g(x̄), f(x̄)) = (ai, fi) is an

optimal solution to the Lagrangian problem (Lλ∗).
Proof. See [28], [32], and [30].
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The following results investigate the primal feasibility and infeasibility of the
solutions to the Lagrangian relaxation.

Theorem 2. Assume that S �= ∅ and X \ S �= ∅.
(i) Let λ∗ be an optimal solution to (D). Then, there exists an x̃ ∈ S that solves

(Lλ∗). Moreover, if d(λ∗) < f∗, then there exists a ỹ ∈ X \ S that solves (Lλ∗).
(ii) If for some λ∗ ≥ 0 there exist an x̃ ∈ S and a ỹ ∈ X \S that both solve (Lλ∗),

then λ∗ must be an optimal solution to the dual problem (D).
Proof. (i) By (2.10), there exist μ∗

i ≥ 0, i = 1, . . . ,K, that solve the following
problem:

ψ(b) = min

K∑
i=1

μifi,(2.12)

s.t.

K∑
i=1

μiai ≤ b,

K∑
i=1

μi = 1, μi ≥ 0, i = 1, . . . ,K.

Let I = {i | μ∗
i > 0}. It follows from (2.12) that∑

i∈I

μ∗
i (ai − b) ≤ 0.(2.13)

This implies that there exists at least one i ∈ I such that ai ≤ b. Let x̃ be such that
(g(x̃), f(x̃)) = (ai, fi). Then x̃ ∈ S, and by Theorem 1(ii), x̃ solves (Lλ∗).

Suppose that ai ≤ bi for all i ∈ I. If
∑K

i=1 μ
∗
i ai = b, then ai = b for all i ∈ I.

Hence I is a singleton and μ∗
i = 1, i ∈ I. By Theorem 1(i) and (2.12), we have

d(λ∗) = ψ(b) = fi = w(ai) = w(b) = f∗, i ∈ I,

which contradicts the assumption of d(λ∗) < f∗. If
∑K

i=1 μ
∗
i ai < b, then we claim

that there do not exist k, l ∈ I such that fk �= fl. Otherwise, suppose that fk > fl,
k �= l. Define μ̃ = (μ̃1, . . . , μ̃K) as follows: μ̃i = μ∗

i if i �= k and i �= l; μ̃k = μ∗
k − ε,

μ̃l = μ∗
l + ε, where ε > 0. We can always choose a sufficiently small ε > 0 such that

μ̃k > 0 and
∑

i∈I μ̃iai < b. Thus μ̃ is feasible for problem (2.12). However, we have∑
i∈I

μ̃ifi =
∑
i∈I

μ∗
i fi + ε(fl − fk) <

∑
i∈I

μ∗
i fi,

which contradicts that μ∗ is an optimal solution to (2.12). Therefore, fk = fl for any
k, l ∈ I. It then follows that ψ(b) = fi for any i ∈ I. Also, since ai ≤ b for i ∈ I,
w(ai) ≥ w(b). Thus, by Theorem 1(i), we have

d(λ∗) = ψ(b) = fi = w(ai) ≥ w(b) = f∗, i ∈ I,

which contradicts the assumption of nonzero duality gap.
The above arguments conclude that there exists an i ∈ I such that ai > b. Let

ỹ be such that (g(ỹ), f(ỹ)) = (ai, fi). Then ỹ is infeasible, and by Theorem 1(ii), ỹ
solves (Lλ∗).
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(ii) For any λ ≥ 0, if λ∗ > λ, then

d(λ) ≤ L(ỹ, λ) = f(ỹ) + λ(g(ỹ) − b) < f(ỹ) + λ∗(g(ỹ) − b) = L(ỹ, λ∗) = d(λ∗).

If λ∗ < λ, then

d(λ) ≤ L(x̃, λ) = f(x̃) + λ(g(x̃) − b) ≤ f(x̃) + λ∗(g(x̃) − b) = L(x̃, λ∗) = d(λ∗).

Thus λ∗ is an optimal solution to (D).
Theorem 3. If the dual optimal solution λ∗ = 0, then any feasible solution to

(Lλ∗) is an optimal solution to (P1) and f∗ = d(λ∗). Conversely, if there is a feasible
solution x∗ in the optimal solution set of (Lλ) with λ = 0, then λ = 0 is an optimal
solution to (D) and x∗ is an optimal solution to (P1) with f(x∗) = d(λ∗).

Proof. Let x∗ be a feasible solution to (Lλ∗) with λ∗ = 0. Since

f(x∗) = min
x∈X

L(x, 0) = min
x∈X

f(x) ≤ min
x∈S

f(x) = f∗,(2.14)

we imply that x∗ is optimal to (P1) and f(x∗) = f∗ = d(λ∗). Conversely, if x∗ solves
(Lλ) with λ = 0 and is feasible for (P1), then x∗ must be optimal to (P1). Moreover,
by weak duality, we have d(λ) ≤ f(x∗) = d(0) for all λ ≥ 0. Thus λ = 0 is the dual
optimal solution.

2.2. Dual search scheme. Motivated by the relationship between the convex
envelope of the perturbation function and the optimal dual value, we can derive an
exact dual search solution procedure for (D). Geometrically, the procedure visits
the corner points of the perturbation function w(y) at each iteration and eventually
determines the optimal Lagrangian multiplier λ∗, where −λ∗ is exactly the slope of
the line segment in the graph of ψ(y) that intersects line y = b. The procedure starts
by finding the corner point (a1, f1) and the corner point (aK , fK) in Φ. At each
iteration, the Lagrangian relaxation (Lλ) is solved, where −λ is the slope of the line
connecting two corner points that correspond to the feasible incumbent solution and
an infeasible solution with the least violation of the constraint up to the current stage,
respectively. The distance between the feasible incumbent solution and the infeasible
solution with the least constraint violation reduces monotonically in the iteration
process. The algorithm terminates when a feasible optimal solution and an infeasible
optimal solution to (Lλ) are found simultaneously or when λ = 0. By Theorems 2
and 3, an optimal dual solution is achieved when the algorithm terminates.

Procedure 1 (dual search procedure).
Step 1. Calculate

x0 = arg min
x∈X

g(x), y0 = arg min
x∈X

f(x).

(i) If g(x0) > b, stop. Problem (P1) has no feasible solution.
(ii) If g(y0) ≤ b, stop. We conclude that y0 is an optimal solution to (P1) and

λ∗ = 0 is the optimal solution to (D).
(iii) Let f−

0 = f(x0), g−0 = g(x0), f+
0 = f(y0), g+

0 = g(y0). Set k = 0.
Step 2. Compute

λk = −f+
k − f−

k

g+
k − g−k

.
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Step 3. Solve (Lλk
). Let xk and yk be the optimal solutions to (Lλk

) with a
minimum value of g and a maximum value of g, respectively.

(i) If g(xk) ≤ b < g(yk), set x̃ = xk and ỹ = yk, stop. λ∗ = λk is the optimal
solution to the dual problem (D).

(ii) If g(yk) ≤ b, then set

f−
k+1 = f(yk), f+

k+1 = f+
k ,

g−k+1 = g(yk), g+
k+1 = g+

k .

(iii) If g(xk) > b, then set

f−
k+1 = f−

k , f+
k+1 = f(xk),

g−k+1 = g−k , g+
k+1 = g(xk).

Set k := k + 1. Return to Step 2.
Theorem 4. Procedure 1 stops at an optimal solution to (D) within a finite

number of iterations.
Proof. The proof of the finite termination of the procedure is similar to the one

in [29]. The optimality of λ∗ in Step 1(ii) and Step 3(i) follows from Theorems 2 and
3.

It is clear that if Procedure 1 does not stop at Step 1, then the procedure stops
at Step 3(i) and generates a lower bound d(λ∗) to (P1), a feasible solution x̃, and an
infeasible solution ỹ, where both x̃ and ỹ solve (Lλ∗).

The efficiency of the dual search procedure depends on whether or not the La-
grangian relaxation problem (Lλ) can be easily solved. Let qj(xj) = (1/2)cjx

2
j + djxj

for j = 1, . . . , n. Consider the singly constrained case of (P ):

(Ps) min q(x) =

n∑
j=1

qj(xj)

s.t. g(x) =

n∑
j=1

gj(xj) ≤ b,

x ∈ X.

A subproblem (SP ) of (Ps) is formed by replacing X with a subset X̃ ⊆ X. The
Lagrangian relaxation problem of (SP ) can be written as

d(λ) = min
x∈X̃

L(x, λ) = −λb +

n∑
j=1

min
xj∈X̃j

Lj(xj , λ),(2.15)

where Lj(xj , λ) = qj(xj) + λgj(xj), X̃j = {xj | l̃j ≤ xj ≤ ũj , xj integer}. The

complexity of a total enumeration of evaluating d(λ) is O(
∑n

j=1(ũj − l̃j + 1)). For
problems with convex q(x) and linear constraints, it is possible to derive a more

efficient procedure for computing d(λ) by exploiting the convex hull of qj on X̃j (see
[16]). For nonlinear constraints, consider the following two cases: (a) qj(xj) and gj(xj)
are convex; (b) qj(xj) and gj(xj) are concave. For case (a), the optimal solution of the
one-dimensional integer problem in (2.15) can be obtained by comparing the values
of Lj on two neighboring integer points of the continuous optimal solution of Lj on

[l̃j , ũj ]. For case (b), since Lj is a concave function of xj , the integer minimum of Lj

over [l̃j , ũj ] is either l̃j or ũj .
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Therefore, the Lagrangian relaxation problems of the subproblems (SP ) can be
solved efficiently by decomposition. Moreover, the solutions xk and yk in Step 3 of
Procedure 1 can also be easily obtained by computing the minimum and maximum
values of gj , respectively, when solving the one-dimensional problem in (2.15).

3. Quadratic contour cut. In this section, we will establish a cut-and-partition
scheme by exploiting the geometry of the quadratic contour of the objective function
q(x). The cut-and-partition technique will be used later on to develop an exact
solution method for solving (P ).

Let α, β ∈ Zn, where Zn denotes the set of integer points in Rn. Denote by [α, β]
the box (hyperrectangle) formed by α and β, [α, β] = {x | αj ≤ xj ≤ βj , j = 1, . . . , n}.
Let 〈α, β〉 denote the set of integer points in [α, β],

〈α, β〉 = Πn
j=1〈αj , βj〉 = 〈α1, β1〉 × 〈α2, β2〉 × · · · × 〈αn, βn〉.

The set 〈α, β〉 is called an integer box. For convenience, we define [α, β] = 〈α, β〉 = ∅
if α �≤ β.

3.1. Ellipse of quadratic contour. Let q(x) be the quadratic function defined
in (P ). Let τ = −

∑n
j=1 d

2
j/(2cj). Consider the ellipse contour of q(x),

n∑
j=1

[(1/2)cjx
2
j + djxj ] = v,(3.1)

where v ≥ τ when cj > 0 (j = 1, . . . , n) and v ≤ τ when cj < 0 (j = 1, . . . , n). The
center of ellipse (3.1) is

o = (−d1/c1, . . . ,−dn/cn)T .(3.2)

The length of the jth axis of ellipse (3.1) is

2rj = 2
√
|2(v − τ)/cj |.(3.3)

Let E(v) denote the ellipsoid formed by the contour (3.1). Then

E(v) =

{
{x ∈ Rn | q(x) ≤ v} if q(x) is convex,
{x ∈ Rn | q(x) ≥ v} if q(x) is concave.

(3.4)

The minimum rectangle that encloses the ellipsoid E(v) is [a, b] with

a = (o1 − r1, . . . , on − rn)T ,

b = (o1 + r1, . . . , on + rn)T ,

where o is defined in (3.2) and rj is defined in (3.3). Let �t denote the maximum
integer less than or equal to t and �t� the minimum integer greater than or equal to t.
Then the minimum integer box containing all the integer points in the ellipsoid E(v)
can be expressed as M(v) = 〈α, β〉, where

α = (�o1 − r1�, . . . , �on − rn�)T ,(3.5)

β = (�o1 + r1, . . . , �on + rn)T .(3.6)
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Let x̃ be an integer point inside the ellipsoid E(v). Let N(x̃) denote the integer
subbox inside E(v) with x̃ being one of its corner point. By the symmetry of E(v),
we have N(x̃) = 〈γ, δ〉, where

γ = (�o1 − |x̃1 − o1|�, . . . , �on − |x̃n − on|�)T ,(3.7)

δ = (�o1 + |x̃1 − o1|, . . . , �on + |x̃n − on|)T .(3.8)

Notice that if q(x̃) = v, then 〈γ, δ〉 is the maximum integer box inside E(v) that
passes through x̃.

3.2. Contour cuts of quadratic function. Consider the subproblem (SP ) of

the singly constrained problem (Ps) in subsection 2.2. Assume that X̃ ∩ S �= ∅ and

X̃ \ S �= ∅, where S is the feasible region of (Ps). Let qs denote the optimal value of
(SP ). Let λ∗ > 0 be the dual optimal solution to (SP ). Suppose that the duality
gap of (SP ) is nonzero, i.e., d(λ∗) < qs. By Theorem 2, the dual search procedure

described in subsection 2.2 can find two optimal solutions, x̃ ∈ S and ỹ ∈ X̃ \ S, to
the Lagrangian relaxation problem (Lλ∗). The following always holds:

q(ỹ) < d(λ∗) < qs ≤ q(x̃).(3.9)

In the following we will show that cutting certain integer boxes from X̃ will not remove
any optimal solution of (SP ) after recording x̃. We consider the contour cut for the
two cases, where q(x) is either convex or concave.

Case (a). q(x) is convex, i.e., cj > 0, j = 1, . . . , n. Let v1 = q(x̃) and v2 = d(λ∗).
By (3.9) and the convexity of q, either x̃ is the optimal solution of (SP ) or the optimal
solution still lies in the set

Ω = (X̃ ∩ E(v1)) \ E(v2),(3.10)

where E(v1) and E(v2) are defined by (3.4). In other words, removing sets X̃ \E(v1)

and E(v2) from X̃ will not miss any optimal solution to (SP ) after we record x̃. Since
both E(v1) and E(v2) are ellipsoids, it is difficult to calculate Ω in (3.10). We instead
outerapproximate Ω using integer boxes. More specifically, we consider a union of
boxes of which Ω is a subset. Note that set Ω is a finite set containing only integer
points. It is true that

X̃ ∩M(v1) ⊃ X̃ ∩ E(v1),(3.11)

where M(v1) is the minimum integer box enclosing all the integer points in E(v1).

Let B(v1) = X̃ ∩M(v1). Then B(v1) = 〈ᾱ, β̄〉, where

ᾱ = (max(l̃1, α1), . . . ,max(l̃n, αn))T ,(3.12)

β̄ = (min(ũ1, β1), . . . ,min(ũn, βn))T ,(3.13)

with α and β defined in (3.5) and (3.6), respectively.
By (3.9), the infeasible point ỹ is contained in the ellipsoid E(v2). Thus, the

integer box N(ỹ) = 〈γ, δ〉 is also contained in E(v2), where γ and δ can be found by
using (3.7)–(3.8). This, combined with (3.11), implies that

B(v1) \N(ỹ) ⊃ Ω.(3.14)

We further would like to cut x̃ from X̃ if x̃ ∈ B(v1) after recording x̃. Let T (x̃) = 〈α̃, β̃〉
be the integer box with (i) x̃ being one of its corner points and (ii) all edges starting
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Fig. 3.1. Contour cuts for Case (a).

from x̃ leaving the ellipsoid E(v1) and moving towards the boundaries of B(v1).
Specifically, T (x̃) can be determined by

α̃j =

{
min(x̃j , ᾱj), x̃j ≤ oj ,
min(x̃j , β̄j), x̃j > oj ,

(3.15)

β̃j =

{
max(x̃j , ᾱj), x̃j ≤ oj ,
max(x̃j , β̄j), x̃j > oj ,

(3.16)

where o is defined in (3.2) and ᾱ and β̄ are defined in (3.12) and (3.13), respectively.
Since x̃ is on the boundary of E(v1), we can cut T (x̃) from B(v1). We have

Ω̃ = [B(v1) \N(ỹ)] \ T (x̃) ⊃ Ω \ {x̃}.(3.17)

Figure 3.1 illustrates the contour cut process for Case (a).
Case (b). q(x) is concave, i.e., cj < 0, j = 1, . . . , n. Let v1 = d(λ∗) and v2 = q(x̃).

Then, by (3.9) and the concavity of q, the optimal solution of (SP ) must lie in the
set Ω defined in (3.10). Similar to Case (a), we have

B(v1) \N(x̃) ⊃ Ω.(3.18)

Since q(ỹ) < d(λ∗) = v1, ỹ is outside the ellipsoid E(v1). If ỹ is contained in B(v1),
then we can cut T (ỹ) from B(v1), where T (ỹ) = 〈α̃, β̃〉; α̃ and β̃ are defined in
(3.15)–(3.16), with x̃ replaced by ỹ. Therefore, we have

Ω̃ = [B(v1) \N(x̃)] \ T (ỹ) ⊃ Ω.(3.19)

Figure 3.2 illustrates the contour cut process for Case (b).
One clear conclusion is that after recording the feasible solution x̃, we can reduce

the domain of (SP ) from X̃ to Ω̃ without missing any optimal solution to (SP ). This
domain reduction process will improve the quality of the dual search, as witnessed in
the following sections.
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Fig. 3.2. Contour cuts for Case (b).

4. Convergent Lagrangian and contour cut method for singly con-
strained problems. In this section, we develop a convergent Lagrangian and contour
cut method for the singly constrained problem (Ps). The method will be extended in
section 5 to handle multiple constraints. We first motivate the method by an example
and then describe the method formally.

4.1. Motivation. To motivate the method, let us consider a two-dimensional
example with a concave quadratic objective function.

Example 1.

min q(x) = −1.5x2
1 + 2x1 − 2x2

2 + 8x2

s.t. g(x) = 3x2
1 − 2x1 + 2x2

2 − 6x2 ≤ 35,

x ∈ X = {x | −1 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 6 integer, j = 1, 2}.

The optimal solution of this problem is x∗ = (−1, 5)T with q(x∗) = −13.5. The
perturbation function of the example is illustrated in Figure 4.1. It can be observed
from Figure 4.1 that the point C that corresponds to the optimal solution x∗ is “hid-
den” above the convex envelope of the perturbation function, and thus the traditional
Lagrangian dual method will fail to find the optimal solution x∗.

Solving the dual problem of the example, we obtain the optimal multiplier λ0 =
0.6667 with d(λ0) = −23.5. The optimal solutions to (Lλ0) are x0 = (−1, 0)T and
y0 = (−1, 6)T . The current duality bound is q(x0) − d(λ0) = −3.5 + 23.5 = 20.

Now, let v0
1 = −23.5, v0

2 = −3.5. Applying the contour cut scheme in section 3
to the example by using (3.19), we obtain a revised domain

X1 = [B(v0
1) \N(x0)] \ T (y0),

where

B(v0
1) = X ∩M(v0

1) = 〈(−1, 0)T , (5, 6)T 〉 ∩ 〈(−3,−2)T , (5, 6)T 〉 = 〈(−1, 0)T , (5, 6)T 〉,
N(x0) = 〈(−1, 0)T , (2, 4)T 〉, T (y0) = {(−1, 6)T }.
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Fig. 4.2. Domain X and the objective contour cuts.

The ellipsoids E(v0
1), E(v0

2) and the integer boxes M(v0
1), N(x0), and T (y0) are

illustrated in Figure 4.2. It can be seen from Figures 4.1 and 4.2 that cutting sets
N(x0) and T (y0) from the domain X will remove the corner points A0 and B0 in
the plot of the perturbation function, and thus will raise the dual value. The revised
domain X1 and the corresponding perturbation function are shown in Figures 4.3 and
4.4, respectively. The optimal dual value of the revised problem is d(λ1) = −23.125
and the feasible and infeasible solutions of (Lλ1) are x1 = (0, 5)T , y1 = (0, 6)T . The
dual bound is reduced to q(x1) − d(λ1) = −10 + 23.125 = 13.125. Let v1

1 = −23.125
and v1

2 = −10. The ellipsoids E(v1
1), E(v1

2) and the integer boxes M(v1
1), N(x1), and

T (y1) are illustrated in Figure 4.3.
The above discussion reveals that the contour cut scheme described in section 3

will reduce the duality bound, and thus the duality gap, and will eventually expose
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Fig. 4.3. The revised domain X1.
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the “hidden” optimal point to the convex envelope of the perturbation function. In
fact, as we can foresee from Figure 4.4, one more contour cut will make the point
C lie on the convex envelope of the revised perturbation function, thus enabling the
dual search to find the optimal solution x∗.

4.2. Partition of a nonrectangular integer set. A key issue in the proposed
Lagrangian dual and contour cut method is how to partition the sets in the right-hand
sides of (3.17) and (3.19) into a union of integer boxes so that Lagrangian relaxation
and dual search can still be applied to the revised problems after a cutting process.
We have the following result.
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Lemma 1. Let A = 〈α, β〉 and B = 〈γ, δ〉, where α, β, γ, δ ∈ Zn, and α ≤ γ ≤
δ ≤ β. Then A \B can be partitioned into at most 2n integer boxes:

A \B =
{
∪n
j=1

(
Πj−1

i=1 〈αi, δi〉 × 〈δj + 1, βj〉 × Πn
i=j+1〈αi, βi〉

)}
(4.1)

∪
{
∪n
j=1

(
Πj−1

i=1 〈γi, δi〉 × 〈αj , γj − 1〉 × Πn
i=j+1〈αi, δi〉

)}
.

Proof. As illustrated in Figure 4.5, A \B can be expressed as

A \B = 〈α, β〉 \ 〈γ, δ〉 = (〈α, β〉 \ 〈α, δ〉) ∪ (〈α, δ〉 \ 〈γ, δ〉).(4.2)

Let C = 〈α, δ〉. Then, by (4.2), we have

A \B = (A \ C) ∪ (C \B).(4.3)

For j = 0, 1, . . . , n− 1, define

Aj = Πn
i=j+1〈αi, βi〉,

Cj = Πn
i=j+1〈αi, δi〉.

Then

Aj−1 \ Cj−1

= Πn
i=j〈αi, βi〉 \ Πn

i=j〈αi, δi〉
=

{
(〈αj , δj〉 × Πn

i=j+1〈αi, βi〉) ∪ (〈δj + 1, βj〉 × Πn
i=j+1〈αi, βi〉)

}
\ Πn

i=j〈αi, δi〉
=

{
(〈αj , δj〉 × Πn

i=j+1〈αi, βi〉) \ Πn
i=j〈αi, δi〉

}
∪ (〈δj + 1, βj〉 × Πn

i=j+1〈αi, βi〉)
=

{
〈αj , δj〉 × (Πn

i=j+1〈αi, βi〉 \ Πn
i=j+1〈αi, δi〉)

}
∪ (〈δj + 1, βj〉 × Πn

i=j+1〈αi, βi〉)
= {〈αj , δj〉 × (Aj \ Cj)} ∪ (〈δj + 1, βj〉 × Πn

i=j+1〈αi, βi〉).
(4.4)

Using the partition formulation (4.4) recursively for j = 1, . . . , n− 1, and noting that
A = A0, C = C0, An−1 \ Cn−1 = 〈αn, βn〉 \ 〈αn, δn〉 = 〈δn + 1, βn〉, we get

A \ C = ∪n
j=1

(
Πj−1

i=1 〈αi, δi〉 × 〈δj + 1, βj〉 × Πn
i=j+1〈αi, βi〉

)
.(4.5)

Similarly, we have

C \B = ∪n
j=1

(
Πj−1

i=1 〈γi, δi〉 × 〈αj , γj − 1〉 × Πn
i=j+1〈αi, δi〉

)
.(4.6)

Combining (4.3) with (4.5) and (4.6), we obtain (4.1).
As an example, let us consider the X1 in Figure 4.3. By using Lemma 1, X1 can

be partitioned into three integer boxes:

X1 = [〈(−1, 0), (5, 6)T 〉 \ 〈(−1, 0)T , (2, 4)T 〉] \ 〈(−1, 6)T , (−1, 6)T 〉
= [〈(3, 0)T , (5, 6)T 〉 ∪ 〈(−1, 5)T , (2, 6)T 〉] \ 〈(−1, 6)T , (−1, 6)T 〉
= 〈(3, 0)T , (5, 6)T 〉 ∪ 〈(0, 5)T , (2, 6)T 〉 ∪ 〈(−1, 5)T , (−1, 5)T 〉.

Lemma 1 shows that the revised domain Ω̃ in (3.17) or (3.19) can be partitioned
into a union of integer subboxes. The Lagrangian relaxation problem on the revised
domain (e.g., X1 in Example 1) can be easily solved by using decomposition. We will
refer to the cutting process in (3.17) or (3.19) and the partition of the complement set
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Fig. 4.5. Partition of A \B.

by formula (4.1) as the cut-and-partition scheme. It is easy to see that the number of
the new integer subboxes generated by partitioning set Ω̃ is at most 3n− 1.

In implementation, instead of performing dual search on the revised domain as
a whole, we apply the dual search procedure separately on each new integer subbox.
This will yield a better lower bound of the revised problem as proved in the following
lemma.

Lemma 2. Let

X̂ = ∪t
i=1X̂i,

Ŝ = {x ∈ X̂ | g(x) ≤ b},
Ŝi = {x ∈ X̂i | g(x) ≤ b}, i = 1, . . . , t,

d̂(λ) = min
x∈X̂

L(x, λ),

d̂i(λ) = min
x∈X̂i

L(x, λ), i = 1, . . . , t.

Further let λ̂∗ be the optimal solution of maxλ≥0 d̂(λ) and λ̂∗
i be the optimal solution

of maxλ≥0 d̂i(λ), i = 1, . . . , t. Then,

d̂(λ̂∗) ≤ min
1≤i≤t

d̂i(λ̂
∗
i ) ≤ min

x∈Ŝ
f(x).(4.7)

Proof. Since X̂i ⊆ X̂, d̂(λ) ≤ d̂i(λ) for all λ ≥ 0 and i = 1, . . . , t. We thus have

d̂(λ̂∗) ≤ d̂i(λ̂
∗
i ) for i = 1, . . . , t. This further leads to the first inequality in (4.7). On

the other hand, from the weak duality, we have d̂i(λ̂
∗
i ) ≤ minx∈Ŝi

f(x). This further

yields min1≤i≤t d̂i(λ̂
∗
i ) ≤ min1≤i≤t minx∈Ŝi

f(x) = minx∈Ŝ f(x), which is the second
inequality in (4.7).

It is clear from the above lemma that the minimum from among the dual values
of all integer subboxes provides a Lagrangian lower bound higher than the dual value
of the entire revised domain.
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4.3. The main algorithm. Based on the above discussion, a convergent La-
grangian and contour cut algorithm can be developed by combining the Lagrangian
relaxation with the cut-and-partition scheme. Let X0 = {X}. Initially, a dual search
procedure is applied to (Ps) to produce an optimal dual value d(λ0) together with
a feasible optimal solution x0 and an infeasible optimal solution y0 to (Lλ0). The
optimal dual value d(λ0) gives a lower bound of the problem and x0 is set to be the
incumbent. At the kth iteration, the integer subbox with the minimum dual value
is selected from Xk. The cut-and-partition scheme is then applied to that integer
subbox. For each newly generated integer subbox, Procedure 1 is applied to deter-
mine its dual value together with a feasible solution and an infeasible solution. The
current best feasible solution is recorded as the incumbent solution and all integer
subboxes whose dual value is greater than or equal to the objective function value of
the incumbent are removed. The process repeats until there is no integer subbox in
Xk and the incumbent solution is the optimal solution to (Ps) when the algorithm
terminates.

We now formally present the algorithm.
Algorithm 1 (convergent Lagrangian and contour cut algorithm for (Ps)).
Step 0 (initialization). Apply the dual search procedure to (Ps) and obtain the

dual value d(λ0), a feasible solution x0, and an infeasible solution y0. Set LB = d(λ0)
as the lower bound, xopt = x0, fopt = q(xopt), X

0 = X, k = 0.
Step 1. Select the integer subbox 〈αk, βk〉 from Xk that yields the minimum lower

bound LB. Let xk, yk ∈ 〈αk, βk〉 be the feasible and infeasible solutions generated
by Procedure 1, respectively.

Step 2 (contour cut and partition).
Case (a). q is a convex function. Set v1 = q(xk), v2 = LB; calculate integer boxes

B(v1), N(yk), and T (xk). Use (4.1) to partition the set

Y k+1 = [B(v1) \N(yk)] \ T (xk).(4.8)

Case (b). q is a concave function. Set v1 = LB, v2 = q(xk); calculate integer
boxes B(v1), N(xk), and T (yk). Use (4.1) to partition the set

Y k+1 = [B(v1) \N(xk)] \ T (yk).(4.9)

Step 3 (dual search).
(i) Apply Procedure 1 to each integer subbox 〈α, β〉 ∈ Y k+1 with X replaced by

〈α, β〉. Let

x̃0 ∈ arg min
x∈〈α,β〉

g(x), ỹ0 ∈ arg min
x∈〈α,β〉

q(x).

One of the following three cases happens: (a) If g(x̃0) > b, then remove 〈α, β〉 from
Y k+1; (b) if g(ỹ0) ≤ b, then set xopt = ỹ0 and fopt = q(ỹ0) if f(ỹ0) < fopt, and remove
〈α, β〉 from Y k+1; (c) if g(x̃0) ≤ b and g(ỹ0) > b, then Procedure 1 generates a dual
value on the integer box, a feasible solution, and an infeasible solution. If the dual
value is greater than or equal to fopt, then remove 〈α, β〉 from Y k+1. Compute the
objective function value of the feasible solution and update xopt and fopt if necessary.

(ii) Set Xk+1 = Y k+1 ∪ (Xk \ {〈αk, βk〉}).
Step 4 (termination). If Xk+1 is empty, stop. xopt is an optimal solution to (Ps).

Otherwise, set k := k + 1, goto Step 1.
Theorem 5. Algorithm 1 stops within a finite number of iterations with either

an optimal solution to (Ps) being found or an infeasibility of (Ps) being reported.
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Proof. The finite convergence is obvious by noting that X is a finite integer set,
and at each iteration, xk and yk are cut from Xk in Step 2 and are not included in
Xk+1. From the discussion in section 3, no feasible solution better than xk will be
cut from Xk in Step 2. Also, by weak duality, no feasible solution better than xk will
be cut from Xk in Step 3. Thus, at each iteration, either xopt is already the optimal
solution or there is an optimal solution in Xk. Therefore, xopt must be an optimal
solution to the original problem when the algorithm stops at Step 4.

5. Extension to problems with multiple constraints. The algorithm de-
veloped in section 4 can be extended to deal with multiply constrained cases of (P ).

Consider a subproblem (SP ) of (P ) with X replaced by an integer subbox X̃ ⊆ X.
The Lagrangian dual of (SP ) is

max
λ∈R

m
+

d(λ),(5.1)

where

d(λ) := min
x∈X̃

[
q(x) +

m∑
i=1

λi(gi(x) − bi)

]
.(5.2)

From the weak duality, d(λ) ≤ q(x) for any feasible solution x ∈ X̃. Therefore, d(λ)
provides a lower bound of the optimal value of (SP ). Let λ∗ be an optimal solution
to (5.1). Then, LB = d(λ∗) is the best lower bound generated by the Lagrangian
relaxation (5.2).

Since d(λ) is a concave piecewise linear function, the subgradient method is an
efficient method for computing an approximate solution to (5.1). Alternatively, we
can use the outer Lagrangian linearization method (see [38]) to compute an exact
solution to (5.1) when an initial feasible solution to (P ) is available.

Consider the following surrogate constraint problem:

min q(x) =
n∑

j=1

(
1

2
cjx

2
j + djxj

)
(5.3)

s.t. gλ∗(x) =

m∑
i=1

λ∗
i gi(x) ≤

m∑
i=1

λ∗
i bi,

x ∈ X̃.

Let bλ∗ =
∑m

i=1 λ
∗
i bi. Denote by g

λ∗ and gλ∗ the minimum value and maximum value

of gλ∗(x) over X̃, respectively. Without loss of generality, we can assume that

g
λ∗ ≤ bλ∗ < gλ∗ .(5.4)

Suppose that λ∗ is an exact solution to (5.1). It is easy to see that (5.3) and (SP ) have
the same dual value and that the optimal solution to the dual problem of problem
(5.3) is 1. Moreover, by Theorem 2, there exist a feasible solution x̃ and an infeasible
ỹ to problem (5.3) that solve the Lagrangian relaxation (5.2) with λ = λ∗.

If λ̃ is an approximate solution to (5.1), then we can apply Procedure 1 to search
for an exact dual solution μ∗ to problem (5.3) with λ∗ replaced by λ̃. Set λ∗ = μ∗λ̃.
Again, by Theorem 2, there exist a feasible solution x̃ and an infeasible ỹ to problem
(5.3) that solve the Lagrangian relaxation (5.2) with λ = λ∗.
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Now we are ready to extend Algorithm 1 to the multiply constrained case of (P ).
It is noticed that

q(ỹ) < d(λ∗) ≤ q(x̃).(5.5)

Moreover, ỹ is infeasible to (P ) while x̃ is not necessarily feasible to (P ). Therefore,
the contour cutting process in Step 2 of Algorithm 1 has to be modified for situations
in which x̃ is infeasible to (P ). More specifically, we need the following modifications
in Algorithm 1.

Step 2′. Case (a). q is a convex function. If x̃ is feasible to (P ), set v1 = q(x̃) and
compute Y k+1 by

Y k+1 = [B(v1) \ T (x̃)] \N(ỹ).

Otherwise, if x̃ is infeasible to (P ), then compute Y k+1 by

Y k+1 = [〈l̃, ũ〉 \ {x̃}] \N(ỹ).

Case (b). q is a concave function. Set v1 = LB. If x̃ is feasible to (P ), then
compute Y k+1 by

Y k+1 = [B(v1) \N(x̃)] \ T (ỹ).

Otherwise, if x̃ is infeasible to (P ), compute Y k+1 by

Y k+1 = [B(v1) \ {x̃}] \ T (ỹ).

We also need to replace the dual search procedure used in Step 0 and Step 3(i) of
Algorithm 1 with an exact dual search method or an approximate method for (5.1).
When the dual problems (5.1) in Step 0 and Step 3(i) are solved approximately,
Procedure 1 is applied to the surrogate problem (5.3) to search for the lower bound,
together with a feasible solution and infeasible solution for (5.3). Finally, two special
cases have to be considered in the algorithm when (5.4) does not hold. If g

λ∗ >

bλ∗ , then there is no feasible solution in X̃, and X̃ can be removed from further
consideration. If gλ∗ ≤ bλ∗ , then solving (5.3) using the dual search will yield a zero
dual solution and an optimal solution x̃ which is feasible for (5.3). If x̃ is also feasible
for (P ), discard X̃ from further consideration after updating xopt and fopt if q(x̃) <

fopt. Otherwise, remove x̃ from X̃.
The finite convergence of the extended algorithm for multiply constrained prob-

lems and the optimality of xopt when the algorithm stops can be proved similarly as
in Theorem 5.

An important observation from Step 2′ is that in multiply constrained situations,
we are not always able to find a feasible solution to the primal problem during the dual
search procedure, which constitutes a major difference between multiply constrained
problems and singly constrained problems. The unavailability of feasible solutions to
the primal problem affects the efficiency of the contour cut algorithm for multiply
constrained problems, as witnessed from our computational experiences. Specifically,
a guaranteed two-direction cutting process (cutting the outside of a bigger ellipse and
the inside of a smaller ellipse) in singly constrained situations often becomes a one-
direction cutting process in multiply constrained situations when a feasible solution
is not available. Nevertheless, in some situations, certain heuristics can be used to
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search for a feasible solution which does not necessarily solve problem (5.2). This may
improve the efficiency of the contour cutting process. For example, if the constraint
functions are nondecreasing, as is the case in nonlinear knapsack problems, then the
lower bound point l̃ of X̃ is always feasible for (SP ) in nontrivial cases.

We now illustrate the extended algorithm for multiply constrained problems by
a two-dimensional example with a concave quadratic objective function, a convex
constraint, and a nonconvex constraint.

Example 2.

min q(x) = −1.5x2
1 + 2x1 − 2x2

2 + 8x2

s.t. g1(x) = 3x2
1 − 2x1 + 2x2

2 − 6x2 ≤ 66,

g2(x) = −x2
1 − x1 + x2

2 − 2x2 ≤ −3.5,

x ∈ X = {x | −1 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 6, xi integer}.

The optimal solution is x∗ = (5, 0)T with q(x∗) = −27.5.
For this example, we use the subgradient method to solve the dual problem (5.1).

The iterative process is described as follows.
Iteration 0.
Step 0. Solving (5.1) with X̃ = X, we get λ∗ = (0.5145, 0.2284)T . Applying

Procedure 1 to the surrogate constraint problem (5.3), we obtain the dual value LB =
−34.0771 and two optimal solutions x0 = (−1, 6)T and y0 = (5, 6)T . An initial
feasible solution (5, 0)T is also obtained during the dual search. Set xopt = (5, 0)T

and fopt = q(xopt) = −27.5. Notice that both x0 and y0 are infeasible for (P ). Set
X0 = X and k = 0.

Iteration 1.
Step 1. Select X to generate new integer boxes.
Step 2. Set v1 = LB = −34.0771. We have

B(v1) = M(v1) ∩X = 〈(−4,−2)T , (6, 6)T 〉 ∩X = X

and

Z1 = B(v1) \ {x0} = 〈(0, 0)T , (5, 6)T 〉 ∪ 〈(−1, 0)T , (−1, 5)T 〉 = Z1
1 ∪ Z1

2 .

Since the dual value on Z1
2 is −13.5 > −27.5 = fopt, we can remove Z1

2 from Z1. We
have T (y0) = 〈(5, 6)T , (5, 6)T 〉. Thus,

Y 1 = Z1 \ T (y0) = 〈(0, 0)T , (4, 6)T 〉 ∪ 〈(5, 0)T , (5, 5)T 〉 = Y 1
1 ∪ Y 1

2 .

For Y 1
1 , the dual value is −33.1476 with two solutions (0, 6)T and (4, 6)T ; for Y 1

2 , the
dual value is −32.2875 with two solutions (5, 0)T and (5, 5)T .

Step 3. Set X1 = Y 1, k = 1.
Iteration 2.
Step 1. Select Y 1

1 from X1 to generate new integer boxes. Set x1 = (0, 6)T and
y1 = (4, 6)T . Notice that x1 is infeasible to (P ).

Step 2. Set v1 =−33.1476. Calculate B(v1) =M(v1)∩ Y 1
1 = 〈(−4,−2)T , (5, 6)T 〉 ∩

Y 1
1 = Y 1

1 . We have

Z2 = B(v1) \ {x1} = 〈(1, 0)T , (4, 6)T 〉 ∪ 〈(0, 0)T , (0, 5)T 〉 = Z2
1 ∪ Z2

2 .
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Since the dual value on Z2
2 is −1.5966 > −27.5 = fopt, we can remove Z2

2 from Z2.
We have T (y1) = 〈(4, 6)T , (4, 6)T 〉. Thus

Y 2 = Z2 \ T (y1) = 〈(1, 0)T , (3, 6)T 〉 ∪ 〈(4, 0)T , (4, 5)T 〉 = Y 2
1 ∪ Y 2

2 .

The dual value on Y 2
1 is −20.7748 and the dual value on Y 2

2 is −26.0. Since both of
them are greater than fopt, we can remove Y 2

1 and Y 2
2 from Y 2.

Step 3. Set X2 = {Y 1
2 }, k = 2.

Iteration 3.
Step 1. Select Y 1

2 to generate the new integer subboxes. Set x2 = (5, 0)T and
y2 = (5, 5)T . Note that x2 is feasible to (P ).

Step 2. Set v1 =−32.2875. Calculate B(v1) =M(v1)∩ Y 1
2 = 〈(−4,−2)T , (5, 6)T 〉 ∩

Y 1
2 = Y 1

2 and N(x2) = 〈(5, 0)T , (5, 4)T 〉. We have

Z2 = B(v1) \N(x2) = {(5, 5)T }.

Thus

Y 2 = Z2 \ {y2} = ∅.

Step 3. X3 = ∅.
Step 4. Stop. xopt = (5, 0)T is an optimal solution to the example.

6. Extension to problems with indefinite q. The contour cut method devel-
oped in the previous sections can be extended to handle problems with an indefinite
quadratic objective function. We describe the main idea of this extension in this
section. Let’s first consider the singly constrained problem (Ps), where some cj coef-
ficients are positive and some others are negative.

We can always express q(x) as the sum of a convex quadratic function and a
concave quadratic function: q(x) = q1(x) + q2(x) with q1(x) =

∑n
j=1(

1
2c

1
jx

2
j + djxj)

and q2(x) = −
∑n

j=1
1
2c

2
jx

2
j , where all c1j and c2j , j = 1, 2, . . . , n, are positive. Note

that the expression of q(x) is not unique. The subproblem (SP ) of problem (Ps) can
be expressed as

min q(x) = q1(x) + q2(x)

s.t. g(x) =

n∑
j=1

gj(xj) ≤ b,

x ∈ X̃ = {x | l̃j ≤ xj ≤ ũj , xj integer, j = 1, . . . , n},

where X̃ ⊆ X. Consider the following two problems associated with (SP ):

(SP 1) min q1(x) =

n∑
j=1

(
1

2
c1jx

2
j + djxj

)

s.t. g(x) =

n∑
j=1

gj(xj) ≤ b,

x ∈ X̃ = {x | l̃j ≤ xj ≤ ũj , xj integer, j = 1, . . . , n}

and
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(SP 2) min q2(x) = −
n∑

j=1

1

2
c2jx

2
j

s.t. g(x) =

n∑
j=1

gj(xj) ≤ b,

x ∈ X̃ = {x | l̃j ≤ xj ≤ ũj , xj integer, j = 1, . . . , n}.

Obviously, (SP 1) and (SP 2) are nonlinear integer programming problems with a
convex quadratic objective function and a concave quadratic objective function, re-
spectively. Let f∗

i = min
x∈S∩X̃

qi(x), i = 1, 2, where S is the feasible region of (Ps).

Further define the following Lagrangian relaxation for (SP 1) and (SP 2), respectively,
for λ ≥ 0:

(Li
λ) di(λ) = min

x∈X̃
qi(x) + λ(g(x) − b)), i = 1, 2.

Let λ∗
i be the optimal solutions to the dual problems of maxλ≥0 di(λ) for i = 1, 2,

respectively. Let x̃ ∈ S ∩ X̃. By the weak duality, we have

d1(λ
∗
1) + d2(λ

∗
2) ≤ f∗

1 + f∗
2 ≤ f∗ ≤ q1(x̃) + q2(x̃).(6.1)

Let

C1 = {x ∈ X̃ | qi(x) < di(λ
∗
i ), i = 1, 2},

C2(x̃) = {x ∈ X̃ | qi(x) ≥ qi(x̃), i = 1, 2}.

It is easy to see from (6.1) and the weak duality that sets C1 and C2(x̃) can be cut off

from X̃ without removing the optimal solution after recording x̃. Let x̃i and ỹi be the
feasible and infeasible optimal solutions to (Li

λ∗
i
) (i = 1, 2), respectively. Notice that

qi(ỹi) ≤ di(λ
∗
i ), i = 1, 2. Let vi = q1(x̃i), i = 1, 2, and w = d2(λ

∗
2). Similar to section

3, we define sets Bi(·) and Ni(·) for functions qi, i = 1, 2, respectively. Then we have

Q1 = N1(ỹ1) ∩ [X̃ \B2(w)] ⊆ C1 ∩ X̃,

Q2(x̃i) = [X̃ \B1(vi)] ∩N2(x̃i) ⊆ C2(x̃i) ∩ X̃, i = 1, 2.

Thus, cutting both Q1 and Q2(x̃i) (i = 1, 2) from X̃ will not remove any optimal
solution to the primal problem after recording the current best feasible solution as the
incumbent. Note Q1 and/or Q2(x̃i) could be empty in certain circumstances. In the

cutting process, points x̃i, i = 1, 2, will be removed from X̃ after updating the
incumbent.

Replacing Step 2 of Algorithm 1 with the above contour cutting process, we can
then deal with (Ps) with an indefinite quadratic objective function. Similar to section
5, we can further extend the algorithm to solve the multiply constrained case of (P )
with an indefinite objective function.

Now, let’s demonstrate the above solution idea by an illustrative example.
Example 3.

min q(x) = −1.75x2
1 − 1.75x1 + x2

2 − 12x2

s.t. g(x) = 4(x1 − 1)2 + 9(x2 − 2.5)2 ≤ 10,

x ∈ X = {x | 0 ≤ xi ≤ 4, xi integer, i = 1, 2}.

The optimal solution of the example is x∗ = (2, 3)T with q(x∗) = −37.5.
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Decompose the above example into the following two associated problems, of
which the first has a convex quadratic objective function and the second has a concave
quadratic objective function:

min q1(x) = 0.25x2
1 − 1.75x1 + 3x2

2 − 12x2(6.2)

s.t. g(x) = 4(x1 − 1)2 + 9(x2 − 2.5)2 ≤ 10,

x ∈ X = {x | 0 ≤ xi ≤ 4, xi integer, i = 1, 2}

and

min q2(x) = −2x2
1 − 2x2

2(6.3)

s.t. g(x) = 4(x1 − 1)2 + 9(x2 − 2.5)2 ≤ 10,

x ∈ X = {x | 0 ≤ xi ≤ 4, xi integer, i = 1, 2}.

Iteration 0.
Step 0. Solving the dual problem of (6.2) yields a dual value, d1 = −14.6563, and

two solutions, x̃1 = (2, 2)T and ỹ1 = (3, 2)T . Solving the dual problem of (6.3) yields
a dual value, d2 = −29.1250, and two solutions, x̃2 = (2, 3)T and ỹ2 = (3, 3)T . Thus,
the lower bound is LB = d1+d2 = −14.6563−29.1250 = −43.7813 and the incumbent
is xopt = (2, 3)T with fopt = q((2, 3)T ) = −37.5. Set X0 = {〈(0, 0)T , (4, 4)T 〉} and
k = 0.

Iteration 1.
Step 1. Select the unique integer subbox in X0.
Steps 2 and 3. Since N1(ỹ1) = 〈(3, 2)T , (4, 2)T 〉 and B2(d2) = 〈(0, 0)T , (3, 3)T 〉,

we have Q1 = N1(ỹ1) ∩ [X \B2(d2)] = {(4, 2)T }. Thus

Z1 = X \Q1 = 〈(0, 3)T , (4, 4)T 〉 ∪ 〈(0, 0)T , (3, 2)T 〉 ∪ 〈(4, 0)T , (4, 1)T 〉 = Z1
1 ∪Z1

2 ∪Z1
3 .

For Z1
1 , we have d1 + d2 = −11.6563 − 29.1250 = −40.7813 < −37.5 = fopt. For

Z1
2 , we have d1 + d2 = −14.6563 − 19.1250 = −33.7813 > −37.5 = fopt. Thus Z1

2 is
removed from Z1. Since there is no feasible solution in Z1

3 , Z1
3 is also removed from

Z1. Set Y 1 = {Z1
1}. Figure 6.1 illustrates the set Z1 = X \Q1.

Let v1 = q1(x̃1) = −14.5. Since N2(x̃1) = 〈(0, 0)T , (2, 2)T 〉 and B1(v1) = 〈(2, 2)T ,
(4, 2)T 〉, we have

Q2(x̃1) = [X \B1(v1)] ∩N2(x̃1) = N2(x̃1) \ {(2, 2)T } = 〈(0, 0)T , (2, 2)T 〉 \ {(2, 2)T }.

Notice Q2(x̃2) is an empty set. Since Q2(x̃1) ∩ Y 1 = ∅, a revised domain X1 is
generated from cutting x̃2 from Y 1 (see Figure 6.2). Decompose X1 as

X1 = 〈(3, 3)T , (4, 4)T 〉 ∪ 〈(0, 4)T , (2, 4)T 〉 ∪ 〈(0, 3)T , (1, 3)T 〉 = X1
1 ∪X1

2 ∪X1
3 .

Since there is no feasible solution in X1
1 and X1

2 , they can be removed from X1. For
X1

3 , we have d1 + d2 = −10.5 − 20.0 = −30.5 > fopt, and thus X1
3 is also removed.

Therefore, X2 = ∅.
Step 4. Stop. xopt = (2, 3)T is an optimal solution.
In computational implementation with an indefinite q, we can also solve the dual

problem of (SP ) directly to obtain a dual value d(λ∗) and use max{d(λ∗), d1(λ
∗
1) +

d2(λ
∗
2)} as the lower bound to identify unpromising subboxes to be fathomed. Let x̃

and ỹ be the feasible and infeasible optimal solutions to the Lagrangian relaxation
problem of (SP ) with λ set at λ∗, respectively. Instead of cutting Q2(x̃i), i = 1, 2,
we cut Q2(x̃) in the algorithm.
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Fig. 6.1. Set Z1 = X \Q1.
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Fig. 6.2. Sets X1 = Y 1 \ {x̃2} and Q2(x̃1).

7. Computational experiment. In this section, we will present computational
results of Algorithm 1 developed in section 4 and its extensions in sections 5 and 6.
The algorithms were programmed in FORTRAN 90 and run on a SUN Workstation
(Blade 2000). Comparison results with other methods in the literature will also be
reported.

7.1. Test problems. Two sets of test problems are considered in our compu-
tational experiments. The first set of test problems consists of 12 problems with
different types of objective functions and constraint functions. The second set of test
problems is a class of convex quadratic integer programming problems arising in port-
folio optimization. All the coefficients in the test problems are randomly generated
from uniform distributions.
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Table 7.1

Coefficients in the test problems.

Single constraint Multiple constraints
Type

α1j β1j γ1j αij βij γij

1 [−10, 40] 0 0 [1, 40] 0 0
2 [−10, 30] [1, 20] 0 [10, 50] [1, 10] 0
3 [100, 200] [−20,−1] 0 [−10βij ,−10βij + 5] [−15,−5] 0
4 [−10, 20] [5, 25] [−2, 8] [10, 50] [1, 10] [1, 5]

In the first set of test problems, three types of objective functions in the form of
q(x) =

∑n
j=1(

1
2cjx

2
j + djxj) are generated using the following data:

• q(x) is convex quadratic with cj ∈ [2, 20] and dj ∈ [−100,−50];
• q(x) is concave quadratic with cj ∈ [−20,−2] and dj ∈ [−10, 40];
• q(x) is indefinite quadratic with cj ∈ [−10, 10] and dj ∈ [−40, 10].

The constraint functions in the test problems are in the following form:

gi(x) =

n∑
j=1

(αijxj + βijx
2
j + γijx

3
j ), i = 1, . . . ,m.

Table 7.1 describes the ranges of coefficients in gi’s for singly constrained test prob-
lems and multiply constrained test problems, where Type 1 denotes the linear con-
straints, Type 2 the convex quadratic constraints, Type 3 the concave quadratic
constraints and Type 4 the third polynomial constraints.

In the first set of test problems, we take lj = 1 and uj = 5, j = 1, . . . , n, and the
right-hand side of b is taken as b = gmin + r · (gmax − gmin), where gmin and gmax are
the minimum and maximum values of g(x) over X, respectively, and r ∈ (0, 1).

The second set of problems arises from portfolio optimization. It has been shown
in [41], [42] that the Markowitz mean-variance portfolio selection model can be re-
formulated as a simplified model which is a separable convex quadratic programming
problem with linear constraints. The discrete version of the simplified portfolio selec-
tion problem [47] can be expressed as

(SMV ) min q(x) =
n∑

j=1

(
1

2
cjx

2
j + djxj

)
s.t. Ax ≤ b,

x ∈ X = {x | lj ≤ xj ≤ uj , xj integer, j = 1, . . . , n},

where cj > 0 for all j and A = (aij) is an m× n matrix. Obviously, problem (SMV )
is a special case of (P ). In our testing, the data in (SMV ) are taken as the same
as in [47], where additional dependency relationships are considered. The ranges of
coefficients in (SMV ) are cj ∈ [10, 50], dj ∈ [−3000,−1000], aij ∈ [1, 5], lj ∈ [0, 40],
and uj = lj + 5. The right-hand side b is taken as b = A · [l + r · (u − l)], where
l = (l1, . . . , ln)T , u = (u1, . . . , un)T and r ∈ (0, 1).

7.2. Computational results. The computational results of our proposed solu-
tion algorithms for the first set of test problems are summarized in Tables 7.2–7.4.
The following notations are used in the numerical results:

• n = number of variables;
• m = number of constraints;
• Niter = average number of iterations of the algorithm for 20 test problems;
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Table 7.2

Numerical results for problems with convex q(x) (r = 0.6).

Type of Single constraint Multiple constraints

constraint n Niter Nbox Tcpu n m Niter Nbox Tcpu

500 162 42928 52.9 30 10 598 10732 74.9
Linear 1000 253 123197 332.0 40 10 1074 23765 211.0

1500 538 404297 1716.6 50 10 5313 129684 1901.4

Convex
500 155 46853 86.1 30 10 123 2426 8.0

1000 242 138212 521.5 40 10 204 4952 34.3
quadratic

1500 354 286512 1746.4 50 10 432 13568 80.9

Concave
500 186 43213 76.9 30 10 161 1875 4.8

1000 508 189918 669.0 50 10 340 6521 27.6
quadratic

1500 555 338348 2075.4 70 10 674 16870 107.4

3rd
500 111 31924 77.2 30 10 45 927 2.4

1000 155 80996 427.9 50 10 140 4314 16.8
polynomial

1500 199 156222 1301.4 70 10 344 14296 78.9

Table 7.3

Numerical results for problems with concave q(x) (r = 0.6).

Type of Single constraint Multiple constraints

constraint n Niter Nbox Tcpu n m Niter Nbox Tcpu

500 32 8748 13.4 50 10 32 765 2.3
Linear 1000 53 27622 97.1 100 10 112 4580 24.8

2000 58 60408 464.1 150 10 268 17602 173.8

Convex
500 43 9388 20.0 100 10 33 1407 5.9

1000 57 23858 114.1 150 10 77 4973 31.2
quadratic

2000 149 120776 1294.3 200 10 110 9739 79.5

Concave
500 18 4334 9.8 100 10 26 1268 4.5

1000 70 34094 163.0 150 10 65 4659 24.4
quadratic

2000 108 105606 1085.8 200 10 237 21910 169.1

3rd
500 47 8943 27.6 100 10 53 2302 9.9

1000 76 30419 196.6 150 10 113 6701 45.7
polynomial

2000 104 75337 1080.5 200 10 215 17852 188.2

• Nbox = average number of the total integer boxes examined during the algo-
rithm for 20 test problems;

• Tcpu = average CPU seconds measured on a SUN Workstation (Blade 2000)
for 20 test problems.

In our implementation of the algorithm for multiply constrained problems, the outer
Lagrangian linearization method is used to solve the dual problem (5.1). The results
in Tables 7.2–7.4 show that the proposed algorithm is efficient and robust for solving
large-scale quadratic integer problems with convex, concave, and indefinite objective
functions and different types of constraint functions. Comparing results in Table 7.2–
Table 7.4, we can see that the algorithm is more efficient for problems with a concave
objective function. We can also see that the efficiency of the algorithm is not sensitive
to the convexity of the constraint functions. This is partially due to the fact that the
cut-and-partition scheme does not depend on the property of the constraints.

The computational results for portfolio selection problems (SMV ) are presented
in Table 7.5, where Niter, Nbox, and Tcpu are obtained by running the code for 10
test problems. We see from Table 7.5 that the problem becomes more difficult as the
ratio of right-hand side, r, decreases.
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Table 7.4

Numerical results for problems with indefinite q(x) (r = 0.6).

Type of Single constraint Multiple constraints

constraint n Niter Nbox Tcpu n m Niter Nbox Tcpu

200 183 23743 4.2 30 10 121 4081 29.7
Linear 600 447 184493 166.1 40 10 179 8188 73.9

1000 744 482480 997.1 50 10 601 38933 414.3

Convex
200 288 36056 7.6 30 10 65 2403 15.9
600 896 349573 174.2 50 10 103 6107 58.7

quadratic
1000 1145 739706 572.7 70 10 238 20093 249.8

Concave
200 191 22386 5.0 30 10 42 1469 9.3
600 776 272840 157.1 50 10 74 4184 36.9

quadratic
1000 2386 1376007 1806.0 70 10 126 9958 114.1

3rd
200 121 17283 5.9 30 10 39 1566 12.9
600 836 341505 246.9 50 10 72 4713 55.1

polynomial
1000 1059 756976 857.0 70 10 75 7570 101.7

Table 7.5

Numerical results for problem (SMV ).

r n m Niter Nbox Tcpu

30 5 243 3274 9.6
0.5 50 5 2191 46787 345.5

80 5 4265 128091 860.0

30 5 326 4653 11.5
0.6 50 5 1437 32564 143.0

80 5 7888 232647 1292.2

30 5 95 1523 3.6
0.7 50 5 361 7889 32.7

80 5 596 22140 106.4

7.3. Comparison with other methods. To compare our algorithm with other
existing methods in the literature, we implemented two exact methods in the literature
which are applicable to (P ):

• branch-and-bound method of Bretthauer and Shetty (see [9]).
• hybrid method of Marsten and Morin (see [34]).

Classical branch-and-bound methods using continuous relaxation can solve (P )
when both q(x) and g(x) are convex functions. Gupta and Ravindran [21] reported
computational results of the branch-and-bound method for general convex integer pro-
gramming, where the generalized reduced gradient method was used as a solver for the
continuous subproblems. Bretthauer and Shetty [9] proposed a special branch-and-
bound method for singly constrained convex nonlinear separable integer programming
problems (see also [10]). This method is based on solving the continuous relaxation
subproblems by manipulating the KKT conditions of the subproblems and uses the
standard branch rule to generate nodes in the search tree.

The hybrid method proposed in [34] is applicable to general separable integer
programming problems, including (P ). The method is a combination of the dynamic
programming approach and the branch-and-bound method. The basic idea of the
method is to recursively generate the efficient feasible solutions of the problem and to
remove the inefficient feasible solutions by dominance rules. The branch-and-bound
strategy is employed to remove unpromising incomplete solutions during the recursion.
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Table 7.6

Comparison results for convex problems.

Our method Branch-and-bound method Hybrid method
n

Tcpu Tcpu Tcpu

50 0.10 0.32 8.0
100 0.88 16.5 152.1
150 2.0 485.1 833.6

Table 7.7

Comparison results for nonconvex problems.

Our method Hybrid method
n

Tcpu Tcpu

100 0.4 26.6
150 2.0 131.0
200 1.6 397.0

We have implemented the above two methods by FORTRAN 90 and tested for
two sets of test problems for comparison. The first set of test problems is a convex
instance of (P ) with a single linear constraint. Both the branch-and-bound method
and hybrid method are applicable to this set of test problems. The ranges of the
parameters of q(x) are cj ∈ [1, 10] and dj ∈ [−100,−300]. The linear constraint is
g(x) =

∑n
j=1 αjxj with αj ∈ [1, 50]. The ratio of the right-hand side b is taken as

r = 0.7, and lj = 1, uj = 5, j = 1, . . . , n. Table 7.6 summarizes the average CPU
time of our proposed method, the branch-and-bound method, and the hybrid method
for 20 randomly generated test problems in the first set.

The second set of test problems for comparison is a concave instance of (P ) with
a single linear constraint. Note that only the hybrid method in the literature is
applicable to this kind of nonconvex problem. The ranges of the parameters of q(x)
are cj ∈ [−10,−1] and dj ∈ [−50,−1]. The ranges of the coefficients in the linear
constraint are αj ∈ [1, 50]. The ratio of the right-hand side b is taken as r = 0.7, and
lj = 1, uj = 5, j = 1, . . . , n. The comparison results for test problems with different
n are reported in Table 7.7, where the average CPU time is obtained by running the
algorithms for 20 randomly generated test problems.

The average CPU time in Tables 7.6 and 7.7 indicates that our algorithm is
much more efficient than the branch-and-bound method and the hybrid method for
both convex and nonconvex problems. Part of the theoretical reason for the out-
performance of the proposed method over the continuous relaxation-based branch-
and-bound method is that the Lagrangian bound of a convex integer programming
problem is at least as good as the continuous bound. Moreover, cutting certain
integer boxes from the domain at each iteration in the cut-and-partition scheme of
our algorithm speeds up the convergence of the algorithm significantly. We also notice
that it is difficult for dynamic programming in the hybrid method to exploit the special
structure of the problems in generating efficient feasible solutions and it is thus not
efficient to find an exact solution of the original problem.

8. Concluding remarks. We have presented in this paper an efficient exact
algorithm for solving nonlinear separable integer programming problems with convex,
concave, and indefinite quadratic objective functions and general constraints. The
algorithm exploits the special structure of the ellipsoid contour in order to eliminate
the duality bound, and thus the duality gap. A prominent feature of the proposed
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algorithm is that at each iteration, the algorithm cuts certain unpromising integer
subboxes by using quadratic contour cuts. This greatly speeds up the convergence
of the Lagrangian dual algorithm. The computational results for large-scale test
problems are promising.

Acknowledgment. The authors would like to thank Dr. Jun Wang for his help
during this research.
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Abstract. We propose a monotone descent active set QP-free method for inequality constrained
optimization that ensures the feasibility of all iterates and allows for iterates on the boundary of
the feasible set. The study is motivated by the Facchinei–Fischer–Kanzow active set identification
technique for nonlinear programming and variational inequalities [F. Facchinei, A. Fischer, and
C. Kanzow, SIAM J. Optim., 9 (1999), pp. 14–32]. Distinguishing features of the proposed method
compared with existing QP-free methods include lower subproblem costs and a fast convergence
rate under milder assumptions. Specifically, four reduced linear systems with a common coefficient
matrix involving only constraints in a working set are solved at each iteration. To determine the
working set, the method makes use of multipliers from the last iteration, eliminating the need to
compute a new estimate, and no additional linear systems are solved to select linearly independent
constraint gradients. A new technique is presented to avoid possible ill-conditioned Newton systems
caused by dual degeneracy. It is shown that the method converges globally to KKT points under
the linear independence constraint qualification (LICQ), and the asymptotic rate of convergence is
Q-superlinear under an additional strong second-order sufficient condition (SSOSC) without strict
complementarity.
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1. Introduction. This paper is concerned with finding a solution of the inequal-
ity constrained optimization problem

min f(x)
(P)

s.t. x ∈ F = {x ∈ �n|ci(x) ≤ 0, i = 1, . . . ,m},

where f : �n → � and c : �n → �m are assumed to be real valued and twice
continuously differentiable on F . A pair (x, λ) ∈ �n+m with x ∈ F is called a
stationary point of problem (P) if it satisfies

∇xL(x, λ) = 0,

λici(x) = 0, i = 1, . . . ,m,
(1.1)
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where L(x, λ) = f(x) +
∑m

i=1 λici(x) is the Lagrange function of (P). If furthermore
λ ≥ 0, (x, λ) is called a KKT point. We also call x ∈ F a stationary point or a KKT
point of (P) if there exists λ ∈ �m such that (x, λ) is a stationary point or a KKT
point of (P).

QP-free methods, which at each iteration require only the solution of a few lin-
ear systems usually with common coefficient matrices, were developed to address
some computational issues in traditional sequential quadratic programming methods
(SQPs). For example, the QP subproblems may be infeasible and the cost for find-
ing their exact solutions can become prohibitive in the absence of a QP truncating
scheme. A number of numerical results (see, e.g., [7, 9, 19, 28]) have shown the
promise of QP-free methods as an alternative to SQPs for a class of primal nonde-
generate problems, such as bound constrained optimization. Under certain regularity
assumptions, QP-free methods enjoy global convergence as well as local superlin-
ear/quadratic convergence. For the advantages of QP-free methods, see Facchinei
and Lucidi [8].

QP-free methods can be classified into type-1 methods (see, e.g., [18, 13, 19]),
which are based on applying Newton’s method to the KKT systems (1.1), and type-2
methods (see, e.g., [7, 9, 20, 28]), which are derived from the alternative formulation
of the first-order necessary optimality conditions

∇f(x) +
∑

i∈I(x)

λi∇ci(x) = 0,

ci(x) = 0, λi ≥ 0, i ∈ I(x); λi = 0, i ∈ I\I(x),

(1.2)

where I = {1, . . . ,m} and, for x ∈ F , I(x) denotes the active set, i.e.,

I(x) = {i|ci(x) = 0, i ∈ I}.

1.1. Related work. Panier, Tit, and Herskovits [18] proposed a feasible QP-free
method for problem (P) which forms the basic framework of type-1 QP-free methods.
Their method directly applies the Newton method to (1.1) and at each iteration first
calculates a descent direction dk,0 by solving the following Newton equations:[

Hk ∇c(xk)
diag(μk)∇c(xk)� diag(c(xk))

] [
d
λ

]
=

[
−∇f(xk)

0

]
,(1.3)

where Hk ∈ �n×n is an estimate of the Lagrangian Hessian, (xk, μk) is an approxima-
tion to a KKT point, and, for a vector μ ∈ �m, diag(μ) denotes the diagonal matrix
whose ith diagonal element is μi. In order to maintain the feasibility of the next iter-
ate, the method calculates a second direction dk,1 pointing toward the feasible region
by solving a perturbed system of (1.3),[

Hk ∇c(xk)
diag(μk)∇c(xk)� diag(c(xk))

] [
d
λ

]
=

[
−∇f(xk)

−‖dk,0‖νdiag(μk)e

]
,(1.4)

where ν > 2 and e is the vector of all ones of an appropriate dimension (here e ∈ �m).
Globally, the search direction is a convex combination of these two directions, namely,

dk = (1 − ρk)d
k,0 + ρkd

k,1,

where ρk is calculated explicitly. To avoid the Maratos effect, locally the search
direction is slightly bent by a relatively small amount using an arc search, which is
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obtained through a second-order correction. It is shown that any accumulation point
of the iterates generated by the algorithm is a stationary point of problem (P). Under
the assumption that any stationary point is isolated, this point is shown to be a KKT
point. The algorithm was later improved by Gao, He, and Wu [13] in the sense that
every accumulation point of the iterates is a KKT point. To achieve this, they solve
an extra linear system obtained from (1.3) by slightly perturbing the right-hand side
of (1.3). As pointed out in [18, 19], the Panier–Tits–Herskovits framework is very
sensitive to the parameters chosen due to dual degeneracy. Specifically, in spite of
the presence of the linear independence constraint qualification (LICQ), the linear
systems (1.3) and (1.4) may become very ill-conditioned when some multiplier μi

corresponding to a nearly active constraint ci becomes very small. This may occur
when strict complementarity does not hold at the solution of problem (P). In this
case the multiplier approximation sequence can diverge, and thus global convergence
fails.

To avoid the ill-conditioning, Qi and Qi [19] presented a new type-1 QP-free
method for problem (P), based on a nonsmooth equation reformulation of the KKT
system (1.1), by using the Fischer–Burmeister function that is often used in nonlinear
complementarity problems (see, e.g., [5, 16]). The coefficient matrix of their Newton
equations has the form

Vk =

[
Hk ∇c(xk)

diag(ξk)∇c(xk)� Θk

]
,(1.5)

where

ξki =
ci(x

k)√
c2i (x

k) + (μk
i )

2

+ 1, Θk = −
√

2diag(θk), θki =

⎛⎝1 − μk
i√

c2i (x
k) + (μk

i )
2

⎞⎠1/2

.

It is shown that under the LICQ, (1.5) is uniformly nonsingular and well conditioned
even if strict complementarity does not hold at accumulation points. We note that
the methods in [18, 13, 19] require the sequence of Hessian estimates {Hk} to be
uniformly positive definite. This may interfere with the fast local convergence of their
methods since for a general nonlinear programming problem, the Lagrangian Hessian
at a second-order stationary point is usually only positive definite on the null space of
the active constraint gradients. This issue has been recently circumvented in [1, 22]
in the context of primal-dual interior-point methods.

From both a practical and a theoretical point of view, there are still some short-
comings of type-1 QP-free methods. For example, the methods in [18, 13, 19] need all
inequality constraints to be involved in each subproblem computation. However, since
QP-free methods do not follow the spirit of interior-point methods, whose iterates are
forced to be away from the boundary of the feasible region, intuitively some active set
strategies should be incorporated into these methods to ignore redundant constraints
and save subproblem costs. Moreover, to guarantee global convergence, the methods
in [18, 13, 19, 1, 22] must bound the multiplier approximation sequence {μk} by a
preselected threshold value μ̄. However, to achieve fast local convergence, they have
to assume that this truncation does not affect the convergence of the approximate
multipliers, i.e., all multipliers are less than or equal to μ̄. Finally, all type-1 QP-free
methods need strict complementarity for proving superlinear convergence.

Type-2 QP-free methods were first studied as locally convergent Newton methods
for the KKT system (1.2) (see, e.g., [2, 8]). If the active set at a solution is available,
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(1.2) reduces to a nonlinear system of equations involving only active constraints,
which can be handled by standard Newton methods. Unfortunately, knowledge of
the active set becomes available only when the iterates are close to the solution. In
order to ensure global convergence, when the iterates are far from the solution, type-2
QP-free methods try to guess a so-called working set Ak for approximating the active
set. Consequently, the Newton equations for these methods usually have the following
coefficient matrices:

Vk =

[
Hk ∇cAk

(xk)
∇cAk

(xk)� 0

]
,(1.6)

where Hk is an estimate of the Lagrangian Hessian and ∇cAk
(xk)� is the Jacobian

corresponding to the constraints in Ak. It is easy to see from (1.6) that Vk is nonsin-
gular if and only if the constraint gradients in Ak are linearly independent, provided
Hk is positive definite on the null space of ∇cAk

(xk)�. The convergence properties of
type-2 QP-free methods are very similar to that of type-1 QP-free methods as they
eventually generate almost identical search directions. However, in practice, their be-
havior can be rather different in that type-2 QP-free methods, as active set methods,
can be relatively sensitive to changes in the working set, while they do not suffer the
pitfall triggered by dual degeneracy, as do some type-1 QP-free methods.

A careful examination of existing type-2 QP-free methods, however, reveals two
shortcomings. The first one concerns the computation of multiplier estimates. Since
the performance of type-2 QP-free methods largely depends on how well the active set
can be identified, these methods require that the working set be able to approximate
the active set quickly and accurately. To this end, methods in [7, 20, 28] resort to the
following continuous multiplier function to obtain an ideal estimate of the multipliers:

λ(x) = −W (x)−1∇c(x)�∇f(x),

where

W (x) = ∇c(x)�∇c(x) + C(x)2

and C(x) = diag(c(x)). This involves solving a product form linear system of size
m×m, which is very likely to be fully dense. Second, type-2 QP-free methods require
an expensive procedure to select linearly independent constraint gradients. In [20, 28]
this is done iteratively by (i) checking the rank of the constraint gradients in an
ε-working set; (ii) if they are rank deficient, reducing ε until they have full rank.
Some do this by iteratively computing matrix determinant, which provides a criterion
for singularity. Generally, these operations require computing factorizations for a
sequence of down-dated matrices. An exception is [7], which relies on a restrictive
assumption that, for a fixed ε, the constraint gradients in the ε-working set are linearly
independent.

QP-free methods have many desirable local convergence properties. In [2, 8] some
classes of local QP-free methods were shown to be superlinearly convergent without
strict complementarity. This feature was extended to SC1 problems in [6]. Moreover,
local convergence properties of Newton or quasi-Newton methods have been widely
studied under the Mangasarian–Fromovitz constraint qualification (MFCQ) or even
without constraint qualifications (see, e.g., [10, 11, 15, 25, 26, 27]). Unfortunately,
these nice local properties were rarely achieved in a globally convergent framework.
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1.2. Basic results and notation. In this paper we propose a new feasible de-
scent active set QP-free method for solving problem (P) that combines the best of
type-1 and type-2 QP-free methods while overcoming several problematic aspects of
them. The method, compared with existing QP-free methods, enjoys some theoret-
ical advantages in saving computational cost and achieving fast local convergence.
Specifically, two ε-working sets are maintained throughout the algorithm. One aims
at identifying the final active set, while the other tries to identify the final strong
active set. Our working set strategy is based on the Facchinei–Fischer–Kanzow active
set identification technique [4], which can be accurate even without the LICQ or strict
complementarity. To determine the working sets, we use multiplier information from
the previous iteration, eliminating the need to compute a new estimate. Moreover,
to avoid the expensive procedure of selecting linearly independent constraint gradi-
ents, we use as our Newton system (see (2.3)) a modified version of (1.3). At each
iteration four reduced linear systems with a common coefficient matrix involving only
constraints in the working set identifying the active set are computed. It is shown
that under the LICQ, our method converges globally to KKT points of problem (P).
To achieve fast local convergence, our method always employs the exact Lagrangian
Hessian to compute the step if it is positive definite on the null space of some (nearly)
active constraint gradients. This is particularly so when a KKT point satisfying the
strong second-order sufficient condition (SSOSC) is approached. A new technique is
introduced to avoid the ill-conditioning caused by dual degeneracy in some type-1
QP-free methods. In particular, since some active multipliers may vanish when strict
complementarity fails, we control the multiplier estimates μk in a way that the active
ones converge to the true multipliers plus a positive parameter δ∗, namely, δ∗-drifted
multipliers. It will be shown that this technique does not affect the global and local
convergence analysis. Furthermore, in order to guarantee the uniform nonsingularity
of our Newton systems, we do not simply bound μk by a preselected parameter as
in [1, 13, 18, 19, 22]. Instead, we adaptively increase the bound estimate χ of μk

and decrease the active set parameter ε until a better estimate of the active set is
obtained. It will be shown that under the LICQ, χ and ε are updated at most finitely
many times.

Another contribution of this paper is that our method achieves fast local conver-
gence without assuming strict complementarity. This property benefits a lot from the
identification of the strong active set and a new system of inequalities introduced in
the paper, through which better choices of search directions become possible. At each
iteration, a “fast” direction, which can generate superlinear convergence when a solu-
tion is approached, is always computed first and is accepted as the search direction if
the system of inequalities is met. However, if the system is violated, a steeper descent
direction is computed to ensure global convergence. A key observation for our local
analysis is that the “fast” direction enjoys both descent and feasible features in the
vicinity of a solution and can be eventually accepted in spite of dual degeneracy.

The paper is organized as follows. In section 2 we present our algorithm and show
that it is well defined. The global convergence of the method is established in section
3. Local superlinear convergence is proved in section 4. Concluding remarks are given
in section 5.

A few words concerning the notation: The Euclidean vector norm or its associated
matrix norm is denoted by ‖ · ‖. Given h : �n → �m and a subset A of I, we denote
by hA(x) the subvector of h(x) with components hi(x), i ∈ A, and by ∇hA(x)� the
transposed Jacobian of hA(x). For a positive integer p, e ∈ �p is the vector of all
ones and E ∈ �p×p is the identity matrix. Given two vectors x and y of the same
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dimension l, we say x ≥ (>) y if and only if xi ≥ (>) yi for all i = 1, . . . , l, and
min(x, y) is a vector whose ith element is min(xi, yi). For two symmetric matrices A
and B of the same dimension, A 
 B means A−B is positive definite. We denote by
∅ the empty set.

2. Algorithm. In the remainder of the paper, we let (x∗, λ∗) denote a KKT
point of problem (P). Our algorithm makes use of the following identification function
ϕ : �n+m → � proposed in [4]:

ϕ(x, λ) =
√

‖Φ(x, λ)‖,(2.1)

where the operator Φ : �n+m → �n+m is defined by

Φ(x, λ) =

(
∇xL(x, λ)

min{−c(x), λ}

)
.(2.2)

It follows from [4, Theorem 3.15] that ϕ is nonnegative and continuous with ϕ(x, λ) =
0 if and only if (x, λ) is a KKT point of problem (P). The identification function
ϕ(x, λ) plays two roles in our algorithm. First, it is used to determine an ε-working
set at each iteration,

Aε,ϕmax(x, λ) = {i ∈ I|ci(x) ≥ −εmin{ϕ(x, λ), ϕmax}},

which is an estimate of the final active set I(x∗). When (x, λ) is sufficiently close to
(x∗, λ∗), the estimate is accurate, provided both the MFCQ and the SSOSC hold at
(x∗, λ∗); see [4, Theorem 2.3]. Second, in the algorithm we also need to “guess” the
strong active set, i.e., the set of active constraints with positive multipliers,

I+(x∗) = {i ∈ I(x∗)|λ∗
i > 0}.

To do so, we again employ function ϕ(x, λ) to measure the multiplier estimate. Specif-
ically, we set

Λε,ϕmax(x, λ) = {i ∈ Aε,ϕmax |λi ≥ εmin{ϕ(x, λ), ϕmax}}.

If a strict MFCQ1 and the SSOSC hold at (x∗, λ∗), Λε,ϕmax
(x, λ) eventually identifies

the strong active set I+(x∗); see [4, Theorem 2.4]. Note that the strict MFCQ is
implied by the LICQ. To simplify the presentation, for the kth iteration (k = 1, 2, . . . )
we let

Ik = Aεk,ϕmax(x
k, λk−1,0) and Lk = Λεk,ϕmax(x

k, λk−1,0),

where λk−1,0 and εk will be specified in the algorithm.
In order to avoid computing linearly independent constraint gradients, the coef-

ficient matrices of our Newton equations follow the form of (1.3) but involving only
constraints in the working set Ik,

Mk =

[
Hk ∇cIk(xk)

Uk∇cIk(xk)� CIk(xk)

]
,(2.3)

where Uk = diag(μk
Ik

) and CIk(xk) = diag(cIk(xk)). Note that Mk is slightly different

from the coefficient matrix of (1.3) in that μk in (2.3) are controlled to be compo-
nentwise bounded below over zero under the LICQ and the SSOSC. In particular, it

1This nomenclature is from [4].
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will be shown that μk actually converges to some δ∗-drifted (δ∗ > 0) multipliers with
respect to the active set, i.e.,

μk
i → δ∗ + λ∗

i for i ∈ I(x∗).

This ensures that Mk are uniformly well conditioned even if λ∗ is degenerate or nearly
degenerate.

We are now ready to state the algorithm.
Algorithm 2.1.

Step 0 (Initialization).

Parameters: β ∈ (0, 1), σ ∈ (0, 1/2), η ∈ (2, 3), τ ∈ (0, 1), ν ∈ (2, 3), θ ∈
(0, 1), γ > 2, δ > 0, ϕmax > 0, ϑ ∈ (0, 1).

Data: x1 ∈ F , λ0,0 ≥ 0. If L1 �= ∅ and ϕ(x1, λ0,0) > 0, δ1 = ϑmin{λ0,0
i , i ∈ L1};

otherwise, δ1 = δ. μ1 = λ0,0 + δ1e, ε1 > 0, χ1  ϕmax, H1 = ∇2
xxL(x1, λ0,0).

Set k = 1.
Step 1 (Computation of search direction).

(i) Modify Hk, if necessary, so that

d�Ĥkd > 0 ∀d ∈ T (xk)\{0},(2.4)

where T (x) = {y ∈ �n|∇ci(x)�y = 0, i ∈ I(x)} for x ∈ F and

Ĥk = Hk −
∑

i∈Ik\I(xk)

μk
i

ci(xk)
∇ci(x

k)∇ci(x
k)�.(2.5)

Compute (dk,0, λk,0
Ik

) by solving the following linear system in (d, λ):

Mk

[
d
λ

]
=

[
−∇f(xk)

0

]
.(2.6)

If dk,0 = 0 and λk,0
Ik

≥ 0, stop.

(ii) Compute (dk,1, λk,1
Ik

) by solving the following linear system in (d, λ):

Mk

[
d
λ

]
=

[
−∇f(xk)
−δkcIk(xk)

]
.(2.7)

If (dk,1, λk,1
Ik

) satisfies { ∇f(xk)�dk,1 ≤ −‖dk,1‖γ ,
|λk,1

−,i| ≤ ‖dk,1‖ ∀i ∈ Ik,
(2.8)

set FAST = TRUE; else set FAST = FALSE, where λk,1
−,i = min{λk,1

i , 0}, i ∈ Ik.

(iii) Compute (dk,2, λk,2
Ik

) by solving the following linear system in (d, λ):

Mk

[
d
λ

]
=

[
−∇f(xk)

vk

]
,(2.9)

where if FAST = TRUE, then

vki = −δkci(x
k) − μk

i ρk, i ∈ Ik,(2.10)
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with

ρk =
(θ − 1)∇f(xk)�dk,1

1 +
∑

i∈Ik
|λk,0

i |‖dk,1‖η
‖dk,1‖η;(2.11)

else

vki = λk,0
−,i = min{λk,0

i , 0}, i ∈ Ik.(2.12)

(iv) Compute (dk,3, λk,3
Ik

) by solving the following linear system in (d, λ):

Mk

[
d
λ

]
=

[
−∇f(xk)

�k

]
,(2.13)

where if FAST = TRUE, then

�k
i = vki − μk

i ci(x
k + dk,2) − πk, i ∈ Ik,(2.14)

with

πk = max

{
‖dk,2‖ν ,max

i∈Ik

{∣∣∣∣∣1 − μk
i

max{ δk
2 , δk + λk,2

i }

∣∣∣∣∣
τ

‖dk,2‖2

}}
;(2.15)

else

�k
i = vki − μk

i ρk, i ∈ Ik,(2.16)

with

ρk =
(θ − 1)∇f(xk)�dk,2

1 +
∑

i∈Ik
|λk,0

i |‖dk,2‖2
‖dk,2‖2.(2.17)

Step 2 (Arc search).

Set λk,j
I\Ik = 0 (j = 0, 1, 2, 3). If FAST = TRUE, then set (dk, λk) = (dk,2, λk,2)

and

(d̂k, λ̂k) =

{
(dk,3, λk,3) if ‖dk,3 − dk,2‖ ≤ ‖dk,2‖,
(dk,2, λk,2) else.

If FAST = FALSE, then set (dk, λk) = (d̂k, λ̂k) = (dk,3, λk,3).
Compute tk, the first number t of the sequence {1, β, β2, . . . } satisfying⎧⎨⎩ f(xk + tdk + t2(d̂k − dk)) − f(xk) ≤ σt∇f(xk)�dk,

ci(x
k + tdk + t2(d̂k − dk)) ≤ 0, i ∈ I.

(2.18)

Step 3 (Update).

Set xk+1 = xk + tkd
k + t2k(d̂

k − dk). If ‖λk,0‖∞ > χk, set εk+1 = 1
2εk and

χk+1 = 2χk; else set (εk+1, χk+1) = (εk, χk). If Lk+1 �= ∅ and ϕ(xk+1, λk,0) > 0, set

δk+1 = ϑmin{λk,0
i , i ∈ Lk+1}; otherwise, set δk+1 = δ. Set

μk+1
i =

{
δk+1 + max{λk,0

i , 0} if i ∈ Ik,
δk+1 if i ∈ I\Ik.

(2.19)
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Set Hk+1 = ∇2
xxL(xk+1, μk+1 − δk+1e). Set k = k + 1 and go to Step 1.

Remark 2.1. Clearly, μk > 0 at each iteration. Hence, by Lemma 6.1 in the
appendix, condition (2.4) and the LICQ can guarantee the nonsingularity of Mk. To
motivate fast local convergence, in Algorithm 2.1 the exact Lagrangian Hessian is used
to compute the step if it satisfies (2.4). This is the case for iterates in a neighborhood
of a KKT point of problem (P) satisfying the SSOSC; see section 4. However, outside
such a neighborhood, it may be necessary to modify Hk so that (2.4) holds. There are
two often used ways to do so. One way is to repeatedly add multiples of the identity
to Hk until (2.4) holds; e.g., see [23, 24]. The other way is based on the inertia-
controlling factorization of the matrix obtained by symmetrizing Mk that determines
a positive quantity and those diagonal elements of Hk to which the positive quantity
should be added so that the resulting Ĥk satisfies (2.4); e.g., see [12].

Remark 2.2. The role of linear equations (2.6) is to provide a descent direction
dk,0 of f and an approximate multiplier vector λk,0, which is used to compute the
perturbation value ρk in (2.11) and (2.17). A system of inequalities (2.8) is introduced
in the algorithm through which we can determine whether direction dk,1, a “fast” lo-
cal direction, is acceptable as an ideal search direction. The first inequality of (2.8)
checks whether dk,1 can provide a sufficient reduction in f , while the second inequal-
ity measures the convergence progress of λk,1 toward the optimal multipliers. If (2.8)
holds (i.e., FAST = TRUE), another linear equation (2.9), a slight perturbation of
(2.7), is solved to keep the feasibility of the next iterate. To avoid the Maratos effect,
second-order correction is carried out by solving (2.13), a slight perturbation of (2.9).
If (2.8) is violated, a steeper descent direction is gotten by (2.9) and feasibility of the
next iterate is ensured by solving (2.13). Consequently, linear equations (2.9) and
(2.13) may serve for different purposes depending on the value of “FAST.” Note that
the inequality system (2.8) actually provides an efficient framework for balancing well
the global and local behavior of our algorithm. We believe that without much modi-
fication, this framework can be readily extended to other active set–based algorithms
for solving problem (P).

The following assumptions guarantee that our algorithm is well defined.
Assumption A1. F is nonempty.
Assumption A2. The LICQ holds on F , i.e., vectors {∇ci(x), i ∈ I(x)} are

linearly independent for any x ∈ F .
Assumption A1 ensures the existence of a feasible starting point x1. Assumption

A2 is a common assumption for both type-1 and type-2 QP-free methods. The rest
of the section is devoted to showing that Algorithm 2.1 is well defined. It has been
analyzed in Remark 2.1 that under Assumption A2, Mk is nonsingular for every k.
Hence, (dk,j , λk,j) (j = 0, 1, 2, 3) are all well defined. In the following we continue to
show that if the algorithm terminates at Step 1(i), the current iterate is a KKT point
of problem (P); otherwise, the arc search in Step 2 is executable and the algorithm
generates the next iterate.

Lemma 2.1. Under Assumptions A1 and A2, Algorithm 2.1 terminates at Step
1(i), i.e., dk,0 = 0 and λk,0 ≥ 0, if and only if xk is a KKT point of problem (P).

Proof. Suppose dk,0 = 0 and λk,0 ≥ 0 at the kth iteration. Then it follows from
linear equations (2.6) that

∇f(xk) +
∑
i∈Ik

λk,0
i ∇ci(x

k) = 0, λk,0
i ci(x

k) = 0, i ∈ Ik.

This implies that (xk, λk,0) is a KKT point of problem (P) as λk,0
I\Ik = 0.
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Suppose xk is a KKT point of problem (P) and λ̄ is the corresponding Lagrangian
multiplier vector. By Assumption A2 and the nonsingularity of Mk, we know that
(0, λ̄Ik) is the unique solution of linear equations (2.6). Hence, we conclude that
dk,0 = 0 and λk,0 = λ̄.

In the remainder of the paper, we assume that Algorithm 2.1 generates an infinite
sequence of iterates, i.e., it does not stop at Step 1(i) with a KKT point of problem
(P). Before proceeding further, we need some basic relations that are useful for our
analysis. To simplify the presentation, in the following algebra we omit superscript k,
subscript k, and function variables. For example, C, ∇c, and ∇f will denote CIk(xk),
∇cIk(xk), and ∇f(xk), respectively. Consider the following linear equations:{

Hd + ∇cλ = −∇f,
U∇c�d + Cλ = w.

(2.20)

It follows from Lemma 6.1 that (2.20) is nonsingular and has a unique solution.
Letting a = Ik\I(xk) and b = I(xk), we have

λa = −C−1
a Ua∇c�a d + C−1

a wa,(2.21)

κ∇cbUb∇c�b d = κ∇cbwb,(2.22)

where κ is a positive scalar. Substituting (2.21) into the first block of equations in
(2.20) and adding both sides of (2.22) to the first block of equations in (2.20) gives

H̄d = −∇f −∇caC
−1
a wa + κ∇cbwb −∇cbλb,

where

H̄ = H −∇caC
−1
a Ua∇c�a + κ∇cbUb∇c�b .

Since (2.4) holds and U 
 0 in view of Step 3 of Algorithm 2.1, by Lemma 6.2 in the
appendix, we can pick κ large enough so that H̄ 
 0. Thus,

d = −H̄−1∇f − H̄−1∇caC
−1
a wa + κH̄−1∇cbwb − H̄−1∇cbλb.(2.23)

Substitute (2.23) into the second block of equations in (2.20) and we get

λb = −D−1∇c�b H̄
−1∇f −D−1∇c�b H̄

−1∇caC
−1
a wa + κwb −D−1U−1

b wb,(2.24)

where D = ∇c�b H̄
−1∇cb. Note that Assumption A2 ensures the nonsingularity of D.

Let (d0, λ0) be the solution of (2.20) when w = 0, i.e., the solution of (2.6). We have

λ0
a = (C−1

a Ua∇c�a H̄
−1 − C−1

a Ua∇c�a H̄
−1∇cbD

−1∇c�b H̄
−1)∇f,(2.25)

λ0
b = −D−1∇c�b H̄

−1∇f,(2.26)

and

d = d0 + (H̄−1∇cbD
−1∇c�b H̄

−1∇caC
−1
a − H̄−1∇caC

−1
a )wa(2.27)

+H̄−1∇cbD
−1U−1

b wb.

Consequently, we obtain from (2.25), (2.26), and (2.27) that

∇f�d = ∇f�d0 − (λ0
a)

�U−1
a wa − (λ0

b)
�U−1

b wb = ∇f�d0 − (λ0)�U−1w.(2.28)
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In the following lemmas, (2.28) is used to show the descent and feasible properties
of search direction dk. To this end, we first show that dk,0 is a descent direction of f .
Since I(xk) ⊆ Ik, it follows from (2.6) that

μk
i∇ci(x

k)�dk,0 = −ci(x
k)λk,0

i = 0 ∀i ∈ I(xk).(2.29)

Hence, dk,0 ∈ T (xk) as μk > 0 by Step 3 of Algorithm 2.1. Hence, from (2.6), (2.4),
and (2.5), we have

∇f(xk)�dk,0

= −(dk,0)�

⎛⎝Hk −
∑

i∈Ik\I(xk)

μk
i

ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ dk,0

−
∑

i∈I(xk)

λk,0
i ∇ci(x

k)�dk,0

= −(dk,0)�Ĥkd
k,0 ≤ 0.

(2.30)

Lemma 2.2. Suppose Assumptions A1 and A2 hold and FAST = TRUE at the
kth iteration. Then ∇f(xk)�dk,1 �= 0.

Proof. Suppose ∇f(xk)�dk,1 = 0. Since FAST = TRUE, it follows from (2.8)

that dk,1 = 0 and λk,1
Ik

≥ 0. Hence, from linear equations (2.7) we obtain that

∇f(xk) +
∑
i∈Ik

λk,1
i ∇ci(x

k) = 0,

0 ≤ −δkci(x
k) = λk,1

i ci(x
k) ≤ 0, i ∈ Ik.

Since I(xk) ⊆ Ik and λk,1
I\Ik = 0, we conclude that (xk, λk,1) is a KKT point of problem

(P). Hence, Lemma 2.1 implies that Algorithm 2.1 should have terminated at Step
1(i), a contradiction.

Lemma 2.3. Under Assumptions A1 and A2, if FAST = TRUE at the kth
iteration, then

(i) ∇f(xk)�dk ≤ θ∇f(xk)�dk,1 < 0;
(ii) ∇ci(x

k)�dk = −ρk < 0 for all i ∈ I(xk).
Proof. Since FAST = TRUE, we know that (2.8) holds, dk = dk,2, and ρk is

defined by (2.11). Since we have assumed that Algorithm 2.1 generates an infinite
iterate sequence, it follows from Lemma 2.1 that xk is not a KKT point of (P). Thus,
it follows from Lemma 2.2 and (2.8) that ∇f(xk)�dk,1 < 0. Hence, from (2.10),
(2.11), and (2.28), we obtain that

∇f(xk)�dk

= ∇f(xk)�dk,1 + (λk,0
Ik

)�U−1
k Uk(ρke)

= ∇f(xk)�dk,1 +
(θ − 1)∇f(xk)�dk,1

1 +
∑

i∈Ik
|λk,0

i |‖dk,1‖η
‖dk,1‖η

∑
i∈Ik

λk,0
i

≤ θ∇f(xk)�dk,1 < 0.

(2.31)

Notice that I(xk) ⊆ Ik. By (2.9) and (2.10), we have that ∇ci(x
k)�dk = −ρk < 0 for

i ∈ I(xk).
Lemma 2.4. Under Assumptions A1 and A2, if FAST = FALSE at the kth

iteration, then
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(i) ∇f(xk)�dk,2 = ∇f(xk)�dk,0 −
∑

i∈Ik
(λk,0

−,i)
2/μk

i < 0;

(ii) ∇f(xk)�dk ≤ θ∇f(xk)�dk,2;
(iii) ∇ci(x

k)�dk ≤ −ρk < 0 for i ∈ I(xk).
Proof. Since FAST = FALSE, we have that dk = dk,3 and vk and ρk are

computed by (2.12) and (2.17), respectively. It follows from (2.28) and (2.30) that

∇f(xk)�dk,2

= ∇f(xk)�dk,0 − (λk,0
Ik

)�U−1
k vk

= ∇f(xk)�dk,0 −
∑
i∈Ik

(λk,0
−,i)

2/μk
i

= −(dk,0)�Ĥkd
k,0 −

∑
i∈Ik

(λk,0
−,i)

2/μk
i .

(2.32)

Since Algorithm 2.1 generates an infinite iterate sequence, xk is not a KKT point of
(P), i.e., either dk,0 = 0 or λk,0

Ik
≥ 0 is violated in view of Lemma 2.1. Moreover, since

I(xk) ⊆ Ik, we have from (2.6) that (2.29) holds. Hence, dk,0 ∈ T (xk) as μk > 0.
Consequently, we know from (2.4) and (2.32) that ∇f(xk)�dk,2 < 0. This establishes
(i). From (2.16), (2.17), (2.28), and (2.13), we obtain that

∇f(xk)�dk

= ∇f(xk)�dk,2 + (λk,0
Ik

)�U−1
k Uk(ρke)

= ∇f(xk)�dk,2 +
(θ − 1)∇f(xk)�dk,2

1 +
∑

i∈Ik
|λk,0

i |‖dk,2‖2
‖dk,2‖2

∑
i∈Ik

λk,0
i

≤ θ∇f(xk)�dk,2.

(2.33)

This establishes (ii). Moreover, it follows from (2.12), (2.16), and (2.13) that for
i ∈ I(xk), ∇ci(x

k)�dk ≤ −ρk < 0.
Proposition 2.5. Under Assumptions A1 and A2, Algorithm 2.1 is well defined.
Proof. Assumption A1 ensures that Algorithm 2.1 can start properly. At each

iteration, μk > 0 by Step 3 of Algorithm 2.1, and it is always possible to modify Hk, if
necessary, so that (2.4) holds (e.g., it suffices to add a sufficiently large multiple of the
identity to Hk). Since (2.4) and Assumption A2 guarantee the nonsingularity of Mk

by Lemma 6.1, every linear system involved in Algorithm 2.1 has a unique solution.
By Lemma 2.1, if Algorithm 2.1 terminates at an iteration k, xk is a KKT point of
problem (P). To finish our analysis, we only need to show that the arc search in Step
2 of Algorithm 2.1 is well defined.

Suppose Algorithm 2.1 does not terminate at xk. Then by Lemmas 2.3 and 2.4,
∇f(xk)�dk < 0 and ∇ci(x

k)�dk < 0 for all i ∈ I(xk). Let d̃k = d̂k − dk. Since f and
c are twice continuously differentiable, we have

f(xk + tdk + t2d̃k) = f(xk) + t∇f(xk)�dk + O(t2),

ci(x
k + tdk + t2d̃k) = ci(x

k) + t∇ci(x
k)�dk + O(t2), i ∈ I.

Hence, it follows that for all sufficiently small t (t ∈ (0, 1)),

f(xk + tdk + t2d̃k) − f(xk) ≤ σt∇f(xk)�dk

as σ ∈ (0, 1/2) and

ci(x
k + tdk + t2d̃k) ≤ ci(x

k) = 0 ∀i ∈ I(xk).
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Moreover, since ci(x
k) < 0 for i ∈ I\I(xk), it follows that for such i and all sufficiently

small t, ci(x
k + tdk + t2d̃k) < 0. Therefore, we conclude that Step 2 of Algorithm 2.1

is well defined. Thus, Algorithm 2.1 can proceed to the next iterate.

3. Global convergence. In this section we show that Algorithm 2.1 is glob-
ally convergent to KKT points of problem (P). To this end, we further assume the
following.

Assumption A3. There exist �1, �2 > 0 such that for all k,

d�Ĥkd ≥ �1‖d‖2 ∀d ∈ T (xk),

where Ĥk is defined by (2.5), and ‖Hk‖ ≤ �2.
Assumption A4. The set F ∩ {x|f(x) ≤ f(x1)} is compact.
Assumption A3 is weaker than the uniform positive definiteness assumption on

Hk made in [13, 18, 19, 28]. It holds with the exact Hessian in the neighborhood of
any solution of problem (P) at which the SSOSC holds. Assumption A4 ensures that
our descent algorithm generates accumulated iterates.

Lemma 3.1. Under Assumptions A1–A4, sequences {χk} and {εk} are changed
at most finitely many times.

Proof. The proof is by contradiction. Suppose that {χk} and {εk} are changed
infinitely many times, i.e., there exists an infinite index set K such that χk+1 = 2χk

and εk+1 = 1
2εk for all k ∈ K. Then we have {χk} → +∞ and εk → 0+ as k → ∞.

Due to the finiteness of set I, we can assume without loss of generality that Ik are
identical for all k ∈ K and let IK = Ik. Moreover, by Assumption A4 we can assume
xk → x̄ as k ∈ K → ∞. We get from the definition of Ik that IK ⊆ I(x̄) since
{εk min{ϕ(xk, λk−1,0), ϕmax}} → 0 as k → ∞.

In addition, the criteria that trigger updating of {χk} and {εk} must be satisfied
for all k ∈ K, i.e., ‖λk,0‖∞ > χk. This implies that ‖λk,0‖∞ → ∞. Consequently, the
sequence {αk}, with

αk = max{‖dk,0‖, ‖λk,0
IK

‖∞, 1},

tends to infinity on K. Define

d̄k = α−1
k dk,0 and λ̄k

IK = α−1
k λk,0

IK

for k ∈ K. By construction we have max{‖d̄k‖, ‖λ̄k
IK
‖∞} = 1 for all k ∈ K large

enough. Hence, there exists an infinite index set K1 ⊆ K and nonzero vector (d̄, λ̄IK)
such that d̄k → d̄ and λ̄k

IK
→ λ̄IK as k ∈ K1 → ∞. From (2.30) and Assumption A3,

we have

∇f(xk)�dk,0 ≤ −�1‖dk,0‖2.(3.1)

Dividing both sides of (3.1) by α2
k and letting k ∈ K1 → ∞ yields d̄ = 0. Thus, λ̄IK

is nonzero. Besides, it follows from (2.6) that for k ∈ K,

Hkd
k,0 + ∇cIK(xk)λk,0

IK
= −∇f(xk).(3.2)

Dividing both sides of (3.2) by αk and letting k ∈ K1 → ∞ gives us

∇cIK(x̄)λ̄IK = 0.

This contradicts Assumption A2, as we have proved that IK ⊆ I(x̄).
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Lemma 3.2. Under Assumptions A1–A4, sequences {λk,0}, {δk}, and {μk} are
bounded.

Proof. Lemma 3.1 gives that {χk} has an upper bound, and thus {λk,0} is bounded
by Step 3 of Algorithm 2.1. The boundedness of {δk} and {μk} follows directly from
their definitions and the boundedness of {λk,0}.

Lemma 3.3. Under Assumptions A1–A4, if {δk}K → 0, then any accumulation
point of {(xk, λk−1,0)}K is a KKT point of problem (P), where K is an infinite index
set.

Proof. First note that {(xk, λk−1,0)}K is bounded by Assumption A4 and Lemma
3.2. Since {δk}K → 0, the definitions of δk and Lk indicate that {ϕ(xk, λk−1,0)}K → 0.
Since ϕ(x, λ) = 0 if and only if (x, λ) is a KKT point of problem (P), the result follows
from continuity.

Lemma 3.4. Suppose Assumptions A1–A4 hold. If {δk}K is bounded below over
zero, sequence {‖M−1

k ‖}K is uniformly bounded, where K is an infinite index set.
Proof. Since μk > 0 by Algorithm 2.1, we know from Lemma 6.1 that (2.4) and

Assumption A2 guarantee the nonsingularity of Mk for each k. Now assume to the
contrary that there exists an infinite index set K′ ⊆ K such that ‖M−1

k ‖ → ∞ as
k ∈ K′ → ∞. Due to Lemma 3.2 and Assumptions A3 and A4, we can assume that
δk → δ̄ > 0, μk → μ̄ > 0, xk → x̄ ∈ F , and Hk → H∗ as k ∈ K′ → ∞. Moreover,
since set I is finite, we can further assume that Ik, Lk, and I(xk) are, respectively,
identical for all k ∈ K′ and let IK′ = Ik, LK′ = Lk, and ĪK′ = I(xk). Putting all the
limits together, we have

{Mk}K′ → M̄ =

[
H∗ ∇cIK′ (x̄)

diag(μ̄IK′ )∇cIK′ (x̄)� diag(cIK′ (x̄))

]
.

Pick any y ∈ T (x̄)\{0}. Assumption A2 ensures that ∇cI(x̄)(x
k)� has full row

rank for all k ∈ K′ large enough. So we can let

yk = (E −∇cI(x̄)(x
k)(∇cI(x̄)(x

k)�∇cI(x̄)(x
k))−1∇cI(x̄)(x

k)�)y

for sufficiently large k ∈ K′. Obviously, we have ∇cI(x̄)(x
k)�yk = 0 for all large k ∈

K′ and yk → y as k ∈ K′ → ∞. This implies that yk ∈ T (xk) since ĪK′ ⊆ I(x̄) when
xk is close to x̄. Therefore, we obtain by Assumption A3 that for k ∈ K′ large enough

(yk)�

⎛⎝Hk −
∑

IK′\I(x̄)

μk
i

ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ yk

= (yk)�

⎛⎝Hk −
∑

IK′\ĪK′

μk
i

ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ yk

= (yk)�Ĥky
k ≥ �1‖yk‖2.

Thus, letting k ∈ K′ → ∞ yields that

y�

⎛⎝H∗ −
∑

IK′\I(x̄)

μ̄i

ci(x̄)
∇ci(x̄)∇ci(x̄)�

⎞⎠ y > 0.

Now we can use Lemma 6.1 to show that M̄ is nonsingular, a contradiction.
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The following corollary is a direct consequence of Lemmas 3.2 and 3.4.
Corollary 3.5. Suppose Assumptions A1–A4 hold. If {δk}K is bounded below

over zero, sequences {dk,0}, {dk,j , λk,j} (j = 1, 2, 3) are all bounded, where K is an
infinite index set.

Proof. Since the matrix sequence {M−1
k }K is uniformly bounded by Lemma 3.4

and {xk} is bounded due to Assumption A4, we obtain the boundedness of {dk,0}
and {(dk,1, λk,1)}K from (2.6) and (2.7), respectively. This together with Lemma
3.2 implies the boundedness of {vk}K in view of (2.10), (2.11), and (2.12). Hence,
{(dk,2, λk,2)}K is bounded, and this further implies the boundedness of {�k}K in view
of (2.14)–(2.17). Hence, {(dk,3, λk,3)}K is also bounded.

Lemma 3.6. Suppose Assumptions A1–A4 hold. If {δk}K is bounded below over
zero and there exists a constant α > 0 such that ∇f(xk)�dk ≤ −α for all k ∈ K,
where K is an infinite index set, then there exists a constant ᾱ > 0 such that ρk ≥ ᾱ
for all k ∈ K large enough.

Proof. Assume to the contrary that there exists an infinite subset K′ ⊆ K such
that {ρk} → 0 as k ∈ K′ → ∞. There are two cases.

Case 1. There exists an infinite subset K1 ⊆ K′ such that FAST = TRUE for
all k ∈ K1. In this case, dk = dk,2 and ρk is defined by (2.11). Since ρk tends to zero
as k ∈ K′ → ∞, it follows from (2.11) that {∇f(xk)�dk,1}K1 → 0. Considering the
finiteness of I, we can assume that Ik are identical for all k ∈ K1 and let IK1 = Ik.
Moreover, due to boundedness we can further assume that {δk} → δ̄ > 0, {Mk} → M̄ ,
{(dk,1, λk,1)} → (d̄, λ̄), and {(dk, λk)} → (d̄′, λ̄′) as k ∈ K1 → ∞. Now letting
k ∈ K1 → ∞ in linear systems (2.7), (2.9), and (2.10) yields that

M̄

[
d̄

λ̄IK1

]
= M̄

[
d̄′

λ̄′
IK1

]
=

[
−∇f(x̄)
−δ̄cIK1

(x̄)

]
.

This implies that (d̄, λ̄) = (d̄′, λ̄′) as M̄ is nonsingular by Lemma 3.4. Hence, we have

{∇f(xk)�dk}K1
→ ∇f(x̄)�d̄′ = ∇f(x̄)�d̄ = 0.

This contradicts the condition that ∇f(xk)�dk ≤ −α for all k ∈ K.
Case 2. There exists an infinite subset K2 ⊆ K′ such that FAST = FALSE for

all k ∈ K2. In this case, dk = dk,3 and ρk is defined by (2.17). Since {ρk} → 0 as
k ∈ K′ → ∞, (2.17) gives that {∇f(xk)�dk,2}K2 → 0. Without loss of generality,

assume that {dk,2}K2
→ d̂ and {dk}K2

→ d̂′. By following a similar argument to that

of Case 1, we can show that d̂ = d̂′ and thus {∇f(xk)�dk}K2 → 0, a contradiction.
Since either Case 1 or Case 2 happens, the result follows immediately.
Lemma 3.7. Suppose Assumptions A1–A4 hold, {xk}K → x̄, and {δk}K is

bounded below over zero, where K is an infinite index set. If I(x̄) ⊆ Ik for all k ∈ K
large enough, then {∇f(xk)�dk} → 0 as k ∈ K → ∞.

Proof. Assume to the contrary that there exist an infinite index set K′ ⊆ K and
a constant α > 0 such that

∇f(xk)�dk ≤ −α ∀k ∈ K′.(3.3)

Then it follows from Lemma 3.6 that there exists a constant ᾱ > 0 such that ρk ≥ ᾱ
for all k ∈ K′. Since I is finite, we can assume that Ik are identical for all k ∈ K′ and
let IK′ = Ik. Due to the boundedness of {dk}, we can also assume that {dk} → d̄ �= 0
as k ∈ K′ → ∞. It follows from linear equations (2.9) and (2.13) that for each i ∈ IK′ ,

μk
i∇ci(x

k)�dk + λk
i ci(x

k) =

{ −δkci(x
k) − μk

i ρk if FAST = TRUE;

λk,0
−,i − μk

i ρk if FAST = FALSE.
(3.4)
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Since I(x̄) ⊆ IK′ , dividing both sides of (3.4) by μk
i and letting k ∈ K′ → ∞ yields

∇ci(x̄)�d̄ ≤ − inf
k∈K′

{ρk} ≤ −ᾱ ∀i ∈ I(x̄).

This implies that for all k ∈ K′ large enough,

∇ci(x
k)�dk ≤ −1

2
ᾱ ∀i ∈ I(x̄).(3.5)

From (3.3) and the proof of [18, Lemma 3.9], we have the following basic relations
(because of the differentiability of the functions) for the functions f, c and k ∈ K′ large
enough:

f(xk + tdk + t2(d̂k − dk)) − f(xk) − σt∇f(xk)�dk

≤ t
{

supξ∈[0,1] ‖∇f(xk + tξdk + t2ξ2(d̂k − dk)) −∇f(xk)‖‖dk‖

+2t supξ∈[0,1] ‖∇f(xk + tξdk + t2ξ2(d̂k − dk))‖‖d̂k − dk‖

−(1 − σ)α
}
,

(3.6)

ci(x
k + tdk + t2(d̂k − dk)) − ci(x

k)

≤ t
{

supξ∈[0,1] ‖∇ci(x
k + tξdk + t2ξ2(d̂k − dk)) −∇ci(x

k)‖‖dk‖
+2t supξ∈[0,1] ‖∇ci(x

k + tξdk + t2ξ2(d̂k − dk))‖‖d̂k − dk‖

+∇ci(x
k)�dk

}
, i ∈ I.

(3.7)

Note that {d̂k − dk} is also bounded in view of the relation ‖d̂k − dk‖ ≤ ‖dk‖. Hence,
(3.6) implies that there exists tf > 0, independent of k, such that, for all k ∈ K′ large
enough,

f(xk + tdk + t2(d̂k − dk)) − f(xk) − σt∇f(xk)�dk ≤ 0 ∀t ∈ (0, tf ].(3.8)

Moreover, (3.5) and (3.7) imply that there exists tc > 0, independent of k, such that
for t ∈ (0, tc] and k ∈ K′ large enough,

ci(x
k + tdk + t2(d̂k − dk)) < 0 ∀i ∈ I(x̄).

For all i ∈ I\I(x̄), there exists α̂ > 0 such that ci(x
k) ≤ −α̂ for all k ∈ K′ large

enough. Since dk and d̂k are bounded, there exists t̄c > 0, independent of k, such that

ci(x
k + tdk + t2(d̂k − dk)) < 0 ∀i ∈ I\I(x̄)

for all t ∈ (0, t̄c] and k ∈ K′ large enough.
Let t̄ = min{tf , t̄c, tc}. By the arc search step of Algorithm 2.1, we have tk ≥ βt̄

for all k ∈ K′ large enough. Thus, it follows from (3.3) and (3.8) that

f(xk + tkd
k + t2k(d̂

k − dk)) − f(xk) ≤ −σβt̄α,

which implies f(xk) → −∞, a contradiction to Assumption A4 and the assumption
that f is real valued and continuously differentiable on F .
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Lemma 3.8. Suppose Assumptions A1–A4 hold, {xk, λk,0}K → (x̄, λ̄), and {δk}K
is bounded below over zero, where K is an infinite index set. If {∇f(xk)�dk}K → 0,
then (x̄, λ̄) is a KKT point of problem (P).

Proof. It is obvious that x̄ ∈ F . There are two cases.
Case 1. There exists an infinite subset K1 ⊆ K such that FAST = TRUE for

all k ∈ K1. In this case, dk = dk,2 and (dk,1, λk,1
Ik

) satisfies system (2.8). Since I is
finite, we can assume that Ik are identical for all k ∈ K1 and let IK1

= Ik. Since
∇f(xk)�dk ≤ θ∇f(xk)�dk,1 by Lemma 2.3(i), it follows that {∇f(xk)�dk,1} → 0 as
k ∈ K1 → ∞. Without loss of generality, suppose {δk}K1 → δ̄ > 0 and {λk,1}K1 → λ′.
Letting k ∈ K1 → ∞ in (2.8) yields that {dk,1}K1 → 0 and λ′

IK1
≥ 0. Moreover, we

obtain from linear equations (2.7) that

∇f(x̄) +
∑
i∈IK1

λ′
i∇ci(x̄) = 0 and ci(x̄) = 0 ∀i ∈ IK1

.

Since λ′
I\IK1

= 0, we conclude that (x̄, λ′) is a KKT point of problem (P). Further-

more, since {dk,0} and all elements of Mk are bounded, we can assume that {dk,0} → d̄
and {Mk} → M̄ as k ∈ K1 → ∞. Due to the nonsingularity of M̄ , letting k ∈ K1 → ∞
in linear equations (2.6) and (2.7) yields that d̄ = 0 and λ̄IK1

= λ′
IK1

. Hence, (x̄, λ̄) is

a KKT point of problem (P).
Case 2. There exists an infinite subset K2 ⊆ K such that FAST = FALSE for all

k ∈ K2. In this case, dk = dk,3. Similarly to Case 1, we assume that Ik are identical
for all k ∈ K2 and let IK2

= Ik. Since ∇f(xk)�dk ≤ θ∇f(xk)�dk,2 by Lemma 2.4(ii),
it follows that {∇f(xk)�dk,2} → 0 as k ∈ K2 → ∞. Notice that {μk}K2 is bounded
and componentwise bounded below over zero. Therefore, we obtain from (2.30) and
Lemma 2.4(i) that {dk,0}K2 → 0 and λ̄IK2

≥ 0. Furthermore, letting k ∈ K2 → ∞ in
linear equations (2.6) yields that

∇f(x̄) +
∑
i∈IK2

λ̄i∇ci(x̄) = 0 and λ̄ici(x̄) = 0 ∀i ∈ IK2 .

Since λ̄I\IK2
= 0, we conclude that (x̄, λ̄) is a KKT point of problem (P).

Since either Case 1 or Case 2 happens, the result follows immediately.
Now we are in a position to establish the global convergence of Algorithm 2.1.

By Lemma 2.1 we have known that if Algorithm 2.1 terminates in a finite number of
iterations, a KKT point of problem (P) is found. The following theorem deals only
with the case of infinite iterations.

Theorem 3.9. Suppose Assumptions A1–A4 hold. Let (x̄, λ̂, λ̄) be an accumula-
tion point of sequence {xk, λk−1,0, λk,0} generated by Algorithm 2.1, and let K be the

corresponding index set such that {xk, λk−1,0, λk,0}K → (x̄, λ̂, λ̄). Then either (x̄, λ̂)
or (x̄, λ̄) is a KKT point of problem (P).

Proof. First note that Lemma 3.2 and Assumption A4 ensure the existence of
an accumulation point of {xk, λk−1,0, λk,0}. Lemma 3.3 states that if there exists an

infinite subset K′ ⊆ K such that {δk}K′ → 0, then (x̄, λ̂) is a KKT point of problem
(P). Therefore, we only need to consider the case that {δk}K is bounded below over

zero. Assume to the contrary that neither (x̄, λ̂) nor (x̄, λ̄) is a KKT point of problem
(P). Then there exists a constant α > 0 such that ϕ(xk, λk−1,0) ≥ α for all k ∈ K
large enough. Moreover, Lemma 3.1 shows that the sequence {εk} has a lower bound
ε̄ > 0. Therefore, the definition of working set indicates that I(x̄) ⊆ Ik for all k ∈ K
large enough. Then by Lemma 3.7 we have that {∇f(xk)�dk} → 0 as k ∈ K → ∞.
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Thus, it follows from Lemma 3.8 that (x̄, λ̄) is a KKT point of problem (P). This
contradicts the assumption that (x̄, λ̄) is not a KKT point.

4. Fast local convergence. Suppose (x∗, λ̂, λ̄) is an accumulation point of the
sequence {(xk, λk−1,0, λk,0)} generated by Algorithm 2.1. It follows from Theorem

3.9 that either (x∗, λ̂) or (x∗, λ̄) is a KKT point of problem (P). Since by Assumption

A2 there exists a unique multiplier vector corresponding to x∗, we have either λ̂ = λ∗

or λ̄ = λ∗. To begin our analysis, we further assume that f, ci, i ∈ I, are twice
continuously differentiable and ∇2f, ∇2ci, i ∈ I, are locally Lipschitz continuous in
a neighborhood of x∗. The following assumption is used to guarantee that x∗ is an
isolated accumulation point of {xk}.

Assumption A5. The SSOSC holds at (x∗, λ∗), i.e., the Lagrangian Hessian
∇2

xxL(x∗, λ∗) is positive definite on the null space

{y ∈ �n|∇ci(x
∗)�y = 0 ∀i ∈ I+(x∗)}.

From Lemma 3.2 we know that εk are changed at most finitely many times.
Therefore, we can assume εk = ε̄ for all k large enough. The following lemma follows
directly from [4, Theorems 2.3, 2.4, and 3.7].

Lemma 4.1. Under Assumptions A2 and A5, there exists a neighborhood of
(x∗, λ∗) such that, for each (x, λ) in this neighborhood, Aε̄,ϕmax

(x, λ) = I(x∗) and
Λε̄,ϕmax(x, λ) = I+(x∗).

Lemma 4.2. Suppose Assumptions A1–A5 hold and that {(xk, λk−1,0, λk,0)}K →
(x∗, λ̂, λ̄). Then I(x∗) ⊆ Ik for all k ∈ K large enough and λ̄ = λ∗.

Proof. If λ̂ = λ∗, it follows from Theorem 3.9 and Lemma 4.1 that for all k ∈ K
large enough, Ik = I(x∗). If λ̂ �= λ∗, then (x∗, λ̂) is not a KKT point of problem (P).
The properties of ϕ imply that there exists α > 0 such that ϕ(xk, λk−1,0) ≥ α for all
k ∈ K large enough. Hence, I(x∗) ⊆ Ik for all k ∈ K large enough. Now we show that
λ̄ = λ∗. Since I(x∗) ⊆ Ik for all sufficiently large k ∈ K, it follows from Lemma 3.7
that {∇f(xk)�dk} → 0 as k ∈ K → ∞. Hence, we know from Lemma 3.8 that (x∗, λ̄)
is a KKT point of problem (P). Thus, by Assumption A2, we have λ̄ = λ∗.

Lemma 4.3. Suppose Assumptions A1–A5 hold and that {(xk, λk−1,0, λk,0)}K →
(x∗, λ̂, λ̄). Then {dk}K → 0.

Proof. Consider any subsequence {λk−1,0}K̄ with K̄ ⊆ K. If it converges to λ∗, by
Lemma 4.1, we have Lk = I+(x∗) for k ∈ K̄ large enough. Hence, if I+(x∗) �= ∅, then
δk > 1

2 min{λ∗
i , i ∈ I+(x∗)} for large k ∈ K̄; otherwise, δk = δ > 0 due to Step 3 of

Algorithm 2.1. If {λk−1,0}K̄ does not converge to λ∗, then {ϕ(xk, λk−1,0)}K̄ is bounded
below over zero and so is {δk}K̄ by the definition of δk. Hence, we conclude that
{δk}K is uniformly bounded below over zero and then by Lemma 3.4 that {‖M−1

k ‖}K
is uniformly bounded.

From Lemma 4.2 we know that I(x∗) ⊆ Ik for all k ∈ K large enough. Hence it
follows from Lemma 3.7 that {∇f(xk)�dk} → 0 as k ∈ K → ∞. Now consider any
infinite index set K′ ⊆ K in which {dk} → d̄. There are two cases.

Case 1. There exists an infinite subset K1 ⊆ K′ such that FAST = TRUE for all
k ∈ K1. In this case, dk = dk,2 and ρk is defined by (2.11). Without loss of generality,

we can assume that {λk,1}K1
→ λ̃, {λk,2}K1

→ λ̆ and {δk}K1
→ δ∗ > 0. Moreover,

since I is finite, we can assume that Ik are identical for all k ∈ K1 and let IK1
= Ik.

Since all elements of Mk are bounded, we can further assume that {Mk}K1 → M̄ .
By Lemma 2.3(i) we have that {∇f(xk)�dk,1}K1 → 0 as {∇f(xk)�dk}K1 → 0. Thus,
(2.8) and (2.11) imply that {dk,1}K1

→ 0 and {ρk}K1
→ 0. Letting k ∈ K1 → ∞ in
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linear equations (2.7) and (2.9) yields that

M̄

[
0

λ̃IK1

]
= M̄

[
d̄

λ̆IK1

]
=

[
−∇f(x∗)

−δ∗cIK1
(x∗)

]
.

Since we have proved that {‖M−1
k ‖}K1 is bounded, i.e., M̄ is nonsingular, we get that

d̄ = 0.
Case 2. There exists an infinite subset K2 ⊆ K′ such that FAST = FALSE

for all k ∈ K2. In this case, dk = dk,3, and vk, �k, and ρk are defined by (2.12),
(2.16), and (2.17), respectively. Similarly to the analysis in Case 1, we can assume,
without loss of generality, that {λk,3}K2

→ λ′, {Mk}K2 → M̂ and that Ik are identical
for all k ∈ K2 and let IK2 = Ik. Lemma 2.4(ii) implies that {∇f(xk)�dk,2}K2 → 0
as {∇f(xk)�dk}K → 0. Thus, we know from (2.17), Lemma 2.4(i), (2.30), and
Assumption A3 that {ρk}K2 → 0 and {dk,0}K2 → 0. Hence, it follows from (2.12) and
(2.16) that {�k}K2

→ 0. Letting k ∈ K2 → ∞ in linear equations (2.6) and (2.13)
yields that

M̂

[
0

λ̄IK2

]
= M̂

[
d̄

λ′
IK2

]
=

[
−∇f(x∗)

0

]
.

Again, the nonsingularity of M̂ implies that d̄ = 0.
Since either Case 1 or Case 2 happens, the result follows immediately.
The original version of the next result is due to Moré and Sorensen [17]; here we

cite a slightly different version of the result from [16, Proposition 5.4].
Proposition 4.4. Assume that ω∗ ∈ �t is an isolated accumulation point of a

sequence {ωk} ⊂ �t such that for every subsequence {ωk}K converging to ω∗, there is
an infinite subset K̄ ⊆ K such that {‖ωk+1 − ωk‖}K̄ → 0. Then the whole sequence
{ωk} converges to ω∗.

Lemma 4.5. Under Assumptions A1–A5, the whole sequence {(xk, λk,0)} con-
verges to (x∗, λ∗).

Proof. The SSOSC and the LICQ guarantee that x∗ is an isolated accumulation
point of {xk}; see [21]. Let {xk}K be a subsequence of iterates converging to x∗. It
follows from Lemma 4.3 that there exists a subsequence K′ ⊆ K such that {dk}K′ → 0.
Since

‖xk+1 − xk‖ ≤ ‖dk‖ + ‖d̂k‖ ≤ 2‖dk‖,

we have that {‖xk+1 − xk‖}K′ → 0. Hence, by Proposition 4.4 we conclude that the
whole sequence {xk} converges to x∗. Furthermore, Lemma 4.2 implies that the whole
sequence {λk,0} converges to λ∗.

Corollary 4.6. Under Assumptions A1–A5, Ik = I(x∗), Lk = I+(x∗) for all k
large enough, and the sequences generated by Algorithm 2.1 satisfy

(i) δk → δ∗ > 0 and {‖M−1
k ‖} is bounded, where

δ∗ =

{
ϑmin{λ∗

i , i ∈ I+(x∗)} if I+(x∗) �= ∅,
δ if I+(x∗) = ∅;

(ii) μk
i → μ∗

i = δ∗ + λ∗
i for all i ∈ I(x∗);

(iii) dk → 0, dk,0 → 0, dk,1 → 0;
(iv) λk,1 → λ∗, λk → λ∗.
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Proof. Since Lemma 4.5 gives that the whole sequence {(xk, λk,0)} converges to
(x∗, λ∗), we have from Lemma 4.1 that Ik = I(x∗) and Lk = I+(x∗) for all k large
enough. Hence, result (i) is a direct consequence of the definition of δk and Lemma
3.4. Moreover, (2.19) implies result (ii). Lemma 4.3 gives that dk → 0. Letting
k → ∞ in linear equations (2.6) and (2.7) yields that dk,0 → 0, dk,1 → 0, λk,1 → λ∗.
This further implies that ρk → 0, vk → 0, and �k → 0. Finally, letting k → ∞ in
linear equations (2.9) and (2.13) yields that λk → λ∗.

The next result shows that under the SSOSC, the exact Lagrangian Hessian is
eventually accepted by Algorithm 2.1 without any modification, and Assumption A3
holds correctly.

Lemma 4.7. Suppose {(xk, λk,0)} → (x∗, λ∗) and Assumptions A2 and A5 hold.
Then there exists �̄ > 0 such that for all k large enough and any d ∈ T (xk),

d�

⎛⎝∇2
xxL(xk, μk − δke) −

∑
i∈Lk\I(xk)

μk
i

2ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ d ≥ �̄‖d‖2,(4.1)

and Hk = ∇2
xxL(xk, μk − δke) eventually.

Proof. Since the SSOSC holds, Lemma 6.2 implies that for each Ī ⊆ I+(x∗), there
exist κ(Ī) > 0 and �(Ī) > 0 such that

d�

⎛⎝∇2
xxL(x∗, λ∗) +

∑
i∈I+(x∗)\Ī

κ(Ī)∇ci(x
∗)∇ci(x

∗)�

⎞⎠ d ≥ �(Ī)‖d‖2(4.2)

for any d ∈ {y ∈ �n|∇ci(x
∗)�y = 0, i ∈ Ī}. Let κ̃ = max{κ(Ī), Ī ⊆ I+(x∗)} and

�̃ = min{�(Ī), Ī ⊆ I+(x∗)}.
Suppose (4.1) is not true for �̄ = 1

2 �̃. Then there exists an infinite sequence {yk}K,
yk ∈ {y ∈ T (xk)|‖y‖ = 1}, such that

(yk)�

⎛⎝∇2
xxL(xk, μk − δke) −

∑
i∈Lk\I(xk)

μk
i

2ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ yk <
1

2
�̃‖yk‖2.

Since {yk}K is bounded, we can assume {yk}K → ȳ with ‖ȳ‖ = 1. Since I is finite,
we can assume that I(xk) are identical for all k ∈ K and let ĪK = I(xk). It is
obvious that ȳ ∈ {y ∈ �n|∇ci(x

∗)�y = 0, i ∈ I+(x∗) ∩ ĪK}. Since Lk = I+(x∗) and
−μk

i /ci(x
k) → ∞ for i ∈ I+(x∗)\ĪK, we obtain by continuity that for sufficiently large

k ∈ K,

ȳ�

⎛⎝∇2
xxL(x∗, λ∗) +

∑
i∈I+(x∗)\ĪK

κ̃∇ci(x
∗)∇ci(x

∗)�

⎞⎠ ȳ

≤ 3

2
(yk)�

⎛⎝∇2
xxL(xk, μk − δke) −

∑
i∈Lk\I(xk)

μk
i

2ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ yk

<
3

4
�̃‖yk‖2 ≤ 7

8
�(I+(x∗) ∩ ĪK)‖ȳ‖2.

This contradicts (4.2). Hence (4.1) holds, which implies that for all k large enough
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d�

⎛⎝∇2
xxL(xk, μk − δke) −

∑
i∈Ik\I(xk)

μk
i

ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ d > 0(4.3)

for any d ∈ T (xk)\{0}. Therefore, we know from Step 1(i) and Step 3 of Algorithm
2.1 that Hk = ∇2

xxL(xk, μk − δke) eventually.

Lemma 4.8. Under Assumptions A1–A5, the sequences generated by Algorithm
2.1 satisfy

(i) ‖xk + dk,1 − x∗‖ = o(‖xk − x∗‖);
(ii) |λk,1

i − λ∗
i | = o(‖dk,1‖) for all i ∈ I(x∗).

Proof. It follows from linear equations (2.7) and Corollary 4.6 that for each
i ∈ I(x∗),

ci(x
k) = − μk

i

δk + λk,1
i

∇ci(x
k)�dk,1

= −∇ci(x
k)�dk,1 +

(
1 − μk

i

δk + λk,1
i

)
∇ci(x

k)�dk,1

= −∇ci(x
k)�dk,1 + o(‖dk,1‖).

(4.4)

Hence, for all k large enough, we can rewrite (2.7) as follows:

[
Hk ∇cI(x∗)(x

k)
∇cI(x∗)(x

k)� 0

][
dk,1

λk,1
I(x∗)

]
= −

[
∇f(xk)

cI(x∗)(x
k) + o(‖dk,1‖)

]
.(4.5)

Thus, we obtain that

[
Hk ∇cI(x∗)(x

k)
∇cI(x∗)(x

k)� 0

][
xk + dk,1 − x∗

λk,1
I(x∗) − λ∗

I(x∗)

]
= Wλ∗(xk),(4.6)

where

Wλ∗(xk) =

[
−∇f(xk) −∇cI(x∗)(x

k)λ∗
I(x∗) + Hk(x

k − x∗)

−cI(x∗)(x
k) + ∇cI(x∗)(x

k)�(xk − x∗) + o(‖dk,1‖)

]
.(4.7)

By the medium value theorem, we have

∇f(x∗) = ∇f(xk) −∇2f(xk)(xk − x∗)

−
∫ 1

0

[∇2f(xk + t(x∗ − xk)) −∇2f(xk)](xk − x∗)dt,

∇ci(x
∗) = ∇ci(x

k) −∇2ci(x
k)(xk − x∗)

−
∫ 1

0

[∇2ci(x
k + t(x∗ − xk)) −∇2ci(x

k)](xk − x∗)dt, i ∈ I.

Since ∇2f and ∇2ci (i ∈ I) are locally Lipschitz continuous in a neighborhood of
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x∗, we can assume that Lf and Li (i ∈ I) are their Lipschitz constants, respectively.
Thus, it follows that for all k large enough,

‖∇f(x∗) −∇f(xk) −∇2f(xk)(x∗ − xk)‖ ≤ Lf

2
‖xk − x∗‖2,

‖∇ci(x
∗) −∇ci(x

k) −∇2ci(x
k)(x∗ − xk)‖ ≤ Li

2
‖xk − x∗‖2, i ∈ I.

(4.8)

Moreover, we have from Corollary 4.6 and Lemma 4.7 that

‖[Hk −∇2
xxL(x∗, λ∗)](xk − x∗)‖ = o(‖xk − x∗‖).(4.9)

By (4.8) and (4.9), we further obtain that

−∇f(xk) −∇cI(x∗)(x
k)λ∗

I(x∗) + Hk(x
k − x∗)

= [∇f(x∗) −∇f(xk) −∇2f(xk)(x∗ − xk)]

+
∑

i∈I(x∗)

λ∗
i [∇ci(x

∗) −∇ci(x
k) −∇2ci(x

k)(x∗ − xk)]

+ [Hk −∇2
xxL(x∗, λ∗)](xk − x∗)

+

⎡⎣∇2f(x∗) −∇2f(xk) +
∑

i∈I(x∗)

λ∗
i (∇2ci(x

∗) −∇2ci(x
k))

⎤⎦ (xk − x∗)

= o(‖xk − x∗‖),

− cI(x∗)(x
k) + ∇cI(x∗)(x

k)�(xk − x∗)

= cI(x∗)(x
∗) − cI(x∗)(x

k) + ∇cI(x∗)(x
k)�(xk − x∗)

= O(‖xk − x∗‖2).

This together with (4.7) implies that Wλ∗(xk) = o(‖xk−x∗‖)+o(‖dk,1‖). By following
an identical proof to that of [8, Proposition 3.1], we know that under Assumptions
A2 and A5, the coefficient matrices of (4.6) are uniformly nonsingular for all k large
enough. Hence, we know from (4.6) that ‖xk + dk,1 −x∗‖ = o(‖xk −x∗‖) + o(‖dk,1‖),
which implies that ‖xk−x∗‖ = O(‖dk,1‖). Thus, results (i) and (ii) again follow from
(4.6).

Lemma 4.9. Under Assumptions A1–A5, we eventually have FAST = TRUE

in Step 1(ii) of Algorithm 2.1, i.e., (2.8) holds for all k large enough.

Proof. Since λk,1 → λ∗, it follows from Lemma 4.8 that for all sufficiently large
k,

λk,1
i > 0 ∀i ∈ I+(x∗);

λk,1
i = λk,1

i − λ∗
i = o(‖dk,1‖) ∀i ∈ I(x∗)\I+(x∗).

(4.10)

From the fact that I(xk) ⊆ Ik and (2.7), we have

μk
i∇ci(x

k)�dk,1 = (−δk − λk,1
i )ci(x

k) = 0 ∀i ∈ I(xk),

which implies that dk,1 ∈ T (xk) since μk > 0. Moreover, by Corollary 4.6 we have

δk < λk,1
i for all i ∈ I+(x∗) and large enough k. Hence, we can obtain from (2.7),
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Corollary 4.6, Lemma 4.7, and (4.10) that for all k large enough,

∇f(xk)�dk,1

= − (dk,1)�Hkd
k,1 −

∑
i∈I(x∗)

λk,1
i ∇ci(x

k)�dk,1

= −(dk,1)�Hkd
k,1 +

∑
i∈I+(x∗)\I(xk)

μk
i

2ci(xk)
(dk,1)�∇ci(x

k)∇ci(x
k)�dk,1

+
∑

i∈I+(x∗)\I(xk)

(
μk
i

2ci(xk)
∇ci(x

k)�dk,1 + δk

)
∇ci(x

k)�dk,1

(4.11)
−

∑
i∈I(x∗)\I+(x∗)

λk,1
i ∇ci(x

k)�dk,1

= −(dk,1)�

⎛⎝Hk −
∑

i∈I+(x∗)\I(xk)

μk
i

2ci(xk)
∇ci(x

k)∇ci(x
k)�

⎞⎠ dk,1

+
∑

i∈I+(x∗)\I(xk)

ci(x
k)

2μk
i

((λk,1
i )2 − δ2

k) + o(‖dk,1‖2)

≤ −�̄‖dk,1‖2 + o(‖dk,1‖2) ≤ −‖dk,1‖γ

as γ > 2, where �̄ > 0 is defined in Lemma 4.7. Formulas (4.10) and (4.11) imply
that (2.8) eventually holds.

Lemma 4.10. Under Assumptions A1–A5, the sequences generated by Algorithm
2.1 eventually satisfy

(i) ‖dk − dk,1‖ = o(‖dk,1‖2), ‖λk − λk,1‖ = o(‖dk,1‖2);

(ii) (d̂k, λ̂k) = (dk,3, λk,3) and

‖d̂k − dk‖ = O

(
max

{
‖dk‖2, max

i∈I(x∗)

{∣∣∣∣1 − μk
i

δk + λk
i

∣∣∣∣ ‖dk‖}}) = o(‖dk‖),

‖λ̂k − λk‖ = O

(
max

{
‖dk‖2, max

i∈I(x∗)

{∣∣∣∣1 − μk
i

δk + λk
i

∣∣∣∣ ‖dk‖}}) = o(‖dk‖).

Proof. From (2.11) we have ρk = o(‖dk,1‖2). Subtracting both sides of (2.7) by
the corresponding sides of (2.9) yields that

‖dk − dk,1‖ = O(ρk) = o(‖dk,1‖2);

|λk
i − λk,1

i | = O(ρk) = o(‖dk,1‖2) ∀i ∈ I(x∗).
(4.12)

Since λk,1
i = λk

i = 0 for i ∈ I\I(x∗), result (i) follows from (4.12). Now subtracting
both sides of (2.13) by the corresponding sides of (2.9) yields that

Mk

[
dk,3 − dk

λk,3
I(x∗) − λk

I(x∗)

]
=

[
0

�k − vk

]
.(4.13)

From (2.15) we have πk = o(‖dk‖2). Hence, it follows from (2.14), (4.4), and (4.12)
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that

max
i∈I(x∗)

{|�k
i − vki |}

= max
i∈I(x∗)

{| − μk
i ci(x

k + dk) − πk|}

= max
i∈I(x∗)

{| − μk
i (ci(x

k) + ∇ci(x
k)�dk,1)

−μk
i∇ci(x

k)�(dk − dk,1) − πk + O(‖dk‖2)|}
(4.14)

= max
i∈I(x∗)

{∣∣∣∣∣−μk
i

(
1 − μk

i

δk + λk,1
i

)
∇ci(x

k)�dk,1 + O(‖dk‖2)

∣∣∣∣∣
}

= max
i∈I(x∗)

{
O

(∣∣∣∣∣1 − μk
i

δk + λk,1
i

∣∣∣∣∣ ‖dk,1‖
)

+ O(‖dk‖2)

}

= O

(
max

{
‖dk‖2, max

i∈I(x∗)

{∣∣∣∣1 − μk
i

δk + λk
i

∣∣∣∣ ‖dk‖}}) ,

where λk,1
i and dk,1 are directly replaced by λk

i and dk due to (4.12). Since {‖M−1
k ‖}

is bounded by Corollary 4.6 and λk,3
i = λk

i = 0 for i ∈ I\I(x∗), it follows that for all

sufficiently large k, ‖dk,3 − dk‖ < ‖dk‖, which indicates (d̂k, λ̂k) = (dk,3, λk,3). Thus,
(ii) follows immediately from (4.13) and (4.14).

Lemma 4.11. Under Assumptions A1–A5, the arc search in Step 2 of Algorithm
2.1 eventually accepts a full step of one, i.e., tk = 1 for all k large enough.

Proof. First, we show that for all k large enough,

ci(x
k + d̂k) ≤ 0 ∀i ∈ I.(4.15)

Lemma 4.10 implies that d̂k → 0. Hence for all k large enough, ci(x
k + d̂k) < 0 for

all i ∈ I\I(x∗). For i ∈ I(x∗), by using Taylor expansion we can obtain that for all
sufficiently large k,

μk
i ci(x

k + d̂k)

= μk
i ci(x

k + dk + d̂k − dk)

= μk
i {ci(xk + dk) + ∇ci(x

k + dk)�(d̂k − dk) + O(‖d̂k − dk‖2)}
= μk

i {ci(xk + dk) + ∇ci(x
k)�(d̂k − dk) + O(‖dk‖ · ‖d̂k − dk‖)}

= −(λ̂k
i − λk

i )ci(x
k) − πk + O(‖dk‖ · ‖d̂k − dk‖)

=
μk
i

δk + λk,1
i

(λ̂k
i − λk

i )∇ci(x
k)�dk,1 − πk + O(‖dk‖ · ‖d̂k − dk‖)(4.16)

= −πk + O(‖dk‖ · |λ̂k
i − λk

i |) + O(‖dk‖ · ‖d̂k − dk‖)

= −πk + O

(
max

{
‖dk‖3, max

i∈I(x∗)

{∣∣∣∣1 − μk
i

δk + λk
i

∣∣∣∣ ‖dk‖2

}})
< −1

2
πk < 0,

where the fourth equality follows from (2.13) and (2.14), the fifth equality follows from
(4.4), the last equality is given by Lemma 4.10(ii), and the last line of inequalities
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follows from (2.15) since ν ∈ (2, 3) and τ ∈ (0, 1). Consequently, it follows from (2.15)
and (4.16) that for each i ∈ I(x∗)

|ci(xk + d̂k)| = O(πk) = o(‖dk‖2).(4.17)

Now we show that tk = 1 provides a sufficient reduction in f , i.e.,

f(xk + d̂k) ≤ f(xk) + σ∇f(xk)�dk.(4.18)

By using Taylor expansion, we get from Lemma 4.10(ii) that for each i ∈ I(x∗)

ci(x
k + d̂k)

= ci(x
k) + ∇ci(x

k)�d̂k +
1

2
(d̂k)�∇2ci(x

k)d̂k + o(‖d̂k‖2)

= ci(x
k) + ∇ci(x

k)�dk + ∇ci(x
k)�(d̂k − dk) +

1

2
(dk)�∇2ci(x

k)dk + o(‖dk‖2).

Thus, by (4.4), (4.17), and Lemma 4.10 we can obtain that

−1

2
λk
i∇ci(x

k)�dk − λk
i∇ci(x

k)�(d̂k − dk)

= λk
i ci(x

k) +
1

2
λk
i∇ci(x

k)�dk +
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2)

= λk
i ci(x

k) +
1

2
λk
i∇ci(x

k)�dk,1 +
1

2
λk
i∇ci(x

k)�(dk − dk,1)

+
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2)(4.19)

= λk
i ci(x

k) − λk
i

(
δk + λk,1

i

2μk
i

)
ci(x

k) +
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2)

=

(
1 − δk + λk,1

i

2μk
i

)
λk
i ci(x

k) +
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2).

Since
δk+λk,1

i

μk
i

→ 1 by Corollary 4.6, it follows that for all sufficiently large k, 1 −
δk+λk,1

i

2μk
i

> 0. Hence, we get from (4.19) that for i ∈ I+(x∗) and large enough k,

−1

2
λk
i∇ci(x

k)�dk − λk
i∇ci(x

k)�(d̂k − dk)

≤ 1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2).

(4.20)

On the other hand, it follows from (4.4), (4.19), and Lemmas 4.8(ii) and 4.10(i) that
for i ∈ I(x∗)\I+(x∗),

−1

2
λk
i∇ci(x

k)�dk − λk
i∇ci(x

k)�(d̂k − dk)

= (λk
i − λ∗

i )

(
1 − δk + λk,1

i

2μk
i

)
(−∇ci(x

k)�dk,1 + o(‖dk,1‖))

(4.21)

+
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2)

=
1

2
λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2).
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Now we are prepared to derive the following key relation, which also uses Taylor
expansion:

f(xk + d̂k)

= f(xk) + ∇f(xk)�d̂k +
1

2
(d̂k)�∇2f(xk)d̂k + o(‖d̂k‖2)

= f(xk) + ∇f(xk)�dk + ∇f(xk)�(d̂k − dk)

+
1

2
(dk)�∇2f(xk)dk + o(‖dk‖2)

= f(xk) +
1

2
∇f(xk)�dk − 1

2
(dk)�Hkd

k − 1

2

∑
i∈I(x∗)

λk
i∇ci(x

k)�dk

− (d̂k − dk)�Hkd
k −

∑
i∈I(x∗)

λk
i∇ci(x

k)�(d̂k − dk)

+
1

2
(dk)�∇2f(xk)dk + o(‖dk‖2)

= f(xk) +
1

2
∇f(xk)�dk +

1

2
(dk)�(∇2f(xk) −Hk)d

k

−
∑

i∈I(x∗)

(
1

2
λk
i∇ci(x

k)�dk + λk
i∇ci(x

k)�(d̂k − dk)

)
+ o(‖dk‖2)

≤ f(xk) +
1

2
∇f(xk)�dk +

1

2
(dk)�(∇2f(xk) −Hk)d

k

+
1

2

∑
i∈I(x∗)

λk
i (d

k)�∇2ci(x
k)dk + o(‖dk‖2)

= f(xk) +
1

2
∇f(xk)�dk +

1

2
(dk)�(∇2

xxL(xk, λk) −Hk)d
k + o(‖dk‖2)

= f(xk) + σ∇f(xk)�dk +

(
1

2
− σ

)
∇f(xk)�dk + o(‖dk‖2)

≤ f(xk) + σ∇f(xk)�dk − �̄θ

(
1

2
− σ

)
‖dk‖2 + o(‖dk‖2)

≤ f(xk) + σ∇f(xk)�dk,

where the second equality is implied by Lemma 4.10, the third equality follows from
(2.9), the first inequality is obtained by combining (4.20) and (4.21), the last equality
follows from Lemma 4.7, and the second inequality follows from Lemma 2.3(i), (4.11)
with �̄ defined in Lemma 4.7, Lemma 4.10(i), and the fact that σ < 1

2 .
Consequently, we conclude that both (4.15) and (4.18) hold for all sufficiently

large k, and thus the unit step size is eventually accepted.
Putting the results of Lemmas 4.8, 4.9, 4.10, and 4.11 together, we directly obtain

the Q-superlinear convergence of Algorithm 2.1.
Theorem 4.12. Under Assumptions A1–A5, the sequence {xk} generated by

Algorithm 2.1 converges Q-superlinearly, i.e.,

‖xk+1 − x∗‖ = o(‖xk − x∗‖).

5. Concluding remarks. In this paper we have presented a new feasible ac-
tive set QP-free method for inequality constrained optimization. Under very general
assumptions (the existence of a feasible initial point, smoothness of the objective
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and constraint functions, LICQ and SSOSC, etc.), we have proved that our QP-free
method is globally convergent and locally superlinearly convergent to a KKT point
of the problem. Noticeably, the superlinear convergence is achieved without assum-
ing that strict complementarity holds or that all optimal multipliers are less than a
preselected parameter. Moreover, our method avoids several computational issues in
existing active set QP-free methods. For example, our method does not have to com-
pute a new multiplier estimate and select linearly independent constraint gradients
to determine a working set at each iteration. A new technique based on so-called δ∗-
drifted multipliers is introduced in the method to avoid the possible ill-conditioning
of the Newton system caused by dual degeneracy.

Although the main interest of this paper is theoretical, we are also interested in
testing the practical efficiency of our method. By implementing it on some small
problems from [14], we found that it worked well even for problems failing strict com-
plementarity. However, we feel that it is premature to report numerical results at this
stage because of two facts that largely limit the test set for which our method is ap-
plicable. First, the current method only tackles problems with inequality constraints.
Second, a feasible starting point is required. To deal with equality constraints, we plan
to incorporate the �2-penalty technique introduced in [3] in our QP-free method. Our
strategy for the second issue is to transform some inequality constraints to equality
constraints by adding slack variables and again, make use of the �2-penalty technique.
We will report on the effectiveness of our approach in due course.

6. Appendix.
Lemma 6.1. Suppose Assumption A2 holds, H ∈ �n×n, x ∈ F , I(x) ⊆ Ĩ ⊆ I,

and μi > 0 for all i ∈ Ĩ. If

y�

⎛⎝H −
∑

i∈Ĩ\I(x)

μi

ci(x)
∇ci(x)∇ci(x)�

⎞⎠ y > 0(6.1)

for all y ∈ T (x)\{0}, then the following matrix is nonsingular:

M =

[
H ∇cĨ(x)

U∇cĨ(x)� CĨ(x)

]
,

where U = diag(μĨ) and CĨ(x) = diag(cĨ(x)).
Proof. Suppose (d, λ) is a solution of the following linear equations:

M

[
d
λ

]
= 0.(6.2)

It follows that

λi = − μi

ci(x)
∇ci(x)�d, i ∈ Ĩ\I(x), and ∇ci(x)�d = 0, i ∈ I(x).

Substituting this into (6.2) yields that

d�

⎛⎝H −
∑

Ĩ\I(x)

μi

ci(x)
∇ci(x)∇ci(x)�

⎞⎠ d = 0,

which implies that d = 0. Moreover, it follows from (6.2) that ∇cĨ(x)λ = 0 and
CĨ(x)λ = 0. Hence, ∇cI(x)λI(x) = 0 and λĨ\I(x) = 0. Since Assumption A2 implies

λI(x) = 0, zero is the unique solution of (6.2), i.e., M is nonsingular.
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Lemma 6.2. Suppose H ∈ �n×n, J ∈ �n×q, and J = [J1|J2]. If H is positive
definite on S(J), where S(J) = {y ∈ �n|J�y = 0}, then there exists r̄ > 0 such that
for any r ≥ r̄, H+rJ1J

�
1 is positive definite on S(J2), where S(J2) = {y ∈ �n|J�

2 y =
0} and in case that J = J1, S(J2) = �n.

Proof. It suffices to show that there exists r̄ > 0 such that for any r ≥ r̄,

d�(H + rJ1J
�
1 )d > 0

for all d ∈ B = {y ∈ S(J2)|‖y‖ = 1}. Let N = B ∩ {y ∈ �n|y�Hy ≤ 0}. Obviously,
B and N are both closed and compact. Hence, there exist r1 and r2 such that

r1 = min
d∈B

d�Hd and r2 = min
d∈N

d�J1J
�
1 d.

Since J�
1 d �= 0 for any d ∈ N , we have r2 > 0. Set r̄ = max{− r1

r2
+ 1, 1} and consider

any r ≥ r̄. For any d ∈ B, if d ∈ N , then

d�(H + rJ1J
�
1 )d ≥ r1 + rr2 ≥ r2 > 0;

otherwise, d ∈ B\N and

d�(H + rJ1J
�
1 )d ≥ d�Hd > 0.

Hence, we conclude that H+rJ1J
�
1 is positive definite on B, and hence on S(J2).
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ATTACKS, PART 1: THE STEADY-STATE CASE∗
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Abstract. A critical first step in responding to an airborne chemical or biological attack is
determining the location of the source of the toxin. We have formulated the mathematical description
of source location as an inverse problem constrained by the partial differential equation (PDE) that
describes the toxin’s transport. This transport is advection-dominated, but takes place in a flow
field that in realistic settings will be turbulent, thereby inducing an effective diffusivity tensor in the
transport model. We model the turbulent flow using a Reynolds-averaged Navier–Stokes (RANS)
approach, which can be solved offline for an arbitrary building of interest. The inversion problem
then consists of finding the (regularized) source distribution that best reproduces a set of sensor
measurements, subject to the transport model constraint relating the source to the concentration
at the sensor positions. Though individual toxin sources are likely to be point sources, we cannot
make any assumptions about the number of such sources. Hence, because multiple sources are a
possibility, we assume a spatially continuous source distribution, thus eliminiating any need to impose
assumptions about the number and nature of the sources. The operational context for this problem
implies certain practical requirements. In particular, it is critical to reduce the time for inversion
and the number of sensors required for an accurate determination of the source field. A particular
focus of this paper is the exploration of the degree to which we can economize on computational
effort through adaptive mesh coarsening tailored to preserve the essential features of the flow field.
We have found that location of multiple sources is well accommodated by this method, and have
shown that it is possible to reduce significantly the computational time through flow-tailored mesh
adaptation without adverse impact on the accuracy of the source location. Finally, we have done a
preliminary study of the number of sensors required for useful inversion. These conclusions will be
of considerable use in developing sensor deployment strategies.

Key words. source inversion, PDE-constrained optimization, software environments, adaptive
meshes, Sundance, O3D, Split, Trilinos, TSF
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1. Introduction. The key to responding to a chemical or biological attack in a
building, e.g., an airport, is speed. In an attack using an airborne toxin, emergency
officials need to know as soon as possible what the toxin is and where its source is
located. This will allow them to take appropriate action to minimize the impact of
the attack, including moving people to safety, confining or venting the release, and
possibly even determining who is responsible for the attack.

Two things are needed to determine the type and source of a biological attack:
First, one needs sensors that can reliably determine the nature of the toxin and its
local concentration; and second, one needs to have a mathematical model of the
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toxin dispersion in the air flow in the building that can be inverted to provide the
location of the source. Here we assume that appropriate sensors have been placed
in the building. Such sensors are being actively developed in several laboratories,
including Sandia National Laboratories (see, e.g., [13]); in section 6 we comment on
some related work designed to improve these sensors. The location of the sensors
within the building is clearly an important issue in reconstructing the source field.
We do not consider the optimal location of the sensors in this paper, but, again, in
section 6 we discuss the issues involved. In this paper we concentrate on providing an
optimization model that simultaneously predicts both the number of sources in the
attack and the location of each, given the concentration data from the sensors and
the air flow field. We refer to this problem as the source-inversion problem.

Source inversion in this context is an example of optimization problems that are
constrained by partial differential equations (PDE). Due to the dramatic increase in
computational power afforded by massively parallel computers, the substantial gains
in our optimization technology, and the major improvements in our understanding
and ability to precondition the linear systems that arise in these problems, PDE-
constrained optimization has emerged as an important research area. (See [26] for an
introduction and the papers in [2] for more extensive coverage.) Source inversion has
been considered by [1] and excellent work in preconditioning is given in [4].

The source-inversion problem that we have briefly described above has important
features that have motivated our work. In particular, speed of solution is much more
important than accuracy. Indeed, if we can correctly predict the number of sources
and their locations to within a few meters, emergency personnel can easily find the
release devices. As stated above, we need to know the flow field in the building to
determine the locations quickly. The air flow in a modern building is determined by
the heating, ventilating, and air-conditioning (HVAC) system. It is our understanding
that the flows in such a building do not change much over the course of a day. Thus
we can assume that a small number of flow fields can be computed in advance and
the appropriate one can be selected based on the time of the attack. We can also
assume that there will be moderate computing capability in the building. Indeed,
given the expense of security in general, the purchase of a small cluster of processors
seems quite reasonable.

Since one of our main motivations is speed, we also investigate some strategies
for decreasing the time for the calculations. In particular, we will require a relatively
fine mesh to solve for the flow field within a given building. The question arises,
however, of whether the estimation of the source, or sources, can be done on a coarser
mesh. We show that, in fact, a much coarser mesh will suffice and that using such a
coarse mesh reduces the computing time by factors of 40–100. This rather surprising
result indicates that a practical system using these strategies may be possible. Thus,
novel contributions in this paper include the model that allows for the simultaneous
determination of both the number and the locations of the source(s) and the fact that
very coarse meshes can be used to accelerate the inversion algorithms significantly.

Finally, the problem is clearly time-dependent, but we think that much can be
learned initially from considering the simpler steady-state case. We demonstrate
in this paper that consideration of a two-dimensional, steady-state model can pro-
vide much insight that will guide our efforts in the general three-dimensional, time-
dependent case. We do not claim that we have answered all of the questions for this
case, but we can do the additional development and experiments in the context of
the more general case that will be considered in part 2 of this work. In addition, the
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steady-state case is of interest in its own right; one can use the techniques developed
here to find, for example, a persistent leak in a complex facility.

In conducting such a project, it was crucial to have a powerful software environ-
ment in which to develop and test ideas rapidly. This work would have been far more
difficult without the tools that have been developed at Sandia National Laboratories
by many people. Most important for this work is Sundance, a code that takes a sym-
bolic description of PDEs and then efficiently creates finite element (mass) matrices
and associated right-hand side vectors. The details of how we formulate the flow-field
problems and the optimization problems are dictated by our use of Sundance. An op-
timization code, Split/O3D, has been built to work directly with Sundance operators.

The paper is organized as follows. Given the importance of the software environ-
ment, and its impact on some of our analyses and decisions, we describe it first in
section 2. We next describe (in section 3) the flow problem that we formulate and
solve. In creating the flow field, we tried to specify realistic models that take into
account the fact that the air flow in a building such as an airport is subject to many
perturbations, including the opening and closing of doors and the movement of peo-
ple, luggage, and equipment. We then provide (in section 4) the appropriate source
dispersion model and the resulting optimization problems that we consider for locat-
ing the sources. In section 5, we give a simple two-dimensional example of a building
and the resulting flow field. We then give the results of our numerical tests based on
the optimization approaches in section 4. We also develop our coarse mesh approx-
imations and show the results using these. In section 6 we provide some discussion
about the work that needs to be done to extend this approach to the time-dependent
case and to the question of optimal sensor location.

2. Software environment. In this section we briefly describe the software en-
vironment that was used for all of the computations in this paper. We emphasize that
the development of and experimentation with the models and approaches described
here were greatly aided by this powerful set of software tools. We also point out that
most of the tools described here are publically available.

The most important tool for our work with PDE-constrained optimization mod-
els is Sundance (see [18]). Sundance is a system for specifying, building, and applying
finite element approximations to general PDEs. Sundance consists of user-callable
components written in C++ that allow the user to specify the PDE and associated
boundary conditions in weak form using operator overloading on a family of symbolic
objects. The Sundance symbolic objects and operators can be used to assemble virtu-
ally any PDE. Each test or unknown function in a Sundance problem is constructed
with a specifier of its finite element basis, and any integral can be given a specifier for
the type and order of quadrature rule to be used. Stabilization terms can be added
at the symbolic level; typically, these involve the mesh size h, so a special symbolic
object, CellDiameterExpr, has been created which, when evaluated, refers to the
mesh to obtain a numerical value of h on each element. The ability to specify basis,
quadrature, and optional stabilization terms gives the Sundance user fine control over
the discretization process.

Since it is easy to change the equation and/or the boundary conditions, it is easy
to experiment with different models by making a small number of changes to a code
that uses Sundance. This ability to modify models and solution procedures at a high
level of abstraction was key to rapidly creating the flow-field models to be described
in section 3. In fact, the code for the Reynolds-averaged Navier–Stokes (RANS)
equations were created and solved in fewer than 200 lines of Sundance code. The
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symbolic problem setup capability of Sundance is useful not only for rapid development
of forward simulators such as our flow model, but even more important, for making
possible the concurrent specification of gradient and/or adjoint equations, greatly
facilitating the application of gradient-based optimization methods.

Sundance does the work of assembling matrices and vectors from a problem speci-
fication; computations on those mathematical objects are then done using the Trilinos
family of solver components (see [17]). Trilinos includes a high-performance, low-level
matrix/vector library (EPetra), incomplete factorization preconditioners (Ifpack), al-
gebraic multilevel solvers and preconditioners (ML), Krylov solvers (belos), and non-
linear solvers (nox). Trilinos also provides a set of abstract interfaces allowing inter-
operability with other solver libraries.

Finally, we use a particular optimization method that was also built using Trilinos
components and is therefore directly compatible with Sundance. This method, called
O3D (see [5]), is an interior-point quadratic programming solver. It has been used
as the basis for a sequential quadratic programming (SQP) algorithm that has been
successfully applied to a number of problems. (See [7] and [6].) O3D requires the
solution of linear systems that may conveniently be expressed mathematically as block
matrices. Trilinos allows such linear operators to be created and manipulated easily.
It also allowed us to experiment with different formulations and solution strategies
quickly.

3. Flow-field computation. As noted above, there are only a few flow fields
that need to be calculated to solve the source-inversion problem. Since all of these can
be computed in advance, there is no need to be overly concerned with efficiency at this
stage. We first describe and justify the turbulent flow model that we have adopted. We
next show the manipulations necessary to create the appropriate weak form required
by Sundance. This leads naturally to the means of handling the boundary conditions.
We then discuss the use of the eikonal equation to calculate a distance variable that
appears in our turbulence model. We conclude this section with a discussion of a
pressure-stabilization technique that was useful in formulating a stable and well-posed
computational algorithm.

3.1. The turbulence model. The time-dependent continuity and momentum
(Navier–Stokes) equations for an incompressible fluid are given, in the absence of body
forces, by

∂ui

∂xi
= 0 ,(3.1)

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
,(3.2)

where repeated unhatted indices denote summation. Here, the dependent variables
ui and p are, respectively, the ith component of the fluid velocity and pressure, the
independent variables x (with components xi in a domain Ω) and t are the spatial
and temporal coordinates, and ρ and ν are the density and kinematic viscosity, both
of which are assumed constant.

For air flow in large rooms, typical values of the dimensionless Reynolds number
Re = UL/ν, where U is a characteristic flow velocity (∼ 1m/s) and L is a character-
istic length scale (∼ 10m), are quite large. In particular, the kinematic viscosity of
air at standard temperature and pressure is ν ∼ 10−6 m2/s, which gives a value for
the Reynolds number of Re ∼ 107. In this regime, the flow is inherently unstable and
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thus certain to exhibit turbulent behavior in the vicinity of walls and other obstacles.
Hence, (3.1) and (3.2), short of direct numerical simulation, must be supplemented
by an appropriate turbulence model.

Our approach to the problem follows the classical methodology of first decompos-
ing the dependent variables into steady and fluctuating quantities, where the latter are
not necessarily small. In particular, we define time-averaged (mean) and fluctuating

quantities as ui = Ui+ui
′ and p = P +p′, where Ui = ui ≡ limτ→∞

∫ t0+τ

t0
ui dt/τ and

similarly for P . Substituting the definitions for ui and p into (3.1) and (3.2) and per-
forming the above time-averaging operation yields the well-known RANS equations
given by

∂Ui

∂xi
= 0 ,(3.3)

Uj
∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
+

1

ρ

∂τij
∂xj

.(3.4)

Here, the components τij of the Reynolds stress tensor, which arise from the nonlinear
terms in (3.2), are given by τij = −ρ ui

′uj
′ (cf. [23]).

The closure of (3.3)–(3.4) for the mean quantities Ui and P require that addi-
tional relations be specified for the quadratic averages τij . Although equations can be
developed for these quantities, such equations generally introduce higher-order cor-
relations (e.g., triple averages), thus giving rise to the well-known closure difficulty
associated with turbulent flow modeling (cf. [23], [11], [27]). Alternatively, physically
motivated assumptions regarding the relationship of τij to the mean-flow variables
can be introduced, and it is a variant of this approach that we use here. In particular,
algebraic relationships (so-called zero-equation turbulence models) are introduced for
the dominant components of the turbulent stress tensor based on the classical eddy-
viscosity/mixing-length concept for turbulent shear- and boundary-layer flows.

For an essentially two-dimensional parallel mean flow [e.g., U2 ∼ 0, U1 ∼ U1(x2)],
the standard analogy with laminar flow, originally postulated by Boussinesq [10], is
to assume that τ12 = τ21 can be expressed as

τ12 = τ21 = ρνt
∂U1

∂x2
,(3.5)

where νt is the kinematic eddy viscosity. In contrast to the kinematic laminar viscosity
ν, however, it is generally an unacceptably poor approximation to simply regard νt as
a constant parameter (cf. [21]). For example, it is clear by definition that τ12 should
approach zero at a no-slip and/or no-penetration boundary, but this is necessarily
true only if νt vanishes there. Hence, it is customary to appeal to a mixing-length
argument originally put forth by Prandtl [22] and to further express νt in terms of a
mixing length � as

νt = �2
∣∣∣∣∂U1

∂x2

∣∣∣∣ ,(3.6)

where � is also a function of position that must approach zero near a wall.
For boundary-layer flows, an analysis of the turbulent boundary layer indicates

that its structure consists of an inner viscous sublayer in which laminar viscous effects
are important and the Reynolds stress is negligible, an outer defect layer in which the
effects of ν are small but those due to νt are significant, and an intermediate overlap,
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or matching, region in which both kinematic viscosities νt and ν are nonnegligible. It
is in the latter regime that the mean-flow velocity varies logarithmically with distance
x2 from the wall, giving rise to the well-known “law of the wall.” One modern-day
uniformly valid expression for � is given by

�

δ
= λ

[
1 − exp

(
−x2

A

)]
tanh

(κ
λ
· x2

δ

)
(3.7)

(see [20]), where δ is the local turbulent boundary-layer thickness, A is a damping
constant, and κ and λ are fitted constants which, for smooth walls and no mass
transfer, are found to have the approximate values κ = 0.41, λ = 0.085, and A =
26ν/uτ , where uτ = (τw/ρ)

1/2 is the friction velocity expressed in terms of a specified
wall stress τw. It is observed that �/δ approaches zero in either a linear or quadratic
fashion (depending on whether or not the damping factor is present) as x2 → 0, and
approaches a constant value as x2 exceeds the boundary-layer thickness.

In the present work, we propose an extension of (3.7), applicable to multidimen-
sional wall-bounded flows, as follows. However, we first remark that since the bound-
aries in the present problem are not necessarily smooth (due to carpeting, acoustic
tiles, structural protrusions, chairs, desks, counters, people, etc.), neither the lami-
nar viscosity ν nor the above quoted turbulence parameters are regarded as given.
Rather, they should ideally be fitted to actual data. Second, while the functional form
given by (3.7) is retained to describe the turbulent boundary layers, an appropriate
generalization must be given to account for multiple boundaries (e.g., both a floor
and a ceiling) and the fact that the local mean flow is not necessarily parallel.

In generalizing the classical mixing-length model to the present two-dimensional
problem, we assume that the dominant effects of turbulence are felt in the effective
turbulent boundary layers in the vicinity of walls, floors, and ceilings. Consequently,
it is assumed that the shear components of the Reynolds stress tensor, τij , i �= j,
dominate the normal components τî̂i. Hence, we define the shear components of
the stress tensor τ sij = τij(1 − δîĵ), where δij is the Kronecker delta and hatted
indices imply no summation, and approximate τij with τ sij in (3.4). Restricting further
consideration to two dimensions, we then generalize (3.5) and (3.6) by representing
the only shear component τ12 = τ21 = −ρu1

′u2
′ as

1

ρ
τ12 = νt12

∂U1

∂x2
+ νt21

∂U2

∂x1
= νtij

∂Ui

∂xj
(1 − δij) ,(3.8)

where

νtij = �2
ĵ

∣∣∣∣∂Ui

∂xj

∣∣∣∣ , i �= j ,(3.9)

with the mixing length �ĵ = �ĵ(xj) defined in a manner consistent with (3.7). In
particular, we adopt the functional form of (3.7) for each �ĵ , replacing the coordinate
x2 with a distance variable �∗ that represents the distance from the nearest wall
boundary. The latter is calculated by first solving the eikonal equation, as described
in section 3.3. For simplicity, we take the turbulence parameters δ, λ, κ, and A as
constants independent of ĵ, so that in fact

�1 = �2 ≡ � = δλ [1 − exp(−�∗/A)] tanh [(κ/δλ)�∗] .(3.10)

We note that other multidimensional generalizations are possible (cf. [14], [27]); how-
ever, the present flow-decomposition approach is appealing in that it facilitates direct
use of generally accepted functional forms for parallel flows, such as (3.7).
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3.2. Implementation of the flow-field model in Sundance. The use of the
symbolic PDE package Sundance requires a weak form of the problem, which is then
solved iteratively from an appropriately defined linearized form to determine the solu-
tion of the nonlinear flow field. While Sundance can generate such a scheme internally,
we choose instead to specify this aspect of the solution procedure explicitly. We thus
first derive the exact weak form of the nonlinear problem, and then prescribe an effi-
cient functional iteration scheme for solving, via Sundance, a convergent sequence of
appropriately linearized approximations.

The weak formulation of the flow-field problem is derived as follows. We first
rewrite (3.3) and (3.4) in vector form as

−→∇ · −→U = 0 ,(3.11) (−→
U · −→∇

)−→
U +

1

ρ

−→∇P − ν∇2−→U − 1

ρ

(
τ · ←−∇

)
= 0 ,(3.12)

where a double underlined quantity denotes a tensor (e.g., the Reynolds stress tensor
τ) and the arrow over the gradient operator denotes the location (left or right) of
the object on which the corresponding operation is to be applied. Introducing test
functions q and −→v , we multiply (3.11) by q, (3.12) by −→v , and integrate over the space
Ω to obtain the weak forms ∫

Ω

q
−→∇ · −→U dΩ = 0 ,(3.13) ∫

Ω

−→v ·
[(−→

U · −→∇
)−→
U + ρ−1−→∇P − ν∇2−→U − ρ−1

(
τ · ←−∇

)]
dΩ = 0 .(3.14)

Equation (3.13) is satisfactory in its present state, but in order to eliminate sec-
ond derivatives (Sundance requires at most first derivatives of the variables and test
functions in the integrands) and to otherwise simplify (using boundary conditions)
the weak form (3.14), we manipulate the various terms in (3.14) as follows. First,
though not essential, we write∫

Ω

(−→v · −→∇
)
P dΩ =

∫
Ω

[−→∇ ·
(−→v P

)
− P

(−→∇ · −→v
)]

dΩ(3.15)

=

∫
∂Ω

P
(−→v · −→n

)
d(∂Ω) −

∫
Ω

P
(−→∇ · −→v

)
dΩ,

where −→n is the unit normal and the last term introduces a symmetry with respect to
(3.11). Second, we remove explicit second derivatives according to∫

Ω

−→v ·
(
∇2−→U

)
dΩ =

∫
Ω

vi∂j∂jUi dΩ(3.16)

=

∫
Ω

[
∂j(vi∂jUi) − (∂jvi)(∂jUi)

]
dΩ

=

∫
∂Ω

vi
(−→∇Ui

)
· −→n d(∂Ω) −

∫
Ω

(−→∇vi
)
·
(−→∇Ui

)
dΩ

=

∫
∂Ω

−→v ·
(−→
U
←−∇

)
· −→n d(∂Ω) −

∫
Ω

(−→v ←−∇
)

:
(−→
U
←−∇

)
dΩ,

where repeated indices imply summation, ∂j ≡ ∂/∂xj , and the tensor contraction
operator is defined by a : b = aijbij . Finally, since the Reynolds stress τ involves first
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derivatives of the flow variables, which would thus lead to the appearance of second
derivatives in (3.14), we rewrite the last term in (3.14) as∫

Ω

−→v ·
(
τ · ←−∇

)
dΩ =

∫
Ω

vi∂jτij dΩ(3.17)

=

∫
Ω

[
∂j(viτij) − τij(∂jvi)

]
dΩ

=

∫
∂Ω

−→v · τ · −→n d(∂Ω) −
∫

Ω

τ :
(−→v ←−∇

)
dΩ.

Substituting (3.15)–(3.17) into (3.14), the weak form of momentum conservation thus
becomes∫

Ω

[
−→v ·

(−→
U · −→∇

)−→
U − ρ−1P

(−→∇ · −→v
)

+ ν
(−→v ←−∇

)
:
(−→
U
←−∇

)
+ ρ−1 τ :

(−→v ←−∇
)]

dΩ(3.18)

+

∫
∂Ω

[
ρ−1P

(−→v · −→n
)
− ν−→v ·

(−→
U
←−∇

)
· −→n − ρ−1 −→v · τ · −→n

]
d(∂Ω) = 0.

The boundary integral in (3.18) can be simplified further by considering the
boundary conditions (at inlet(s), outlet(s), and walls (including floor and ceilings))
for the problem of interest. At outlets, denoted by ∂Ωo, we assume no forcing, which
is expressed as [

ρ−1P−→n −
(−→
U
←−∇

)
· −→n − ρ−1 τ · −→n

]
∂Ωo

= 0 .(3.19)

Consequently, condition (3.19) implies that the boundary integral in (3.18) vanishes
on an outlet boundary ∂Ωo. At an inlet, denoted by ∂ΩI , or at walls, denoted by
∂Ωw, the boundary conditions for the present problem are given by

−→
U =

−→
UI and−→

U =
−→
Uw = 0, respectively, where the latter corresponds to a no-slip, no-penetration

condition at ∂Ωw. (It is also true, by definition, that the Reynolds stress tensor τ = 0

on ∂Ωw.) However, since (3.19) involves only gradients of
−→
U , we approximate these

conditions as

−
(−→
U
←−∇

)
· −→n

∣∣∣
∂ΩI,w

= ε−1
(−→
U −−→

UI,w

)
∂ΩI,w

, ε � 1 ,(3.20)

which implies
∣∣∣∣−→U − −→

UI,w

∣∣∣∣ → 0 on ∂ΩI,w as ε → 0. Substituting (3.19) and (3.20)
into (3.18) and taking the limit ε → 0 thus allows us, after invoking the assumption
that the discrete basis functions used to represent the variables are nodal [19], to
replace the boundary integral in the latter with a simple penalty term according to∫

∂Ω

[
ρ−1P

(−→v · −→n
)
− ν−→v ·

(−→
U
←−∇

)
· −→n − ρ−1 −→v · τ · −→n

]
d(∂Ω)(3.21)

∼
∫
∂Ω

−→v ·
(−→
U −−→

UI,w

)
d(∂Ω).

Hence, the final weak form of momentum conservation to be used in the present study
is given by∫

Ω

[
−→v ·

(−→
U · −→∇

)−→
U − ρ−1P

(−→∇ · −→v
)

+ ν
(−→v ←−∇

)
:
(−→
U
←−∇

)
+ ρ−1 τ :

(−→v ←−∇
)]

dΩ(3.22)

+

∫
∂ΩI,w

−→v ·
(−→
U −−→

UI,w

)
d(∂Ω) = 0,

where the (shear) components of τ ≈ τ s are given by (3.8)–(3.10).



438 BOGGS, LONG, MARGOLIS, AND HOWARD

We observe that (3.22) is nonlinear with respect to
−→
U through the appearance of

the factors
(−→
U · −→∇

)−→
U and the Reynolds stress tensor τ , where, from (3.8) and (3.9),

the latter consists of the shear components τ12 = τ21 = ρ�21
∣∣∂U2/∂x1|(∂U2/∂x1) +

ρ�22|∂U1/∂x2|(∂U1/∂x2). Consequently, since we ultimately require a weak form that
is linear with respect to the dependent variables (as well as the test functions), we
solve the coupled system (3.13) and (3.22) by an iterative approach. In particular, the
nonlinear terms are formally linearized and functional iteration on the resultant linear
problem is employed to obtain the solution to the original nonlinear problem. Thus,
if the solution to the kth iterate

−→
Uk is known, the next iterate

−→
Uk+1 is determined by

solving a linear problem obtained from the original nonlinear equations by linearizing
nonlinear terms about

−→
Uk. In particular, making the a priori assumption that |−→Uk+1−−→

Uk| is sufficiently small, we have(−→
Uk+1 ·

−→∇
)−→
Uk+1 =

{[−→
Uk +

(−→
Uk+1 −

−→
Uk

)]
· −→∇

} [−→
Uk +

(−→
Uk+1 −

−→
Uk

)]
(3.23)

≈
(−→
Uk · −→∇

)−→
Uk +

[(−→
Uk+1 −

−→
Uk

)
· −→∇

]−→
Uk

+
(−→
Uk · −→∇

)(−→
Uk+1 −

−→
Uk

)
=

(−→
Uk+1 ·

−→∇
)−→
Uk +

(−→
Uk · −→∇

)−→
Uk+1 −

(−→
Uk · −→∇

)−→
Uk

and, denoting ∂Ui/∂xj by Ui,j ,∣∣U (k+1)
i,j

∣∣U (k+1)
i,j =

[
U

(k+1)
i,j U

(k+1)
i,j

]1/2

U
(k+1)
i,j(3.24)

=
{[

U
(k)
i,j +

(
U

(k+1)
i,j − U

(k)
i,j

)][
U

(k)
i,j +

(
U

(k+1)
i,j − U

(k)
i,j

)]}1/2

×
[
U

(k)
i,j +

(
U

(k+1)
i,j − U

(k)
i,j

)]
=

{
U

(k)
i,j U

(k)
i,j + 2

(
U

(k+1)
i,j − U

(k)
i,j

)
U

(k)
i,j +

[
U

(k+1)
i,j − U

(k)
i,j

]2}1/2

×
[
U

(k)
i,j +

(
U

(k+1)
i,j − U

(k)
i,j

)]
≈

[
U

(k)
i,j U

(k)
i,j

]1/2{
1 +

[
U

(k)
i,j

]−1[
U

(k+1)
i,j − U

(k)
i,j

]}
×
{
U

(k)
i,j +

[
U

(k+1)
i,j − U

(k)
i,j

]}
≈

[
U

(k)
i,j U

(k)
i,j

]1/2[
2U

(k+1)
i,j − U

(k)
i,j

]
.

Using these linearized representations in (3.22), we thus arrive at a functional iteration

scheme that computes the successive approximations
−→
Uk+1 and Pk+1 in terms of initial

guesses
−→
Uk and Pk according to∫

Ω

q
−→∇ · −→Uk+1 dΩ = 0 ,(3.25)

∫
Ω

{
−→v ·

[(−→
Uk+1 ·

−→∇
)−→
Uk +

(−→
Uk · −→∇

)−→
Uk+1 −

(−→
Uk · −→∇

)−→
Uk

]
(3.26)

−ρ−1Pk+1

(−→∇ · −→v
)

+ ν
(−→v ←−∇

)
:
(−→
Uk+1

←−∇
)

+ ρ−1 τ l :
(−→v ←−∇

)}
dΩ

+

∫
∂ΩI,w

−→v ·
(−→
U −−→

UI,w

)
d(∂Ω) = 0,
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where τ l, whose components are given by τ lij = ρ
[
U

(k)
i,j U

(k)
i,j

]1/2[
2U

(k+1)
i,j − U

(k)
i,j

]
(1 −

δîĵ), is the linearized form of τ based on (3.24). Equation (3.26) is linear with respect

to the unknown function
−→
Uk+1 and can be handled directly by Sundance.

The above sequence of approximations is expected to be convergent, provided the
kth iterate is a sufficiently good approximation to the actual solution of the nonlinear
problem. In practice, this generally requires that the iteration scheme defined by
(3.25) and (3.26) be embedded in an outer iterative loop with respect to increasing
values of a suitably defined Reynolds number U∗L∗/ν, where L∗ and U∗ are appro-
priately defined length and time scales. Indeed, for a sufficiently small initial value of
the Reynolds number, the linear terms dominate and convergence is therefore more
likely to be achieved in that case. The resulting converged solution for such a given
Reynolds number then provides a good starting guess for the next sequence of iter-
ations at a modestly larger value of that parameter, and so forth. It is also found,
consistent with the need to resolve boundary layers and other finer aspects of the flow
field, that the ability to achieve convergence at a given Reynolds number depends on
the discretization (mesh). In particular, larger Reynolds numbers are generally found
to require finer discretizations, especially in the vicinity of boundaries, independent
of the goodness of the previous iterate with respect to the true solution.

3.3. The eikonal equation and its regularization. The turbulence model
described in section 3.1 requires knowing the wall distance �∗ introduced in the ex-
pression (3.10) for the mixing length �. The wall distance function can, in principle,
be computed exactly given knowledge of the geometry of the walls; however, this
computation is tedious and must be repeated for each new geometry considered. To
simplify and automate the computation of �∗, we use the eikonal equation of geo-
metrical optics (e.g., [9]) which, with appropriate boundary conditions, has the wall
distance �∗ as a solution. We can thus bypass tedious computational geometry and
obtain the wall function as the solution of a PDE. This additional PDE, with regu-
larization for numerical stability, is easily incorporated into our numerical algorithm
and is described in detail in the appendix.

3.4. Pressure stabilization. It is well known that representing velocity and
pressure with basis functions of the same order tends to be unstable (cf. [15]). Con-
sequently, various stabilization schemes have been proposed to allow these variables
to be represented with the same set of basis functions. One popular approach is to
augment the continuity equation with a (small) term proportional to the Laplacian
of pressure according to

−→∇ · −→U = βh2∇2P ,(3.27)

where h is the linear dimension (diameter) of the finite element discretization and β
is an optimally chosen small parameter (cf. [15]). Aside from allowing equal-order
interpolants, the added term has the positive effect of removing the indefiniteness of
the discretized linear system and smoothing out numerical oscillations in the pressure
variable.

Multiplication of (3.27) by the test function q followed by an integration over the
domain Ω then leads to the weak form∫

Ω

[
q
−→∇ · −→U + βh2(

−→∇q) · (−→∇P )
]
dΩ −

∫
∂Ω

βh2(q
−→∇P ) · −→n d(∂Ω) = 0 ,(3.28)

where we have used the identity q∇2P =
−→∇ · (q−→∇P ) − (

−→∇q) · (−→∇P ) and applied the
divergence theorem to obtain the form (3.28). Dropping the boundary term, which
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implies that we are actually only regularizing the weak form (3.28) rather than (3.27),
thus leads to ∫

Ω

[
q
−→∇ · −→U + βh2(

−→∇q) · (−→∇P )
]
dΩ = 0(3.29)

and ∫
Ω

[
q
−→∇ · −→Uk+1 + βh2(

−→∇q) · (−→∇Pk+1)
]
dΩ = 0(3.30)

in place of (3.13) and (3.25), respectively.

4. The optimization problem. In this section we consider the steady-state
transport of the toxin in the flow field developed in the preceding section. We thus
make the implicit assumption that the toxin concentration is insufficient to affect
the flow field itself, but that the transport influences of the flow clearly play a key
role in determining the distribution of the toxin. After first formulating the toxin-
transport model, the optimization problem is then constructed so as to recover the
source location(s) from specific concentration data, where the latter consist of readings
obtained from sensors placed strategically throughout the building. Prior to that
phase of the calculation, we consider several possible optimization formulations before
settling on the one used in our numerical experiments.

4.1. The toxin-transport model. Given the time-averaged flow field U calcu-
lated in section 3, we can write the corresponding time-averaged continuity equation
describing the transport of the toxin as

k∇2c−
(
U · −→∇

)
c +

−→∇ · −→J + s = 0 ,(4.1)

where c(−→x ) and s(−→x ) are, respectively, the (time-averaged) concentration and source
fields at a point −→x ∈ Ω, k is the binary mass diffusivity (assumed constant) of the

toxin with respect to the mixture, and
−→J is the turbulent mass-flux vector whose

components are defined as Ji = −ui
′c′. The derivation of an expression for J in

terms of time-averaged quantities follows in an analogous fashion the derivation of
the expression for the Reynolds stress tensor in section 3.1. In particular, by analogy
with Fick’s law of diffusion, it is logical to write, at least for nearly parallel flows−→
U ∼

(
U1(x2), 0

)
,

−→J ∼ (0,J2) , J2 = kt
∂c

∂x2
, kt = �2

∣∣∣∣∂U1

∂x2

∣∣∣∣ ,(4.2)

where kt is the turbulent, or eddy, diffusivity and � is the same mixing length that
was defined by (3.6) and (3.7) (cf. [3]). This expression may be extended to multi-
dimensional flows using reasoning somewhat similar to that which led to (3.8) and
(3.9). Hence, we define

Jj = kt
ĵ

∂c

∂xj
, kt

ĵ
= �2

ĵ

∣∣∣∣∂Ui

∂xj

∣∣∣∣ , i �= j ,(4.3)

where the �ĵ are the same as those introduced in (3.9) and, for our present purposes,
given by the single expression for �ĵ ≡ � in (3.10).
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As in the flow-field problem, a corresponding reduction of the weak form of the
toxin continuity equation (4.1) is obtained by first multiplying that equation by a
scalar test function r and integrating. This gives∫

Ω

r
[(−→

U · −→∇
)
c− k∇2c−−→∇ · −→J − s

]
dΩ = 0 ,(4.4)

where the components Jj of
−→J are given in terms of ∂c/∂xj according to (4.3). As in

the case of the Navier–Stokes equations, we manipulate the individual terms appearing
in (4.4) so as to eliminate second derivatives. In particular, by analogy with (3.16),
we have ∫

Ω

r∇2c dΩ=

∫
Ω

r∂j∂jc dΩ(4.5)

=

∫
Ω

[∂j(r∂jc) − (∂jr)(∂jc)] dΩ

=

∫
∂Ω

r
(−→∇c

)
· −→n d(∂Ω) −

∫
Ω

(−→∇r
)
·
(−→∇c

)
dΩ ,

and, since
−→J i depends on derivatives of c, we also write, analogous to (3.17),∫

Ω

r
−→∇ · −→J dΩ=

∫
Ω

[−→∇ ·
(
r
−→J
)
−−→J ·

(−→∇r
)]

dΩ(4.6)

=

∫
∂Ω

r
−→J · −→n d(∂Ω) −

∫
Ω

−→J ·
(−→∇r

)
dΩ.

Finally, since
−→∇ · −→U = 0,∫
Ω

r
(−→
U · −→∇

)
c dΩ=

∫
Ω

r
−→∇ ·

(
c
−→
U
)
dΩ(4.7)

=

∫
Ω

[−→∇ ·
(
rc
−→
U
)
− c

−→
U ·

(−→∇r
)]

dΩ

=

∫
∂Ω

(
rc
−→
U
)
· −→n d(∂Ω) −

∫
Ω

c
−→
U ·

(−→∇r
)
dΩ.

Thus, in place of (4.4), the weak form of toxin mass conservation may be written as∫
Ω

{(−→∇r
)
·
[
k
−→∇c− c

−→
U +

−→J
]
− rs

}
dΩ(4.8)

−
∫
∂Ω

r
(
k
−→∇c− c

−→
U +

−→J
)
· −→n d(∂Ω) = 0.

As before, the boundary integral in (4.8) can be simplified by applying the bound-
ary conditions. In particular, the assumption of no mass transport across the walls
implies that the integrand in the boundary integral vanishes on ∂Ωw since the mixing
lengths �j , and hence

−→J , also vanish there. At the inlet and outlet boundaries ∂ΩI

and ∂Ωo, we neglect the contribution of
−→J because the mixing length � is likely to be

small along most of such boundaries. In addition, at the inlet, we specify the incoming
flux fraction (or concentration) of toxin α, which implies the set of conditions[(

c
−→
UI − k

−→∇c
)
· −→n

]
∂ΩI

= −α
−→
UI · −→n ,(4.9)
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where −→n always denotes the outward-facing normal at the boundary. At the outflow
boundary, we represent the boundary condition in the general form[(−→∇c

)
· −→n + βc

]
∂Ωo

= 0 ,(4.10)

where β > 0 is a loss coefficient; the choice β = 0 would correspond to a finite-
boundary approximation if the actual outlet were at infinity. Applying these condi-
tions to (4.8) then yields the final weak form of species mass conservation as∫

Ω

{(−→∇r
)
·
[
k
−→∇c− c

−→
U +

−→J
]
− rs

}
dΩ −

∫
∂ΩI

rαi
−→
UI · −→n d(∂Ω)(4.11)

+

∫
∂Ωo

rc
(−→
U · −→n + kβ

)
d(∂Ω) = 0.

We note that in the event that there is no incoming flux of toxin, α = 0 and the first
boundary integral in (4.11) vanishes.

4.2. The source-inversion optimization problem. We can now form the
preliminary version of the optimization problem. Suppose we have data c∗i that is
the concentration reading from sensor i. Then we seek the source s(x) that creates a
calculated concentration field that best matches this data. That is, we define

fp(s, c) =
1

2

Ns∑
i=1

(c(xi) − c∗i )
2,

where Ns is the number of sources. This is the L2 measure of the discrepancy. We
then write the first version of the optimization problem as

minimize fp(c, s)
c, s

subject to (4.11).
(4.12)

There are several points that need to be addressed before we have a problem that we
can attempt to solve.

First, there are several ways to handle the source term in (4.11). One way is to
assume a model for the sources. For example, we could assume a Gaussian model for
source i, i.e.,

si(x) = αie
βi(x−xi)

2

,

where αi and βi are constants and xi ∈ Ω is the location. Then the source field is

s(x) =

S∑
i=1

si(x),

where S is the number of sources. Alternatively, we could consider source i to be a δ-
function with a specified strength. In both of these cases, the number of sources is not
known in advance and must be determined as part of the source inversion problem.
Also, it is clear that some of the parameters enter the source term nonlinearly. The
advantage of these models, however, is that there is a small number of parameters to
estimate.
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Another way to proceed is to leave s(x) as simply a function over all of Ω to
be determined. The two major advantages of this approach are that the function s
enters (4.11) linearly and there is no need to know in advance the number of sources.
The disadvantage is that the number of parameters to be estimated is the number
of nodes, a potentially large number. We believe, however, that the advantages of
this approach outweigh the disadvantages and we thus choose this form for the source
term.

Second, given the form of the source term, there is a need to regularize the
problem. As posed, the problem is underdetermined; there are many source functions
that will make fp = 0, but they will be excessively oscillatory. We therefore need to
smooth the solution since we expect s to be essentially zero except where real sources
exist. Thus we use standard Tikhonov regularization, i.e., we modify the objective
function fp to be of the form

f(c, s) = fp +
1

2
σ

∫
Ω

(∇s)2.

Our modified form of the optimization problem becomes

minimize f(c, s)
c, s

subject to (4.11).
(4.13)

As posed, problem (4.13) is an equality-constrained quadratic programming prob-
lem. It is well known that, when discretized, such quadratic programs (QPs) can be
solved by solving the linear system that arises from writing the first order necessary,
or KKT, conditions. We point out that Sundance allows for the creation of discrete
functions defined on the mesh. Thus we can easily define the objective function f(c, s)
and then create the Lagrangian

L(c, s, λ) = f(c, s) +

∫
Ω

λh(c, s),

where λ is the Lagrange multiplier and h(c, s) is the left hand side of (4.11). In
Sundance we can define an expression that is the variation of L(c, s, λ) with respect to
its arguments, i.e., the first order conditions. We can then create a Sundance problem,
specify a solver (and a preconditioner), and solve the system. This procedure takes
fewer than 20 lines of code.

We need to consider, however, the possibility of adding additional constraints to
problem (4.13). In particular, we know that both the source field and the concentra-
tion field must be nonnegative. In the case of (4.11), it is easy to see that if s ≥ 0,
then it follows that c ≥ 0. Thus, the final form of the optimization problem that we
consider is

minimize f(c, s)
c, s

subject to (4.11)
s ≥ 0.

(4.14)

Sundance can also be used to create this problem. Let

atx +
1

2
xtQx(4.15)



444 BOGGS, LONG, MARGOLIS, AND HOWARD

be the general form of a quadratic objective function, where a ∈ Rn and Q is an (n×n)
symmetric matrix. We create a Sundance problem for the function given by f(c, s).
Then by getting the linear operator for this problem, we have the matrix Q, and by
getting the right-hand side we have a. Similarly, we can then get the matrix and
right-hand side associated with the Sundance problem corresponding to (4.11), thus
obtaining the discretized linear equality constraints. It is then trivial in Trilinos to
create the identity matrix (never actually formed) and vector of zeros corresponding
to the constraints s ≥ 0. These matrices and vectors can be passed to any appropriate
QP solver.

We now make the following remarks about problem (4.14) that motivate our
choice of QP solver:

1. Recall that we are not interested in high accuracy solutions.
2. With this formulation, there will be many near-active constraints, i.e., many

points with very small, but positive, function values; such problems often
create severe computational difficulties.

3. We expect that our formulation, which uses the Tikhonov regularization term,
will tend to smear the constraints. Thus, we are not concerned with getting
the correct active set.

4. Given that we do not care about getting the correct active set, we are certainly
not interested in getting the Lagrange multipliers.

5. Since the equality constraint given by (4.11) will be a discretized PDE in
the QP, we do not need to worry about satisfying these constraints to high
accuracy.

The above observations lead us to consider the use of O3D to solve the inequality-
constrained problem (4.14). O3D is a primal, interior-point method that can be
controlled so that estimates of the multipliers are not computed. It operates on a QP
with the objective function given by (4.15) and with only inequality constraints of the
form

Ax + b ≤ 0.

In essence, O3D, which stands for optimizing over three-dimensional subspaces, is an
iterative method that at each iteration creates a three-dimensional subspace, solves
the QP restricted to that subspace, and moves 99% of the distance to the boundary
in the direction implied by the solution. The three directions, pi, all satisfy a linear
system of the form (

AtD2A + Q/γ
)
pi = ti, i = 1, 2, 3,

where

D = diag 1/ (Ax + b)i,

γ is a scalar computed at each iteration, and ti is an appropriate right-hand side.
There are, of course, many other details; see [5] for a more complete description.

In the tests reported in the next section, we tried several formulations of the
problem in an attempt to find an efficient strategy. The original strategy for handling
equality constraints in O3D is to convert them into a pair of inequality constraints
and then to form a “big M phase 1 problem.” This problem has an artificial variable
that is forced to zero as the solution draws near. In the limit, this forces the two
inequalities corresponding to an equality constraint to become equal, thus satisfying
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the equality constraint. Although this has often worked well in practice, it was not
efficient enough for our purposes here; we thus looked for a more efficient formulation.
Although not often recommended, the best formulation that we found was to create
a penalty form of (4.14) so that we have a problem with only inequality constraints.
This formulation allows us to control the tolerance to which the equality constraints
will be satisfied. As noted above, it does not make sense to require satisfaction of
the equality constraint to high accuracy since it is a finite element approximation to
(4.11). The penalty form that we consider is given by

minimize f(c, s) +
1

2
ρ ‖h(c, s)‖2

c, s

subject to s ≥ 0.

(4.16)

We choose an increasing sequence ρi and solve (4.16) for ρi, i = 1, . . . , for a relaxed
set of convergence criteria. After each solution, we check the value of ‖h(c, s)‖. If the
value is less than ε, where ε is a given tolerance, then we fix ρ at the current value
and solve (4.16) to a tighter set of convergence criteria. We note that in this form it is
easy to get a good interior starting approximation by solving problem (4.13) for s (by
solving one linear system) and then modifying any value of s ≤ 0 to be some small
positive value. As reported in the next section, this allowed convergence to acceptable
accuracy in a very small number of iterations.

5. Numerical results. To conduct our numerical tests, it was first necessary
to solve the flow model developed in section 3. We therefore first describe a simple
two-dimensional room with one inlet and one outlet and display the resulting flow
field. After commenting on some of the realistic features of this field, we then show
the source-inversion results that were obtained when sources and sensors were placed
in the room.

5.1. Sample two-dimensional problem geometry and flow field. As in-
dicated above, a simple two-dimensional room was constructed with an inlet and an
outlet, as shown by the domain in Figure 1. The main part of the room is 15×20 units,
with two small (2×2) inlet/outlet sections on the left and right, respectively. Various
triangular meshes for this geometry were created with Shewchuk’s mesh-generating
package, Triangle [24], [25], with two layers of additional nodes specified along the
boundaries to better resolve the (turbulent) boundary-layer structure in the vicinity
of the walls. In all, the flow field used in the numerical calculations described be-
low was generated by Sundance on a roughly 15,000-node mesh with approximately
31,000 triangles. This degree of mesh resolution enabled us to calculate, using the
iterative procedure described in section 3, a flow field corresponding to fairly high
Reynolds numbers (the source-inversion calculations described below corresponded to
Re = 10,000). Generally speaking, the ability to iterate to increasingly large Reynolds
numbers required increasingly finer meshes.

As suggested in section 3.2, the specific procedure we successfully employed, given
a sufficiently fine mesh, was to start with zero initial data for the velocity and pressure
fields and iterate to a converged solution for Re = 100. That solution was then used
as initial data for the Re = 200 problem, and so forth, in increments of 100 in the
Reynolds number. Since (3.24) represents a formal linearization of the flow-field model
based on Taylor expansions of the nonlinear terms, roughly quadratic convergence
was achieved at each step in the Reynolds-number loop. Typically, only four or five
iterations were required to meet our fairly stringent convergence criteria, although
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Fig. 1. Calculated vector flow field for Re = 10,000.

somewhat more (about 10) were usually needed on the first Re = 100 step due to
our starting the iteration from zero initial data. A convergence failure at a particular
Reynolds number generally implied an insufficiently fine mesh and could be remedied
by recalculating on a finer mesh.

The inlet velocity profile was specified to be a Poiseuille flow with the peak inlet
flow velocity at the center of the profile taken to be 4. The resulting vector flow
field for Re = 10,000 is shown in Figure 1. It is readily observed that the main flow
direction is from the inlet to the outlet. A more careful look, however, reveals several
recirculation zones and other structures that are indicative of a realistic flow field.

5.2. Source-inversion tests. To test our source-inversion procedure we first
generate some data on the two-dimensional example above. We do this by assuming
a Gaussian source as described in section 4 and solving the forward problem, i.e., we
solve (4.11). In particular, we take our sources to be

s(x) = αie
βi(x−xi)

2

,

where αi = 20 and βi = 2 for all i. We then specify the location for a set of sensors in
the room, get the concentration c at each sensor location, and modify it by a random
value of ±5%. (The value of 5% was chosen in consultation with one of our Sandia
National Laboratory colleagues who is working on the design of the sensors [12].) We
investigated two patterns of the locations for the sensors. The first was a regular
pattern of 9 sensor locations; the second was a hand-selected pattern of 30 locations,
shown in Figure 2. This second pattern will be discussed further later.

The results for the 9-sensor source-inversion problems are as follows. First, it
was sometimes possible to achieve reasonable predictions, even without using the
inequality constraints, but it was very easy to pick source locations for which the
prediction of both the number and location of the sources was poor. Without using
inequality constraints, we often observed negative values of the source field, but even
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Fig. 2. Flow field with 30 irregularly spaced sensors.

when we used the inequality constraints, the results were still poor. We conclude from
this that 9 sensors on a regular grid are not sufficient to reconstruct the sources for
many source locations.

To determine an effective sensor arrangement, it is necessary to consider how the
toxin is transported throughout the building and how this information is represented
by the sensor readings. Here, we will look at two different cases. First, suppose a
source is located in a region of the building in which the air flow is minimal, e.g.,
a corner. Over time the toxin will accumulate and any sensor in that region will
exhibit a high concentration reading while all other sensors return comparatively low
readings, assuming only one source exists. Thus, given at least one sensor in this
region, any solution would exhibit a source in the proper area of the building. Since
any sensor in this location will eventually have a comparatively high concentration
reading, we require only one sensor to adequately determine sources in these types
of regions. For the second case, suppose we have a source in the main stream of the
flow. Instead of accumulating around the source location, the toxin will be distributed
throughout the building as dictated by the flow field. Thus, if the main stream of the
flow contains too few sensors, as in the 9-sensor arrangement, many different source
locations could result in the same set of concentration readings. Therefore, in the
main stream of the flow it is necessary to place sensors based on both the direction
and the magnitude of the flow.

Using this knowledge, we picked sensor locations by hand by conducting many
experiments. We make no claims, however, that these are the optimal sensor locations,
a topic to which we return in section 6. With these locations, we were able to locate
any pair of sources with acceptable accuracy.

We can draw several conclusions from these results:
1. Thirty sensors usually get acceptable accuracy.
2. Adding inequality constraints sometimes helps significantly by reducing

nonphysical oscillations of the source field and is not computationally too
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expensive. In fact, it generally took fewer than 10 iterations of O3D to solve
the problem to acceptable accuracy.

3. Experience and knowledge of the flow field helps to predict locations of the
sources.

4. As expected, because of our use of the Tikhonov regularization, the sources
are smeared, especially for sources placed in the main stream of the flow.
Nevertheless, the peaks in the computed source field correspond reasonably
well with the true source locations.

5. We could do better with more sensors, but we want to restrict the number
due to practical considerations: In a real three-dimensional building, we will
not be able to have a high concentration of sensors with complete freedom
of placement. On the other hand, the sources cannot be placed arbitrarily
either.

6. The reconstructed concentration field is much better than the source field;
this implies that we have an ill-conditioned problem.

7. We also ran these problems with 10% and 15% error with progressively worse,
but not horrible, results.

5.3. Coarse meshes. In the results reported above, we showed that we were,
indeed, able to reconstruct the source or sources with acceptable accuracy. In this
section, we consider the issue of doing this rapidly. In particular, we discuss the
possibility of using a coarser mesh to reconstruct the source field than was necessary
to compute the flow field. Obviously, if a coarser meshes suffices, the time to solve
the required linear systems will decrease.

Two possibilities present themselves for creating a coarser mesh. As noted above,
we solved for the flow field on a fine, uniform mesh that was necessary to achieve
convergence for the Reynolds number we desired. Thus, the first way to generate a
coarser mesh is simply to regenerate the mesh with a larger value of the parameter
that controls the size of the elements. Having done this, we can then interpolate the
flow field from the solution on the fine mesh onto this coarser mesh and proceed with
the source inversion. The second way to proceed is to try to generate a coarser mesh
that is adapted to the flow field itself so that larger elements will appear in regions
where the flow field is not changing rapidly and smaller elements where the flow field
is rapidly varying. Fortunately, the meshing tool that we are using allows us to do
this relatively easily. A few words about this tool are in order.

We have installed and used the bidirectional anisotropic mesh generator (BAMG)
that is being developed at INRIA (see [16]). This code allows the generation of meshes
over a two-dimensional domain by specifying a number of parameters. These param-
eters control properties such as maximum and minimun edge length, the maximum
number of triangles, etc., to generate uniform meshes. More interestingly, it also al-
lows the specification of a “metric” field and will attempt to adapt the mesh to that
field. Thus, if we compute the flow field on a fine mesh and use this as the metric
field, BAMG will produce a mesh that is adapted to this field. The other parameters
are also used so that by specifying the minimum and maximum edge lengths along
with this metric file, BAMG will produce a coarser mesh that is adapted to the flow
field. BAMG will then compute a Lagrangian interpolation of the fine flow-field values
onto the coarse meshes. BAMG is currently being extended to three-dimensions.

Using BAMG we were easily able to generate both the uniform and adapted coarse
meshes necessary to run our source-inversion method on these problems. We were
(pleasantly) surprised by the amount of coarsening that was possible without noticing
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Fig. 3. Source inversion with adaptive (left) and uniform (right) meshes. Top row, 1471 and
1488 triangles; middle row, 1172 and 1196 triangles; bottom row, 474 and 476 triangles. The true
source locations are the points (10.0, 1.0) and (4.5, 10.0).

any degradation in the accuracy of the reconstructed sources. Indeed, we could not see
any difference in the predicted source locations by reducing the number of triangles
from the original 31,000 to approximately 1500, a factor of over 20! Recall that a grid
of 1500 triangles would not be nearly fine enough to compute the flow field. Some
representative results are shown in Figures 3–7.

These figures show the results of using ≈ 1500 triangles, ≈ 1200 triangles, and
≈ 500 triangles for both adaptive and uniform meshes. The cases pictured generally
show situations where there were some problems. In many of the cases not pictured
here, we were able to obtain acceptable results to the lowest number of triangles.
Overall, our experience suggests that the adaptive meshes yield better results for the
coarsest meshes. There were certainly cases in which the adaptive meshes did not
perform better. For example, Figure 5 shows that the adaptive mesh predicts two
sources at the coarsest level, whereas the uniform mesh correctly predicts only one.

For some source configurations, it was not possible to get acceptable predictions at
the coarsest levels for either mesh strategy; see, e.g., Figure 7. In this figure, we note
that the adaptive mesh was able to achieve acceptable results using approximately
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Fig. 4. Source inversion with adaptive (left) and uniform (right) meshes. Top row, 1471 and
1488 triangles; middle row, 1172 and 1196 triangles; bottom row, 474 and 476 triangles. The true
source locations are the points (1.0, 14.0) and (1.0, 4.0).

1200 triangles, whereas the uniform mesh incorrectly predicts three sources. In Figure
6 we also see that the adaptive mesh performs better at the coarser levels.

We observe that sources placed in the main flow are much harder to locate due
to the rapid dispersal of the agent in this region of the flow field. It is also true that
the predicted strength in these regions is also much less than the true value. Again,
we think that that the use of the Tikhonov regularization accounts for some of this.

Finally, we point out that the times required for doing the inversion are, as ex-
pected, substantially reduced by using these coarser meshes. Table 1 gives the the
number of O3D iterations necessary to achieve the required accuracy and the number
of seconds it took to run. Clearly the reduction of run-times by a factor between 40
and 100 will be significant.

6. Discussion and conclusions. In this paper we have developed a formulation
for the source-inversion problem that we have shown to be effective for locating sources
in a steady-state environment. Although we have not stressed computational efficiency
in our numerical experiments, we have been able to solve these problems relatively
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Fig. 5. Source inversion with adaptive (left) and uniform (right) meshes. Top row, 1471 and
1488 triangles; middle row, 1172 and 1196 triangles; bottom row, 474 and 476 triangles. The true
source location is the point (14.5, 0.5).

quickly, in terms of the number of iterations of O3D. Much work remains, however,
to improve the efficiency of the linear solvers, the main source of computational costs
in our runs. We have also shown that Sundance and Trilinos are powerful tools for the
rapid prototyping and testing of various ideas and strategies.

In addition to continuing to work on the linear solver strategies, both in serial
and in parallel, we need to investigate several other topics as follows:

1. As noted above, problem (4.14) uses a standard Tikhonov regularization
scheme. Our computational results indicate that this tends to smear the
source. Other possible regularizations can be considered, as in [1].

2. The problem of the optimal location of sensors is difficult. It is not at all clear
what the objective should be. Our understanding is that different toxins
dictate different attack strategies. Thus, we must take that into account
when determining the location of the sensors. We are pursuing ideas related
to hierarchical control (see, e.g., [8]); this will be the subject of a future
paper. We are also considering ideas related to the mesh strategies noted
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Fig. 6. Source inversion with adaptive (left) and uniform (right) meshes. Top row, 1471 and
1488 triangles; middle row, 1172 and 1196 triangles; bottom row, 474 and 476 triangles. The true
source locations are the points (3.0, 4.0) and (10.0, 8.0).

above, where sensors could be located in regions of rapid change in the flow
field.

We note in closing that PDE-constrained optimization problems arise in the con-
text of improving the sensors themselves. We have been studying the problem of
improving the shape and the topology of the channels in a microfluidic sensor. Here
we want to improve certain aspects of the movement of the contaminant within the
sensor subject to the flow within the channels.

In part 2 of this paper we will consider the time-dependent source-inversion prob-
lem. Although the problem will be much larger, we will also have more information.
That is, we will have the time history of the transport, or, put another way, each
sensor will provide much more that one measurement. In our preliminary analysis
of the time-dependent problem, we have observed that the linear systems that we
will have to solve will have a structure that can be exploited by a direct solver. In
addition, we will consider many of the ideas enumerated above concerning the mesh
and the regularization strategy in the time-dependent case.
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Fig. 7. Source inversion with adaptive (left) and uniform (right) meshes. Top row, 1471 and
1488 triangles; middle row, 1172 and 1196 triangles; bottom row, 474 and 476 triangles. The true
source locations are the points (6.0, 12.0) and (16.0, 6.0).

Table 1

Table giving run-times and the number of O3D iterations at various levels of mesh coarsening.

Approximate Uniform mesh Adaptive mesh
no. of triangles O3D iterations Time O3D iterations Time

31, 000 6.27 385.77 – –
1500 7.33 9.21 5.78 8.52
1200 6.88 7.13 5.84 6.58
500 7.78 3.00 8.09 3.05

Appendix. The regularized eikonal equation. We motivate and derive the
weak form of the regularized eikonal equation used in the main body of the paper
as follows. First, we illustrate ideas by considering a couple of (essentially) one-
dimensional analytical examples; then, a weak form of the fully multidimensional
problem is derived; finally, an iterative procedure is specified and illustrated using the
flow geometry prescribed in section 5.
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We begin by considering the one-dimensional eikonal equation(
d�∗

dx

)2

= 1 ,(A.1)

subject to �∗ = 0 at the boundaries x = 0 and x = 1. Solutions to (A.1) are
given by �∗ = ±x, which cannot solve the boundary conditions without introducing
discontinuities in either �∗ or its derivative at x = 1/2. For example, the generalized
function

�∗ =

{
x, 0 ≤ x ≤ 1/2,
1 − x, 1/2 ≤ x ≤ 1,

(A.2)

which clearly satisfies (A.1) except at x = 1/2, measures the distance from the nearest
boundary point (x = 0 or 1/2). For stable solution by finite elements in an enclosed
region, the eikonal equation must be regularized. If we add a regularization term
−εd2�∗/dx2, where ε is a small positive quantity, to the left-hand side of (A.1), the
problem becomes (

d�∗

dx

)2

− ε
d2�∗

dx2
= 1 , �∗(0) = �∗(1) = 0 .(A.3)

The general solution of the differential equation for �∗ is obtained by first solving
the first order equation for d�∗/dx and then performing a second integration to give
�∗ = d− ε ln cosh[(x− c)/ε], where c and d are constants of integration. Applying the
boundary conditions then determines �∗ uniquely as

�∗(x) = ε ln

{
cosh

[
− 1/(2ε)

]
cosh

[
(2x− 1)/(2ε)

]} = −ε ln

[
e(2x−1)/(2ε) + e−(2x−1)/(2ε)

e−1/(2ε) + e1/(2ε)

]
.(A.4)

It is readily deduced that for 0 < ε � 1, �∗ has the asymptotic behavior �∗ ∼ x for
0 ≤ x < 1/2 and �∗ ∼ 1−x for 1/2 < x ≤ 1. In the neighborhood of x = 1/2, we define
the stretched coordinate η = ε−1(x− 1/2), in terms of which �∗ ∼ 1/2− ε ln[2 cosh η].
In the asymptotic context, a composite approximation spanning both the outer regions
(0 ≤ x < 1/2 and 1/2 < x ≤ 1) and the inner zone |x−1/2| ∼ O(ε) is in fact given by
the inner approximation written in terms of x. Hence, an asymptotic approximation
for (A.4), valid in the limit of small ε, is given by

�∗(x) ∼ 1

2
− ε ln

[
2 cosh

(
2x− 1

2ε

)]
=

1

2
− ε ln

[
e(2x−1)/(2ε) + e−(2x−1)/(2ε)

]
.(A.5)

We note that the maximum deviation in �∗ from sup {x, 1 − x} occurs at x = 1/2,
where �∗(1/2) ∼ 1/2 − ε ln 2. The exact solution (A.4) and its approximation (A.5)
are illustrated in Figure 8.

The straightforward multidimensional generalization of (A.3) used in the present
work is given, on a domain Ω, by(−→∇�∗

)
·
(−→∇�∗

)
− ε∇2�∗ = 1 , �∗ = 0 on ∂Ωw ,

−→∇�∗ = 0 on ∂ΩI,o .(A.6)

The solution of this problem yields a tent-like structure, with the aforementioned
distance-representation property for �∗, over the domain Ω. For example, if the do-
main is the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ L, with �∗ = 0 on x = 0 and x = 1, and
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Fig. 8. Solution of (A.3) for several values of ε (“eps”). The two curves (dashed and dotted) for
ε = .25 correspond to the exact solution (A.4) and its asymptotic representation (A.5), respectively;
the two expressions are virtually indistinguishable for smaller values of ε.

∂�∗/∂y = 0 on y = 0 and y = L, the solution is simply (A.4), independent of y. A
more nontrivial example is the solution of (A.6) in polar coordinates (r, ϑ) when ∂Ωw

is the ring 0 < ri ≤ r ≤ r0 and the boundary conditions are �∗(ri) = �∗(r0) = 0. Due
to angular symmetry, (A.6) reduces to solving (d�∗/dr)2 − εr−1(d/dr)(r d�∗/dr) = 1,
ultimately giving the final result

�∗ = ε ln

{
I0(ri/ε)K0(r0/ε) − I0(r0/ε)K0(ri/ε)

I0(r/ε)
[
K0(r0/ε) −K0(ri/ε)

]
−K0(r/ε)

[
I0(r0/ε) − I0(ri/ε)

]} ,(A.7)

where I0 and K0 are the zero order modified Bessel functions. This solution is illus-
trated in Figure 9; its physical appearance in three dimensions is obtained by rotating
the profiles about the �∗-axis to yield the upper part of a torus-like structure.

As with the Navier–Stokes equations, the use of Sundance requires a weak form
of the eikonal problem (A.6). We begin by writing∫

Ω

r
[(−→∇�∗

)
·
(−→∇�∗

)
− ε∇2�∗ − 1

]
dΩ = 0 ,(A.8)

where r is the test function. Use of the identity r∇2�∗ =
−→∇ ·

(
r
−→∇�∗

)
−
(−→∇r

)
·
(−→∇�∗

)
and application of the divergence theorem allows (A.8) to be expressed in terms of
first derivatives as∫

Ω

{
r
[(−→∇�∗

)
·
(−→∇�∗

)
− 1

]
+ ε

(−→∇r
)
·
(−→∇�∗

)}
dΩ(A.9)

− ε

∫
∂Ω

r
(−→∇�∗

)
· −→n d(∂Ω) = 0 ,

where −→n is the unit normal to ∂Ω.
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Fig. 9. Solution of (A.7) for ri = 1/2, r0 = 1, and several values of ε (“eps”).

Based on the boundary conditions expressed in (A.6), the surface integral vanishes
on the inlet and outlet portions of ∂Ω. Approximating the wall boundary condition
by

−
(−→∇�∗

)
· −→n

∣∣∣
∂Ωw

= ε̂−1�∗ , ε̂ � 1 ,(A.10)

and taking the limit ε̂ → 0 (independent of the ε in (A.9)), we obtain, by the same
argument advanced in section 3.2, a replacement for the surface term according to∫

Ω

{
r
[(−→∇�∗

)
·
(−→∇�∗

)
− 1

]
+ ε

(−→∇r
)
·
(−→∇�∗

)}
dΩ + ε

∫
∂Ωw

r�∗ d(∂Ω) = 0 .(A.11)

Equation (A.11) is thus the final weak form of problem (A.6). We note that (A.11)
is decoupled from the larger problem, although the reverse is obviously not true since
�∗ enters into (3.22) through the mixing length �ĵ that appears in the expression for
the turbulent stress tensor τ .

In order to actually solve (A.11), which is nonlinear in the unknown function �∗,
it is necessary to adopt an iterative approach as discussed in section 3.2. In particular,
since we ultimately require a weak form that is linear with respect to the unknown
function �∗ (as well as the test function r), we formally linearize the nonlinear term(−→∇�∗

)
· (−→∇�∗) about an initial guess �∗0 by writing �∗ = �∗0 + �∗1, where the correction

�∗1 is presumed to be small. Consequently,(−→∇�∗
)
·
(−→∇�∗

)
=

(−→∇�∗0
)
·
(−→∇�∗0

)
+ 2

(−→∇�∗1
)
·
(−→∇�∗0

)
+
(−→∇�∗1

)
·
(−→∇�∗1

)
(A.12)

≈
(−→∇�∗0

)
·
(−→∇�∗0

)
+ 2

(−→∇�∗1
)
·
(−→∇�∗0

)
=

(−→∇�∗0
)
·
(−→∇�∗0

)
+ 2

[−→∇(�∗ − �∗0)
]
·
(−→∇�∗0

)
=

(−→∇�∗0
)
·
(
2
−→∇�∗ −−→∇�∗0

)
.

Using this linearized representation for
(−→∇�∗

)
·
(−→∇�∗

)
in (A.11), we thus arrive at a

functional iteration scheme that computes the successive approximation �∗i+1 in terms
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Fig. 10. Angle and top views of the converged iterative solution of (A.13) for ε = .05 on a
sample domain Ω with inlet (lower left) and outlet (upper right) boundaries.

of an initial guess �∗i according to∫
Ω

{
r
[(−→∇�∗i

)
·
(
2
−→∇�∗i+1 −

−→∇�∗i
)
− 1

]
+ ε

(−→∇r
)
·
(−→∇�∗i+1

)}
dΩ(A.13)

+ ε

∫
∂Ω

r�∗i+1 d(∂Ω)= 0 .

Equation (A.13) is linear with respect to the unknown function �∗i+1 and can be
handled directly by Sundance. The sequence of approximations is expected to be
convergent given even a crude starting guess �∗0 for sufficiently large ε, since in that
limit the original nonlinearity becomes a perturbation of an otherwise linear problem.
An outer iteration scheme can then be used to generate sufficiently good starting
guesses �∗0 for the recursive algorithm (A.13) with successively smaller values of ε. An
example of such a calculation is illustrated in Figure 10.
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SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 17, No. 2, pp. 459–484

AN ACTIVE SET METHOD FOR SINGLE-CONE SECOND-ORDER
CONE PROGRAMS∗
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Abstract. We develop an active set method for solving second-order cone programs that may
have an arbitrary number of linear constraints but are restricted to having only one second-order
cone constraint. Problems of this form arise in the context of robust optimization and trust region
methods. The proposed active set method exploits the fact that a second-order cone program with
only one second-order cone constraint and no inequality constraints can be solved in closed form.
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uncertain linear program, duality
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1. Introduction. In this paper we are concerned with the following special case
of a second-order cone program (SOCP):

min fTx
subject to Hx = g,

Ex ≥ 0,
Dx � 0,

(1.1)

where x ∈ Rn, f ∈ Rn, H ∈ Rm×n, g ∈ Rm, E ∈ Rl×n, D ∈ Rp×n, and � denotes
the partial order with respect to the standard conic quadratic cone Q = {(z0, z̄)T ∈
Rp : z0 ≥

√
z̄T z̄} ⊂ Rp. We shall call the optimization problem (1.1) a single-cone

SOCP since it is restricted to having only one second-order cone constraint.
Our interest in single-cone SOCPs stems from the fact that they arise as the

robust counterpart of uncertain linear programs (LPs). Many decision problems in
engineering and operations research can be formulated as LPs of the form

min cTx
subject to Ax = b,

x ≥ 0.

Solution techniques for LPs compute a solution assuming that the parameters (A,b, c)
are known exactly. However, in practice, these parameters are typically the result
of some measurement or estimation process and are therefore never certain. LPs
whose parameters are not known exactly are called uncertain LPs. Several strategies
have been proposed to address parameter uncertainty in optimization problems. One
approach is to solve the LP for a nominal set of parameters (A0,b0, c0) and then
analyze the quality of the solution using a postoptimization tool such as sensitivity
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analysis [5]. This approach is particularly attractive when the uncertainty is “small”
in an appropriate sense. In the stochastic programming approach, the uncertainty
is assumed to be random with a known distribution, and samples from this known
distribution are used to compute good solutions [16]. However, identifying appropriate
distributions for the parameters is not straightforward. Also, as the dimension of the
problem grows, the complexity of the stochastic program quickly becomes prohibitive.
Recently Ben-Tal and Nemirovski [2, 3, 4] proposed robust optimization as another
approach to address data uncertainty. In this approach, the uncertain parameters
(A,b, c) are assumed to belong to a bounded uncertainty set U and the goal of the
robust counterpart is to compute a minimax optimal solution. The results in [2, 3, 4]
establish that when U satisfies some regularity properties, the robust counterpart can
be reformulated as an SOCP and therefore can be solved efficiently both in theory [14]
and in practice [17].

The robust counterpart of an uncertain LP where the parameters (A,b) are
completely known and the uncertain cost vector c belongs to an ellipsoidal uncertainty
set can be reformulated as a single-cone SOCP [3] (see also section 5). In many
engineering applications the constraints in the LP are given by design considerations
and are therefore fixed and certain. For example, in routing problems arising in the
context of road or air traffic control and communication networks, the capacities are
determined at the network design stage; therefore, the constraints in the problem,
namely, the flow balance equations and capacity constraints, are completely known
when the routing problem is to be solved. However, the “cost” of an arc is typically
a nonlinear function of the capacity and flows in the network, and measuring this
cost is often difficult and expensive [8]. The “cost” of a feasible flow can often be
modeled as an uncertain linear function with an ellipsoidal uncertainty set by using
the so-called delta method [12]. Production planning is another natural example
where the constraints are fixed and only the costs are uncertain. Here the vector c
denotes the vector of future expected market prices for the various raw materials and
is, typically, estimated from historical prices via linear regression. Since the confidence
regions associated with linear regression are ellipsoidal [10, 12], the resulting robust
counterpart is a single-cone SOCP.

From the equivalence

‖Pu‖ ≤ 1 ⇔ u0 = 1,

[
u0

Pu

]
� 0,

it follows that the trust region problem is a special case of a single-cone SOCP. This
provides another motivation for developing active set methods for single-cone SOCPs.
Note that formulating the trust region problem as a single-cone SOCP allows one to
consider hyperbolic and parabolic trust regions.

Alizadeh and Goldfarb [1] showed that under appropriate regularity conditions,
the optimal solution of a single-cone SOCP with no inequality constraints can be
computed in closed form. We use this result to explicitly compute the value of the
Lagrangian obtained by dualizing the nonnegativity constraints Ex ≥ 0. We compute
the optimal dual multipliers using an active set method, and then recover an optimal
primal solution using the results in [1]. The formulation of the appropriate dual
problem is discussed in section 2, the active set method is detailed in section 3, and
section 4 details how to recover an optimal solution of (1.1).

Clearly, any algorithm for solving general SOCPs can be used to solve a single-
cone SOCP. All the known codes for solving general SOCPs, e.g., SeDuMi [17] and
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MOSEK, are based on interior point methods. Our efforts in developing an active set
method for the single-cone SOCP were motivated, in part, by the observation that
active set methods are known to solve convex quadratic programs efficiently. Our
goal was to investigate whether a simple active set algorithm outperforms general
purpose SOCP codes at least for certain problem classes. We report the results of our
computational experiments in section 5.

Finally, Muramatsu [13] proposed a simplex-type algorithm for solving a special
case of the single-cone SOCP (1.1). His algorithm is a generalization of the simplex
method used for solving LPs [7], which is different than our approach.

2. Formulation of the Lagrangian dual. In this section we formulate a La-
grangian dual for the single-cone SOCP (1.1). We assume that H ∈ Rm×n has full
row rank and the following constraint qualification holds.

Assumption 2.1. There exists x̄ ∈ Rn such that Hx̄ = g, Ex̄ ≥ 0, and
Dx̄ 
 0.

The active set algorithm proposed in this paper exploits the following result
from [1].

Lemma 2.2. Suppose the pair of primal-dual SOCPs

min cTx
subject to Ax = b,

x � 0,

max bTy
subject to ATy + z = c,

z � 0

(2.1)

are both strictly feasible. Then the optimal solution of the primal SOCP is given by

x∗ =

⎛⎝√−bT (ARAT )−1b

cTPRc

⎞⎠PRc + RAT (ARAT )−1b,(2.2)

where

R =

[
1 0T

0 −I

]
, PR = R − RAT (ARAT )−1AR,

and I denotes an identity matrix.
Remark 2.3. In Lemma 2.2 we have implicitly assumed that ARAT is nonsin-

gular. A similar result holds when ARAT is singular. See [1] for details.
In order to reformulate (1.1) into a form similar to the primal SOCP in (2.1), we

dualize the nonnegativity constraints to obtain the Lagrangian

q(λ) ≡ min (f − ETλ)Tx
subject to Hx = g,

Dx � 0,

(2.3)

where λ ∈ Rl
+ denotes the Lagrange multipliers for the inequality constraints. Note

that the result in [1] applies only when the primal and the dual SOCPs are both
strictly feasible. For SOCPs, feasibility is a subtle issue; e.g., the fact that the primal
is bounded does not imply that the dual is feasible [4]; therefore, one has to be careful
in applying the results in [1]. Elementary properties of convex duality [6] implies the
following claim.

Claim 2.4. Let q(λ) denote the Lagrangian defined in (2.3). Let x∗ and v∗

denote, respectively, any optimal solution and the optimum value of (1.1). Then
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(a) v∗ = max
{
q(λ) : λ ≥ 0, λ ∈ Dq

}
, where Dq =

{
λ : q(λ) > −∞

}
,

(b) x∗ ∈ argmin
{
(f − ETλ∗)Tx : Hx = g, Dx � 0

}
, where λ∗ ∈ argmax

{
q(λ) :

λ ≥ 0, λ ∈ Dq

}
.

Thus, an optimal solution to (1.1) can be obtained by first computing an optimal
multiplier λ∗ ∈ argmax

{
q(λ) : λ ≥ 0, λ ∈ Dq

}
and then computing an optimal x∗

by solving q(λ∗). In section 2.1 we show how to compute the value of the Lagrange
dual function q(λ) for a fixed value of λ ∈ Dq, in section 3 we describe an active set
algorithm to solve for the optimal dual multipliers λ∗, and in section 4 we show how
to recover the optimal primal solution x∗.

2.1. Computing the Lagrangian q(λ). Claim 2.4 allows us to restrict our-
selves to λ ≥ 0 such that q(λ) > −∞, i.e., λ ∈ Dq∩Rl

+, without any loss of generality.
Fix y � 0 and consider the optimization problem in x:

q(λ,y) ≡ min (f − ETλ)Tx
subject to Hx = g,

Dx = y.

(2.4)

Note that q(λ) > −∞ if and only if q(λ,y) > −∞ for all y � 0. Since H has
full row rank, Hx = g if and only if x = x0 + Bz, where x0 = HT (HHT )−1g ∈ Rn,
B ∈ Rn×(n−m) is any orthonormal basis for the nullspace N (H) of H, and z ∈ Rn−m.
Thus, we have that

q(λ,y) = (f − ETλ)Tx0 + min (f − ETλ)TBz
subject to DBz = y − Dx0.

(2.5)

Since DB ∈ Rp×(n−m) the following three cases exhaust all possibilities:
(i) rank(DB) = r < min{p, n−m}. In this case, a singular value decomposition

(SVD) of DB has the form

DB = UΣVT =
[
U0 U1

] [Σ0 0
0 0

] [
VT

0

VT
1

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×r, U1 ∈ Rp×(p−r), V0 ∈ R(n−m)×r, V1 ∈ R(n−m)×(n−m−r),
and Σ0 ∈ Rr×r is a diagonal matrix. Consequently, UT

1 (y − Dx0) = 0, and
z = V0Σ

−1
0 UT

0 (y − Dx0) + V1t, where t ∈ Rn−m−r. Thus,

q(λ,y) = (f − ETλ)T z0 + ξTy + min
t

{
(f − ETλ)TBV1t

}
,(2.6)

where z0 = (I − BV0Σ
−1
0 UT

0 D)x0 and ξ = U0Σ
−1
0 VT

0 BT (f − ETλ). From
(2.6), we have

q(λ,y) > −∞ ⇔ VT
1 BT (f − ETλ) = 0,(2.7)

and in that case

q(λ) = (f − ETλ)T z0 + q̄(ξ),(2.8)

where

q̄(ξ) = min ξTy
subject to Ay = b,

y � 0

(2.9)
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and

z0 = (I − BV0Σ
−1
0 UT

0 D)HT (HHT )−1g,

ξ = U0Σ
−1
0 VT

0 BT (f − ETλ),

b = UT
1 DHT (HHT )−1g,

A = UT
1 .

(2.10)

(ii) rank(DB) = n−m < p. In this case, we have

DB = UΣVT =
[
U0 U1

] [Σ0

0

] [
VT

0

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×(n−m), U1 ∈ Rp×(p−n+m), V0 ∈ R(n−m)×(n−m), and Σ0 ∈
R(n−m)×(n−m) is a diagonal matrix. Thus, (2.5) is feasible if and only if

UT
1 (y − Dx0) = 0.(2.11)

Since V0 has full rank, it follows that when equation (2.11) holds we have
z = V0Σ

−1
0 UT

0 (y − Dx0). Consequently,

q(λ,y) = (f − ETλ)T z0 + ξTy,(2.12)

where z0 = (I − BV0Σ
−1
0 UT

0 D)x0 and ξ = U0Σ
−1
0 VT

0 BT (f − ETλ). Thus,
(2.8), (2.9), and (2.10) remain valid in this case.

(iii) rank(DB) = p < n−m. An SVD of DB is given by

DB = UΣVT =
[
U0

] [
Σ0 0

] [VT
0

VT
1

]
= U0Σ0V

T
0 ,

where U0 ∈ Rp×p, V0 ∈ R(n−m)×p, V1 ∈ R(n−m)×(n−m−p), and Σ0 ∈ Rp×p

is a diagonal matrix. Since U0 has full rank, (2.5) is always feasible. Thus,
z = V0Σ

−1
0 UT

0 (y − Dx0) + V1t, where t ∈ Rn−m−p. Consequently,

q(λ,y) = (f − ETλ)T z0 + ξTy + min
t

{
(f − ETλ)TBV1t

}
,(2.13)

where z0 = (I − BV0Σ
−1
0 UT

0 D)x0 and ξ = U0Σ
−1
0 VT

0 BT (f − ETλ). From
(2.13) we have

q(λ,y) > −∞ ⇔ VT
1 BT (f − ETλ) = 0.(2.14)

Thus,

q(λ) = (f − ETλ)T z0 + q̂(ξ),(2.15)

where

q̂(ξ) = min ξTy
subject to y � 0

(2.16)

and



464 E. ERDOĞAN AND G. IYENGAR

z0 = (I − BV0Σ
−1
0 UT

0 D)HT (HHT )−1g,

ξ = U0Σ
−1
0 VT

0 BT (f − ETλ).
(2.17)

Since the structures of the optimization problems (2.9) and (2.16), although similar,
are not identical, the corresponding active set methods are also similar but not iden-
tical. In the paper we focus on developing an active set method for optimizing the
Lagrangian defined in (2.8). The active set method for optimizing the Lagrangian
defined in (2.15) is in Appendix B.

Lemma 2.5. Let q̄ : Rp �→ R denote the function defined in (2.9). Then the
domain Dq̄ =

{
ξ : q̄(ξ) > −∞

}
is given by

Dq̄ =

{
Rp, γ < 0,{

ξ : eTPξ ≥ 0, (eTPξ)2 − γ‖Pξ‖2 ≥ 0
}
, γ ≥ 0,

(2.18)

where e = (1,0T )T , P = I − AT (AAT )−1A, a = Ae, and γ = 1
2 − aT (AAT )−1a.

For all ξ ∈ Dq̄,

q̄(ξ) = vT ξ + f(Pξ),

where

v =

{
RAT (ARAT )−1b, γ �= 0,
AT (AAT )−1b, γ = 0,

(2.19)

f(u) =

⎧⎨⎩
√

−γ(bT (ARAT )−1b)

γ

√
(eTu)2 − γ‖u‖2, γ �= 0,(

‖y0‖2−2(eTy0)
2

2eTy0

)
eTu − eTy0

(
‖u‖2−2(eTu)2

2eTu

)
, γ = 0,

(2.20)

and y0 = AT (AAT )−1b.
The proof of this result is fairly straightforward and is therefore relegated to

Appendix A.

3. Active set algorithm for the Lagrangian dual problem. Note that from
(2.10) we have that Aξ = UT

1 U0Σ
−1
0 VT

0 BT (f −ETλ) = 0, i.e., ξ = Pξ. Thus, (2.7),
(2.8), (2.9), (2.10), and Lemma 2.5 imply that the Lagrangian dual problem is given
by

max (f − ETλ)T z0 + vT ξ + f(ξ)
subject to Lλ + ξ = h,

Mλ = p,
λ ≥ 0,

ξ ∈ K,

(3.1)

where

L = U0Σ
−1
0 VT

0 BTET ,

h = U0Σ
−1
0 VT

0 BT f ,

M = VT
1 BTET ,

p = VT
1 BT f ,

and
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The LagrangeDual algorithm.
Input: Optimization problem (3.1).
Output: Optimal solution of (3.1).
set μ(1) ← argmax

{
−zT0 ET λ : A[λ,0,h,p] = 0, λ ≥ 0

}
set (α(0),μ(0)) ← argmin{(3.2)}
if (α(0),μ(0)) = ∅ or

(
‖α(0)h − Lμ(0)‖2 > 1/γ

)
set μ ← μ(1)

else if
(
‖α(0)h − Lμ(0)‖2 < 1/γ

)
if (α(0) > 0) set μ(2) ← 1

α(0) μ(0)

else if μ(1) �= ∅ set μ ← μ(1); else choose μ ∈ {λ : Mλ = p,
λ ≥ 0} choose ω̂ s.t. h − L(μ + ω̂μ(0)) ∈ int(K)
set μ(2) ← μ + ω̂μ(0)

end
set μ ← ActiveSet(μ(1),μ(2))

else

if (α(0) > 0)

set μ(2) ← 1
α(0) μ(0)

set (ω,μ) ← argmin{(3.3)}
else

set (ω,μ) ← argmin{(3.4)}
end

end
return μ

Fig. 3.1. Lagrangian dual algorithm.

K =

{
Rp, γ < 0,{
z : eT z ≥ 0, (eT z)2 − γ‖z‖2 ≥ 0

}
, γ ≥ 0,

where v and f(·) are as defined in (2.19) and (2.20), respectively. In the rest of the
paper we denote the system of linear equalities in (3.1) by A[λ, ξ,h,p] = 0.

When γ ≤ 0, the constraints in (3.1) are linear, and hence (3.1) can be solved using
any standard active set method for optimizing a concave function over a polytope.
Moreover, γ is strictly positive for all single-cone SOCPs arising in the context of
robust optimization. Therefore, in this paper we focus on constructing an active set
algorithm for the case when γ is strictly positive. In the rest of this section we prove
that the LagrangeDual algorithm displayed in Figure 3.1 computes an optimal
solution of (3.1). We adopt the convention that a solution algorithm returns the
empty set as a solution if and only if the problem is infeasible.

Let C =
{
ξ : ∃λ ≥ 0 s.t. A[λ, ξ,h,p] = 0

}
. Then C ∩ K = {h − Lλ : Mλ = p,

h − Lλ ∈ K, λ ≥ 0}. We construct the active set algorithm by considering the
following three mutually exclusive cases: C ∩K = ∅, C ∩K ⊂ ∂K, and C ∩ int(K) �= ∅.
In order to distinguish between these three cases we “homogenize” the set C ∩K and
solve the following least squares problem:

min ‖αh − Lλ‖2

subject to αeTh − eTLλ = 1,
αp − Mλ = 0,
α ≥ 0,

λ ≥ 0.

(3.2)

Let (α(0),μ(0)) denote the optimal solution of (3.2). Then one of the following three
mutually exclusive conditions holds:
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The ActiveSet algorithm.
Input: Optimization problem (3.1), μ(1), and μ(2).
Output: Optimal solution of (3.1).
quit ← 0 k ← 0
if (μ(1) �= ∅)

(dξ,dλ) ← FindDirection(∅)
if
(
vTdξ − zT0 ETdλ + f(dξ) ≤ 0

)
return (0,μ(1))

else (ξ(0),λ(0)) ← FindStep((0,μ(1)), (dξ,dλ),∞)
else

λ(0) ← μ(2)

end if
W(k) ←

∑
i:λ

(k)
i =0

eie
T
i

/* ei denotes the ith column of an identity matrix */
while (∼quit)

(dξ,dλ, αq) ← FindOpt(ξ(k),λ(k),W(k))
if ((dξ,dλ) �= 0)

(ξ(k+1),λ(k+1)) ← FindStep((ξ(k),λ(k)), (dξ,dλ), αq)
k ← k + 1
W(k) ←

∑
i:λ

(k)
i =0

eie
T
i

else ρ ← FindMultipliers(W(k), ξ(k))
if (maxi{ρi} ≤ 0)

quit ← 1
else (ξ(k+1),λ(k+1)) ← (ξ(k),λ(k))

choose j: ρj > 0

W(k+1) ← W(k) − eje
T
j

k ← k + 1
end

end
end
return λ(k)

Fig. 3.2. Active set algorithm.

(i) Either (3.2) is infeasible or ‖α(0)h−Lμ(0)‖2 > 1
γ . Since (3.2) was constructed

by “homogenizing” C ∩ K, it follows that either C ∩ K = ∅ or C ∩ K = {0}.
The latter can be checked by solving an LP.

(ii) ‖α(0)h − Lμ(0)‖2 < 1
γ . We have the following two possibilities:

(a) α(0) > 0: μ(2) = 1
α(0) μ

(0) satisfies h − Lμ(2) ∈ C ∩ int(K).

(b) α(0) = 0: It is easy to check that μ(0) is a recession direction of the

polytope P = {λ : Mλ = p, λ ≥ 0} and −eTLμ(0) = 1. Let λ̂ ∈
P. Then, by definition, λω = λ̂ + ωμ(0) ∈ P for all ω ≥ 0. Since
eT (h−Lλω) > 0 for all large enough ω, and limω→∞

{
‖h−Lλω‖/(eT (h−

Lλω))
}
< 1√

γ , it follows that there exists ω > 0 such that μ(2) = λω

satisfies h − Lμ(2) ∈ C ∩ int(K).
In this case, LagrangeDual completes the optimization by calling the
ActiveSet algorithm displayed in Figure 3.2.

(iii) ‖α(0)h − Lμ(0)‖2 = 1
γ . In this case C ∩ int(K) = ∅ and one has to consider

the following two possibilities.
(a) α(0) > 0: μ(2) = 1

α(0) μ
(0) satisfies h−Lμ(2) ∈ C∩∂K. Since the optimal

value of (3.2) is 1
γ and the Euclidean norm is a strictly convex function,

it follows that C∩K =
{
ω(h−Lμ(2)) : h−Lλ = ω(h−Lμ(2)), Mλ = p,

λ ≥ 0, ω ≥ 0
}
. Since f(ξ) = 0 for all ξ ∈ C ∩ K (see (2.20)), it follows
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that the optimization problem (3.1) reduces to the LP

max (f − ETλ)T z0 + vT (h − Lμ(2))ω
subject to Lλ + (h − Lμ(2))ω = h,

Mλ = p,
λ ≥ 0,

ω ≥ 0.

(3.3)

(b) α(0) = 0: The recession direction μ(0) satisfies −Lμ(0) ∈ ∂K. An ar-
gument similar to the one in part (a) implies that (3.1) reduces to the
LP

max (f − ETλ)T z0 − vT (Lμ(0))ω
subject to Lλ − (Lμ(0))ω = h,

Mλ = p,
λ ≥ 0,

ω ≥ 0.

(3.4)

Next, we establish the correctness of the procedure ActiveSet displayed in Fig-
ure 3.2. We begin by showing that for any optimal solution (ξ∗,λ∗) of (3.1), either
ξ∗ = 0 or ξ∗ ∈ C ∩ int(K), i.e., ξ∗ �∈ C ∩

(
∂K\{0}

)
.

Lemma 3.1. Suppose C ∩ int(K) �= ∅ and let (ξ∗,λ∗) denote any optimal solution
of (3.1). Then ξ∗ �∈ C ∩

(
∂K\{0}

)
.

Proof. Assume otherwise, i.e., ξ∗ ∈ C ∩
(
∂K\{0}

)
for some optimal solution

(ξ∗,λ∗). Let (ξ0,λ0) denote any feasible solution of (3.1) with ξ0 ∈ C ∩ int(K).
For β ∈ [0, 1], let (ξβ ,λβ) denote the convex combination (ξβ ,λβ) = β(ξ0,λ0) + (1−
β)(ξ∗,λ∗) and let r(β) denote the objective value of (3.1) evaluated at (ξβ ,λβ). Then

r(β) = vT ξβ + fT z0 − zT0 ETλβ + f(ξβ)

= vT ξβ + fT z0 − zT0 ETλβ + θ
√

(eT ξβ)2 − γ‖ξβ‖2

≥
(
vT ξ∗ + fT z0 − zT0 ETλ∗)︸ ︷︷ ︸

=r(0)

+β
(
vT (ξ0 − ξ∗) − zT0 ET (λ0 − λ∗)

)︸ ︷︷ ︸
Δ
=δ

+ θ
√

β2 ((eT ξ0)
2 − γ‖ξ0‖2) + 2β(1 − β) ((eT ξ0)(e

T ξ∗) − γ‖ξ0‖‖ξ∗‖),(3.5)

where θ =

√
−γbT (ARAT )−1b

γ and the last inequality follows from the fact that

(eT ξ∗)2 − γ‖ξ∗‖2 = 0. Since ξ0 ∈ C ∩ int(K) we have

ε = min
{
(eT ξ0)

2 − γ‖ξ0‖2, (eT ξ0)(e
T ξ∗) − γ‖ξ0‖‖ξ∗‖

}
> 0.

From (3.5) we have that r(β) − r(0) ≥ θ
√
ε
√

2β − β2 + βδ. Choose β0 as follows:

β0 =

{
1, δ ≥ 0,

1 + δ√
θ2ε+δ2 , δ < 0.

Then it follows that β0 > 0 and r(β0) − r(0) > 0, a contradiction.
The ActiveSet algorithm receives as input
(i) μ(1) = argmax{−zT0 ETλ : A[λ,0,h,p], λ ≥ 0}, and
(ii) a vector μ(2) such that h − Lμ(2) ∈ C ∩ int(K).
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When μ(1) �= ∅, the algorithm calls the procedure FindDirection that returns an
ascent direction at (ξ,λ) = (0,μ(1)), if it exists; otherwise it returns (0,0). If Find-

Direction returns (0,0), it follows that (0,μ(1)) is optimal and the algorithm termi-
nates; otherwise ActiveSet calls the procedure FindStep((ξ,λ), (dξ,dλ), αq) that

computes the iterate (ξ(0),λ(0)) as follows:

(ξ(0),λ(0)) = (ξ,λ) + αmin(dξ,dλ), αmin = min{max{α : λ + αdλ ≥ 0}, αq}.

Since αdξ ∈ K for all α ≥ 0, αmin is only limited by the nonnegativity constraints on

λ. Note that the iterate (ξ(0),λ(0)) satisfies ξ(0) ∈ int(K); therefore, the optimum
solution (ξ∗,λ∗) also satisfies ξ∗ ∈ int(K) by Lemma 3.1.

Next, we show that the procedure FindDirection can be implemented efficiently.
The pair (dξ,dλ) is an ascent direction at (0,μ(1)) if and only if (dξ,dλ) is a recession
direction for the set

−zT0 ETdλ + vTdξ + θ
√

(eTdξ)2 − γ‖dξ‖2 > 0,
A[dλ,dξ,0,0] = 0,

dξ ∈ K,
(3.6)

Lemma 3.2. Let AW[u,v,γ,ν] = 0 denote the system of linear equalities⎡⎣ L I
M 0
W 0

⎤⎦[u
v

]
=

⎡⎣γ
ν
0

⎤⎦ ,

where (u,v) are variables, and (γ,ν,W) are parameters. Then a recession direction
(dξ,dλ) for the set

−zT0 ETdλ + vTdξ + θ
√

(eTdξ)2 − γ‖dξ‖2 > 0,
AW[dλ,dξ,0,0] = 0,

dξ ∈ K,
(3.7)

if it exists, can be computed by solving two systems of linear equalities.
Remark 3.3. Although FindDirection computes an ascent direction of the set

(3.7) for the special case W = 0, we prove the result for general W since we need
such a result at a later stage.

Proof. The set in (3.7) has a recession direction if and only if the optimization
problem

max −zT0 ETdλ + vTdξ + θ
√

(eTdξ)2 − γ‖dξ‖2

subject to AW[dλ,dξ,0,0] = 0,
dξ ∈ K

(3.8)

is unbounded.
An argument similar to the one employed in the proof of Lemma 3.1 establishes

that one can restrict one’s attention to (dξ,dλ) satisfying dξ ∈ int(K) ∪ {0}. The
direction (dξ,dλ) can be computed by considering the following three cases:

(a) First consider positive recession directions of the form (0,dλ). It is easy to
see that all such directions, modulo a positive multiple, are solutions of the
following set of linear equalities:

−zT0 ETdλ = 1,
AW[dλ,0,0,0] = 0.

(3.9)
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(b) Next, suppose (3.9) is infeasible; there still exists, however, a positive reces-
sion direction for (3.8). Set eTdξ = 1 in (3.8) to obtain

max −zT0 ETdλ + vTdξ + θ
√

1 − γ‖dξ‖2

subject to AW[dλ,dξ,0,0] = 0,
eTdξ = 1,

γ‖dξ‖2 ≤ 1.

(3.10)

Since (3.9) is assumed to be infeasible, (3.10) is bounded. Setting dξ = −Ldλ,
we get

max −
(
Ez0 + LTv

)T
dλ + θ

√
1 − γ‖Ldλ‖2

subject to AW[dλ,−Ldλ,0,0] = 0,
eTLdλ = −1,

γ‖Ldλ‖2 ≤ 1.

(3.11)

Since the optimal d∗
ξ ∈ int(K), we have γ‖Ld∗

λ‖2 < 1, and therefore the
optimal Lagrange multiplier corresponding to this constraint is zero. Thus,
the Lagrangian L of (3.11) reduces to

L = −(Ez0 + LTv)Tdλ + θ
√

1 − γ‖Ldλ‖2

− τTMdλ − ρTWdλ − η(eTLdλ + 1)

and the first-order optimality conditions are given by

θγ
β LTLdλ + MT τ + WTρ + LTeη = −(Ez0 + LTv),

Mdλ = 0,
Wdλ = 0,
eTLdλ = −1,

(3.12)

where β =
√

1 − γ‖Ldλ‖2. Since we are looking for solutions dξ = −Ldλ ∈
int(K), we are interested only in the solutions to (3.12) that satisfy β > 0.
By setting ρ̄ = βρ, τ̄ = βτ , and η̄ = βη, we see that (3.12) is equivalent to

⎡⎢⎢⎣
θγLTL MT WT LTe

M 0 0 0
W 0 0 0
eTL 0 0 0

⎤⎥⎥⎦
︸ ︷︷ ︸

Δ
=K

⎡⎢⎢⎣
dλ

τ̄
ρ̄
η̄

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦− β

⎡⎢⎢⎣
Ez0 + LTv

0
0
0

⎤⎥⎥⎦ .

(3.13)

Suppose K is nonsingular. Let w = (τ̄T , ρ̄T , η̄)T , b1 = (0T ,0T ,−1)T , and
b2 = Ez0 + LTv. Partition K−1 into submatrices

K−1 =

[
K−1

11 K−1
12

K−T
12 K−1

22

]
such that[

dλ

w

]
= K−1

[
0
b1

]
− βK−1

[
b2

0

]
=

[
K−1

12 b1 − βK−1
11 b2

K−1
22 b1 − βK−T

12 b2

]
.
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This partition implies that K−T
12 LTLK−1

11 = 0. Therefore,

β2 + γ‖Ldλ‖2 − 1 = β2(1 + γ‖LK−1
11 b2‖2) − 2βγ(LK−1

12 b1)
TLK−1

11 b2

+ γ‖LK−1
12 b1‖2 − 1

= β2(1 + γ‖LK−1
11 b2‖2) + γ‖LK−1

12 b1‖2 − 1.

Consequently, the unique positive solution of the quadratic equation β2 =
1 − γ‖Ldλ‖2 is

β =

√
1 − γ‖LK−1

12 b1‖2

1 + γ‖LK−1
11 b2‖2

.

Thus, (3.12) has a solution if and only if 1 − γ‖LK−1
12 b1‖2 > 0.

The case where K is singular can be handled by taking the SVD of K and
working in the appropriate range spaces.

(c) In case one is not able to produce a solution in either (a) or (b), it follows
that the optimal solution of (3.8) is 0, and (dξ,dλ) = (0,0) achieves this
value.

When the ActiveSet algorithm enters the while loop, we are guaranteed that
ξ∗ ∈ int(K). Within the loop, one has to compute the optimal value of

max −zT0 ETλ + vT ξ + f(ξ)
subject to AW[λ, ξ,h,p] = 0,

ξ ∈ K\{0},
(3.14)

where W denotes the current inactive set, i.e., W =
∑

i:λi=0 eie
T
i . At this stage we

have already determined that ξ = 0 is not optimal for (3.1); therefore, by Lemma 3.1
it follows that we can restrict ourselves to ξ ∈ int(K). The procedure (dξ,dλ, αq) =
FindOpt(ξ,λ,W) takes as input the current iterate and the current W, and returns
an output (dξ,dλ, αq) that satisfies the following:

(i) When (3.14) is bounded, (dξ,dλ) = (ξ∗,λ∗) − (ξ,λ), where (ξ∗,λ∗) is the
optimal solution of (3.14), and αq = 1.

(ii) When (3.14) is unbounded, (dξ,dλ) is any recession direction of the feasible
set of (3.14) satisfying −zT0 ETdλ + vTdξ + f(dξ) > 0 and αq = ∞.

When (dξ,dλ) = (0,0), the ActiveSet algorithm checks the Lagrange multipliers ρ
corresponding to the constraints Wλ = 0 by calling the procedure FindMultipliers

that computes the solution of[
WT MT

] [ρ
τ

]
= −

[
Ez0 + LTv + LT∇f(ξ∗)

]
.(3.15)

If the signs of all the Lagrange multipliers are consistent with the KKT conditions,
i.e., maxi{ρi} ≤ 0, the algorithm terminates; otherwise, it drops one of the constraints
with the incorrect sign. Lemma 3.5 establishes that ActiveSet terminates finitely.
Thus, all that remains to be shown is that FindOpt can be implemented efficiently.

Lemma 3.4. Suppose there exists a feasible (ξ̄, λ̄) for (3.14) such that ξ̄ ∈ int(K).
Then (3.14) can be solved in closed form by solving at most three systems of linear
equations.

Proof. Let dξ = ξ − ξ̄ and dλ = λ − λ̄. Then (3.14) is equivalent to

max −zT0 ETdλ + vTdξ + θ
√

(eT (ξ̄ + dξ))2 − γ‖ξ̄ + dξ‖2

subject to AW[dλ,dξ,0,0] = 0,
ξ̄ + dξ ∈ K\{0}.

(3.16)
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First, suppose (3.16) is unbounded, i.e., there exists (dξ,dλ) such that

lim
t→∞

{
−tzT0 ETdλ + tvTdξ + θ

√
(eT (ξ̄ + tdξ))2 − γ‖ξ̄ + tdξ‖2

}
= lim

t→∞

{
−tzT0 ETdλ + tvTdξ + tθ

√
(eT (ξ̄/t + dξ))2 − γ‖ξ̄/t + dξ‖2

}
= +∞.

Since ξ̄/t → 0, it follows that (3.16) is unbounded if and only if (dξ,dλ) is a recession
direction for

−zT0 ETdλ + vTdξ + θ
√

(eTdξ)2 − γ‖dξ‖2 > 0,
AW[dλ,dξ,0,0] = 0,

dξ ∈ K.
(3.17)

Since (3.17) is the same as (3.7), it follows that a positive recession direction for (3.16),
if it exists, can be computed by solving at most two systems of linear equations.

Next, suppose (3.16) is bounded. By introducing a scaling parameter α, (3.16)
can be reformulated as

max −(Ez0 + LTv)Tdλ + θ
√

1 − γ‖αξ̄ − Ldλ‖2

subject to AW[dλ,−Ldλ,0,0] = 0,
α ≥ 0,

−eTLdλ + eT ξ̄α = 1,
γ‖αξ̄ − Ldλ‖2 ≤ 1.

Since (3.16) is bounded, i.e., it does not have any positive recession direction, we
have that α∗ > 0. Also, by Lemma 3.1 it follows that α∗ξ̄ + d∗

ξ ∈ int(K), i.e.,

γ‖α∗ξ̄ − Ld∗
λ‖2 < 1; therefore the optimal Lagrange multiplier corresponding to this

constraint is zero. Consequently, the Lagrangian L reduces to

L = −(Ez0 + LTv)Tdλ + θ
√

1 − γ‖αξ̄ − Ldλ‖2 − τTMdλ − ρTWdλ

− η(eTαξ̄ − eTLdλ − 1).

The first-order optimality conditions are given by

θγ
β LTLdλ − θγ

β LT ξ̄α− LTeη + MT τ + WTρ = −(Ez0 + LTv),

− θγ
β ξ̄

T
Ldλ + θγ

β ‖ξ̄‖2α + eT ξ̄η = 0,

−eTLdλ + eT ξ̄α = 1,

Mdλ = 0,

Wdλ = 0,

(3.18)

where β =
√

1 − γ‖αξ̄ − Ldλ‖2. Set ρ̄ = βρ, τ̄ = βτ , and η̄ = βη. Then (3.18) is
equivalent to

⎡⎢⎢⎢⎢⎣
θγLTL −θγLT ξ̄ −LTe MT WT

−θγξ̄
T
L θγ‖ξ̄‖2 eT ξ̄ 0 0

−eTL eT ξ̄ 0 0 0
M 0 0 0 0
W 0 0 0 0

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Δ
=K

⎡⎢⎢⎢⎢⎣
dλ

α
η̄
τ̄
ρ̄

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0
1
0
0

⎤⎥⎥⎥⎥⎦− β

⎡⎢⎢⎢⎢⎣
Ez0 + LTv

0
0
0
0

⎤⎥⎥⎥⎥⎦ .

(3.19)
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Suppose K is nonsingular. Let d̂ = (dT
λ , α)T , w = (η̄, τ̄T , ρ̄T )T , b1 = (1,0T ,0T )T ,

and b2 = ((Ez0 + LTv)T ,0T )T . Partition K−1 such that[
d̂
w

]
= K−1

[
0
b1

]
− βK−1

[
b2

0

]
=

[
K−1

12 b1 − βK−1
11 b2

K−1
22 b1 − βK−T

12 b2

]
.

This partition implies that K−T
12 [−L, ξ̄]T [−L, ξ̄]K−1

11 = 0. Therefore,

β2 + γ‖[−L, ξ̄]d̂‖2 − 1 = β2(1 + γ‖[−L, ξ̄]K−1
11 b2‖2) − 2βγ([−L, ξ̄]K−1

12 b1)
T

[−L, ξ̄]K−1
11 b2 + γ‖[−L, ξ̄]K−1

12 b1‖2 − 1

= β2(1 + γ‖[−L, ξ̄]K−1
11 b2‖2) + γ‖[−L, ξ̄]K−1

12 b1‖2 − 1.

Consequently, the unique positive solution of the quadratic equation β2 = 1 −
γ‖[−L, ξ̄]d̂‖2 is

β =

√
1 − γ‖[−L, ξ̄]K−1

12 b1‖2

1 + γ‖[−L, ξ̄]K−1
11 b2‖2

.

The case where K is singular can be handled by taking the SVD of K and working
in the appropriate range spaces.

In our numerical experiments we found that solving (3.19) as a least squares
problem was much faster than computing the inverse or the SVD of K.

Lemma 3.4 implies that at each iteration of the ActiveSet algorithm, we have
to solve at most three systems of linear equations, namely, (3.9), (3.13), and (3.19).
Next we show that the special structures of these systems of linear equalities can be
leveraged to solve them more efficiently. We will demonstrate our technique on the
linear system (3.13). Extensions to (3.9) and (3.19) are straightforward.

The matrix K in (3.13) is an (l + n−m− r + 1 +w)-dimensional square matrix,
where r = rank (DB) and w is the cardinality of the current inactive set, i.e., number
of rows of W. Only the matrix W changes from one iteration to the next—all the
other elements of K remain fixed. This fact can be leveraged as follows:

1. The equality Wdλ = 0 sets the components of dλ corresponding to the
current inactive set to zero. Removing these variables and dropping the
corresponding rows of K reduces the dimension of K to l+n−m−r+1. Thus,
this simple operation ensures that the size of the linear equations remains
independent of the cardinality of the inactive set.

2. Let

d̃ =

⎡⎣dλ

τ̄
η̄

⎤⎦ , K̃ =

⎡⎣ θγLTL MT LTe
M 0 0
eTL 0 0

⎤⎦ ∈ R(l+n−m−r+1)×(l+n−m−r+1),

(3.20)

let B1 be any orthonormal basis for row space of K̃, and let B2 be any
orthonormal basis for the nullspace N (K̃). Then d̃ = B1μ+B2ζ, where μ ∈
RrK , ζ ∈ Rl+n−m−r+1−rK , and rK = rank(K̃). An SVD-based argument
similar to the one in section 2.1 (detailed in Appendix C) shows that the
dimension of K can be reduced to l + n−m− r + 1 − rK + w.

These observations suggest that one can speed up FindOpt as follows: If (l + n −
m− r + 1) < (l + n−m− r + 1− rK +w), i.e., if w > rK , solve (3.13) using the first
dimension reduction technique; otherwise, use the second dimension reduction.
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In each iteration either new rows are added to W or some of the rows of W
are dropped. Since every row of W is a row of an identity matrix, one can suitably
adapt the revised simplex method [5] to efficiently update the iterates. For example,
adding a new row to W forces an entry of dλ to be equal to zero, i.e., a variable
leaves the basis, and introduces a new variable through ρ̄, i.e., a variable enters the
basis. This process, although requiring a careful bookkeeping of variables and bases,
is fairly straightforward.

We conclude this section with the following finite convergence result.
Lemma 3.5. The ActiveSet algorithm terminates after a finite number of

iterations.
Proof. Let Aj , j ≥ 1, denote the active set on the jth call to the procedure

FindMultipliers. Since every iteration of ActiveSet that does not call Find-

Multipliers strictly improves the objective value of (3.1), it follows that Aj1 �= Aj2

for all j1 �= j2. Since the size of the active set can only increase between succes-
sive calls to FindMultipliers, it follows that ActiveSet terminates after, at most,
l2l iterations, where l is number of inequality constraints in the single-cone SOCP
(1.1).

4. Recovering an optimal solution. Let λ∗ denote the solution returned by
LagrangeDual, i.e., λ∗ is optimal for (3.1). Set ξ∗ = U0Σ

−1
0 VT

0 BT (f − ETλ∗),
and using Lemma (2.5) obtain the closed form optimal solution y∗ to q̄(ξ∗) defined
in (2.9). Then all x∗ satisfying

x∗ = x0 + Bz∗ = x0 + BV0Σ
−1
0 UT

0 (y∗ − Dx0) + BV1t,

where x0 = HT (HHT )−1g, t ∈ Rn−m−r, and r = rank(DB), are optimal for (1.1).
Thus, if V1 �= ∅, i.e., rank(DB) �= n−m, the optimal solution is not unique; in fact,
an entire affine space is optimal.

5. Computational experiments. In this section we discuss the computational
performance of the LagrangeDual algorithm on special classes of single-cone SOCPs
that arise in the context of robust optimization.

Consider the LP

min cT z
subject to Az = b,

z ≥ 0,
(5.1)

where c, z ∈ Rn̄, A ∈ Rm̄×n̄, and b ∈ Rm̄. Suppose the constraint matrix (A,b)
is known exactly; the cost vector c, however, is uncertain and is only known to lie
within an ellipsoidal uncertainty set S given by

S = {c = c0 + PTα : α ∈ Rs,αTα ≤ 1}.

We will call (5.1) an LP with uncertain cost. Such an LP is a special case of a more
general class of uncertain LPs where the constraints are also uncertain [2, 3].

Let f(z) = maxc∈S{cT z} denote the worst-case cost of the decision z. Then we
have that

f(z) = cT0 z + max
{α:αTα≤1}

{
αTPz

}
= cT0 z + ‖Pz‖.

The robust counterpart of the uncertain LP is defined as follows [2, 3]:
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min cT0 z + ‖Pz‖
subject to Az = b,

z ≥ 0.
(5.2)

By defining,

x =

⎡⎣ z
y0

y

⎤⎦ , H =

[
A 0 0
P 0 −I

]
, E =

[
I 0 0

]
,

D =

[
0 1 0
0 0 I

]
, g =

[
b
0

]
, f =

⎡⎣c0

1
0

⎤⎦ ,

it is easy to see that (5.2) can be reformulated as a single-cone SOCP. The constant
γ for problems of the form (5.2) is given by γ = 0.5. Thus, we are in a position to use
the LagrangeDual algorithm.

All the systems of linear equations encountered during the course of the La-

grangeDual algorithm were solved using the MATLAB function mldivide and all
the computations were carried out using MATLAB R13 on a PC with a Pentium M
(1.50GHz) processor and 512 MB of RAM. For moderate values of (n̄, m̄) the LP that
defines μ(1) (see Figure 3.1) was solved using SeDuMi 1.05 R5. For large (n̄, m̄), μ(1)

was computed using the simplex algorithm.
In the first set of experiments, the LP instances were randomly generated. In

particular, the entries of matrix A and the cost vector c0 were drawn independently
at random according to the uniform distribution on the unit [0, 1] interval. To ensure
feasibility of (5.1), the vector b was set to b = Aw, where each component of the
vector w was generated independently at random from the uniform distribution on
[0, 1]. The matrix P defining the uncertainty set S was set equal to the n̄-dimensional
identity matrix, and for each (n̄, m̄) pair, we generated 50 random instances.

Table 5.1 compares the running times of LagrangeDual to those of SeDuMi
1.05 R5 on the randomly generated instances. Column 3 lists the average of the ratio
of running time tsed of SeDuMi 1.05 R5 to running time talg of LagrangeDual, and
column 4 lists the average of the ratio of tsed to the running time tact of ActiveSet.
Note that the running time of ActiveSet is equal to the difference between the
running time of LagrangeDual and the time tinit required to compute the initial
Lagrange multipliers (μ(1),μ(2)). The time tinit is listed in column 6. Columns 5
and 7 list, respectively, the average running time talg of LagrangeDual and the
average number of iterations of the while loop in ActiveSet.

From the results displayed in Table 5.1, it is clear that the performance of the
LagrangeDual algorithm (including the time spent to obtain the initial Lagrange
multipliers) is superior to the SeDuMi 1.05 R5 when either

(i) the number of variables n̄ is small, and/or
(ii) the ratio of the number of constraints to the number of variables m̄/n̄ ≤ 0.1

or m̄/n̄ ≥ 0.5.
The data in column 4 of Table 5.1 implies that the performance of LagrangeDual al-
gorithm is superior to that of SeDuMi 1.05 R5 when the time spent to obtain the initial
Lagrange multipliers is excluded. This observation suggests that the performance of
LagrangeDual is likely to improve if it is initialized using a more efficient LP-solver.

Since network flow problems are a natural class of LPs where the number of
variables is large but the number of constraints is reasonably small, next we tested
LagrangeDual on random instances of the uncertain min-cost flow problems. The
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Table 5.1

Running times of SeDuMi 1.05 R5 and the LagrangeDual algorithm.

n̄ m̄ tsed/talg tsed/tact talg tinit Iterations
100 20 2.5880 14.0623 0.2225 0.1892 6.0400
100 40 2.1039 10.7260 0.2767 0.2230 7.7000
100 60 2.1201 6.9539 0.3435 0.2247 6.6200
100 80 2.8624 9.4862 0.3019 0.2048 3.4600
200 20 2.0144 9.8526 0.8085 0.6560 10.4400
200 50 1.0479 2.0670 1.4371 0.7446 20.3200
200 80 1.4784 2.7523 1.5546 0.7540 22.2800
200 100 1.5296 2.4418 1.7406 0.6909 32.4500
200 125 1.6418 2.2056 1.9302 0.6854 37.5400
200 150 2.6301 4.1392 1.5328 0.6821 20.5200
200 175 2.9156 4.9983 1.3913 0.6639 12.4600
300 30 1.3012 7.8696 2.4029 2.0261 13.1200
300 60 0.7355 1.5558 4.3684 2.1425 26.5800
300 90 0.8926 1.8139 4.7719 2.1576 32.7200
300 120 1.0898 2.3107 5.1750 2.1817 40.3400
300 150 1.0190 1.8005 8.3897 2.0995 75.5400
300 180 1.4281 2.9468 6.4953 2.1301 54.7800
300 210 1.3864 2.3917 5.6592 2.0499 47.4200
300 240 1.8482 3.8423 6.5621 2.1846 46.0600
300 270 2.4261 6.3807 6.6542 2.3099 36.1400
500 50 1.2789 9.5464 10.6301 9.8295 16.2400
500 100 0.6193 1.3513 18.0874 8.9554 34.3800
500 200 0.8238 1.5742 23.3625 8.9827 56.9000
500 300 1.0865 1.9030 26.2689 8.8647 74.1200
500 400 1.4921 2.6069 29.8203 9.0223 76.0400
1000 100 1.1382 9.3120 88.6851 74.3340 40.2400
1000 250 0.6622 1.1354 199.0423 76.2742 84.2800
1000 500 1.0170 1.5283 249.0415 75.6579 121.1200
1000 750 1.5285 2.5135 214.9937 75.5053 92.3800
1500 150 1.1910 14.0390 369.9276 345.9236 46.1400
1500 500 0.7092 1.0651 867.7425 283.1938 138.8200
1500 1000 0.9616 1.2590 1259.9096 280.9712 230.9400
1500 1250 1.5668 2.1655 1024.6152 269.9120 158.5800
2000 200 1.1245 10.2186 604.3456 513.5234 55.2200
2000 500 ∞ ∞ 3456.4591 2183.3089 208.3400
5000 500 ∞ ∞ 4067.1300 2967.4054 405.1200

Table 5.2

Running times of SeDuMi 1.05 R5 and the LagrangeDual algorithm on networks.

n̄ m̄ tsed/talg talg Iterations
1000 100 4.2342 20.5434 53.5000
1000 150 1.7765 37.9068 65.4000
1500 150 3.6572 55.1678 74.8000
1500 250 3.0398 64.8549 88.3000
2000 330 2.4105 817.8575 94.1000

random networks were generated using the network generator developed by Gold-
berg [9]. Results are averaged over 10 runs for each pair (n̄, m̄).

Table 5.2 displays the results for the randomly generated network matrices. In
order to be consistent with the previous set of results, we continue to denote the
number of variables by n̄ and the number of constraints by m̄. Thus, n̄ and m̄ denote,
respectively, the number of arcs and the number of nodes in the network. As before,
column 3 lists the average of the ratio of running time tsed of SeDuMi 1.05 R5 to
running time talg of LagrangeDual. Columns 4 and 5 list, respectively, the average
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running time of LagrangeDual and the average number of iterations of the while

loop in ActiveSet. Since the version of LagrangeDual that we implemented did
not take advantage of sparsity, in this set of experiments we did not allow SeDuMi 1.05
R5 to leverage sparsity. From the results of our computational experiments it appears
that LagrangeDual is faster than SeDuMi 1.05 R5 on relatively dense networks.
Also, for large networks, n̄ ≈ 5000, SeDuMi 1.05 R5 failed to solve the problem but
LagrangeDual did not have any trouble converging.

We also compared the performance of LagrangeDual with that of SeDuMi
1.05 R5 on some of the small problems from the NETLIB LP [15] library. All the
LP instances were converted to canonical form LPs (5.1). To define the uncertainty
set S, we took the nominal cost vector c0 as given by the NETLIB LP library, assumed
that only the nonzero elements of c0 are uncertain, and then defined the matrix P
accordingly. In these experiments the performance of SeDuMi 1.05 R5 was superior
to that of LagrangeDual. This is not surprising given that for most of these small
problems the ratio m̄/n̄ (after the problem was converted to the canonical form) was
between 0.1 and 0.6. Note that in this set of experiments we are allowing SeDuMi to
exploit sparsity.

Before concluding, we would like to mention that these experiments are biased in
favor of SeDuMi. As mentioned in [17] (the version updated for SeDuMi 1.05) SeDuMi
“takes full advantage of sparsity,” which increases its speed considerably, and it uses
a dense column factorization proposed in [11]. In addition, most of the subroutines of
SeDuMi are written in C code. On the other hand, the LagrangeDual algorithm
was implemented using only MATLAB functions, without any special treatment of
sparsity and dense columns. Indeed, since the SVD steps will destroy any sparsity
in the input matrices H and D, it is not clear how one could exploit sparsity to
improve the run time of the LagrangeDual algorithm. Recall that when comparing
the performance of LagrangeDual on robust min-cost flow problems with that of
SeDuMi we had not allowed SeDuMi to exploit sparsity. When SeDuMi is allowed to
take advantage of sparsity, it outperforms LagrangeDual.

Appendix A. Proofs.

A.1. Structural results for single-cone SOCPs.
Lemma A.1. Suppose A ∈ Rm×n has full row rank and there exists d � 0,

d �= 0 such that Ad = 0. Let a denote the first column of the matrix A. Then
(a) γ = 1

2 − aT (AAT )−1a ∈ [0, 0.5];
(b) for all d such that Ad = 0, we have ‖d‖2 ≥ 2

1+2γ (eTd)2;

(c) γ > 0 ⇔ ∃d 
 0 : Ad = 0;
(d) γ = 0 ⇔ {d : Ad = 0, d � 0} =

{
β
(
e − AT (AAT )−1a

)
: β ≥ 0

}
.

Proof. Partition the matrix A as A = [a, Ā]. By scaling, we can assume that
d = (1; d̄) � 0. Since d � 0, ‖d̄‖ ≤ 1. Then

AAT − 2aaT = aaT + ĀĀT − 2aaT

= ĀĀT − aaT

= ĀĀT − Ād̄d̄T ĀT(A.1)

= Ā(I − d̄d̄T )ĀT � 0,(A.2)

where (A.1) follows from the fact that Ad = a + Ād̄ = 0, and (A.2) follows from the
fact that ‖d̄‖ ≤ 1. Define

M =

[
1
2 aT

a AAT

]
.
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Since 1
2 > 0 and the Schur complement of 1

2 in M is AAT − 2aaT � 0, it follows that
M � 0. Since A has full row rank, it follows that AAT 
 0, and the matrix M � 0
if and only if the Schur complement of AAT

γ =
1

2
− aT (AAT )−1a ≥ 0.

Since (AAT )−1 
 0, it follows that γ = 1
2 − aT (AAT )−1a ≤ 1

2 . This establishes
part (a).

To establish the other results, consider the minimum norm problem

min ‖d‖2

subject to Ad = 0,
eTd = 1.

(A.3)

The optimal solution d∗ and the optimal value v∗ of (A.3) can be obtained easily via
the Lagrange multipliers technique, and is given by

d∗ =
2

1 + 2γ

(
e − AT (AAT )−1a

)
, v∗ =

2

1 + 2γ
.

Thus, it follows that for all d such that Ad = 0, we have ‖d‖2 ≥ 2
1+2γ (eTd)2.

Since there exists d = (1; d̄) � 0 with Ad = 0, there exists a d 
 0 with
Ad = 0 if and only if v∗ < 2, i.e., γ > 0. Moreover when γ = 0,

{
d : Ad = 0,

d � 0
}

= {βd∗ : β ≥ 0}.
Lemma A.2. Suppose A ∈ Rm×n has full row rank and consider the SOCP

min ξTy
subject to Ay = b,

y � 0.
(A.4)

Let a denote the first column of the matrix A, and let γ = 1
2 − aT (AAT )−1a �= 0.

Then we have the following:
(i) The dual of (A.4) is strictly feasible for all γ < 0.
(ii) When γ > 0, the dual of (A.4) is strictly feasible if and only if eTPξ > 0 and

(eTPξ)2−γ‖Pξ‖2 > 0, where P = I−AT (AAT )−1A denotes the orthogonal
projector operator onto N (A).

Proof. The dual of (A.4) is given by

max bTμ
subject to ξ − ATμ � 0.

Since A has full row rank, ξ can be written as ξ = Pξ + ATw for some w ∈ Rm.
Thus, it follows that there exists a μ such that ξ−ATμ 
 0 if and only if there exists
a μ such that Pξ + ATμ 
 0.

From the definition of the Lorentz cone, it follows that there exists a μ such that
Pξ + ATμ 
 0 if and only if the optimal value of

min ‖αPξ + ATμ‖2

subject to αeTPξ + aTμ = 1,
α ≥ 0

(A.5)

is less than 2.
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First consider the case γ < 0. Note that the solution α = 0, μ = (AAT )−1a
aT (AAT )−1a

is

feasible to (A.5) with the objective function value 1
aT (AAT )−1a

= 2
1−2γ < 2.

If γ > 0, then the first part of Lemma 2.5 shows that ξ has to satisfy eTPξ ≥ 0
and (eTPξ)2 − γ‖Pξ‖2 ≥ 0. Otherwise, (A.4) becomes unbounded and therefore, by
the weak duality lemma for SOCPs [1], its dual is infeasible.

The rest of the analysis is very similar to the one used in the proof of Lemma A.1
and is left to the reader.

A.2. Proof of Lemma 2.5. By definition, ξ ∈ Dq̄ if and only if (2.9) is bounded,
or, equivalently, the optimal value of the homogeneous problem

min ξTd
subject to Ad = 0,

d � 0
(A.6)

is nonnegative. Without loss of generality, we assume that ξ ∈ N (A). Otherwise, ξ
can be decomposed as ξ = Pξ + ξ1 where Pξ ∈ N (A) and ξ1 belongs to the row
space of A (the space orthogonal to N (A)). Since Ad = 0 implies ξT

1 d = 0, we can
drop ξ1 from the objective.

Lemma A.1(b) in Appendix A.1 establishes that ‖d‖2 ≥ 2
1+2γ (eTd)2 for all d

such that Ad = 0. Since d � 0 implies that 2(eTd)2 ≥ ‖d‖2, it follows that d = 0 is
the only feasible solution to (A.6) when γ < 0. Hence, Dq̄ = Rp.

Next, suppose γ ≥ 0. Then (A.6) is bounded if and only if

min ξTd
subject to Ad = 0,

eTd = 1,
dTd ≤ 2

(A.7)

has a nonnegative optimal value.
The Lagrangian of (A.7) is given by

L = ξTd − τ̂TAd − δ̂(eTd − 1) + β̂(dTd − 2),

where β̂ ≥ 0. Setting the derivative ∇L = 0 we get

d = −βξ + AT τ + δe,

where β, τ , and δ are rescaled values of β̂, τ̂ , and δ̂; however, β ≥ 0 still holds. Since
Aξ = 0, the constraint Ad = 0 yields

τ = −δ(AAT )−1Ae = −δ(AAT )−1a.

Next, the constraint eTd = 1 implies that

1 = −βeT ξ + δeT (e − AT (AA)−1a) = −βeT ξ + δ(1 − aT (AA)−1a)

= −βeT ξ + δ

(
1 + 2γ

2

)
.

Thus,

d = −βξ +

(
2

1 + 2γ

)
(1 + βeT ξ)

(
e − AT (AAT )−1a

)
.
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From Lemma A.1(a) we have γ ∈ [0, 0.5], and therefore d is well-defined.
Since (A.7) has a linear objective and its feasible set is the intersection of an

affine set with a Euclidean ball, there exists an optimal solution to (A.7) that satisfies
dTd = 2. It is easy to see this when the matrix [A; eT ] does not have full column
rank. When [A; eT ] has full column rank, the system Ad = 0, eTd = 1 admits the
unique solution d̃ = 2

1+2γ (e − AT (AAT )−1a), which implies {d : Ad = 0, d � 0} ={
t
(
e − AT (AAT )−1a

)
: t ≥ 0

}
. Then, by Lemma A.1(d) in Appendix A.1, we have

γ = 0. Therefore, d̃T d̃ = 2
1+2γ = 2. Simplifying the constraint dTd = 2, we get

β2

(
‖ξ‖2 − 2

1 + 2γ
(eT ξ)2

)
=

4γ

1 + 2γ
.

Since Aξ = 0, Lemma A.1(b) implies that ‖ξ‖2 ≥ 2
1+2γ (eT ξ)2. Therefore, we only

have to consider the following two cases:
(i) (eT ξ)2 = 1+2γ

2 ‖ξ‖2.
Suppose that eT ξ =

√
1+2γ

2 ‖ξ‖. Then ξ � 0, and the optimal value of
(A.7) is nonnegative, or, equivalently, that (A.6) is bounded. Next, suppose

eT ξ = −
√

1+2γ
2 ‖ξ‖. Then d = −ξ � 0, and dT ξ = −‖ξ‖2 < 0. Therefore,

(A.6) is unbounded.
(ii) (eT ξ)2 < 1+2γ

2 ‖ξ‖2.

In this case β =
√

4γ

(1+2γ)‖ξ‖2−2(eTξ)2
, and (A.7) has a nonnegative optimal

value if and only if

0 ≤ ξTd

= −β‖ξ‖2 +

(
2

1 + 2γ

)
(1 + βeT ξ)(eT ξ)

= − β

1 + 2γ

(
(1 + 2γ)‖ξ‖2 − 2(eT ξ)2

)
+

2(eT ξ)

1 + 2γ
.

Substituting the value of β and simplifying we get

eT ξ ≥ 0, (eT ξ)2 ≥ γ‖ξ‖2.

Since, as we discussed above, assuming ξ ∈ N (A) is equivalent to replacing ξ by Pξ,
the result follows.

For the second part of Lemma 2.5, first consider the case γ �= 0, or, equivalently,
ARAT is nonsingular [1]. Using the results of the first part of this lemma, one can
prove (see Lemma A.2 in Appendix A.1) that if γ < 0, then the dual of (A.6) is
strictly feasible for any ξ ∈ Rp, and when γ > 0 the dual of (A.6) is strictly feasible
if and only if eTPξ ≥ 0 and (eTPξ)2 − γ‖Pξ‖2 > 0; and from [1, section 5] it follows
that when the dual is strictly feasible,

q̄(ξ) =

√
−γ(bT (ARAT )−1b)

γ

√
(eTPξ)2 − γ‖Pξ‖2 + ξTRAT (ARAT )−1b.

When the dual is not strictly feasible, i.e., (eTPξ)2 = γ‖Pξ‖2, choose ξ̂ ∈ Dq̄ such

that the dual corresponding to ξ̂ is strictly feasible. For 0 < ε ≤ 1, let ξε = (1−ε)ξ+εξ̂.
Then we have two cases:

(i) Pξ = 0. In this case, (eTPξε)
2 − γ‖Pξε‖2 = ε2

(
(eTPξ̂)2 − γ‖Pξ̂‖2

)
> 0.
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(ii) Pξ �= 0. In this case, γ > 0. Since eTPξ −√
γ‖Pξ‖ is a concave function of

ξ, it follows that

eTPξε −
√
γ‖Pξε‖ ≥ ε

(
eTPξ̂ −√

γ‖Pξ̂‖
)

+ (1 − ε)
(
eTPξ −√

γ‖Pξ‖
)

= ε
(
eTPξ̂ −√

γ‖Pξ̂‖
)
> 0.

Thus, the dual corresponding to ξε is always strictly feasible and

q̄(ξε) = f(Pξε) + vT ξε.

Taking the limit as ε ↓ 0 establishes the result.
Next, consider the case γ = 0, or, equivalently, ARAT is singular. Note that

q̄(ξ) = ξTy0 + q̂(Pξ),

where y0 = AT (AAT )−1b, and

q̂(Pξ) = min (Pξ)Tw
subject to Aw = 0,

y0 + w � 0.

(A.8)

The following are easy to check linear algebra facts:
(i) γ = 0 ⇒ 2(eTy0)

2 ≤ ‖y0‖2.
(ii) γ = 0 ⇒ 2(eTw)2 ≤ ‖w‖2 for all w ∈ N (A). In particular, ‖Pξ‖2 ≥

2(eTPξ)2.
We solve (A.8) by first scaling it to reduce it to a minimum norm problem and then
optimizing over the scaling factor. Let w∗ denote the optimal solution of (A.8) and
let α∗ = eT (y0 + w∗). Then

‖w∗ + y0‖2 = ‖w∗‖2 + ‖y0‖2 ≤ 2(α∗)2,

where the equality follows from the fact that yT
0 w∗ = bT (AAT )−1Aw∗ = 0. It

follows that w∗ is the optimal solution of

min (Pξ)Tw
subject to Aw = 0,

eTw = α− eTy0,
‖w‖2 ≤ 2α2 − ‖y0‖2,

(A.9)

with α set equal to α∗. Using Lagrange multipliers, the optimal value of (A.9) is given
by

(Pξ)Twα = −
√

‖Pξ‖2 − 2(eTPξ)2
√

4α(eTy0) − ‖y0‖2 − 2(eTy0)2

+ 2(eTPξ)(α− eTy0).
(A.10)

Differentiating this expression with respect to α we get

4α∗(eTy0) − ‖y0‖2 − 2(eTy0)
2 =

(
eTy0

eTPξ

)2 (
‖Pξ‖2 − 2(eTPξ)2

)
.

It is easy to check that 2(α∗)2 ≥ ‖y0‖2. Substituting α∗ into (A.10) and simplifying
we get

q̄(ξ) = ξTy0 + (Pξ)Twα∗

= ξTy0 +

(
‖y0‖2 − 2(eTy0)

2

2eTy0

)
eTPξ − eTy0

(
‖Pξ‖2 − 2(eTPξ)2

2eTPξ

)
.
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Appendix B. Analysis for the case rank(DB) = p < n − m. Note that in
this case A = UT

1 = ∅, so γ = 1
2 and P = I. The following lemma is easy to prove.

Lemma B.1. Let q̂ : Rp �→ R denote the function defined in (2.16). Then the
domain Dq̂ =

{
ξ : q̂(ξ) > −∞

}
is given by

Dq̂ =
{

ξ : eT ξ ≥ 0, 2(eT ξ)2 − ‖ξ‖2 ≥ 0
}
,(B.1)

where e = (1,0T )T. For all ξ ∈ Dq̂, we have q̂(ξ) = 0.
Then (2.14), (2.15), (2.16), (2.17), and Lemma B.1 imply that the Lagrangian

dual problem is given by

max (f − ETλ)T z0

subject to A[λ, ξ,h,p] = 0,
λ ≥ 0,
ξ ∈ K,

(B.2)

where A[λ, ξ,h,p] denotes the set of linear equalities in (3.1) and K =
{
z : eT z ≥ 0,

2(eT z)2 − ‖z‖2 ≥ 0
}
.

As in the case discussed in the paper, first set ξ = 0 and solve (B.2). Let μ(1)

be its optimal solution. A direction (dξ,dλ) is an ascent direction at (0,μ(1)) if and
only if (dξ,dλ) is a recession direction of the set

−zT0 ETdλ > 0,
AW[dλ,dξ,0,0] = 0,

dξ ∈ K,
(B.3)

with the matrix W = 0.
Lemma B.2. A recession direction (dξ,dλ) of (B.3), if it exists, can be computed

by solving two systems of linear equations.
Proof. We will find a recession direction of (B.3) by solving the following problem:

max −zT0 ETdλ

subject to AW[dλ,dξ,0,0] = 0,
dξ ∈ K.

(B.4)

If the optimal value of this problem is positive, then (B.3) has a recession direction.
The direction (dξ,dλ) can be computed by considering the following three cases:

(a) Suppose dξ = 0. Then (0,dλ) is a recession direction for (B.3) if and only if
dλ solves

−zT0 ETdλ = 1,
AW[dλ,0,0,0] = 0.

(B.5)

(b) Next, suppose (B.5) is infeasible; however, there exists a positive recession
direction for (B.4). Set eTdξ = 1 in (B.4) to obtain

max −zT0 ETdλ

subject to AW[dλ,dξ,0,0] = 0,
eTdξ = 1,
‖dξ‖2 ≤ 2.

(B.6)
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Since (B.5) is assumed to be infeasible, (B.6) is bounded. Setting dξ = −Ldλ,
we get

max −
(
Ez0

)T
dλ

subject to AW[dλ,−Ldλ,0,0] = 0,
eTLdλ = −1,
‖Ldλ‖2 ≤ 2.

Since the objective function of this problem is linear, the optimal d∗
λ satisfies

‖Ld∗
λ‖2 = 2 and the Lagrangian function L is given by

L = −(Ez0)
Tdλ − τTMdλ − ρTWdλ − η(eTLdλ + 1) − β(‖Ldλ‖2 − 2),

where β ≥ 0 and the first-order optimality conditions are given by

2βLTLdλ + MT τ + WTρ + LTeη = −Ez0,
Mdλ = 0,
Wdλ = 0,

eTLdλ = −1,

(B.7)

and β(‖Ldλ‖2 − 2) = 0. If β = 0, then (B.7) can be solved easily. Suppose
β > 0. Then by setting ρ̄ = 1

βρ, τ̄ = 1
βτ , and η̄ = 1

β η, we see that (B.7) is
equivalent to⎡⎢⎢⎣

2LTL MT WT LTe
M 0 0 0
W 0 0 0
eTL 0 0 0

⎤⎥⎥⎦
︸ ︷︷ ︸

Δ
=K

⎡⎢⎢⎣
dλ

τ̄
ρ̄
η̄

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦− 1

β

⎡⎢⎢⎣
Ez0

0
0
0

⎤⎥⎥⎦ .

Suppose K is nonsingular. Let w = (τ̄T , ρ̄T , η̄)T , b1 = (0T ,0T ,−1)T , and
b2 = Ez0. Partition K−1 into submatrices

K−1 =

[
K−1

11 K−1
12

K−T
12 K−1

22

]
such that[

dλ

w

]
= K−1

[
0
b1

]
− 1

β
K−1

[
b2

0

]
=

[
K−1

12 b1 − 1
βK−1

11 b2

K−1
22 b1 − 1

βK−T
12 b2

]
.

This partition implies that K−T
12 LTLK−1

11 . Therefore, β is the unique positive
root of

2 = ‖Ldλ‖2

= ‖LK−1
12 b1‖2 − 2

1

β
(LK−1

12 b1)
TLK−1

11 b2 +
1

β2
‖LK−1

11 b2‖2

= ‖LK−1
12 b1‖2 +

1

β2
‖LK−1

11 b2‖2.

Consequently,

β =

√
‖LK−1

11 b2‖2

2 − ‖LK−1
12 b1‖2

.
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Thus, (B.7) has a solution if and only if 2 − ‖LK−1
12 b1‖2 > 0.

The case where K is singular can be handled by taking an SVD of K and
working in the appropriate range spaces.

(c) In case one is not able to produce a solution in either (a) or (b), it follows
that the optimal solution of (B.4) is 0, and (dξ,dλ) = (0,0) achieves this
value.

In a typical step of the ActiveSet when rank(DB) = p, we have to solve the
following problem:

max −zT0 ETλ
subject to AW[λ, ξ,h,p] = 0,

ξ ∈ K,
(B.8)

where W denotes the current inactive set, i.e., W =
∑

i:λi=0 eie
T
i .

Lemma B.3. Suppose there exists a feasible (ξ̄, λ̄) for (B.8) such that ξ̄ ∈ int(K).
Then (B.8) can be solved in closed form by solving at most three systems of linear
equations.

This result can be established using a combination of the techniques used to
establish Lemmas B.2 and 3.4.

Appendix C. Decreasing dimensions of K. Consider the system of linear
equalities

K̃d̃ + W̃T ρ̄ = b,

W̃d̃ = 0,
(C.1)

where K̃ and d̃ are given in (3.20) and W̃ = [W,0,0]. Let an SVD of K̃ be given by

K̃ = UΣVT = U

[
Σ0 0
0 0

] [
VT

0

VT
1

]
,

where Σ0 ∈ RrK×rK is a diagonal matrix and rK = rank(K̃). Decompose d̃ =
V0μ + V1ζ. Then (C.1) is equivalent to

U

[
Σ0μ
0

]
+ W̃T ρ̄ = b,

W̃(V0μ + V1ζ) = 0,

which is equivalent to [
Σ0μ
0

]
+ UTW̃T ρ̄ = UTb,

W̃(V0μ + V1ζ) = 0.
(C.2)

Let

UT =

[
UT

0

UT
1

]
.

Then (C.2) is equivalent to

Σ0μ + UT
0 W̃T ρ̄ = UT

0 b,

UT
1 W̃T ρ̄ = UT

1 b,

W̃V0μ + W̃V1ζ = 0.
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Setting μ = Σ−1
0 (UT

0 b − UT
0 W̃T ρ̄), we obtain the following system which has a

smaller number of variables:

UT
1 W̃T ρ̄ = UT

1 b,

W̃V1ζ − W̃V0Σ
−1
0 UT

0 W̃T ρ̄ = −W̃V0Σ
−1
0 UT

0 b.
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Abstract. This paper studies the Monge–Kantorovich mass transfer (MT) problem on metric
spaces, with possibly unbounded “cost” function. Conditions are given under which the MT problem
is solvable and, furthermore, an optimal solution can be obtained as the weak limit of a sequence of
optimal solutions to suitably approximating MT problems.
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1. Introduction. In this paper we study the Monge–Kantorovich mass transfer
(MT) problem (introduced in section 2; see (2.1), (2.2)) on metric spaces X and Y ,
and with a possibly unbounded real-valued “cost” function c on X × Y . We propose
two new approaches to show that MT is solvable. First in section 4 we show that
MT is equivalent to a problem MTK on a set of randomized strategies, also known
as stochastic kernels or Young measures [5, 13, 14]. Then in section 5 we prove
that MTK is solvable and, therefore, so is MT. Moreover, in section 6, we introduce
an approximating approach to MT by means of mass transfer problems MTi with
marginals (see ν1, ν2 in (2.2)) concentrated on finite sets. We show that the sequence
of optimal solutions to MTi and the sequence of the corresponding optimal values
converge to an optimal solution to MT and to the optimal value, respectively.

The MT problem is among the oldest and most well-known problems in prob-
ability theory and its applications. It was originally introduced by Monge in 1781
[19], but it was posed as a mathematical programming problem by Kantorovich in
1942 [17]. Kantorovich considered the case of compact metric spaces X = Y and
cost c(x, y) := d(x, y), the distance function on X. He proved that the problem is
solvable in this case. In the 1970s, Levin and Milyutin (see [21, 22, 23] for earlier refer-
ences) proved solvability for compact metric spaces and some classes of discontinuous
cost functions. In fact, several authors have studied the MT problem with a lower
semicontinuous (l.s.c.) cost function. In particular, Jiménez–Guerra and Rodŕıguez–
Salinas [16] dealt with Hausdorff topological spaces X and Y , Radon measures, and
an l.s.c. cost function. Hernández–Lerma and Gabriel [15] proved solvability of the
MT problem in general metric spaces, and an inf-compact cost function, which means
that the lower level set {(x, y) ∈ X×Y | c(x, y) ≤ r} is compact for each r ∈ R. Other
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solvability results when X and Y are compact spaces and c(x, y) is l.s.c. are discussed
in [23, Chapter 4] and [2, Chapter 5].

In addition to solvability, several other aspects of the MT problem have been
studied by many authors using different approaches. For instance, Wu [26] studied
the structure of extreme points for the MT problem with X and Y compact Hausdorff
spaces. Cuesta-Albertos and Tuero-Dı́az [10] characterized the solution of the MT
problem in terms of a so-called optimal coupling in the case that ν2 has finite support
and ν1 verifies a continuity condition. A similar approach was used by Abdellaoui [1].
Cambanis, Simons, and Stout [7] and also McCann [18] found some explicit solutions
to the MT problem on the real line, i.e., X = Y = R. Ruzankin [25] also studied the
form of optimal solutions on the real line. In [11], Gangbo used randomized strategies
to formulate the MT problem as a variational one on Rd × Rd.

In this paper we also use randomized strategies, but in general metric spaces. The
idea is to introduce a suitable topology on the space of those strategies, and then use
the Bauer extremum principle [8] to prove that MT (actually, the equivalent problem
MTK) is solvable. Our approximation approach in section 6 is partly inspired by [3],
although our setting and proof techniques are quite different.

Summarizing, in this paper we present two new, different, approaches to ob-
taining the solvability of MT. The first one is to give conditions for the equivalent
problem MTK to be solvable. The second is an approximation approach by means of
MT problems with marginals concentrated on finite sets.

After some technical preliminaries in sections 2 and 3, the plan for the remain-
der of the paper (sections 4, 5, and 6) is as sketched in the first paragraph of the
introduction.

2. The MT problem. In the MT problem with which we are concerned, we
are given the following data: (i) two metric spaces X and Y endowed with the cor-
responding Borel σ-algebras B(X) and B(Y ); (ii) a nonnegative measurable function
c : X × Y → R; and (iii) a probability measure (p.m.) ν1 on X, and a p.m. ν2 on
Y . Moreover, let M(X × Y ) be the linear space of finite signed measures on X × Y ,
endowed with the topology of weak convergence, and let M+(X × Y ) be the convex
cone of nonnegative measures in M(X × Y ). If μ is in M(X × Y ), we denote by Π1μ
and Π2μ the marginals (or projections) of μ on X and Y , respectively; that is, for all
A ∈ B(X) and B ∈ B(Y )

Π1μ(A) := μ(A× Y ) and Π2μ(B) := μ(X ×B).

Then, with 〈μ, c〉 :=
∫
c dμ, the MT problem can be stated as follows:

MT Minimize 〈μ, c〉(2.1)

subject to Π1μ = ν1, Π2μ = ν2, μ ∈ M+(X × Y ).(2.2)

A measure μ ∈ M(X × Y ) is said to be a feasible solution for the MT problem if
it satisfies (2.2) and

∫
c dμ is finite. The MT problem is called consistent if the set of

feasible solutions is nonempty, in which case its (optimum) value is defined as

inf(MT) := inf{〈μ, c〉|μ is feasible for MT}.

It is said that the MT problem is solvable if there is a feasible solution μ∗ that attains
the optimum value. In this case, μ∗ is called an optimal solution for the MT problem,
and the value inf(MT) is written as min(MT) = 〈μ∗, c〉.
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Remark 2.1.

(a) Since ν1 and ν2 are p.m.’s, a feasible solution for the MT problem is necessarily
a p.m.

(b) If c is a bounded function, then the product measure μ := ν1 × ν2 is feasi-
ble. This fact is not necessarily true if c is unbounded ; see Example 1.2 in
[12]. Even for unbounded c, however, mild assumptions ensure that the MT
problem is consistent [12].

(c) If X and Y are compact metric spaces and c is l.s.c., then the set of feasi-
ble solutions is compact and, therefore, the MT problem is solvable. (See
Theorem 2.2 and Remark 2.5 in [15].)

Now we will introduce an optimization problem on a family of stochastic kernels,
which in section 4 is shown to be equivalent to the MT problem, when ν2 has finite
support.

Let F be the set of all (Borel) measurable functions from X to Y . Following the
usage in control and game theory [6, 13, 14], a function in F will be referred to as a
deterministic strategy. We also need the following more general concept of strategy.

Definition 2.2. A randomized strategy (also known as a stochastic kernel) ϕ
from X to Y is a real-valued mapping (x,B) �→ ϕ(B|x) on X × B(Y ) such that

(a) ϕ(·|x) is a p.m. on B(Y ) for every fixed x ∈ X, and
(b) ϕ(B|·) is a measurable function on X for every fixed B ∈ B(Y ).

If (a) is replaced with
(a′) ϕ(·|x) is a finite signed measure on B(Y ) for every fixed x ∈ X,

then ϕ is called a signed kernel from X to Y . We shall denote by Φ the set (actually
linear space) of all such kernels, and by Φ1 the convex subset of randomized strategies.

Given a deterministic strategy f ∈ F, we may identify each f(x) ∈ Y with the
Dirac measure (or unit mass) ϕ(·|x) := δf(x)(·) concentrated at f(x) for each x ∈ X.
This of course defines a randomized strategy. With this identification we may write

F ⊂ Φ1.(2.3)

Let ν be a p.m. on X, and consider the following optimization problem:

P Minimize

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν(dx),(2.4)

subject to

∫
X

∫
Y

ci(x, y)ϕ(dy|x)ν(dx)≤ bi ∀i = 1, . . . , n, ϕ ∈ Φ1,(2.5)

where c1, . . . , cn are given measurable functions on X×Y and b1, . . . , bn are given real
numbers. This problem is a “randomized version” of the typical allocation problem
in economics; see [4, 13, 27]. In section 6 below, we use a particular case of the MT
problem that is of the form (2.4)–(2.5), and we will need to describe the extreme
points ϕ ∈ Φ1 that satisfy (2.5). We describe these extreme points in Theorem 3.2.

Remark 2.3. An important variant of MT is the mass transshipment problem
defined as [9, 23, 24]:

Minimize 〈μ, c〉

subject to Π1μ− Π2μ = ν1 − ν2, μ ∈ M+(X ×X),(2.6)

where c : X×X → R is a given cost function and ν1 and ν2 are p.m.’s on X, a metric
space. The so-called balance condition in (2.6) is equivalent to the following: there
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exists Δ ∈ M(X) such that

Π1μ = ν1 + Δ and Π2μ = ν2 − Δ.

Hence, for any feasible measure μ for the mass transshipment problem we have

μ(X ×X) = Π1μ(X) = ν1(X) + Δ(X) = 1 + Δ(X),

μ(X ×X) = Π2μ(X) = ν2(X) − Δ(X) = 1 − Δ(X).

It follows that Δ(X) = 0, and, therefore, μ is a p.m. Summarizing, if μ is feasible for
the MT problem with X = Y (see (2.2)), then μ is feasible for the mass transshipment
problem. Moreover, the results for MT introduced in the following sections can be
extended, with appropriate changes, to the mass transshipment problem. Research
on this matter is in progress.

3. Convex sets of randomized strategies. In this section we introduce a
result from [13] that characterizes the extreme points of feasible solutions to the
problem P in (2.4)–(2.5). This result is applied to the MT problem in section 6.
First, we need a definition. (Recall (2.3).)

Definition 3.1. A randomized strategy ϕ ∈ Φ1 is said to be a randomization of
at most n + 1 deterministic strategies, or simply an (n + 1)-randomization, if there
exist a positive integer m ≤ n+1, functions f1, . . . , fm in F, and nonnegative numbers
α1, . . . , αm with α1 + · · · + αm = 1 such that

ϕ(B|x) =

m∑
j=1

αjδfj(x)(B) ∀B ∈ B(Y ), x ∈ X .(3.1)

In this case we write ϕ ∈ Rn+1(f1, . . . , fm;α1, . . . , αm).
The following result, which uses the notation in (2.5), is applied to the MT prob-

lem in section 6.
Theorem 3.2. Let X be a metric space, and Y a separable metric space. Fix an

arbitrary p.m. ν on B(X), real-valued measurable functions c1, . . . , cn on X ×Y , and
real numbers b1, . . . , bn. Consider the set Δ ⊂ Φ1 consisting of all the randomized
strategies ϕ in Φ1 for which, for all i = 1, . . . , n,∫

X

∫
Y

|ci(x, y)|ϕ(dy|x)ν(dx) < ∞(3.2)

and ∫
X

∫
Y

ci(x, y)ϕ(dy|x)ν(dx) ≤ bi.(3.3)

Let ex(Δ) be the set of extreme points of Δ. Then
(a) Δ is convex and

ex(Δ) ⊂ R0
n+1,(3.4)

where R0
n+1 is the set of all the (n+ 1)-randomizations ϕ ∈ Rn+1(f1, . . . , fm;α1, . . . ,

αm) for which the vectors(∫
c1(x, fj(x))ν(dx), . . . ,

∫
cn(x, fj(x))ν(dx), 1

)
∈ Rn+1(3.5)

for j = 1, . . . ,m are linearly independent.
(b) If equality holds in (3.3), then the sets in (3.4) are equal.
Proof. See [13].
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4. An equivalent problem to MT. In this section we show that the MT prob-
lem is equivalent to the following optimization problem on the set Φ1 of randomized
strategies.

Let c, ν1, and ν2 be as in the MT problem (2.1)–(2.2). Consider

MTK Minimize

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dx),(4.1)

subject to

∫
X

ϕ(·|x)ν1(dx) = ν2(·), ϕ ∈ Φ1.(4.2)

A randomized strategy ϕ ∈ Φ1 is said to be a feasible solution for MTK if it satisfies
(4.2) and the integral in (4.1) is finite. The problem MTK is called consistent if the
set of feasible solutions is nonempty, in which case its value is defined as the infimum,
over the set of feasible solutions, of the integrals in (4.1). If the infimum is attained
at some feasible solution, say ϕ∗, then MTK is said to be solvable and ϕ∗ is called an
optimal solution for MTK.

Theorem 4.1. MT and MTK are equivalent; that is, for each ϕ in Φ1 that
satisfies (4.2) (a feasible solution for MTK), there is a p.m. μ on X×Y that satisfies
(2.2) (a feasible solution for MT) such that

〈μ, c〉 :=

∫
X×Y

c dμ =

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dx) =: 〈ϕ, c〉.(4.3)

Conversely, for each feasible solution μ for MT, there exists a feasible solution ϕ for
MTK such that ϕ and μ satisfy (4.3).

Proof. Let μ be a feasible solution for MT. Then, by a well-known result on the
disintegration of product measures (see, e.g., [14, Proposition D.8, p. 184]), there is
a stochastic kernel ϕ ∈ Φ1 such that

μ(A×B) =

∫
A

ϕ(B|x)ν1(dx) ∀A ∈ B(X), B ∈ B(Y ).(4.4)

Hence

ν2(B) = Π2μ(B) = μ(X ×B)

=

∫
X

ϕ(B|x)ν1(dx),

and thus ϕ is a feasible solution for MTK by (4.2). Moreover, by (4.4),∫
X×Y

c dμ =

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dx),

and (4.3) follows.
Now, let ϕ be a feasible solution for MTK. Then there is unique p.m. μ on X×Y

given by

μ(A×B) :=

∫
A

ϕ(B|x)ν1(dx) ∀A ∈ B(X), B ∈ B(Y ),(4.5)

and for which ∫
X×Y

c dμ =

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dx).
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Furthermore,

Π1μ(A) = μ(A× Y ) =

∫
A

ϕ(Y |x)ν1(dx) = ν1(A),

and since ϕ is a feasible solution for MTK, (4.2) gives

Π2μ(B) = μ(X ×B) =

∫
X

ϕ(B|x)ν1(dx) = ν2(B).

Therefore, μ satisfies (2.2) and thus it is a feasible solution for MT.
A measure defined as in (4.5) will be denoted by μ := ϕ · ν1.
Part (c) in the following corollary uses (2.3).
Corollary 4.2.

(a) MT is consistent if and only if MTK is consistent.
(b) MT is solvable if and only if MTK is solvable.
(c) If MTK has an optimal solution ϕ ∈ Φ1 which is a deterministic strategy,

say ϕ(·|x) = δf(x)(·) for some f ∈ F, then f is a so-called optimal coupling
for MT (which means that the measure μ(A × B) =

∫
A
δf(x)(B)ν1(dx) is

concentrated along (x, f(x))) and is an optimal solution for MT [1, 18, 21, 22].
Let FMT be the class of feasible solutions to MT and let FMTK be the class of

feasible solutions to MTK. In view of Corollary 4.2(b), in the following section we
study the solvability of MTK. In fact, we show that MTK has an optimal solution
which is an extreme point of FMTK .

5. Solvability of MTK. To show that MTK is solvable, first we introduce some
concepts that will be used to define suitable topologies on sets of stochastic kernels.
The following definitions can also be found in [5, 6], for instance. (Recall Definition
2.2 on Φ and Φ1.)

Definition 5.1. A uniformly finite kernel from X to Y is a signed kernel ϕ ∈ Φ
such that

sup
x∈X

|ϕ(Y |x)| < ∞,

where, for each x ∈ X, |ϕ(Y |x)| denotes the total variation of ϕ(·|x).
The set of all uniformly finite kernels is denoted by Φ0. It is evident that Φ0 is a

linear space with the usual addition and scalar multiplication of signed kernels, and
that, moreover, Φ1 ⊂ Φ0 ⊂ Φ.

Definition 5.2. A normal integrand bounded from below on X×Y is a function
g : X ×Y → (−∞,∞] such that

(i) g(x, ·) is l.s.c. on Y for every x ∈ X,
(ii) g is B(X) × B(Y )-measurable, and
(iii) there is a function f ∈ L1(ν1) := L1(X,B(X), ν1) such that g(x, y) ≥ f(x)

for all x ∈ X, y ∈ Y .
The set of all normal integrands bounded from below is denoted by Cbb. We next

introduce a suitable subset of Cbb.
Definition 5.3. A Carathéodory integrand on X × Y is a function g : X

×Y → R such that
(i) g(x, ·) is continuous on Y for every x ∈ X,
(ii) g is B(X) × B(Y )-measurable on X × Y , and
(iii) |g| ≤ f on X × Y for some f ∈ L1(ν1).
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The set of all Carathéodory integrands on X × Y is denoted by Cc. Observe that
Cc contains the space Cb(X × Y ) of continuous bounded functions on X × Y . On the
other hand, for each g ∈ Cc we define a functional Ig : Φ0 → R by

Ig(ϕ) :=

∫
X

∫
Y

g(x, y)ϕ(dy|x)ν1(dx).(5.1)

The weak topology on Φ0 is defined as the coarsest topology for which all the
functionals Ig : Φ0 → R, for g ∈ Cc, are continuous. Similarly, the weak topology on
Φ1 is defined as the coarsest topology for which all the functionals Ig : Φ1 → R, for
g ∈ Cc, are continuous. It can be proved that Φ0 is a Hausdorff topological vector
space which is locally convex [5].

Assumption 5.4.

(a) Y is a complete and separable metric space.
(b) The “cost” function c(x, y) is nonnegative and c(x, ·) is l.s.c. on Y for every

x ∈ X. (Hence c is in Cbb.)
(c) MT is consistent.
Concerning the consistency in Assumption 5.4(c), see Remark 2.1.
We have the following result.
Theorem 5.5. Under Assumption 5.4, there exists a stochastic kernel ϕ ∈ Φ1

such that ϕ is an optimal solution to MTK and, moreover, ϕ is an extreme point of
FMTK .

Proof. First we will show that FMTK is weakly closed. Let (N,≤) be a directed
set and suppose that {ϕn, n ∈ N} converges weakly to ϕ in Φ1. Then, by Theorem
2.2(b) in [6], we have∫

X

∫
Y

g(x, y)ϕn(dy|x)ν1(dx) →
∫
X

∫
Y

g(x, y)ϕ(dy|x)ν1(dx)(5.2)

for all g in Cc.
For ϕ and each ϕn, let μ and μn be the corresponding p.m.’s on X × Y defined

by (4.5). By Theorem 4.1, {μn, n ∈ N} is a net in FMT . Moreover, by (4.5) again,
for each f in Cc we have∫

X×Y

fdμn =

∫
X

∫
Y

f(x, y)ϕn(dy|x)ν1(dx)(5.3)

and ∫
X×Y

fdμ =

∫
X

∫
Y

f(x, y)ϕ(dy|x)ν1(dx).(5.4)

In particular, if f ∈ Cb(X × Y ), then by (5.2)–(5.4), we have∫
X×Y

fdμn =

∫
X

∫
Y

f(x, y)ϕn(dy|x)ν1(dx)

→
∫
X

∫
Y

f(x, y)ϕ(dy|x)ν1(dx)

=

∫
X×Y

fdμ.

This implies that {μn} converges weakly to μ. In turn, the latter yields, by Lemma
2.7 in [15], that μ is a feasible solution to MT. Therefore, by Theorem 4.1, ϕ is in
FMTK and we conclude that FMTK is weakly closed.
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As Φ1 is weakly compact (see Theorem 2.3(a) in [6]) and FMTK is weakly closed,
it follows that FMTK is weakly compact. This fact, together with Assumption 5.6(b)
and Theorem 2.3(b) in [6], gives that the functional

Ic(ϕ) :=

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dx)(5.5)

is weakly inf-compact. Thus, Ic is a weakly l.s.c. functional and thus, by the Bauer
extremum principle (see, for instance, Theorem 25.9 in [8]), it follows that there is
an extreme point ϕ of FMTK where Ic attains its minimum value. Finally comparing
(5.5) and (4.1) we obtain the desired conclusion.

6. An approximation approach to the MT problem. In this section we
study the MT problem by means of an approximation procedure consisting of three
steps. First, we assume that the marginal ν2 has finite support, and we characterize an
optimal solution for this problem (see Theorem 6.1). Second, we construct a sequence
{MTi} of MT problems with the characteristic that the marginals νi1 and νi2 both have
finite support. Then for each i, we find an optimal solution μi of MTi and show that
{μi} is relatively compact. Therefore, there exist a measure μ∗ and a subsequence
{μm} such that {μm} converges weakly to μ∗. Finally, in the third step we prove that
μ∗ is an optimal solution to MT and, furthermore, limm→∞〈μm, c〉 = 〈μ∗, c〉.

Step 1. Let us assume that ν2 has finite support. Then there is a finite sub-
set {y1, y2, . . . , yn} of Y such that ν2({yi}) := bi �= 0 for all i = 1, . . . , n, and
ν2({y1, y2, . . . , yn}) = 1.

We observe that the constraints (4.2) in this case are equivalent to∫
X

ϕ({yi}|x)ν1(dx) = ν2({yi}) = bi ∀i = 1, . . . , n, ϕ ∈ Φ1.(6.1)

Consider ci(x, y) := I{yi}(y), where IB is the indicator function of B ∈ B(X); that is,
IB(x) := 1 if x ∈ B and IB(x) := 0 if x /∈ B. Then (6.1) can be expressed as∫

X

∫
Y

I{yi}(y)ϕ(dy|x)ν1(dx) = bi ∀i = 1, . . . , n, ϕ ∈ Φ1

or, equivalently,∫
X

∫
Y

ci(x, y)ϕ(dy|x)ν1(dx) = bi ∀i = 1, . . . , n, ϕ ∈ Φ1.

Therefore, we have the following optimization problem, which is of the form (2.4)–
(2.5):

MTKn Minimize

∫
X

∫
Y

c(x, y)ϕ(dy|x)ν1(dy)(6.2)

subject to

∫
X

∫
Y

ci(x, y)ϕ(dy|x)ν1(dx) = bi(6.3)

∀i = 1, . . . , n, ϕ ∈ Φ1.

Now, by Theorem 5.5, the MTKn problem achieves its minimum value at an
extreme point ϕ∗

n. Moreover, by Theorem 3.2, ϕ∗
n is an (n + 1)-randomization; that
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is, there exist a positive integer m ≤ n+1, functions f1, . . . , fm in F, and nonnegative
numbers α1, . . . , αm such that α1 + · · · + αm = 1 and

ϕ∗
n(B|x) =

m∑
j=1

αjδfj(x)(B) ∀B ∈ B(X), x ∈ X.(6.4)

In addition, by Corollary 4.2, the MT problem associated to MTKn is solvable.
Combining the latter facts we obtain the following theorem.
Theorem 6.1. If Assumption 5.4 holds and the marginal ν2 has finite support,

then there are a stochastic kernel ϕ∗ of the form (6.4) and a probability measure
μ∗ := ϕ∗ · ν1 on X × Y as in (4.5); i.e.,

μ∗(A×B) =

∫
A

ϕ∗(B|x)ν1(dx)

such that μ∗ is an optimal solution for the MT problem.
Step 2. We need the following assumption.
Assumption 6.2.

(a) The “cost” function c(x, y) is nonnegative and continuous.
(b) X and Y are separable metric spaces.
(c) There exists a sequence {Hn} of compact subsets of X × Y such that Hn ↑

X×Y ; i.e., the Hn form a nondecreasing sequence that converges to
⋃

n Hn =
X × Y .

We observe that the Assumption 6.2(c) holds, for instance, if X and Y are both
σ-compact metric spaces or if c is an inf-compact function.

The next proposition is a variant of a well-known result on the denseness of finitely
supported measures in spaces of probability measures (see Theorem 4 in [20, p. 237]).
Here for our approximation approach we need a more explicit result.

Proposition 6.3. If the Assumption 6.2 holds, then there exist two sequences of
probability measures {νi1} on B(X) and {νi2} on B(Y ), both with finite supports and
such that {νi1} converges weakly to ν1 and {νi2} converges weakly to ν2.

Proof. By Assumption 6.2(c), there are two sequences of compact sets Ft and Gt

in X and Y , respectively, such that Ft ×Gt ↑ X × Y .
Let

Ei = {(x, y)|c(x, y) ≤ i}

for i = 1, 2, . . . . Let Π1(Ei) and Π2(Ei) be the projections of Ei on X and Y , respec-
tively. Then there is a positive integer ti such that

ν1(Fti ∩ Π1(Ei)) ≥ ν1(Π1(Ei)) − 1/4i2(6.5)

and

ν2(Gti ∩ Π2(Ei)) ≥ ν2(Π2(Ei)) − 1/4i2.(6.6)

Since c is a continuous function and Fti ×Gti ∩Ei is a compact set, there exists
γi > 0 such that

if d1(x, x
′) < γi and d2(y, y

′) < γi, then |c(x, y) − c(x′, y′)| < 1/i,

for (x, y), (x′, y′) ∈ Fi ×Gi ∩ Ei. Let εi = min{γi, 1/i}.
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Let Br(z) be the open neighborhood with center in z and radius r. By the
compactness of Fti × Gti ∩ Ei, there are positive integers Mi, Ni and finite sets

{xi
1, x

i
2, . . . , x

i
Mi

} and {yi1, yi2, . . . , yiNi
} such that Fti ∩ Π1(Ei) ⊂

⋃Mi

k=1 Bεi(x
i
k) and

Gi ∩ Π2(Ei) ⊂
⋃Ni

j=1 Bεi(y
i
j).

We define the disjoint sets

Ai
k =

(
Bεi(x

i
k)

∖ k−1⋃
s=1

Bεi(x
i
s)

)
∩ Fti ∩ Π1(Ei) for k = 1, 2, . . . ,Mi,

Di
j =

(
Bεi(y

i
j)

∖ j−1⋃
s=1

Bεi(y
i
s)

)
∩Gti ∩ Π2(Ei) for j = 1, 2, . . . , Ni,

Ai
Mi+1 = (Fti ∩ Π1(Ei))

c and Di
Ni+1 = (Gti ∩ Π2(Ei))

c.

We take (xi
Mi+1, y

i
Ni+1) in (Fti ×Gti) ∩ Ei.

Now, we introduce measures νi1 and νi2 with finite supports

{xi
1, . . . , x

i
Mi+1} ⊂ Fti ∩ Π1(Ei)

and

{yi1, . . . , yiNi+1} ⊂ Gti ∩ Π2(Ei),

respectively, and defined as

νi1(A) :=

Mi+1∑
k=1

ν1(A
i
k)δ{xi

k
}(A) for A ∈ B(X)

and

νi2(D) :=

Ni+1∑
j=1

ν2(D
i
j)δ{yi

j
}(D) for D ∈ B(Y ).

We claim that νi1 converges weakly to ν1, and νi2 converges weakly to ν2. The proofs of
the last two facts are quite similar, and so we will prove only the latter, νi2 converges
weakly to ν2, i.e.,

lim
i→∞

∫
fdνi2 =

∫
fdν2

for every bounded real-valued uniformly continuous function f (see, for instance, [20,
Theorem 6.1(b), p. 40]).

Let f : Y → R be a bounded uniformly continuous function. Let M > 0 be such
that

|f(y)| ≤ M ∀y ∈ Y.(6.7)

Pick an arbitrary ε > 0. As f is uniformly continuous, there exists γ > 0 such
that

if d2(y, y
′) < γ, then |f(y) − f(y′)| < ε/3.(6.8)
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Now let i1 and i2 be positive integers such that 1/i1 < γ and 1/(i2)
2 < ε/6M .

Moreover, as Π2(Ei) ↑ Y , there is an integer i3 such that ν2(E
c
i3

) < ε/6M .
Let i0 = max{i1, i2, i3}. Then, by (6.6), (6.7), (6.8), and the construction of νi2,

we have that for all i ≥ i0∣∣∣∣∫
Y

f(y)ν2(dy) −
∫
Y

f(y)νi2(dy)

∣∣∣∣
≤

Ni∑
j=1

∫
Di

j

|f(y) − f(yij)|ν2(dy) +

∫
DNi+1

|f(y) − f(yiNi+1)|ν2(dy)

≤ ε

3

Ni∑
j=1

ν2(D
i
j) + 2Mν2(Π2(Ei) −Gti) + 2Mν2(Π2(Ei)

c)

< ε.

In the following theorem {νi1} and {νi2} are the sequences given by Proposition 6.3,
and

ci := min{c, i}.

Theorem 6.4. If the Assumption 6.2 holds and if μ is a feasible solution to the
MT problem, then there exists a sequence of p.m.’s {μi} on B(X×Y ) with marginals
Π1μi = νi1 and Π2μi = νi2, and such that μi converges weakly to μ. Moreover,

lim
i→∞

〈μi, ci〉 = 〈μ, c〉.

Proof. Let Ai
k, D

i
j , Fti , Gti , Ei, Mi, Ni, {xi

1, . . . , x
i
Mi+1}, and {yi1, . . . , yiNi+1} be

as in the proof of Proposition 6.3.
Now, let μ be a probability measure on B(X × Y ) such that Π1μ = ν1 and

Π2μ = ν2. We define measures μi by

μi(E) =

Mi+1∑
k=1

Ni+1∑
j=1

μ(Ai
k ×Di

j)δ(xi
k
,yi

j
)(E)

for all E in B(X × Y ).
Observe that μi has a finite support contained in (Fti × Gti) ∩ Ei. We will now

see that Π1μi = νi1.
Choose an arbitrary set A in B(X). Then the definition and properties of Dirac

measures give

Π1μi(A) = μi(A× Y )

=

Mi+1∑
k=1

(
Ni+1∑
j=1

μ(Di
k × Ci

j)

)
δxi

k
(A)

=

Mi+1∑
k=1

μ(Di
k × Y )δxi

k
(A)

=

Mi+1∑
k=1

ν1(D
i
k)δxi

k
(A)

= νi1(A);

that is, Π1μi = νi1. Similarly Π2μi = νi2.
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We observe that, as in the proof of Proposition 6.3, {μi} converges weakly to μ.
Finally we show that

lim
i→∞

〈μi, ci〉 = 〈μ, c〉.

As Ei ↑ X × Y and c is μ-integrable, given ε > 0 there exists an integer i1 such
that, for all i ≥ i1, we have ∫

Ec
i

c dμ < ε/6.(6.9)

Moreover, there exists i2 such that, for all i ≥ i2, we have

1/i < ε/6.(6.10)

Now, let i0 = min{i1, i2}. By (6.5), (6.6), (6.9), and (6.10) we have that for all
i ≥ i0∣∣∣∣ ∫

X×Y

c dμ−
∫
X×Y

cidμi

∣∣∣∣ =

∣∣∣∣ ∫
Ei

c dμ +

∫
Ec

i

c dμ−
∫
Ei

cidμi −
∫
Ec

i

cidμi

∣∣∣∣
=

∣∣∣∣∣
∫
Ei

c dμ +

∫
Ec

i

c dμ−
Mi+1∑
k=1

Ni+1∑
j=1

ci(x
i
k, y

i
j)μ((Ai

k ×Di
j) ∩ Ei)

−
Mi+1∑
k=1

Ni+1∑
j=1

ci(x
i
k, y

i
j)μ((Ai

k ×Di
j) ∩ Ec

i )

∣∣∣∣∣
≤ 2

∫
Ec

i

c dμ +

Mi∑
k=1

Ni∑
j=1

∫
(Ai

k
×Di

j
)∩Ei

|c(x, y) − ci(x
i
k, y

i
j)|dμ

+

Mi∑
k=1

∫
(Ai

k
×Di

Ni+1
)∩Ei

c dμ +

Mi+1∑
k=1

ci(x
i
k, y

i
Ni+1)μ((Ai

k ×Di
Ni+1) ∩ Ei)

+

Ni∑
j=1

∫
(Ai

Mi+1
×Di

j
)∩Ei

c dμ +

Ni+1∑
j=1

ci(x
i
Mi+1, y

i
j)μ((Ai

Mi+1 ×Di
j) ∩ Ei)

≤ ε/3 + (1/i)

Mi∑
k=1

Ni∑
j=1

μ((Ai
k ×Di

j) ∩ Ei)

+ 2i{μ((X ×Di
Ni+1) ∩ Ei) + μ(((Ai

Mi+1) × Y ) ∩ Ei)}
< ε/6 + 2i{μ(X × (Di

Ni+1 ∩ Π2(Ei))) + μ((Ai
Mi+1 ∩ Π1(Ei)) × Y )}

= ε/6 + 2i{ν2(D
i
Ni+1 ∩ Π2(Ei)) + ν1(A

i
Mi+1 ∩ Π1(Ei))}

≤ ε/6 + ε/3 < ε.

Step 3. We now complete the approximation procedure. We will need either one
of the following assumptions.

Assumption 6.5.

(a) X is a separable metric space.
(b) Y is a complete and separable metric space.
(c) The “cost” function c(x, y) is nonnegative, inf-compact, and continuous.
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Assumption 6.6.

(a) X is a σ-compact metric space.
(b) Y is a complete and σ-compact metric space.
(c) The “cost” function c(x, y) is nonnegative and continuous.

Finally, we state our main result, in which Nm is as in the proof of Proposition 6.3.
Theorem 6.7. If either Assumption 6.5 or Assumption 6.6 holds, then there

exists a sequence {μ∗
m} of probability measures of the form

μ∗
m = ϕ∗

m · ν1,

where ϕ∗
m is a randomization of at most Nm+1 deterministic strategies, and, moreover

(a) μ∗
m converges weakly to a probability measure μ∗,

(b) μ∗ is an optimal solution to MT, and
(c) limm→∞〈cm, μ∗

m〉 = 〈c, μ∗〉 = min(MT ), with cm = min{c,m}.
Proof. Let {νi1} and {νi2} be sequences of p.m.’s as in Proposition 6.3. Consider

the following MT problems:

MTi Minimize 〈μ, ci〉

subject to Π1μ = νi1, Π2μ = νi2, μ ≥ 0.

Now, by Theorem 6.1, for each i there exists a randomization of at most Ni + 1
deterministic strategies ϕNi+1 of the form (6.4) and such that μi = ϕNi+1 · νi1 is an
optimal solution for MTi.

The hypothesis (Assumption 6.5 or 6.6) implies that the sequence {μi} is tight;
see Lemma 2.4 and Remark 2.5 in [15]. Hence, by Prohorov’s theorem there are a
subsequence {μ∗

m} of {μi} and a p.m. μ∗ on B(X × Y ) such that {μ∗
m} converges

weakly to μ∗.
In addition, by Lemma 2.7 in [15], the marginals Πkμ

∗
m converge weakly to the

marginal Πkμ
∗ for k = 1, 2, which implies that Π1μ

∗ = ν1 and Π2μ
∗ = ν2; that is, μ∗

is a feasible solution for MT.
Suppose now that μ is an optimal solution for MT. Then by Theorem 6.4 there is

a sequence {μm} of p.m.’s on B(X × Y ) such that {μm} converges weakly to μ, and
μm is a feasible solution for MTm. Since μ is an optimal solution for MT and μ∗ is
feasible for MT, we have

〈μ, c〉 ≤ 〈μ∗, c〉.(6.11)

On the other hand, for each m, we have that

〈μm, cm〉 ≥ 〈μ∗
m, cm〉,

whereas by Theorem 6.4

〈μ, c〉 = lim
m→∞

〈μm, cm〉 ≥ lim sup
m→∞

〈μ∗
m, cm〉 ≥ 0.(6.12)

Now, pick an arbitrary ε > 0. Since cn ↑ c, there exists an integer n such that

〈μ∗, c〉 ≥ 〈μ∗, cn〉 ≥ 〈μ∗, c〉 − ε.(6.13)

For each m ≥ n we have

0 ≤ 〈μ∗
m, cn〉 ≤ 〈μ∗

m, cm〉,
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and as μ∗
m → μ∗ we obtain

〈μ∗, cn〉 = lim
m→∞

〈μm, cn〉 ≤ lim sup
m→∞

〈μ∗
m, cm〉.

Therefore, by (6.13), it follows that

〈μ∗, c〉 ≤ lim sup
m→∞

〈μ∗
m, cm〉 + ε.

Consequently, as ε was arbitrary,

〈μ∗, c〉 ≤ lim sup
m→∞

〈μ∗
m, cm〉,

which together with (6.12) gives

〈μ∗, c〉 ≤ 〈μ, c〉.(6.14)

Thus, from (6.11) and (6.14) we obtain 〈μ, c〉 = 〈μ∗, c〉; that is, μ∗ is an optimal
solution for MT.

Remark 6.8. Since the measures νi1 and νi2 have finite support, MTi is a classical
transportation problem [23, 24].

7. Concluding remarks. In the previous sections we presented two new ap-
proaches to obtain the solvability of the MT problem in metric spaces. In the first
one, we transform MT into an equivalent optimization problem, MTK, using ran-
domized strategies. In the second approach we obtain the solution of MT, and the
corresponding optimal value, as the limit of a sequence of MT problems with marginals
supported on finite sets.

The second approach requires the cost function c(x, y) to be continuous, but
this condition can be weakened. For instance, if c is l.s.c. and bounded below, say,
nonnegative, then it is the limit of a nondecreasing sequence of continuous bounded
functions cn ≥ 0. In this case, we might solve the MT problem for cn and then try to
show that, as n → ∞, in the limit we obtain the solution of the original MT problem.
Another case is the following.

Suppose that the Assumption 5.4 holds and that Y is a σ-compact space. Let
{Xl} be a countable partition of X such that each Xl is a σ-compact subspace of
X and the cost function c restricted to each Xl × Y is continuous. Without loss of
generality we may take αl := ν1(Xl) > 0 for all l = 1, 2, . . . . Let us define

νl1(B) := (1/αl)ν1(B ∩Xl) ∀B ∈ B(X), l = 1, 2, . . . .

Consider the following problem:

MTl Minimize 〈μ, c〉

subject to Π1μ = νl1, Π2μ = ν2, μ ≥ 0.

Now, for each feasible measure μ to the MT problem, we obtain the decomposition
μ =

∑
l αlμl, where μl(E) := μ(E ∩ (Xl ×Y ))/αl for E in B(X ×X) and l = 1, 2, . . . ,

and, moreover, μl is feasible for MTl.
In fact, μ is an optimal solution to MT if and only if μl is optimal to MTl for all

l ≥ 1. Hence we may apply the approximation scheme for each Xl × Y .
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1. Introduction. It is the purpose of this paper to present some optimality
conditions for constrained optimization problems under generalized convexity assump-
tions. We essentially deal with quasiconvex functions, i.e., functions whose sublevel
sets are convex. Such functions form the main class of generalized convex functions
and are widely used in mathematical economics. We do not assume that the data
of the problem are smooth. Thus, we replace the derivatives appearing in the clas-
sical results by subdifferentials. We only use the adapted subdifferentials of quasi-
convex analysis, namely the Plastria subdifferential [35] and the infradifferential or
Gutiérrez subdifferential [10]. Because these subdifferentials are useful for algorith-
mic purposes [20], [35] and have links with duality [17, Prop. 6.1], [29], [30], [31],
their use in problems in which quasiconvexity properties occur seems to be sensible,
although their calculus rules are not as rich as in the case of convex analysis [24],
[33]. In [17, Prop. 6.1] Mart́ınez-Legaz presented a result of the Kuhn–Tucker type
using these subdifferentials; in [18, Thm. 4.1] and [19, Prop. 6.3] variants of these
subdifferentials are used. In each of these results, a Slater condition and a semistrict
quasiconvexity assumption (called strict quasiconvexity in [15]) are imposed. Here
we essentially assume the functions are quasiconvex and we deduce the results from
optimality conditions for problems with set constraints. We also point out the link
with the differentiable case dealt with in the pioneer paper [1]. We do not make a
comparison with results using the all-purpose subdifferentials of nonsmooth analysis
(see [3], [22]). The reason is that these subdifferentials are local, whereas the ones we
use are of global character; intermediate notions are presented in [4], [21], and [25].
On the other hand, our necessary conditions refine conditions using normal cones or
subdifferentials related to normal cones to sublevels sets as the Greenberg–Pierskalla
subdifferential [9] as in [26]. Numerous papers deal with optimality conditions for
constrained problems under generalized convexity conditions (see [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [26], [27], [28], [29], [30], [31],
[34], [36] for example). A link with the case we are dealing with here, which is essen-
tially the quasiconvex case, could be found by assuming that the Gutiérrez or Plastria
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subdifferentials are nonempty at each point. However, we do not wish to impose such
a restrictive condition.

2. Preliminaries: Gutiérrez and Plastria functions. In what follows X is
a normed vector space (n.v.s.) with closed unit ball BX . We denote by N(C, x) the
normal cone at x ∈ X to a convex subset C of X given by

N(C, x) := {x∗ ∈ X∗ : ∀u ∈ C, 〈x∗, u− x〉 ≤ 0}.

When x ∈ C, it is the polar cone of the tangent cone T (C, x) which is the closure of
R+(C − x).

A function f : X → R∞ := R∪{+∞} is said to be quasiconvex if for each x ∈ X
its sublevel set

Sf (x) := {x ∈ X : f(x) ≤ f(x)}

is convex, or, equivalently, if for each r ∈ R the strict sublevel set S<
f (r) := {x ∈ X :

f(x) < r} is convex.
Recall that the lower subdifferential, or Plastria subdifferential of a function f :

X → R on a Banach space X at some point x of its domain dom f := {x ∈ X : f(x) ∈
R} is the set

∂<f(x) := {x∗ ∈ X∗ : ∀x ∈ S<
f (x), f(x) − f(x) ≥ 〈x∗, x− x〉},

where S<
f (x) := S<

f (f(x)) is the strict sublevel set of f at x. We will also use the
following variant, called the infradifferential [10] or Gutiérrez subdifferential :

∂≤f(x) := {x∗ ∈ X∗ : ∀x ∈ Sf (x), f(x) − f(x) ≥ 〈x∗, x− x〉}.

If no point of the level set Lf (x) := f−1(f(x)) is a local minimizer of f , we have
∂<f(x) = ∂≤f(x). If f(x) > inf f(X), this equality also holds when f is radially
continuous (i.e., continuous along lines) and semistrictly quasiconvex in the sense that
when f(x) < f(y) one has f((1− t)x+ ty) < f(y) for any t ∈ (0, 1); in particular, this
equality holds for convex continuous functions. In spite of the fact that the preceding
constructions have a close similarity with the Fenchel subdifferential, they differ by
significant features. In particular ∂<f(x) and ∂≤f(x) are unbounded or empty: it is
easy to check that they are shady in the sense that they are closed, convex, and stable
by homotheties with rate t greater than 1 since for x∗ ∈ ∂<f(x) and x ∈ S<

f (x) we

have 〈tx∗, x− x〉 ≤ 〈x∗, x− x〉 ≤ 0 and a similar observation when x∗ ∈ ∂≤f(x) and
x ∈ Sf (x).

We say that f is a Plastria function at x if its strict sublevel set S<
f (x) is convex

and such that

N(S<
f (x), x) = R+∂

<f(x).(1)

We say that f is a Gutiérrez function at x if its sublevel set Sf (x) is convex and such
that

N(Sf (x), x) = R+∂
≤f(x).(2)

Since ∂<f(x) and ∂≤f(x) are shady in the sense that they are stable under multi-
plication by any t ∈ [1,∞), relations (1) and (2) are equivalent to N(S<

f (x), x) =
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[0, 1]∂<f(x) and N(Sf (x), x) = [0, 1]∂≤f(x), respectively. These conditions being
rather stringent, it may be useful to replace f by its extension by +∞ outside some
ball (see [20] for the case of nonconvex quadratic functions). However, we provide
three criteria. The first one deals with convex transformable functions, an important
class of quasiconvex functions.

Proposition 1. Let f be a proper convex function and let x ∈ dom f := f−1(R)
be such that f(x) > inf f(X) and R+(dom f−x) = X. Then f is a Gutiérrez function
and a Plastria function at x:

N(Sf (x), x) = R+∂
≤f(x) = R+∂f(x) = R+∂

<f(x) = N(S<
f (x), x).

More generally, if f := h ◦ g, where g : R → R∞ is a convex function and
h : T→ R∞ is a strictly increasing function on some interval T of R∞ contain-
ing g(X), with h(+∞) = +∞, then f is a Gutiérrez function and a Plastria function
at x provided f(x) > inf f(X) and R+(dom f − x) = X. Moreover, R+∂

<f(x) =
R+∂

<g(x) = R+∂
≤g(x) = R+∂

≤f(x).
Proof. By [32, Prop. 5.4] one has N(Sf (x), x) = R+∂f(x); here we use the fact

that under the assumption R+(dom f − x) = X, we have N(dom f, x) = {0}. Since
R+∂f(x) ⊂ R+∂

≤f(x) ⊂ N(Sf (x), x), we get equality. Moreover, if x∗ ∈ ∂<f(x)
and x ∈ Sf (x), taking z ∈ X such that f(z) < f(x) and t ∈ (0, 1) we have xt :=
(1 − t)x + tz ∈ S<

f (x), hence

(1 − t)f(x) + tf(z) ≥ f(xt) ≥ f(x) + 〈x∗, x− x〉,

and taking the limit as t → 0, we get f(x) ≥ f(x) + 〈x∗, x− x〉, hence x∗ ∈ ∂≤f(x).
Moreover, the preceding argument shows that Sf (x) is contained in the closure of
S<
f (x), so that N(Sf (x), x) = N(S<

f (x), x).
Now let f := h ◦ g be as in the second part of the statement. Since h is (strictly)

increasing, we have Sf (x) = Sg(x), S<
f (x) = S<

g (x). Setting r := g(x), since ∂<h(r) ⊂
(0,+∞), using [33, Prop. 3.5], we have

N(S<
f (x), x) = N(S<

g (x), x) = R+∂
<g(x) = R+∂

<h(r)∂<g(x) ⊂ R+∂
<f(x),

hence equality, the reverse inclusion being obvious. The proof that f is a Gutiérrez
function at x is similar.

The second one is a slight improvement of previous results in [35], [17], [24]. It
uses the now classical notion of calmness: f : X → R is said to be calm with rate c
at w ∈ X if f(w) is finite and if

∀x ∈ X f(x) − f(w) ≥ −c ‖x− w‖ .

Such a condition is obviously satisfied if f is Lipschitzian with rate c or if f is Stepano-
vian (or stable) with rate c at w in the sense that |f(x) − f(w)| ≤ c ‖x− w‖ for any
x ∈ X.

Proposition 2. Assume that f is radially continuous on X and calm with rate
c ∈ R+ at each point of the level set Lf (x) := f−1(f(x)) and that Sf (x) and S<

f (x)
are convex. Then

N(S<
f (x), x)\cBX = ∂<f(x)\cBX ,

N(Sf (x), x)\cBX = ∂≤f(x)\cBX .
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If, moreover, N(S<
f (x), x) �= {0}, then the function f is a Plastria function at x,

while if N(Sf (x), x) �= {0}, then f is also a Gutiérrez function at x.
The condition N(Sf (x), x) �= {0} (or N(S<

f (x), x) �= {0}) is a rather mild condi-
tion when X is finite dimensional. However, when X is infinite dimensional, it may
occur that a closed convex set C �= X is such that N(C, x) = {0} for some x ∈ C\intC.

Proof. Let us first prove that whenever x∗ ∈ N ′
f (x) := N(S<

f (x), x) satisfies

‖x∗‖ := λc for some λ > 1, then x∗ ∈ ∂<f(x). Since N ′
f (x) is a cone and ∂<f(x) is

w∗-closed, this will show that N ′
f (x)\cBX ⊂ ∂<f(x)\cBX and that equality holds.

Let y∗ := c−1λ−1x∗. Given x ∈ [f < f(x)] we have by assumption t := 〈y∗, x−x〉 < 0.
Let us choose v ∈ X such that ‖v‖ ≤ λ and 〈y∗, v〉 = 1 and set w = x− x− tv. Then
〈y∗, w〉 = 0. Let us show that f(x+w) ≥ f(x). In order to do so, we pick z ∈ X such
that 〈y∗, z〉 > 0; then for any s > 0, we have 〈y∗, w+sz〉 > 0, thus f(x+w+sz) ≥ f(x).
By radial continuity, f(x + w) ≥ f(x).

Since f |[x,x+w] is continuous and f(x) < f(x) ≤ f(x + w), there exists x′ ∈
[x, x + w] such that f(x′) = f(x) and f(x′′) < f(x) for all x′′ ∈ [x, x′). Then, since
λ > 1, ‖y∗‖ = 1 and t = 〈y∗, x− x〉, we have

f(x) − f(x) = f(x) − f(x′) ≥ −c ‖x− x′‖ ≥ −c ‖x− (x + w)‖
= −c ‖tv‖ = ct ‖v‖ ≥ λc 〈y∗, x− x〉 = 〈x∗, x− x〉 .

Thus f(x) − f(x) ≥ 〈x∗, x− x〉 holds for all x ∈ [f < f(x)] and x∗ ∈ ∂<f(x).
Assume now that x∗ ∈ N(Sf (x), x) is such that ‖x∗‖ ≥ c; then x∗ ∈ N(S<

f (x), x),

hence x∗ is such that f(x)−f(x) ≥ 〈x∗, x−x〉 for each x ∈ S<
f (x), while if f(x) = f(x),

then

f(x) − f(x) = 0 ≥ 〈x∗, x− x〉 .

This proves that x∗ ∈ ∂≤f(x).
Now, given x∗ ∈ N(S<

f (x), x), x∗ �= 0, we can find r > 0 such that x∗ = rw∗ for

some w∗ ∈ N(S<
f (x), x) satisfying ‖w∗‖ ≥ c. Thus x∗ ∈ R+∂

<f(x). Since ∂<f(x)

is nonempty by what precedes, we also have 0 ∈ R+∂
<f(x), hence N(S<

f (x), x) ⊂
R+∂

<f(x). The reverse inclusion being obvious, we get N(S<
f (x), x) = R+∂

<f(x).

The equality N(Sf (x), x) = R+∂
≤f(x) is obtained similarly.

The third criterion uses a differentiability assumption and brings some supplement
to [23, Prop. 15].

Proposition 3. Let f be quasiconvex, differentiable at x with a nonzero deriva-
tive. If ∂<f(x) is nonempty, then f is a Plastria function at x and there exists some
r ≥ 1 such that ∂<f(x) = [r,∞)f ′(x). If ∂≤f(x) is nonempty, then f is a Gutiérrez
function at x and there exists some s ≥ 1 such that ∂≤f(x) = [s,∞)f ′(x).

Proof. Let us first prove that if f is quasiconvex, differentiable at x with a nonzero
derivative one has N(S<

f (x), x) = R+f
′(x). We first observe that

f ′(x)−1((−∞, 0)) ⊂ T (S<
f (x), x) ⊂ T (Sf (x), x) ⊂ f ′(x)−1((−∞, 0]).

Since f ′(x) �= 0, we can find some w ∈ X with f ′(x)w < 0. Then, for any v ∈
f ′(x)−1((−∞, 0]) and any sequence (rn) → 0+ we have

vn := v + rnw ∈ f ′(x)−1((−∞, 0)) ⊂ T (S<
f (x), x),

and since (vn) → v and T (S<
f (x), x) is closed, we get v ∈ T (S<

f (x), x). Thus

T (S<
f (x), x) = T (Sf (x), x) = f ′(x)−1((−∞, 0]). Then, the Farkas lemma ensures
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that

N(S<
f (x), x) = N(Sf (x), x) = R+f

′(x).

Let us now assume that 0 /∈ ∂<f(x) �= ∅ and let us pick some x∗ ∈ ∂<f(x). By
what precedes, for any v ∈ X such that f ′(x)v ≤ 0 we can find sequences (tn) → 0+,
(vn) → v such that f(x + tnvn) < f(x) for each n. Then we get

〈x∗, v〉 ≤ lim
n

1

tn
(f(x + tnvn) − f(x)) = f ′(x)v ≤ 0,

so that, by the Farkas lemma again, there exists some r ∈ R+ such that x∗ = rf ′(x).
In fact, the preceding inequalities (taken with some v such that f ′(x)v < 0) show that
r ≥ 1. Let r := inf{r ∈ R : ∃x∗ ∈ ∂<f(x), x∗ = rf ′(x)}. We have r ≥ 1 by what
precedes, and, by closedness of ∂<f(x), x∗ = rf ′(x) for some x∗ ∈ ∂<f(x). Thus,
∂<f(x) ⊂ [r,∞)f ′(x) and since rf ′(x) = x∗ ∈ ∂<f(x) and [1,∞)∂<f(x) ⊂ ∂<f(x),
we get ∂<f(x) = [r,∞)f ′(x). It follows that R+∂

<f(x) = R+f
′(x).

The proof for ∂≤f(x) is similar.
The following example shows that one may have r > 1.
Example 1. Let X = R and for c < 0 let f be given by f(x) = c3/3 for x ∈

(−∞, c), f(x) = x3/3 for x ≥ c. Then, for x = 1, we have ∂<f(x) = ∂≤f(x) = [r,∞)
with r = max(1, (1 + c + c2)/3).

A localization of the preceding concepts may enlarge the range of the optimality
conditions which follow. Let us define the local normal cone to C at x as

Nloc(C, x) :=
⋃
r>0

N(C ∩B(x, r), x),

where B(x, r) denotes the open ball with center x and radius r. When C is convex,
we have Nloc(C, x) = N(C, x). We also define the local Gutiérrez subdifferential and
the local Plastria subdifferential of f at x by

∂≤
locf(x) := {x∗ ∈ X∗ : ∃r > 0,∀x ∈ Sf (x) ∩B(x, r), f(x) − f(x) ≥ 〈x∗, x− x〉},

∂<
locf(x) := {x∗ ∈ X∗ : ∃r > 0,∀x ∈ S<

f (x) ∩B(x, r), f(x) − f(x) ≥ 〈x∗, x− x〉},

respectively. We say that f is locally a Plastria function at x if there exists some
r > 0 such that S<

f (x) ∩B(x, r) is convex and if

Nloc(S
<
f (x), x) = R+∂

<
locf(x).

Locally Gutiérrez functions can be defined similarly.

3. Optimality conditions for constrained problems. In the present section
we consider the minimization problem

(C) minimize f(x) subject to x ∈ C,

where f : X → R is a function on the n.v.s. X and C is a convex subset of X.
Proposition 4. Let f be an u.s.c. Plastria function at some solution x to (C)

which is not a local minimizer of f . Then one has

0 ∈ ∂<f(x) + N(C, x).(3)
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Proof. Since f is quasiconvex and u.s.c., the strict sublevel set S<
f (x) is open

and convex; it is nonempty since x is not a minimizer of f . Since x is a solution to
(C), this sublevel set is disjoint from C. Thus, the Hahn–Banach separation theorem
yields some c ∈ R and u∗ in the unit sphere of X∗ such that

〈u∗, x− x〉 ≥ c ≥ 〈u∗, w − x〉 ∀w ∈ S<
f (x),∀x ∈ C.(4)

Taking x = x, we see that c ≤ 0. Moreover, since x is not a local minimizer of f , there
exists a sequence (wn) → x such that wn ∈ S<

f (x) for each n. Therefore c = 0. Then

we have u∗ ∈ N(S<
f (x), x) = R+∂

<f(x) and since u∗ �= 0, we can find x∗ ∈ ∂<f(x)
and r ∈ R+ such that x∗ = ru∗. On the other hand, the first inequality of (4) means
that −u∗ ∈ N(C, x). Thus, x∗ + r(−u∗) = 0 and (3) is satisfied.

Example 2. The example (taken from [26]) of the function f : R → R given by
f(x) = x for x ∈ (−∞, 0), f(x) = 0 for x ∈ [0, 1], f(x) = x − 1 for x ∈ (1,+∞) and
C := R+, x = 1 shows that the assumption that x is not a local minimizer cannot be
dispensed within the preceding statement.

Now let us give a sufficient condition. Observe that no assumption is required on
f besides finiteness at x.

Proposition 5. Let f : X → R ∪ {∞} be an arbitrary function finite at x
satisfying relation (3). Then x is a solution to (C).

Proof. Let x∗ ∈ ∂<f(x) be such that −x∗ ∈ N(C, x). Assume that x is not a
solution to (C): there exists some x ∈ C such that f(x) < f(x). Then one has, by the
definitions of ∂<f(x) and N(C, x),

0 > f(x) − f(x) ≥ 〈x∗, x− x〉,
〈x∗, x− x〉 ≥ 0,

a contradiction.
Let us observe that the preceding sufficient condition can also be derived from

the one in [26, Prop. 2.1] which uses the Greenberg–Pierskalla subdifferential

∂∗f(x) := {x∗ ∈ X∗ : ∀x ∈ S<
f (x) 〈x∗, x− x〉 < 0}

since ∂<f(x) ⊂ ∂∗f(x). On the other hand, the necessary condition in Proposition 4
is more precise than the necessary condition in [26, Prop. 2.2].

A slight supplement to the preceding results can be given. It deals with strict
solutions to (C), i.e., points x ∈ C such that f(x) < f(x) for each x ∈ C\{x}.
For the sufficient condition we assume that C is strictly convex at x in the sense
that 〈x∗, x − x〉 < 0 for every x ∈ C\{x} and x∗ ∈ N(C, x)\{0}. Observe that if
N(C, x)\{0} is nonempty (in particular if C is a convex subset of a finite dimensional
space) and if C is strictly convex at x, then x is an extremal point of C (i.e., C\{x}
is convex).

Proposition 6. Given a function f : X → R ∪ {∞} finite at x and a subset
C of X which is strictly convex at x, the following relation implies that x is a strict
solution to (C) or a global minimizer of f on X:

0 ∈ ∂≤f(x) + N(C, x).(5)

Conversely, when X is finite dimensional, C is a convex subset of X not reduced
to {x}, x is an extremal point of C, and f is a Gutiérrez function at x; relation (5) is
necessary in order that x be a strict solution to (C) or a global minimizer of f on X.
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Proof. Assume relation (5) holds and C is strictly convex at x. If x is not a
global minimizer of f on X there exists some x∗ ∈ ∂≤f(x) such that −x∗ ∈ N(C, x)
and x∗ �= 0. Then, if x ∈ C\{x} is such that f(x) ≤ f(x) we have 〈x∗, x − x〉 ≤
f(x) − f(x) ≤ 0 since x∗ ∈ ∂≤f(x) and 〈−x∗, x− x〉 < 0 since −x∗ ∈ N(C, x)\{0}, a
contradiction. Thus x is a strict solution to (C).

When x is a strict solution to (C), the sets C\{x} and Sf (x) are disjoint. If,
moreover, f is a Gutiérrez function at x and x is an extremal point of C but is not a
global minimizer of f on X, and C �= {x}, then these sets are convex and nonempty.
Thus, when X is finite dimensional, a separation theorem yields some c ∈ R and u∗

in the unit sphere of X∗ such that

〈u∗, x− x〉 ≥ c ≥ 〈u∗, w − x〉 ∀w ∈ Sf (x),∀x ∈ C\{x}.(6)

Since x can be arbitrarily close to x, we have c ≤ 0. On the other hand, since we can
take w = x, we have c ≥ 0, hence c = 0. Thus −u∗ ∈ N(C, x) and u∗ ∈ N(Sf (x), x) =
R+∂

≤f(x) since f is a Gutiérrez function at x. Since u∗ �= 0, one can find r > 0 and
x∗ ∈ ∂≤f(x) such that u∗ = rx∗ and −x∗ ∈ N(C, x), so that relation (5) holds. When
x is a global minimizer of f on X, we have 0 ∈ ∂≤f(x) ∩ (−N(C, x)).

Now, let us give conditions for local minimization.
Proposition 7. Let f be an u.s.c. locally Plastria function at some local solution

x to (C) which is not a local minimizer of f . Then one has

0 ∈ ∂<
locf(x) + N(C, x).(7)

Conversely, for any function f finite at x which satisfies relation (7), x is a solution
to (C).

Proof. By assumption, we can find r > 0 such that x is a minimizer of f on
C ∩ V , where V := B(x, r). Taking a smaller r if necessary and setting fV (x) = f(x)
if x ∈ V , fV (x) = +∞ if x ∈ X\V , we may assume that fV is a Plastria function at
x. Then relation (7) follows from Proposition 4.

The converse assertion follows from the sufficient condition and from the ob-
servation that if x∗ ∈ ∂<

locf(x), then there is some neighborhood V of x such that
x∗ ∈ ∂<fV (x).

4. Necessary condition for the mathematical programming problem.
Let us consider now the case in which the constraint set C is defined by a finite
family of inequalities, so that problem (C) turns into the mathematical programming
problem

minimize f(x) subject to x ∈ C := {x ∈ X : g1(x) ≤ 0, . . . , gn(x) ≤ 0}.(M)

Let us first consider the case of a single constraint.
Lemma 8. Let x be a solution to (M) in which g1 = · · · = gn = g and x is not a

local minimizer of f . Assume that f is a Plastria function at x and that g is u.s.c. at
x and a Gutiérrez function at x. Then g(x) = 0 and there exists some y ∈ R+ such
that

0 ∈ ∂<f(x) + y∂≤g(x).

Proof. By Proposition 4, there exists x∗ ∈ ∂<f(x) such that −x∗ ∈ N(C, x).
If g(x) < 0, since g is u.s.c. at x, x belongs to the interior of C, hence x is a local
minimizer of f , and our assumption discards that case. Thus g(x) = 0, and since g is
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a Gutiérrez function at x, we have N(C, x) = R+∂
≤g(x). Thus there exists y ∈ R+

such that −x∗ ∈ y∂≤g(x).
Now let us turn to the general case. We will use the following lemma.
Lemma 9. Let (gi)i∈I be a finite family of quasiconvex Gutiérrez functions at

some x ∈ X. For i ∈ I, let Ci := g−1
i ((−∞, 0]). Assume gi is u.s.c. at x, gi(x) = 0

for each i ∈ I and either
(a) there exist some k ∈ I and some z ∈ Ck such that gi(z) < 0 for each i ∈ I\{k}

(Slater condition), or
(b) Ci is closed for each i ∈ I and R+ (Δ−

∏
i∈I Ci

)
= XI , where Δ := {(xi)i∈I :

∀j, k ∈ I, xj = xk} is the diagonal of XI .
Then, h := maxi∈I gi is a Gutiérrez function at x and one has

R+∂
≤h(x) =

∑
i∈I

R+∂
≤gi(x).(8)

Proof. In case (a) we have Ck ∩
(⋂

i∈I\{k} intCi

)
�= ∅; hence, for C :=

⋂
i∈I Ci,

we get

N(C, x) = co

(⋃
i∈I

N(Ci, x)

)
=

∑
i∈I

N(Ci, x).

In case (b), this relation also holds by the Attouch–Brézis qualification condition [2].
Thus, since ∂≤gi(x) ⊂ ∂≤h(x) and ∂≤h(x) is convex,

R+∂
≤h(x) ⊂ N(C, x) =

∑
i∈I

N(Ci, x) =
∑
i∈I

R+∂
≤gi(x) ⊂ R+∂

≤h(x),

so that h is a Gutiérrez function at x and relation (8) holds.
Theorem 10. Let x be a solution to (M) which is not a local minimizer of f .

Let I := {i ∈ {1, . . . , n} : gi(x) = 0}. Assume that one of the assumptions (a) or (b)
of Lemma 9 is satisfied. Assume that f is a Plastria function at x, g1, . . . , gn are
u.s.c. at x and that for every i ∈ I, gi is a Gutiérrez functions at x. Then, there exist
some y1, . . . , yn ∈ R+ such that

0 ∈ ∂<f(x) + y1∂
≤g1(x) + · · · + yn∂

≤gn(x),

yigi(x) = 0 for i = 1, . . . , n.

Proof. Let g := max1≤i≤n gi, h := maxi∈I gi, and let D := h−1((−∞, 0]). Then,
for i ∈ {1, . . . , n}\I, the point x belongs to the interior of Ci := g−1

i ((−∞, 0]), so that
for any x ∈ C := g−1((−∞, 0]) and any t > 0 small enough we have x+ t(x−x) ∈ D.
It follows that N(D,x) = N(C, x). By Proposition 4 there exists some x∗ ∈ ∂<f(x)
such that −x∗ ∈ N(D,x) = N(C, x). Now h is u.s.c. at x and is a Gutiérrez function
at x by Lemma 9. Then, by relation (8), there exist yi ∈ R+, y∗i ∈ ∂≤gi(x) such that
−x∗ = y1y

∗
1 + · · · + yny

∗
n and the result is proven.

Proposition 1 shows that the preceding statement encompasses the classical result
for convex mathematical programming. The next example illustrates the theorem;
note that since the function f is not semistrictly quasiconvex [17, Prop. 6.1] and [19,
Prop. 6.3] cannot be applied.

Example 3. Let f be as in Example 2 with X := R and let g1 be given by
g1(x) := −x. Then f and g1 are Gutiérrez and Plastria functions at x = 0 and x
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is not a local minimizer of f . Moreover, the Slater condition is satisfied at x. We
can take y1 = 1 as a multiplier since ∂<f(x) = [1,+∞) and ∂≤g1(x) = (−∞,−1],
g1(x) = 0.

A link with the classical Karush, Kuhn, and Tucker theorem is delineated in the
next statement.

Corollary 11. Assume the hypothesis of the preceding proposition are satisfied
and that f, g1, . . . , gn are differentiable at x with nonzero derivatives. Then there exist
some λ1, . . . , λn ∈ R+ such that

f ′(x) + λ1g
′
1(x) + · · · + λng

′
n(x) = 0,

λigi(x) = 0 for i = 1, . . . , n.

Proof. By Proposition 3 and the preceding result, there exist some r ≥ 1, yi ∈ R+

and some y∗i ∈ ∂≤gi(x) for i = 1, . . . , n such that

rf ′(x) + y1y
∗
1 + · · · + yny

∗
n = 0;

also y∗i = sig
′
i(x) for some si ≥ 1. Setting λi = r−1siyi, we get the result.

Let us give a simple sufficient condition for the mathematical programming prob-
lem (M).

Theorem 12. If x ∈ C is such that there exist yi ∈ R+ for i = 1, . . . , n such
that the following conditions are satisfied, then x is a solution to problem (M):

0 ∈ ∂<f(x) + y1∂
≤g1(x) + · · · + yn∂

≤gn(x),

g1(x) ≤ 0, . . . , gn(x) ≤ 0,

y1g1(x) = 0, . . . , yngn(x) = 0.

Proof. Suppose to the contrary that there exists some x ∈ C such that f(x) <
f(x). Let I(x) := {i ∈ {1, . . . , n} : gi(x) = 0}. Let x∗ ∈ ∂<f(x), x∗

i ∈ ∂≤gi(x) for
i = 1, . . . , n be such that

0 = x∗ + y1x
∗
1 + · · · + ynx

∗
n = x∗ +

∑
i∈I(x)

yix
∗
i .

Since f(x) < f(x), gi(x) ≤ 0 = gi(x) for i ∈ I(x), by the definitions of ∂<f(x),
∂≤gi(x) we have

〈x∗, x− x〉 ≤ f(x) − f(x),

〈x∗
i , x− x〉 ≤ gi(x) − gi(x), i ∈ I(x).

Multiplying each side of the last inequality by yi and adding the obtained sides to the
ones of the preceding relation, we get

0 = 〈x∗, x− x〉 +
∑

i∈I(x)

yi〈x∗
i , x− x〉

≤ f(x) − f(x) +
∑

i∈I(x)

yi (gi(x) − gi(x)) ≤ f(x) − f(x),

a contradiction.
Example 4. Let X, x, f , and g1 be as in Example 3. Then, since y1 := 1 is a

multiplier we get that x is a solution to problem (M).
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Abstract. Quantitative stability of linear multistage stochastic programs is studied. It is shown
that the infima of such programs behave (locally) Lipschitz continuous with respect to the sum of an
Lr-distance and of a distance measure for the filtrations of the original and approximate stochastic
(input) processes. Various issues of the result are discussed and an illustrative example is given.
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1. Introduction. We consider a finite horizon sequential decision process under
uncertainty, in which a decision made at t is based only on information available at t
(1 ≤ t ≤ T ). We assume that the information is given by a discrete time multivariate
stochastic process {ξt}Tt=1 defined on some probability space (Ω,F ,P) and with ξt
taking values in Rd. The information available at t consists of the random vector
ξt := (ξ1, . . . , ξt), and the stochastic decision xt at t varying in Rmt is assumed to
depend only on ξt. The latter property is called nonanticipativity and is equivalent
to the measurability of xt with respect to the σ-field Ft ⊆ F , which is generated by
ξt. Hence, we have Ft ⊆ Ft+1 for t = 1, . . . , T − 1 and we assume that F1 = {∅,Ω},
i.e., ξ1 and x1 are deterministic and, with no loss of generality, that FT = F .
More precisely, we consider the following linear multistage stochastic program:

min

⎧⎨⎩E

[
T∑

t=1

〈bt(ξt), xt〉
] ∣∣∣∣∣∣

xt ∈ Xt,
xt is Ft-measurable, t = 1, . . . , T,
At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T

⎫⎬⎭ ,(1.1)

where the subsets Xt of Rmt are nonempty, closed, and polyhedral; the cost coefficients
bt(ξt) belong to Rmt ; the right-hand sides ht(ξt) are in Rnt ; At,0 are fixed (nt,mt)-
matrices; and At,1(ξt) are (nt,mt−1)-matrices, respectively. We assume that bt(·),
ht(·), and At,1(·) depend affinely linearly on ξt covering the situation that some of the
components of bt and ht, and of the elements of At,1 are random.

The challenge of multistage models consists in the presence of two groups of en-
tirely different constraints, namely of measurability and of pointwise constraints for
the decisions xt. This fact does not lead to consequences in the two-stage situation
(T = 2). In general, however, it is the origin of both the theoretical and computa-
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tional challenges of multistage models. In the present paper, it produces the essential
difference of quantitative stability estimates compared to the two-stage case.

When solving multistage models computationally, the first step consists of ap-
proximating the stochastic process ξ = {ξt}Tt=1 by a process having finitely many
scenarios that exhibit tree structure and have its root at the fixed element ξ1 of Rd

(see the survey [4] for further information). In this way, both the random vectors
ξt and the σ-fields Ft are approximated at each t. This process finally leads to lin-
ear programming models that are very large scale in most cases and may be solved
by decomposition methods that exploit specific structures of the model (see [31] for
additional background). In order to reduce the model dimension, it might be desir-
able to reduce the originally designed tree. The approaches to scenario reduction in
[5, 11] and to scenario tree generation in [21, 14, 10] make use of probability metrics,
i.e., of metric distances on spaces of probability measures, where the metrics are se-
lected such that the optimal values of original and approximate stochastic program
are close if the distance of the original probability distribution P = L(ξ) of ξ and its
approximation Q is small.

Such quantitative stability results are well developed for two-stage models (cf.
the survey [28]). It turned out that distances of probability measures are relevant
which are given by certain Monge–Kantorovich mass transportation problems. Such
problems are of the form

inf
{∫

Ξ×Ξ

c(ξ, ξ̃)η(dξ, dξ̃) : η ∈ P(Ξ × Ξ), π1η = P, π2η = Q
}
,(1.2)

where Ξ is a closed subset of some Euclidean space, π1 and π2 denote the projections
onto the first and second components, respectively, c is a nonnegative, symmetric, and
continuous cost function and P and Q belong to a set Pc(Ξ) of probability measures
on Ξ, where all integrals are finite. Two types of cost functions have been used in
stability analysis of stochastic programs [5, 29], namely,

c(ξ, ξ̃) := ‖ξ − ξ̃‖r (ξ, ξ̃ ∈ Ξ)(1.3)

and

c(ξ, ξ̃) := max{1, ‖ξ − ξ0‖r−1, ‖ξ̃ − ξ0‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ)(1.4)

for some r ≥ 1 and ξ0 ∈ Ξ. In both cases, the set Pc(Ξ) may be chosen as the set
Pr(Ξ) of all probability measures on Ξ having absolute moments of order r. The cost
(1.3) leads to Lr-minimal metrics �r [25], which are defined by

�r(P,Q) := inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖rη(dξ, dξ̃) |η ∈ P(Ξ × Ξ), π1η = P, π2η = Q

} 1
r

(1.5)

and sometimes also called Wasserstein metrics of order r [9]. The mass transportation
problem (1.2) with cost (1.4) defines the Monge–Kantorovich functionals μ̂r [22, 24].
A variant of the functional μ̂r appears if, in its definition by (1.2), the conditions
η ∈ P(Ξ × Ξ), π1η = P, π2η = Q are replaced by η being a finite measure on Ξ × Ξ

such that π1η − π2η = P − Q. The corresponding functionals
◦
μr are smaller than

μ̂r and turn out to be metrics on Pr(Ξ). They are called Fortet–Mourier metrics of
order r [8, 22]. The convergence of sequences of probability measures, with respect to

both metrics �r and
◦
μr, is equivalent to their weak convergence and the convergence
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of their rth order absolute moments. For r = 1 we have the identity
◦
μ1= μ̂1 = �1 and

the corresponding metric is also called Kantorovich distance. Two-stage models are
known to behave stable with respect to Fortet–Mourier metrics [23].

Much less is known, however, of the multistage case. The present paper may be
regarded as an extension of the quantitative analysis in [7], which considers a less
general probabilistic setup and assumes implicitly that the filtrations of the original
and approximate stochastic processes coincide. The paper [19] and the recent work
[20] provide (qualitative) convergence results of approximations and [16, 32] deal with
empirical estimates in multistage models. In the recent paper [34] the role of proba-
bility metrics for studying stability of multistage models is questioned critically. An
example is given showing that closeness of original and approximate probability dis-
tributions in terms of some probability metric is not sufficient for the infima to be
close in general. The recent thesis [1] focuses precisely on the question of information
in stochastic programs. The conclusions of this work do not address stability, but
only discretization of multistage stochastic programs. They illuminate the role which
should be played by σ-field distances in order to obtain a consistent discretization of
such programs.

The main result of the present paper (Theorem 2.1) provides stability of infima of
the multistage model (1.1) with respect to a sum of the Lr-norm and of a distance of
the information structures, i.e., the filtrations of σ-fields, of the original and approxi-
mate stochastic (input) processes. Hence, it enlightens the corresponding arguments
in [34]. Several comments are given on the stability result, its assumptions, the fil-
tration distance, and on the choice of the underlying probability space if the original
and approximate (input) probability distributions are given in practical models. Fur-
thermore, we provide an illustrative example which shows that the filtration distance
is indispensable for stability (Example 2.6). Finally, some consequences for designing
scenario reduction schemes in multistage models are discussed.

2. Stability of multistage models. Under weak hypotheses, the program (1.1)
can be equivalently reformulated as a minimization problem for the deterministic first
stage decision x1 (see [31, Chapter 1] or [6, 26] for example). It is of the form

min
{

E[f(x1, ξ)] =

∫
Ξ

f(x1, ξ)P (dξ) : x1 ∈ X1

}
,(2.1)

where Ξ is a closed subset of RTd containing the support of the probability distribution
P of ξ, and f is an integrand on Rm1×Ξ given by the dynamic programming recursion

f(x1, ξ) := Φ1(x1, ξ
1) = 〈b1(ξ1), x1〉 + Φ2(x1, ξ

2),(2.2)

Φt(x1, . . . , xt−1, ξ
t) := inf

{
〈bt(ξt), xt〉 + E

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
: xt ∈ Xt,

xt is Ft-measurable, At,0xt + At,1(ξt)xt−1 = ht(ξt)
}

(t = 2, . . . , T ),

ΦT+1(x1, . . . , xT , ξ
T+1) := 0.

Using the representation (2.2) of the integrand f for T = 2 quantitative stability
results are proved in [23, 28] with respect to Fortet–Mourier metrics of probability
distributions and earlier in [29] with respect to Lr-minimal metrics. For T > 2, how-
ever, the integrand f depends on conditional expectations with respect to the σ-fields
Ft and, hence, on the underlying probability measure P in a nonlinear way. Conse-
quently, the methodology for studying quantitative stability properties of stochastic
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programs of the form (2.1) developed in [23, 28] does not apply to multistage models
in general.

An alternative for studying stability of multistage models consists in considering
them as optimization problems in functional spaces (see also [18, 26]), where the

Banach spaces Lr′(Ω,F ,P; Rm) with m =
∑T

t=1 mt and endowed with the norm

‖x‖r′ :=

(
T∑

t=1

E[‖xt‖r
′
]

) 1
r′

for r′ ≥ 1 and ‖x‖∞ := max
t=1,...,T

ess sup ‖xt‖

are appropriate. Here, the stochastic input process ξ belongs to Lr(Ω,F ,P; Rs) for
some r ≥ 1 and s := Td, and r′ is defined by

r′ :=

⎧⎪⎪⎨⎪⎪⎩
r

r−1 if only costs are random,

r if only right-hand sides are random,
r = 2 if only costs and right-hand sides are random,
∞ if all technology matrices are random and r = T.

The number r corresponds to the order of (absolute) moments of ξ that are required
to exist. The definition of the numbers r′ implies that the objective function is well
defined and finite. In the third case it may alternatively be required that the costs
bt(ξt) have finite moments of order r̂ ≥ 1. Then we choose r′ := r̂

r̂−1 and require that
ht(ξt) belongs to Lr′ .

Let us introduce some notations. Let F denote the objective function defined on
Lr(Ω,F ,P; Rs) × Lr′(Ω,F ,P; Rm) → R by F (ξ, x) := E[

∑T
t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the tth feasibility set for every t = 2, . . . , T , and

X (ξ) := {x ∈ ×T
t=1Lr′(Ω,Ft,P; Rmt)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt), t = 2, . . . , T}

denote the set of feasible elements of the stochastic program (1.1) with input ξ. Then
the stochastic program (1.1) may be rewritten in the form

min{F (ξ, x) : x ∈ X (ξ)}.(2.3)

Let v(ξ) denote the optimal value of (2.3) and let, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + α}

denote its α-level set. The following conditions are imposed on (2.3).
(A1) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F ,P; Rs) with ‖ξ̃−ξ‖r ≤ δ,

any t = 2, . . . , T and any x1 ∈ X1, xτ ∈ Lr′(Ω,Ft,P; Rmτ ) with xτ ∈ Xτ (xτ−1; ξ̃τ ),
τ = 2, . . . , t − 1, the tth feasibility set Xt(xt−1; ξ̃t) is nonempty (relatively complete
recourse locally around ξ).

(A2) The optimal values v(ξ̃) of (2.3) with input ξ̃ are finite for all ξ̃ in a neigh-
borhood of ξ and the objective function F is level-bounded locally uniformly at ξ, i.e.,
for some α > 0 there exists a δ > 0 and a bounded subset B of Lr′(Ω,F ,P; Rm)
such that lα(F (ξ̃, ·)) is nonempty and contained in B for all ξ̃ ∈ Lr(Ω,F ,P; Rs) with
‖ξ̃ − ξ‖r ≤ δ.

(A3) ξ ∈ Lr(Ω,F ,P; Rs) for some r ≥ 1.
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To state our main result we introduce the distance Df(ξ, ξ̃) of the filtrations of ξ
and its approximation (or perturbation) ξ̃, respectively. It is defined by

Df(ξ, ξ̃) := sup
ε∈(0,α]

Df,ε(ξ, ξ̃)(2.4)

and Df,ε(ξ, ξ̃) denotes the ε-filtration distance given by

Df,ε(ξ, ξ̃) := inf

T−1∑
t=2

max{‖xt − E[xt|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′},(2.5)

where the infimum is taken with respect to all x ∈ lε(F (ξ, ·)) and x̃ ∈ lε(F (ξ̃, ·)),
respectively, i.e., with respect to all feasible decisions belonging to the ε-level sets of
the original and perturbed programs. Furthermore, Ft and F̃t, t = 1, . . . , T , denote
the filtrations of ξ and ξ̃, respectively.

Now, we are ready to state our main stability result for multistage stochastic
programs.

Theorem 2.1. Let (A1), (A2), and (A3) be satisfied and X1 be bounded. Then
there exists positive constants L, α, and δ such that the estimate

|v(ξ) − v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))(2.6)

holds for all random elements ξ̃ ∈ Lr(Ω,F ,P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.
Proof. Let Mt denote the set-valued mappings u �→ {x ∈ Rmt |At,0x = u, x ∈

Xt} from Rnt to Rmt for t = 2, . . . , T . The mappings have polyhedral graph and,
hence, are Lipschitz continuous with respect to the Hausdorff distance on their domain
domMt ⊆ Rnt [27, Example 9.35]. Hence, there exist positive constants lt such that
we have

sup
x∈Mt(ū)

d(x,Mt(ũ)) ≤ lt‖ū− ũ‖(2.7)

for all ū, ũ ∈ domMt, where d(x,C) denotes the distance of x to a nonempty set C
in Rmt .

Now, let α > 0 and δ > 0 be selected as in (A1) and (A2). Let ε ∈ (0, α],
ξ̃ ∈ Lr(Ω,F ,P; Rs) be such that ‖ξ̃ − ξ‖r < δ and v(ξ̃) ∈ R, and let x̄ ∈ lε(F (ξ, ·)).
By F̃t we denote the σ-field generated by ξ̃t := (ξ̃1, . . . , ξ̃t) for t = 1, . . . , T . Now,
we show recursively the existence of constants L̂t > 0 and of elements x̃t belonging
to the appropriate spaces Lr′ (Ω, F̃t,P; Rmt) for each t = 1, . . . , T such that x̃t ∈ Xt,

t = 1, . . . , T , At,0x̃t + At,1(ξ̃t)x̃t−1 = ht(ξ̃t), t = 2, . . . , T , and that

‖E[x̄t|F̃t] − x̃t‖

can be estimated recursively with respect to t. Let t = 1, we then set x̃1 := x̄1 and
L̂1 := 1. For t > 1, we assume that L̂t−1 and x̃t−1 have already been constructed,
set ūt := ht(ξt) −At,1(ξt)x̄t−1, ũt := ht(ξ̃t) −At,1(ξ̃t)x̃t−1 and consider the following
set-valued mappings from Ω to Rmt given by

ω → Mt(ũt(ω)) and ω → arg min
x∈Mt(ũt(ω))

‖E[x̄t|F̃t](ω) − x‖.

Both are measurable with respect to the σ-field F̃t due to the measurability of x̃t−1

with respect to F̃t−1 and well-known measurability results for set-valued mappings
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(e.g., [27, Theorem 14.36]). In addition, the set-valued mapping ω → Mt(ũt(ω)) is
nonempty-valued due to (A1). Hence, by appealing to [27, Theorem 14.37] there
exists a F̃t-measurable selection x̃t of the second mapping. Since E[x̄t|F̃t] belongs to
Mt(E[ūt|F̃t]), (2.7) provides the estimate

‖E[x̄t|F̃t] − x̃t‖ ≤ lt‖E[ūt|F̃t] − ũt‖
≤ lt(‖E[ht(ξt)|F̃t] − ht(ξ̃t)‖ + ‖E[At,1(ξt)x̄t−1|F̃t] −At,1(ξ̃t)x̃t−1‖)
≤ lt(Kt‖E[ξt|F̃t] − ξ̃t‖ + ‖E[At,1(ξt)x̄t−1 −At,1(ξ̃t)x̄t−1|F̃t]‖

+‖At,1(ξ̃t)‖‖E[x̄t−1|F̃t] − x̃t−1‖)
≤ ltK̄t(‖E[ξt − ξ̃t|F̃t]‖ + E[‖ξt − ξ̃t‖‖x̄t−1‖|F̃t]

+ max{1, ‖ξ̃t‖}(‖E[x̄t−1 − E[x̄t−1|F̃t−1]|F̃t]‖
+‖E[x̄t−1|F̃t−1] − x̃t−1‖)),

where Kt and K̄t are certain positive constants, the affine linearity of ht(·) and At,1(·)
and Jensen’s inequality is used for the second summand. Clearly, we have ‖ξ̃τ‖ ≤
C‖ξ̃t‖ with some constant C for all τ = 2, . . . , t, t = 2, . . . , T , and the corresponding
norms in Rd and Rtd. Using Jensen’s inequality also in the first and third summand
of the latter estimate we obtain recursively

‖E[x̄t|F̃t] − x̃t‖ ≤ L̂t

( t∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[(1 + ‖x̄τ−1‖)‖ξτ − ξ̃τ‖ |F̃τ ](2.8)

+

t−1∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[‖x̄τ − E[x̄τ |F̃τ ]‖ |F̃τ+1]
)

with some positive constant L̂t for t = 2, . . . , T . Note that the sum on the right-hand
side of (2.8) disappears if only costs are random. The max-terms in (2.8) and the
norms ‖xτ−1‖ in (2.8) vanish if the technology matrices are not random. Inserting x̄
and x̃ into the objective function we obtain

v(ξ̃) − v(ξ) ≤ F (ξ̃, x̃) − F (ξ, x̄) + ε.(2.9)

In case of only right-hand sides being random we continue (2.9) using (2.8) and obtain

v(ξ̃) − v(ξ) ≤
T∑

t=2

E[〈bt,E[x̃t − x̄t|F̃t]〉] + ε ≤
T∑

t=2

‖bt‖E[‖x̃t − E[x̄t|F̃t]‖] + ε

≤ L̂

T∑
t=2

E

[ t∑
τ=2

E[‖ξτ − ξ̃τ‖|F̃τ ] +

t−1∑
τ=2

E[‖x̄τ − E[x̄τ |F̃τ ]‖|F̃τ+1]
]

+ ε

≤ L̂TE

[ T∑
t=2

‖ξt − ξ̃t‖ +

T−1∑
τ=2

‖x̄τ − E[x̄τ |F̃τ ]‖
]

+ ε

≤ L̂T
(
‖ξ − ξ̃‖r +

T−1∑
τ=2

‖x̄τ − E[x̄τ |F̃τ ]‖r
)

+ ε,

where L̂ := maxt=1,...,T L̂t‖bt‖. If costs are random, we obtain the estimate

v(ξ̃) − v(ξ) ≤ F (ξ̃, x̃) − F (ξ̃, x̄) + F (ξ̃, x̄) − F (ξ, x̄) + ε
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≤ E

[ T∑
t=2

〈bt(ξ̃t),E[x̃t − x̄t|F̃t]〉
]

+ E

[ T∑
t=1

〈bt(ξ̃t) − bt(ξt), x̄t〉
]

+ ε

≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖ +

T∑
t=1

‖ξ̃t − ξt‖‖x̄t‖
]

+ ε(2.10)

with some positive constant K̂. In case of only costs being random, i.e., r′ = r
r−1 , we

continue with

v(ξ̃) − v(ξ) ≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖
]

+ K̂‖ξ̃ − ξ‖r‖x̄‖r′ + ε

≤ K̂E

[ T∑
t=2

max{1, ‖ξ̃t‖}‖x̃t − E[x̄t|F̃t]‖
]

+ K‖ξ̃ − ξ‖r + ε,

where Hölder’s inequality and the boundedness of ‖x̄‖r′ according to (A2) were used
leading to some constant K > 0. Using the estimate (2.8), we conclude that

v(ξ̃) − v(ξ) ≤ L
(
‖ξ̃ − ξ‖r +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖r′
)

+ ε,

where Hölder’s inequality and the fact that ξ̃ varies in a bounded set in Lr were used
leading to some constant L > 0 (depending on ξ).

Next, we consider the case r = r′ = 2. Starting from (2.10) we use the Cauchy–
Schwarz inequality and obtain

v(ξ̃) − v(ξ) ≤ K̂
[( T∑

t=2

E[max{1, ‖ξ̃t‖2}]
) 1

2
( T∑

t=2

E[‖x̃t − E[x̄t|F̃t]‖2]
) 1

2

+‖ξ̃ − ξ‖2‖x̄‖2

]
+ ε

≤
(
‖ξ̃ − ξ‖2 +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖2

)
+ ε

with some constant L > 0 (depending on ξ) due to (2.8), (A2), and the fact that ξ̃
varies in some bounded set in L2.

Finally, we consider the situation that costs, right-hand sides, and technology
matrices are random, i.e., r = T and r′ = ∞. In this case, the estimate (2.8) attains
the form

‖E[x̄t|F̃t] − x̃t‖ ≤ L̂t

( t∑
τ=2

max{1, ‖ξ̃t‖t−τ}E[‖ξτ − ξ̃τ‖ |F̃τ ]

+

t−1∑
τ=2

max{1, ‖ξ̃t‖t−τ}‖x̄τ − E[x̄τ |F̃τ ]‖∞
)
.

Now, we start again from (2.10) and use the latter estimate and obtain

v(ξ̃) − v(ξ) ≤ L̂E

[ T∑
t=2

( t∑
τ=2

max{1, ‖ξ̃t‖t+1−τ}E[‖ξτ − ξ̃τ‖ |F̃τ ]
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+

t−1∑
τ=2

max{1, ‖ξ̃t‖t+1−τ}‖x̄τ − E[x̄τ |F̃τ ]‖∞
)

+

T∑
t=1

‖ξ̃t − ξt‖
]

+ ε

≤ L̃E

[ T∑
t=2

max{1, ‖ξ̃t‖t−1}E[‖ξt − ξ̃t‖ |F̃t]
]

(2.11)

+

T−1∑
t=2

E[max{1, ‖ξ̃t‖t−1}]‖x̄t − E[x̄t|F̃t]‖∞ + ‖ξ̃ − ξ‖1 + ε

≤ L̄E[max{1, ‖ξ̃‖T }]
(
‖ξ − ξ̃‖T +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖∞
)

+ ε,

where L̂, L̃, L̄ are certain positive constants and Hölder’s inequality was used. Since
ξ̃ varies in a bounded subset of LT , there exists a constant L > 0 (depending on ξ)
such that

v(ξ̃) − v(ξ) ≤ L
(
‖ξ − ξ̃‖r +

T−1∑
t=2

‖x̄t − E[x̄t|F̃t]‖r′
)

+ ε,(2.12)

where r = T and r′ = ∞. Hence, an estimate of the form (2.12) is obtained in all
cases. Changing the role of ξ and ξ̃ leads to an estimate of the form

v(ξ) − v(ξ̃) ≤ L
(
‖ξ − ξ̃‖r +

T−1∑
t=2

‖x̃t − E[x̃t|Ft]‖r′
)

+ ε.(2.13)

We note that the second summands in the estimates (2.12) and (2.13) are bounded
by

T−1∑
t=2

max{‖x̄t − E[x̄t|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′}.(2.14)

Since the estimates (2.12) and (2.13) are valid for all x̄ ∈ lε(F (ξ, ·)) and x̃ ∈ lε(F (ξ̃, ·)),
we arrive at the estimate

|v(ξ) − v(ξ̃)| ≤ L
(
‖ξ − ξ̃‖r + Df,ε(ξ, ξ̃)

)
+ ε ≤ L

(
‖ξ − ξ̃‖r + sup

ε∈(0,α]

Df,ε(ξ, ξ̃)
)

+ ε.

Finally, it remains to take the infimum of the right-hand side with respect to ε > 0
and the proof is complete.

Remark 2.2. A sufficient condition for (A1) to hold is the complete fixed recourse
condition on all matrices At,0, i.e., the sets Xt are polyhedral cones and At,0Xt = Rnt

holds for t = 2, . . . , T . Assumption (A2) on the locally uniform level-boundedness
of the objective function F is quite standard in perturbation results for optimization
problems (see, e.g., [27, Theorem 1.17]). The finiteness condition for the optimal val-
ues is needed because it is not implied by the level-boundedness of F for all relevant
pairs (r, r′). In the case that Ω is finite or 1 < r′ < ∞, the existence of solutions
of (2.3) (and, thus, the finiteness of v(ξ)) is a simple consequence of the compact-
ness or the weak sequential compactness of lα(F (ξ, ·)) in the reflexive Banach space
Lr′(Ω,F ,P; Rm) and of the linearity of the objective. Then the filtration distance is
of the form

Df(ξ, ξ̃) = inf
{ T−1∑

t=2

Dt(ξ, ξ̃) : x ∈ l0(F (ξ, ·)), x̃ ∈ l0(F (ξ̃, ·))
}
,(2.15)
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where Dt(ξ, ξ̃) is defined by

Dt(ξ, ξ̃) := max{‖xt − E[xt|F̃t]‖r′ , ‖x̃t − E[x̃t|Ft]‖r′}(2.16)

= max{‖xt − E[xt|ξ̃1, . . . , ξ̃t]‖r′ , ‖x̃t − E[x̃t|ξ1, . . . , ξt]‖r′}.

Remark 2.3. In practical situations, the available knowledge on the stochastic in-
put consists in (partial or complete) information on its probability distribution. Which
probability space should be selected? A natural answer certainly is: Take a probability
space where the Lr-distance ‖ξ−ξ̃‖r and the Lr′ -distances ‖xt−E[xt|ξ̃1, . . . , ξ̃t]‖r′ and
‖x̃t −E[x̃t|ξ1, . . . , ξt]‖r′ , t = 2, . . . , T − 1, are minimal. Let us explain this minimality
condition in case of the Lr-distance ‖ξ− ξ̃‖r. Let P and Q in Pr(Ξ) be the probability
distributions of ξ and ξ̃. Then there exists an optimal solution η∗ ∈ P(Ξ × Ξ) of the
mass transportation problem (1.5) [22, Theorem 8.1.1], i.e.,

�rr(P,Q) =

∫
Ξ×Ξ

‖ξ − ξ̃‖rη∗(dξ, dξ̃),

where π1η
∗ = P and π2η

∗ = Q. Furthermore, there exists a probability space
(Ω′,F ′,P′) and an optimal coupling, i.e., a pair (ξ′(·), ξ̃′(·)) of Ξ-valued random el-
ements defined on it, such that the probability distribution of (ξ′(·), ξ̃′(·)) is just η∗

[22, Theorem 2.5.1]. In particular, we have that the distance in Lr(Ω
′,F ′,P′; Rs) is

just the Lr-minimal distance of the probability distributions, i.e.,

�r(P,Q) = ‖ξ′(·) − ξ̃′(·)‖r.

In the same way, the relevant minimal Lr′ -distances ‖xt − E[xt|ξ̃1, . . . , ξ̃t]‖r′ and
‖x̃t−E[x̃t|ξ1, . . . , ξt]‖r′ correspond to the �r′ -distance of the probability distributions
of x(t) and E[xt|ξ̃1, . . . , ξ̃t], and of x̃(t) and E[x̃t|ξ1, . . . , ξt], respectively.

Remark 2.4 (stability of first-stage solutions). Using the same technique as for
proving [28, Theorem 9], the continuity property of infima in Theorem 2.1 can be
supplemented by a quantitative stability property of the solution set S(ξ) of (2.1),
i.e., of the set of first stage solutions. Namely, there exists a constant L̂ > 0 such that

sup
x∈S(ξ̃)

d(x, S(ξ)) ≤ Ψ−1
ξ (L̂(‖ξ − ξ̃‖r + Df(ξ, ξ̃))),(2.17)

where Ψξ(τ) := inf
{

E[f(x1, ξ)] − v(ξ) : d(x1, S(ξ)) ≥ τ, x1 ∈ X1

}
with Ψ−1

ξ (α) :=

sup{τ ∈ R+ : Ψξ(τ) ≤ α} (α ∈ R+) is the growth function of the original problem
(2.1) near its solution set S(ξ). The boundedness condition for X1 in Theorem 2.1
can be relaxed to the assumption that the set S(ξ) is bounded. In the latter case a
version of (2.6) is derived that contains localized optimal values. Then the estimate
(2.6) is valid whenever its right-hand side is sufficiently small.

Remark 2.5 (convergence of filtrations). This remark aims at precising the link
between the filtration distance (2.4) and previous work on convergence of information.
A distance between σ-fields was introduced in [2]. It metrizes a topology called uni-
form topology on the set of σ-fields. Due to the work of [30] and [17], this distance
reads, for all B,B′ sub-σ-fields of F

dB(B,B′) := sup
f∈Φ

‖E[f |B] − E[f |B′]‖1,(2.18)

with Φ the set of all F-measurable functions f such that for all ω ∈ Ω, ‖f(ω)‖ ≤ 1.
Thanks to [15], a filtration can be said to converge to another one if and only if
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each σ-field at each time step converges according to the distance dB . Hence, a
distance between filtrations can be introduced, based on the sum of the distances
between σ-fields. The second summand in our stability result can be seen as such a
distance between the filtrations generated by the two stochastic processes ξ and ξ̃.
This summand is not exactly the same as the sum of distances dB , but it has the same
sense: If the feasible set of the stochastic program is bounded, the filtration distance
(2.4) is bounded by a sum of distances dB . Other distances between filtrations and σ-
fields have been introduced (see, e.g., [3]) to fit with stochastic optimization problems.
The thesis [1] provides a good survey and a few new results on the application of such
information distances.

The following example shows that filtration distances are indispensable for the
stability of multistage models.

Example 2.6. We consider a multistage stochastic program that models the
optimal purchase over time under cost uncertainty. Its decisions xt correspond to
the amounts to be purchased at each time period. The uncertain prices are ξt,
t = 1, . . . , T , and the objective consists in minimizing the expected costs such that a
prescribed amount a > 0 is achieved at the end of a given time horizon. The problem
is of the form

min

⎧⎪⎪⎨⎪⎪⎩E

[
T∑

t=1

ξtxt

] ∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = R2

+,
(xt, st) is Ft-measurable,
st − st−1 = xt, t = 2, . . . , T,
s1 = 0, sT = a

⎫⎪⎪⎬⎪⎪⎭ ,

where the state variable st corresponds to the amount at time t and Ft := σ{ξ1, . . . , ξt}.
Let T := 3 and Pε denote the probability distribution of the stochastic price process.
Pε is given by the two scenarios ξ1

ε = (3, 2 + ε, 3) (ε ∈ [0, 1)) and ξ2
ε = (3, 2, 1) each

endowed with probability 1
2 . Let Q := P0 denote the approximation of Pε given by

the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the same probabilities 1
2 . We

assume that the scenario trees of the processes ξε and ξ̃ are of the form displayed in
Figure 2.1, i.e., the filtrations of σ-fields generated by ξε and ξ̃ do not coincide.

3

12

2+ε 3

1

233

Fig. 2.1. Scenario trees for Pε (left) and Q.

We obtain

v(ξε) =
3 + ε

2
a and v(ξ̃) = 2a , but �1(Pε, Q) = ‖ξε − ξ̃‖1 =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable with respect to the
L1-distance ‖ · ‖1. However, the estimate for |v(ξ)−v(ξ̃)| in Theorem 2.1 is valid with
L = 1 since Df(ξ, ξ̃) = a

2 holds for the filtration distance (with r′ = ∞).
Finally, let us consider the case of discrete probability measures P and Q. Let

P have scenarios ξi with probabilities pi > 0, i = 1, . . . , N , and Q scenarios ξ̃j and
probabilities qj > 0, j = 1, . . . ,M . Clearly,

∑N
i=1 pi = 1 and

∑M
j=1 qj = 1. Then

�rr(P,Q) is the optimal value of a finite-dimensional linear transportation problem
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(e.g., [24]) and there exist optimal weights ηij ≥ 0 of the scenario pair (ξi, ξ̃j), i =

1, . . . , N , j = 1, . . . ,M . Hence, there exists a pair (ξ, ξ̃) of random vectors on the
probability space (Ω,F ,P), where Ω = {ωij : i = 1, . . . , N, j = 1, . . . ,M} and P(ωij) =
ηij , i = 1, . . . , N, j = 1, . . . ,M . We define ξ(ωij) = ξi for every j = 1, . . . ,M and

ξ̃(ωij) = ξ̃j for every i = 1, . . . , N .
Now, our aim is to study the second term in the stability estimate in Theorem

2.1, namely, the distance of filtrations. Let Ft and F̃t denote the σ-fields generated
by (ξ1, . . . , ξt) and (ξ̃1, . . . , ξ̃t), respectively. Let It and Ĩt denote the index set of
realizations of ξt and ξ̃t, respectively. Furthermore, let Et and Ẽt denote families of
nonempty elements of Ft and F̃t, respectively, that form partitions of Ω and generate
the corresponding σ-fields. We set Ets := {ω ∈ Ω : (ξ1(ω), . . . , ξt(ω)) = (ξs1, . . . , ξ

s
t )},

s ∈ It, and Ẽts := {ω ∈ Ω : (ξ̃1(ω), . . . , ξ̃t(ω)) = (ξ̃s1, . . . , ξ̃
s
t )}, s ∈ Ĩt.

We set r = r′ = 1 and require conditions (A1) and (A2) to hold. Since (2.3) is
finite-dimensional in this case, optimal solutions x and x̃ exist and we obtain according
to Remark 2.2 that

Dt(ξ, ξ̃) = max
{∑

i,j

ηij‖xt(ωij) − E[xt|F̃t](ωij)‖,

∑
i,j

ηij‖x̃t(ωij) − E[x̃t|Ft](ωij)‖
}

= max
{∑

s∈Ĩt

∑
ωij∈Ẽts

ηij

∥∥∥xt(ωij) −

∑
ωkl∈Ẽts

ηklxt(ωkl)∑
ωkl∈Ẽts

ηkl

∥∥∥,(2.19)

∑
s∈It

∑
ωij∈Ets

ηij

∥∥∥x̃t(ωij) −

∑
ωkl∈Ets

ηklx̃t(ωkl)∑
ωkl∈Ets

ηkl

∥∥∥}.
The latter representation of Dt has potential to be further estimated in specific cases.
In particular, it simplifies considerably for the situation of scenario reduction.

Example 2.7 (scenario reduction). Let us consider the case of deleting scenario
l ∈ {1, . . . , N} of ξ according to the methodology in [5, 11] for the distance �1 and
r = r′ = 1. Then ξ̃ has the scenarios ξ1, . . . , ξl−1, ξl+1, . . . , ξN and the probabilities of
ξj are qj = pj for every j ∈ {j(l), l} and qj(l) = pj(l)+pl, where j(l) ∈ arg minj �=l ‖ξj−
ξl‖ (see [5, Theorem 2]). This corresponds to ξ̃(ωij) = ξj for every i = 1, . . . , N ,
j = 1, . . . , N , j = l. We also infer from [5, Theorem 2] that the optimal weights of
the transportation problem defining �1(P,Q) are

ηij =

⎧⎨⎩
pl, i = l, j = j(l),
pj , i = j = l,
0 otherwise.

We set ω̂j := ωjj for every j = 1, . . . , N , j = l, ω̂l = ωlj(l) and introduce the notation

Etsj and Ẽtsj for the sets in Et and Ẽt, respectively, that contain ω̂j . From (2.19) we
conclude the following representations of Dt:

Dt(ξ, ξ̃) = max

⎧⎪⎨⎪⎩
∑
s∈Ĩt

∑
ω̂j∈Ẽts

pj

∥∥∥xt(ω̂j) −

∑
ω̂k∈Ẽts

pkxt(ω̂k)∑
ω̂k∈Ẽts

pk

∥∥∥,



522 H. HEITSCH, W. RÖMISCH, AND C. STRUGAREK

∑
s∈It

∑
ω̂j∈Ets

pj

∥∥∥x̃t(ω̂j) −

∑
ωk∈Ets

pkx̃t(ω̂k)∑
ω̂k∈Ets

pk

∥∥∥
⎫⎪⎬⎪⎭

= max

{∑
s∈Ĩt

1∑
ω̂k∈Ẽts

pk

∑
ω̂j∈Ẽts

∥∥∥ ∑
ω̂k∈Ẽts

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

∑
s∈It

1∑
ω̂k∈Ets

pk

∑
ω̂j∈Ets

∥∥∥ ∑
ω̂k∈Ets

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥}

= max

{∑
s∈Ĩt

1∑
ω̂k∈Ẽts

pk

∑
ω̂j∈Ẽts

∥∥∥ ∑
ω̂k∈Ẽts\Etsj

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

∑
s∈It

1∑
ω̂k∈Ets

pk

∑
ω̂j∈Ets

∥∥∥ ∑
ω̂k∈Ets\Ẽtsj

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥},

where the final equality is a consequence of the corresponding measurability properties
of xt, which imply xt(ω̂j) = xt(ω̂k) if ω̂k ∈ Ets∩Ẽtsj and ω̂k ∈ Ẽts∩Etsj , respectively.

Since Etsj = Ẽtsj for j ∈ {l, j(l)} and Ẽtsl = Etj(l) ∪ {ω̂l}, we may continue with

Dt(ξ, ξ̃) = max

{
1∑

ω̂k∈Ẽtsl

pk

∑
ω̂j∈Ẽtsl

∥∥∥ ∑
ω̂k∈Ẽtsl

\Etsj

pkpj [xt(ω̂j) − xt(ω̂k)]
∥∥∥,

1∑
ω̂k∈Etsl

pk

∑
ω̂j∈Etsl

∥∥∥ ∑
ω̂k∈Etsl

\Ẽtsj

pkpj [x̃t(ω̂j) − x̃t(ω̂k)]
∥∥∥}

= max

{
1∑

ω̂k∈Ẽtsl

pk

{ ∑
ω̂k∈Etsj(l)

∥∥∥plpk[xt(ω̂k) − xt(ω̂l)]
∥∥∥

+
∥∥∥ ∑

ω̂k∈Etsj(l)

pkpl[x̃t(ω̂l) − x̃t(ω̂k)]
∥∥∥},

1∑
ω̂k∈Etsl

pk

{ ∑
ω̂k∈Etsl

\{ω̂l}

∥∥∥plpk[xt(ω̂k) − xt(ω̂l)]
∥∥∥

+
∥∥∥ ∑

ω̂k∈Etsl
\{ω̂l}

pkpl[x̃t(ω̂l) − x̃t(ω̂k)]
∥∥∥}}

≤ max

{ ∑
ω̂k∈Etsj(l)

2plpk‖xt(ω̂k) − xt(ω̂l)‖

pl +
∑

ω̂k∈Etsj(l)

pk
,

∑
ω̂k∈Etsl

\{ω̂l}
2plpk‖x̃t(ω̂k) − x̃t(ω̂l)‖

pl +
∑

ω̂k∈Etsl
\{ω̂l}

pk

}

≤ 2pl max
{
‖xt(ω̂j(l)) − xt(ω̂l)‖, min

ω̂k∈Etsl
\{ω̂l}

‖x̃t(ω̂k) − x̃t(ω̂l)‖
}
,(2.20)

where the convention is used that minω̂k∈Etsl
\{ω̂l} = 0 if Etsl \ {ω̂l} = ∅. The final



STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS 523

estimate makes use of the fact that all xt(ω̂k) with ω̂k ∈ Etsj(l) and ω̂k ∈ Etsl \ {ω̂l},
respectively, coincide.

In the following two cases, the above estimate simplifies to

Dt(ξ, ξ̃) ≤
{

0 if ω̂l ∈ Etsj(l) ,
2pl‖xt(ω̂j(l)) − xt(ω̂l)‖ if Etsl = {ω̂l}.

As the sets l0(F (ξ, ·)) and l0(F (ξ̃, ·)) of solutions of the original and perturbed mul-
tistage models are bounded in Lr′ due to (A2), there exists a constant K > 0 such
that

Df(ξ, ξ̃) ≤ Kpl.

Hence, if the probability pl of the deleted scenario is small, the filtration distance is
also small. Then there is no need to modify the deletion procedure based on best
approximations with respect to the metric �1. This is mostly the case if the tree is
bushy, i.e., contains many scenarios.

A more reliable estimate for the filtration distance may be obtained by solving
the stochastic program for an approximation ξ̂ of ξ (on {ω̂1, . . . , ω̂N}), which contains
much less scenarios than ξ. Then an estimate for the filtration distance may be
obtained by computing

2pl

T−1∑
t=2

max
{
‖x̂t(ω̂j(l)) − x̂t(ω̂l)‖, min

ω̂k∈Etsl
\{ω̂l}

‖x̂t(ω̂k) − x̂t(ω̂l)‖
}
,

where x̂ ∈ l0(F (ξ̂, ·)) is the corresponding solution. Altogether, some scenario deletion
suggested by the strategy in [5, 11] can either be carried out if the bound (2.20) on
the filtration distance remains small or is rejected.

3. Conclusions. While quantitative stability results for two-stage stochastic
programs have to take into account only a suitable distance of probability distri-
butions, this is no longer the case for multistage models, where the filtration distance
enters stability estimates. This fact demonstrates the importance of the conditional
structure of multistage stochastic programs. This is in line with the observations and
results of [32]. In a sense, it also seems to illustrate the complexity results obtained
in the recent paper [33]. It is shown there that multistage stochastic programs have
higher complexity than two-stage models. Techniques for generating and reducing
scenario trees in multistage stochastic programs, which are based on stability argu-
ments, have to respect both probability and filtration distances as both contribute
to changes of optimal values. Example 2.7 provides upper bounds for the filtration
distance if some scenario is deleted. Bounding the filtration distance is also possible
for the forward and backward scenario tree generation algorithms developed in [10]
and [12]. Such bounds are derived and discussed in the companion paper [13].
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Abstract. An active set algorithm (ASA) for box constrained optimization is developed. The
algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step,
and a set of rules for branching between the two steps. Global convergence to a stationary point is
established. For a nondegenerate stationary point, the algorithm eventually reduces to unconstrained
optimization without restarts. Similarly, for a degenerate stationary point, where the strong second-
order sufficient optimality condition holds, the algorithm eventually reduces to unconstrained opti-
mization without restarts. A specific implementation of the ASA is given which exploits the recently
developed cyclic Barzilai–Borwein (CBB) algorithm for the gradient projection step and the recently
developed conjugate gradient algorithm CG DESCENT for unconstrained optimization. Numeri-
cal experiments are presented using box constrained problems in the CUTEr and MINPACK-2 test
problem libraries.
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1. Introduction. We develop an active set method for the box constrained op-
timization problem

min {f(x) : x ∈ B},(1.1)

where f is a real-valued, continuously differentiable function defined on the set

B = {x ∈ Rn : l ≤ x ≤ u}.(1.2)

Here l < u, and possibly li = −∞ or ui = ∞.
The box constrained optimization problem appears in a wide range of applica-

tions, including the obstacle problem [67], the elastic-plastic torsion problem [47],
optimal design problems [7], journal bearing lubrication [20], inversion problems in
elastic wave propagation [6], and molecular conformation analysis [48]. Problem (1.1)
is often a subproblem of augmented Lagrangian or penalty schemes for general con-
strained optimization (see [24, 25, 37, 38, 43, 46, 52, 53, 65]). Thus the development of
numerical algorithms to efficiently solve (1.1), especially when the dimension is large,
is important in both theory and applications.

We begin with an overview of the development of active set methods. A seminal
paper is Polyak’s 1969 paper [68] which considers a convex, quadratic cost function.
The conjugate gradient method is used to explore a face of the feasible set, and the
negative gradient is used to leave a face. Since Polyak’s algorithm added or dropped
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only one constraint in each iteration, Dembo and Tulowitzki proposed [32] the conju-
gate gradient projection (CGP) algorithm which could add and drop many constraints
in an iteration. Later, Yang and Tolle [79] further developed this algorithm to ob-
tain finite termination, even when the problem was degenerate at a local minimizer
x∗. That is, for some i, x∗

i = li or x∗
i = ui and ∇f(x∗)i = 0. Another variation

of the CGP algorithm, for which there is a rigorous convergence theory, is developed
by Wright [77]. Moré and Toraldo [67] point out that when the CGP scheme starts
far from the solution, many iterations may be required to identify a suitable working
face. Hence, they propose using the gradient projection method to identify a working
face, followed by the conjugate gradient method to explore the face. Their algorithm,
called GPCG, has finite termination for nondegenerate quadratic problems. Recently,
adaptive conjugate gradient algorithms have been developed by Dostál [35, 36] and
Dostál, Friedlander, and Santos [38] which have finite termination for a strictly convex
quadratic cost function, even when the problem is degenerate.

For general nonlinear functions, some of the earlier research [3, 19, 49, 61, 66, 71]
focused on gradient projection methods. To accelerate the convergence, more recent
research has developed Newton and trust region methods (see [26] for an in-depth
analysis). In [4, 17, 24, 42] superlinear and quadratic convergence is established for
nondegenerate problems, while [44, 46, 60, 63] establish analogous convergence results,
even for degenerate problems. Although computing a Newton step can be computa-
tionally expensive, approximation techniques, such as a sparse, incomplete Cholesky
factorization [62], could be used to reduce the computational expense. Nonetheless,
for large-dimensional problems or for problems in which the initial guess is far from
the solution, the Newton/trust region approach can be inefficient. In cases when the
Newton step is unacceptable, a gradient projection step is preferred.

The affine-scaling interior-point method of Coleman and Li [21, 22, 23] (also see
Branch, Coleman, and Li [14]) is a different approach to (1.1), related to the trust
region algorithm. More recent research on this strategy includes [33, 58, 59, 76, 83].
These methods are based on a reformulation of the necessary optimality conditions
obtained by multiplication with a scaling matrix. The resulting system is often solved
by Newton-type methods. Without assuming strict complementarity (i.e., for degen-
erate problems), the affine-scaling interior-point method converges superlinearly or
quadratically, for a suitable choice of the scaling matrix, when the strong second-
order sufficient optimality condition [70] holds. When the dimension is large, forming
and solving the system of equations at each iteration can be time consuming, unless
the problem has special structure. Recently, Zhang [83] proposed an interior-point
gradient approach for solving the system at each iteration. Convergence results for
other interior-point methods applied to more general constrained optimization appear
in [39, 40, 78].

The method developed in this paper is an active set algorithm (ASA) which con-
sists of a nonmonotone gradient projection step, an unconstrained optimization step,
and a set of rules for branching between the steps. Global convergence to a station-
ary point is established. For a nondegenerate stationary point, the ASA eventually
reduces to unconstrained optimization without restarts. Similarly, for a degenerate
stationary point, where the strong second-order sufficient optimality condition holds,
the ASA eventually reduces to unconstrained optimization without restarts. If strict
complementarity holds and all the constraints are active at a stationary point, then
convergence occurs in a finite number of iterations. In general, our analysis does not
show that the strictly active constraints are identified in a finite number of iterations;



528 WILLIAM W. HAGER AND HONGCHAO ZHANG

instead, when the strong second-order sufficient optimality condition holds, we show
that the ASA eventually branches to the unconstrained optimization step, and hence-
forth, the active set does not change. Thus in the limit, the ASA reduces to uncon-
strained optimization without restarts. Furthermore, if the ith constraint in (1.1) is
strictly active at a stationary point x∗ (i.e., ∇f(x∗)i �= 0) and the iterates xk converge
to x∗, then the distance between the ith component of xk and the associated limit,
either li or ui, is on the order of the square of the distance between xk and x∗.

A specific implementation of the ASA is given, which utilizes our recently devel-
oped cyclic Barzilai–Borwein (CBB) algorithm [30] for the gradient projection step
and our recently developed conjugate gradient algorithm CG DESCENT [54, 55, 56,
57] for the unconstrained optimization step. Recent numerical results [27, 45, 50,
51, 74, 81] indicate that in some cases, a nonmonotone line search is superior to
a monotone line search. Moreover, gradient methods based on a Barzilai–Borwein
(BB) step [2] have exhibited impressive performance in a variety of applications
[7, 10, 28, 29, 48, 64, 72]. The BB methods developed in [8, 9, 10, 11, 12, 69] are
all based on a Grippo–Lampariello–Lucidi (GLL) type of line search [50]. We have
obtained better performance using an adaptive, nonmonotone line search which orig-
inates from [31, 75]. Using the adaptive nonmonotone line search, more constraints
can be added or dropped in a single iteration. In addition, the cyclic implementation
of the BB step [30], in which the same BB stepsize is reused for several iterations,
performs better than the original BB step. Hence, in the gradient projection phase of
the ASA, we use the CBB scheme of [30] and an adaptive nonmonotone line search.

After detecting a suitable working face, the ASA branches to the unconstrained
optimization algorithm, which operates in a lower-dimensional space since some com-
ponents of x are fixed. For the numerical experiments, we implement this step using
our conjugate gradient algorithm CG DESCENT. An attractive feature of this algo-
rithm is that the search directions are always sufficient descent directions; furthermore,
when the cost function is a strongly convex quadratic, the ASA converges in a finite
number of iterations, even when strict complementary slackness does not hold.

Our paper is organized as follows. In section 2 we present the nonmonotone
gradient projection algorithm (NGPA) and analyze its global convergence properties.
Section 3 presents the ASA and specifies the requirements of the unconstrained op-
timization algorithm. Section 4 establishes global convergence results for the ASA,
while section 5 analyzes local convergence. Section 6 presents numerical comparisons
using box constrained problems in the CUTEr [13] and MINPACK-2 [1] test problem
libraries. Finally, the appendix gives a specific implementation of the nonmonotone
gradient projection method based on our CBB method.

Throughout this paper, we use the following notation. For any set S, |S| stands
for the number of elements (cardinality) of S, while Sc is the complement of S. ‖ ·‖ is
the Euclidean norm of a vector. The subscript k is often used to denote the iteration
number in an algorithm, while xki stands for the ith component of the iterate xk.
The gradient ∇f(x) is a row vector, while g(x) = ∇f(x)T is a column vector; here
T denotes transpose. The gradient at the iterate xk is gk = g(xk). We let ∇2f(x)
denote the Hessian of f at x. The ball with center x and radius ρ is denoted Bρ(x).

2. Nonmonotone gradient projection algorithm. In this section, we con-
sider a generalization of (1.1) in which the box B is replaced with a nonempty, closed
convex set Ω:

min {f(x) : x ∈ Ω}.(2.1)
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Fig. 2.1. The gradient projection step.

We begin with an overview of our gradient projection algorithm. Step k in our algo-
rithm is depicted in Figure 2.1. Here P denotes the projection onto Ω:

P (x) = arg min
y∈Ω

‖x − y‖.(2.2)

Starting at the current iterate xk, we compute an initial iterate x̄k = xk − αkgk.
The only constraint on the initial steplength αk is that αk ∈ [αmin, αmax], where αmin

and αmax are fixed, positive constants, independent of k. Since the nominal iterate
may lie outside Ω, we compute its projection P (x̄k) onto Ω. The search direction is
dk = P (x̄k)−xk, similar to the choice made in SPG2 [11]. Using a nonmonotone line
search along the line segment connecting xk and P (x̄k), we arrive at the new iterate
xk+1.

In the statement of the NGPA given below, fr
k denotes the “reference” function

value. A monotone line search corresponds to the choice fr
k = f(xk). The nonmono-

tone GLL scheme takes fr
k = fmax

k , where

fmax
k = max{f(xk−i) : 0 ≤ i ≤ min(k,M − 1)}.(2.3)

Here M > 0 is a fixed integer, the memory. In the appendix, we give a procedure for
choosing the reference function value based on our CBB scheme.

NGPA parameters.

• ε ∈ [0,∞), error tolerance
• δ ∈ (0, 1), descent parameter used in Armijo line search
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• η ∈ (0, 1), decay factor for stepsize in Armijo line search
• [αmin, αmax] ⊂ (0,∞), interval containing initial stepsize

Nonmonotone gradient projection algorithm (ngpa).

Initialize k = 0, x0 = starting guess, and fr
−1 = f(x0).

While ‖P (xk − gk) − xk‖ > ε
1. Choose αk ∈ [αmin, αmax] and set dk = P (xk − αkgk) − xk.
2. Choose fr

k so that f(xk) ≤ fr
k ≤ max{fr

k−1, f
max
k } and fr

k ≤ fmax
k

infinitely often.
3. Let fR be either fr

k or min{fmax
k , fr

k}. If f(xk +dk) ≤ fR + δgT
kdk, then

αk = 1.
4. If f(xk + dk) > fR + δgT

kdk, then αk = ηj , where j > 0 is the smallest
integer such that

f(xk + ηjdk) ≤ fR + ηjδgT
kdk.(2.4)

5. Set xk+1 = xk + αkdk and k = k + 1.
End

The condition f(xk) ≤ fr
k guarantees that the Armijo line search in step 4 can be

satisfied. The requirement that “fr
k ≤ fmax

k infinitely often” in step 2 is needed for the
global convergence result, Theorem 2.2. This is a rather weak requirement which can
be satisfied by many strategies. For example, at every L iteration, we could simply
set fr

k = fmax
k . Another strategy, closer in spirit to the one used in the numerical

experiments, is to choose a decrease parameter Δ > 0 and an integer L > 0 and set
fr
k = fmax

k if f(xk−L) − f(xk) ≤ Δ.
To begin the convergence analysis, recall that x∗ is a stationary point for (2.1) if

the first-order optimality condition holds:

∇f(x∗)(x − x∗) ≥ 0 for all x ∈ Ω.(2.5)

Let dα(x), α ∈ R, be defined in terms of the gradient g(x) = ∇f(x)T as follows:

dα(x) = P (x − αg(x)) − x.

In the NGPA, the search direction is dk = dαk(xk). For unconstrained optimization,
dα(x) points along the negative gradient at x when α > 0. Some properties of P and
dα are summarized below.

Proposition 2.1 (Properties of P and dα
).

P1. (P (x) − x)T(y − P (x)) ≥ 0 for all x ∈ Rn and y ∈ Ω.
P2. (P (x) − P (y))T(x − y) ≥ ‖P (x) − P (y)‖2 for all x and y ∈ Rn.
P3. ‖P (x) − P (y)‖ ≤ ‖x − y‖ for all x and y ∈ Rn.
P4. ‖dα(x)‖ is nondecreasing in α > 0 for any x ∈ Ω.
P5. ‖dα(x)‖/α is nonincreasing in α > 0 for any x ∈ Ω.
P6. g(x)Tdα(x) ≤ −‖dα(x)‖2/α for any x ∈ Ω and α > 0.
P7. For any x ∈ Ω and α > 0, dα(x) = 0 if and only if x is a stationary point

for (2.1).
P8. Suppose x∗ is a stationary point for (2.1). If for some x ∈ Rn there exist

positive scalars λ and γ such that

(g(x) − g(x∗))T(x − x∗) ≥ γ‖x − x∗‖2(2.6)

and

‖g(x) − g(x∗)‖ ≤ λ‖x − x∗‖,(2.7)
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then we have

‖x − x∗‖ ≤
(

1 + λ

γ

)
‖d1(x)‖.

Proof. P1 is the first-order optimality condition associated with the solution of
(2.2). Replacing y with P (y) in P1 gives

(P (x) − x)T(P (y) − P (x)) ≥ 0.

Adding this to the corresponding inequality obtained by interchanging x and y yields
P2 (see [80]). P3 is the nonexpansive property of a projection (for example, see [5,
Prop. 2.1.3]). P4 is given in [73]. For P5, see [5, Lem. 2.3.1]. P6 is obtained from
P1 by replacing x with x− αg(x) and replacing y with x. If x∗ is a stationary point
satisfying (2.5), then P6 with x replaced by x∗ yields dα(x∗) = 0. Conversely, if
dα(x∗) = 0, then by P1 with x replaced by x∗ − αg(x∗), we obtain

0 ≤ αg(x∗)T(y − P (x∗ − αg(x∗)) = αg(x∗)T(y − x∗),

which implies that x∗ is a stationary point (see [5, Fig. 2.3.2]).
Finally, let us consider P8. Replacing x with x − g(x) and replacing y with x∗

in P1 gives

[P (x − g(x)) − x + g(x)]T[x∗ − P (x − g(x))] ≥ 0.(2.8)

By the definition of dα(x), (2.8) is equivalent to

[d1(x) + g(x)]T[x∗ − x − d1(x)] ≥ 0.

Rearranging this and utilizing (2.6) gives

d1(x)T(x∗ − x) − g(x)Td1(x) − ‖d1(x)‖2 ≥ g(x)T(x − x∗)

≥ γ‖x − x∗‖2 + g(x∗)T(x − x∗).(2.9)

Focusing on the terms involving g and utilizing (2.7), we have

g(x∗)T(x∗ − x) − g(x)Td1(x) ≤ λ‖x − x∗‖ ‖d1(x)‖ + g(x∗)T(x∗ − x − d1(x))

= λ‖x − x∗‖ ‖d1(x)‖ + g(x∗)T[x∗ − P (x − g(x))]

≤ λ‖x − x∗‖ ‖d1(x)‖(2.10)

by (2.5), since P (x − g(x)) ∈ Ω. Combining (2.9) and (2.10), the proof is
complete.

Next, we establish a convergence result for the NGPA.
Theorem 2.2. Let L be the level set defined by

L = {x ∈ Ω : f(x) ≤ f(x0)}.(2.11)

We assume the following conditions hold:
G1. f is bounded from below on L and dmax = supk‖dk‖ < ∞.
G2. If L̄ is the collection of x ∈ Ω whose distance to L is at most dmax, then ∇f

is Lipschitz continuous on L̄.
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Then either the NGPA with ε = 0 terminates in a finite number of iterations at a
stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.

Proof. By P6, the search direction dk generated in step 1 of the NGPA is a
descent direction. Since fr

k ≥ f(xk) and δ < 1, the Armijo line search condition
(2.4) is satisfied for j sufficiently large. We now show that xk ∈ L for each k. Since
fmax
0 = fr

−1 = f(x0), step 2 of the NGPA implies that fr
0 ≤ f(x0). Proceeding by

induction, suppose that for some k ≥ 0, we have

fr
j ≤ f(x0) and fmax

j ≤ f(x0)(2.12)

for all j ∈ [0, k]. Again, since the search direction dk generated in step 1 of the NGPA
is a descent direction, it follows from steps 3 and 4 of the NGPA and the induction
hypothesis that

f(xk+1) ≤ fr
k ≤ f(x0).(2.13)

Hence, fmax
k+1 ≤ f(x0) and fr

k+1 ≤ max{fr
k , f

max
k+1 } ≤ f(x0). This completes the induc-

tion. Thus (2.12) holds for all j. Consequently, we have fR ≤ f(x0) in steps 3 and 4
of the NGPA. Again, since the search direction dk generated in step 1 of the NGPA
is a descent direction, it follows from steps 3 and 4 that f(xk) ≤ f(x0), which implies
that xk ∈ L for each k.

Let λ be the Lipschitz constant for ∇f on L̄. As in [81, Lem. 2.1], we have

αk ≥ min

{
1,

(
2η(1 − δ)

λ

)
|gT

kdk|
‖dk‖2

}
(2.14)

for all k. By P6,

|gT
kdk| ≥

‖dk‖2

αk
≥ ‖dk‖2

αmax
.

It follows from (2.14) that

αk ≥ min

{
1,

(
2η(1 − δ)

λαmax

)}
:= c.(2.15)

By steps 3 and 4 of the NGPA and P6, we conclude that

f(xk+1) ≤ fr
k + δcgT

kdk ≤ fr
k − δc‖dk‖2/αk ≤ fr

k − δc‖dk‖2/αmax.(2.16)

We now prove that lim infk→∞ ‖dk‖ = 0. Suppose, to the contrary, that there
exists a constant γ > 0 such that ‖dk‖ ≥ γ for all k. By (2.16), we have

f(xk+1) ≤ fr
k − τ, where τ = δcγ2/αmax.(2.17)

Let ki, i = 0, 1, . . . , denote an increasing sequence of integers with the property that
fr
j ≤ fmax

j for j = ki and fr
j ≤ fr

j−1 when ki < j < ki+1. Such a sequence exists by
the requirement on fr

k given in step 2 of the NGPA. Hence, we have

fr
j ≤ fr

ki
≤ fmax

ki
when ki ≤ j < ki+1.(2.18)
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By (2.17) it follows that

f(xj) ≤ fr
j−1 − τ ≤ fmax

ki
− τ when ki < j ≤ ki+1.(2.19)

It follows that

fr
ki+1

≤ fmax
ki+1

≤ fmax
ki

.(2.20)

Hence, if a = ki1 and b = ki2 , where i1 > i2 and a− b > M , then by (2.18)–(2.20) we
have

fmax
a = max

0≤j<M
f(xa−j) ≤ max

1≤j≤M
fr
a−j − τ ≤ fmax

b − τ.

Since the sequence ki, i = 0, 1, . . . , is infinite, this contradicts the fact that f is
bounded from below. Consequently, lim infk→∞ ‖dk‖ = 0. By P4 and P5, it follows
that

‖dk‖ ≥ min{αmin, 1}‖d1(xk)‖.

Thus lim infk→∞ ‖d1(xk)‖ = 0.
Recall that f is strongly convex on Ω if there exists a scalar γ > 0 such that

f(x) ≥ f(y) + ∇f(y)(x − y) +
γ

2
‖x − y‖2(2.21)

for all x and y ∈ Ω. Interchanging x and y in (2.21) and adding, we obtain the
(usual) monotonicity condition

(∇f(y) −∇f(x))(y − x) ≥ γ‖y − x‖2.(2.22)

For a strongly convex function, (2.1) has a unique minimizer x∗, and the conclusion
of Theorem 2.2 can be strengthened as follows.

Corollary 2.3. Suppose f is strongly convex and twice continuously differen-
tiable on Ω, and there is a positive integer L with the property that for each k, there
exists j ∈ [k, k + L) such that fr

j ≤ fmax
j . Then the iterates xk of the NGPA with

ε = 0 converge to the global minimizer x∗.
Proof. As shown at the start of the proof of Theorem 2.2, f(xk) ≤ f(x0) for each

k. Hence, xk lies in the level set L defined in (2.11). Since f is strongly convex, L
is a bounded set; since f is twice continuously differentiable, ‖∇f(xk)‖ is bounded
uniformly in k. For any x ∈ Ω, we have P (x) = x. By P3, it follows that

‖dα‖ = ‖P (x − αg(x)) − x‖ = ‖P (x − αg(x)) − P (x)‖ ≤ α‖g(x)‖.

Since ᾱk ∈ [αmin, αmax], dmax = supk ‖dk‖ < ∞. Consequently, the set L̄ defined in
G2 is bounded. Again, since f is twice continuously differentiable, ∇f is Lipschitz
continuous on L̄. By assumption, fr

k ≤ fmax
k infinitely often. Consequently, the

hypotheses of Theorem 2.2 are satisfied, and either the NGPA with ε = 0 terminates
in a finite number of iterations at a stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.(2.23)

Since f is strongly convex on Ω, x∗ is the unique stationary point for (2.1). Hence,
when the iterates converge in a finite number of steps, they converge to x∗. Otherwise,
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(2.23) holds, in which case there exists an infinite sequence l1 < l2 < · · · such that
‖d1(xlj )‖ approaches zero as j tends to ∞. Since (2.22) holds, it follows from P8 that
xlj approaches x∗ as j tends to ∞. By P4 and P5, we have

‖dα(x)‖ ≤ max{1, α}‖d1(x)‖.

Since ᾱk ∈ [αmin, αmax], it follows that

‖dk‖ ≤ max{1, αmax}‖d1(xk)‖.

Since the stepsize αk ∈ (0, 1], we deduce that

‖xk+1 − xk‖ = αk‖dk‖ ≤ ‖dk‖ ≤ max{1, αmax}‖d1(xk)‖.(2.24)

By P3, P is continuous; consequently, dα(x) is a continuous function of x. The
continuity of dα(·) and f(·) combined with (2.24) and the fact that xlj converges to
x∗ implies that for any δ > 0 and for j sufficiently large, we have

f(xk) ≤ f(x∗) + δ for all k ∈ [lj , lj + M + L].

By the definition of fmax
k ,

fmax
k ≤ f(x∗) + δ for all k ∈ [lj + M, lj + M + L].(2.25)

As in the proof of Theorem 2.2, let ki, i = 0, 1, . . . , denote an increasing sequence
of integers with the property that fr

j ≤ fmax
j for j = ki and fr

j ≤ fr
j−1 when ki < j <

ki+1. As shown in (2.20),

fmax
ki+1

≤ fmax
ki

(2.26)

for each i. The assumption that for each k, there exists j ∈ [k, k + L) such that
fr
j ≤ fmax

j , implies that

ki+1 − ki ≤ L.(2.27)

Combining (2.25) and (2.27), for each lj , there exists some ki ∈ [lj + M, lj + M + L]
and

fmax
ki

≤ f(x∗) + δ.(2.28)

Since δ was arbitrary, it follows from (2.26) and (2.28) that

lim
i→∞

fmax
ki

= f(x∗);(2.29)

the convergence is monotone by (2.26). By the choice of ki and by the inequality
f(xk) ≤ fr

k in step 2, we have

f(xk) ≤ fr
k ≤ fmax

ki
for all k ≥ ki.(2.30)

Combining (2.29) and (2.30),

lim
k→∞

f(xk) = f(x∗).(2.31)

Together, (2.5) and (2.21) yield

f(xk) ≥ f(x∗) +
γ

2
‖xk − x∗‖2.(2.32)

Combining this with (2.31), the proof is complete.
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3. The active set algorithm. Starting with this section, we focus on the box
constrained problem (1.1). To simplify the exposition, we consider the special case
when l = 0 and u = ∞:

min {f(x) : x ≥ 0}.

We emphasize that the analysis and algorithm apply to the general box constrained
problem (1.1) with both upper and lower bounds.

Although the gradient projection scheme of the NGPA has an attractive global
convergence theory, the convergence rate can be slow in a neighborhood of a local
minimizer. In contrast, for unconstrained optimization, the conjugate gradient algo-
rithm often exhibits superlinear convergence in a neighborhood of a local minimizer.
We develop an ASA which uses the NGPA to identify active constraints, and which
uses an unconstrained optimization algorithm, such as the CG DESCENT scheme in
[54, 55, 57, 56], to optimize f over a face identified by the NGPA.

We begin with some notation. For any x ∈ Ω, let A(x) and I(x) denote the
active and inactive indices, respectively:

A(x) = {i ∈ [1, n] : xi = 0},
I(x) = {i ∈ [1, n] : xi > 0}.

The active indices are further subdivided into those indices satisfying strict comple-
mentarity and the degenerate indices:

A+(x) = {i ∈ A(x) : gi(x) > 0},
A0(x) = {i ∈ A(x) : gi(x) = 0}.

We let gI(x) denote the vector whose components associated with the set I(x) are
identical to those of g(x), while the components associated with A(x) are zero:

gIi(x) =

{
0 if xi = 0,
gi(x) if xi > 0.

An important feature of our algorithm is that we try to distinguish between active
constraints satisfying strict complementarity and active constraints that are degener-
ate using an identification strategy, which is related to the idea of an identification
function introduced in [41]. Given fixed parameters α ∈ (0, 1) and β ∈ (1, 2), we
define the (undecided index) set U at x ∈ B as follows:

U(x) = {i ∈ [1, n] : |gi(x)| ≥ ‖d1(x)‖α and xi ≥ ‖d1(x)‖β}.

In the numerical experiments, we take α = 1/2 and β = 3/2. In practice, U is almost
always empty when we reach a neighborhood of a minimizer, and the specific choice
of α and β does not have a significant effect on convergence. The introduction of the
U set leads to a strong local convergence theory developed in section 5.

The indices in U correspond to components of x for which the associated gradient
component gi(x) is relatively large, while xi is not close to 0 (in the sense that
xi ≥ ‖d1(x)‖β). When the set U of uncertain indices is empty, we feel that the
indices with large associated gradient components are almost identified. In this case
we prefer the unconstrained optimization algorithm.

Although our numerical experiments are based on the conjugate gradient code
CG DESCENT, a broad class of unconstrained optimization algorithms (UAs) can
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be applied. The following requirements for the UA are sufficient for establishing the
convergence results that follow. Conditions U1–U3 are sufficient for global conver-
gence, while U1–U4 are sufficient for the local convergence analysis. Condition U4
could be replaced with another descent condition for the initial line search; however,
the analysis of section 5 has been carried out under U4.

Unconstrained algorithm (ua) requirements.

U1. xk ≥ 0 and f(xk+1) ≤ f(xk) for each k.
U2. A(xk) ⊂ A(xk+1) for each k.
U3. If A(xj+1) = A(xj) for j ≥ k, then lim infj→∞ ‖gI(xj)‖ = 0.
U4. Whenever the UA is started, xk+1 = P (xk−αkgI(xk)), where αk is obtained

from a Wolfe line search. That is, αk is chosen to satisfy

φ(αk) ≤ φ(0) + δαkφ
′(0) and φ′(αk) ≥ σφ′(0),(3.1)

where

φ(α) = f(P (xk − αgI(xk))), 0 < δ < σ < 1.(3.2)

Condition U1 implies that the UA is a monotone algorithm, so that the cost function
can only decrease in each iteration. Condition U2 concerns how the algorithm behaves
when an infeasible iterate is generated. Condition U3 describes the global convergence
of the UA when the active set does not change. In U4, φ′(α) is the derivative from
the right side of α; αk exists since φ is piecewise smooth with a finite number of
discontinuities in its derivative, and φ′(α) is continuous at α = 0.

Our ASA is presented in Figure 3.1. In the first step of the algorithm, we execute
the NGPA until we feel that the active constraints satisfying strict complementarity
have been identified. In step 2, we execute the UA until a subproblem has been solved
(step 2a). When new constraints become active in step 2b, we may decide to restart
either the NGPA or the UA. By restarting the NGPA, we mean that x0 in the NGPA
is identified with the current iterate xk. By restarting the UA, we mean that iterates
are generated by the UA using the current iterate as the starting point.

4. Global convergence. We begin with a global convergence result for the
ASA.

Theorem 4.1. Let L be the level set defined by

L = {x ∈ B : f(x) ≤ f(x0)}.

Assume the following conditions hold:
A1. f is bounded from below on L and dmax = supk‖dk‖ < ∞.
A2. If L̄ is the collection of x ∈ B whose distance to L is at most dmax, then ∇f

is Lipschitz continuous on L̄.
A3. The UA satisfies U1–U3.

Then either the ASA with ε = 0 terminates in a finite number of iterations at a
stationary point, or we have

lim inf
k→∞

‖d1(xk)‖ = 0.(4.1)

Proof. If only the NGPA is performed for large k, then (4.1) follows from Theorem
2.2. If only the UA is performed for large k, then by U2, the active sets A(xk) must
approach a limit. Since μ does not change in the UA, it follows from U3 and the
condition ‖gI(xk)‖ ≥ μ‖d1(xk)‖ that (4.1) holds. Finally, suppose that the NGPA
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ASA parameters.

• ε ∈ [0,∞), error tolerance, stop when ‖d1(xk)‖ ≤ ε
• μ ∈ (0, 1), ‖gI(xk)‖ < μ‖d1(xk)‖ implies subproblem solved
• ρ ∈ (0, 1), decay factor for μ tolerance
• n1 ∈ [1, n), number of repeated A(xk) before switch from the NGPA to the

UA
• n2 ∈ [1, n), used in switch from the UA to the NGPA

Active set algorithm (asa).
1. While ‖d1(xk)‖ > ε execute the NGPA and check the following:

a. If U(xk) = ∅, then
If ‖gI(xk)‖ < μ‖d1(xk)‖, then μ = ρμ.
Otherwise, goto step 2.

b. Else if A(xk) = A(xk−1) = · · · = A(xk−n1), then
If ‖gI(xk)‖ ≥ μ‖d1(xk)‖, then goto step 2.

End

2. While ‖d1(xk)‖ > ε execute the UA and check the following:
a. If ‖gI(xk)‖ < μ‖d1(xk)‖, then restart the NGPA (step 1).
b. If |A(xk−1)| < |A(xk)|, then

If U(xk) = ∅ or |A(xk)| > |A(xk−1)| + n2, restart the UA at xk.
Else restart the NGPA.

End
End

Fig. 3.1. Statement of the ASA.

is restarted an infinite number of times at k1 < k2 < · · · and that it terminates at
k1 + l1 < k2 + l2 < · · · , respectively. Thus ki < ki + li ≤ ki+1 for each i. If (4.1) does
not hold, then by (2.19) and (2.20), we have

f(xki+li) ≤ f(xki
) − τ.(4.2)

By U1,

f(xki+1) ≤ f(xki+li).(4.3)

Combining (4.2) and (4.3), we have f(xki+1
) ≤ f(xki) − τ , which contradicts the

assumption that f is bounded from below.
When f is strongly convex, the entire sequence of iterates converges to the global

minimizer x∗, as stated in the following corollary. Since the proof of this result relies
on the local convergence analysis, the proof is delayed until the end of section 5.

Corollary 4.2. If f is strongly convex and twice continuously differentiable on
B, and assumption A3 of Theorem 4.1 is satisfied, then the iterates xk of the ASA
with ε = 0 converge to the global minimizer x∗.

5. Local convergence. In the next series of lemmas, we analyze local con-
vergence properties of the ASA. We begin by focusing on nondegenerate stationary
points; that is, stationary points x∗ with the property that gi(x

∗) > 0 whenever
x∗
i = 0.
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5.1. Nondegenerate problems. In this case, it is relatively easy to show that
the ASA eventually performs only the UA without restarts. The analogous result for
degenerate problems is established in section 5.2.

Theorem 5.1. If f is continuously differentiable, 0 < μ ≤ 1, and the iterates
xk generated by the ASA with ε = 0 converge to a nondegenerate stationary point
x∗, then after a finite number of iterations, the ASA performs only the UA without
restarts.

Proof. Since x∗ is a nondegenerate stationary point and f is continuously differ-
entiable, there exists ρ > 0 with the property that for all x ∈ Bρ(x

∗), we have

gi(x) > 0 if i ∈ A(x∗) and xi > 0 if i ∈ A(x∗)c.(5.1)

Let k+ be chosen large enough that xk ∈ Bρ(x
∗) for all k ≥ k+. If k ≥ k+ and xki = 0,

then dki = 0 in step 1 of the NGPA. Hence, xk+1,i = 0 if xk+1 is generated by the
NGPA. By U2, the UA cannot free a bound constraint. It follows that if k ≥ k+ and
xki = 0, then xji = 0 for all j ≥ k. Consequently, there exists an index K ≥ k+ with
the property that A(xk) = A(xj) for all j ≥ k ≥ K.

For any index i, |d1
i (x)| ≤ |gi(x)|. Suppose x ∈ Bρ(x

∗); by (5.1), d1
i (x) = 0 if

xi = 0. Hence,

‖d1(x)‖ ≤ ‖gI(x)‖(5.2)

for all x ∈ Bρ(x
∗). If k > K + n1, then in step 1b of the ASA, it follows from

(5.2) and the assumption μ ∈ (0, 1] that the NGPA will branch to step 2 (UA). In
step 2, the condition “‖gI(xk)‖ < μ‖d1(xk)‖” of step 2a is never satisfied by (5.2).
Moreover, the condition “|A(xk−1)| < |A(xk)|” of step 2b is never satisfied since
k > K. Hence, the iterates never branch from the UA to the NPGA and the UA is
never restarted.

5.2. Degenerate problems. We now focus on degenerate problems and show
that a result analogous to Theorem 5.1 holds under the strong second-order sufficient
optimality condition. We begin with a series of preliminary results.

Lemma 5.2. If f is twice-continuously differentiable and there exists an infinite
sequence of iterates xk generated by the ASA with ε = 0 converging to a stationary
point x∗, xk �= x∗ for each k, then for each i ∈ A+(x∗) we have

lim sup
k→∞

xki

‖xk − x∗‖2
< ∞.(5.3)

Proof. Assume that A+(x∗) is nonempty; otherwise there is nothing to prove.
Let k+ be chosen large enough that gi(xk) > 0 for all i ∈ A+(x∗) and k ≥ k+. Since
f is twice-continuously differentiable, ∇f is Lipschitz continuous in a neighborhood
of x∗. Choose ρ > 0 and let λ be the Lipschitz constant for ∇f in the ball Bρ(x

∗)
with center x∗ and radius ρ. Since d1(x∗) = 0, it follows from the continuity of d1(·)
that dk tends to 0 (see (2.24)). Choose k+ large enough that the ball with center xk

and radius ‖dk‖ is contained in Bρ(x
∗) for all k ≥ k+. If xli = 0 for some i ∈ A+(x∗)

and l ≥ k+, then by the definition of dk in the NGPA, we have dki = 0 for all k ≥ l.
Hence, xki = 0 for each k ≥ l in the NGPA. Likewise, in the UA it follows from
U2 that xji = 0 for j ≥ k when xki = 0; that is, the UA does not free an active
constraint. In other words, when an index i ∈ A+(x∗) becomes active at iterate xk,
k ≥ k+, it remains active for all the subsequent iterations. Thus (5.3) holds trivially
for any i ∈ A+(x∗) with the property that xki = 0 for some k ≥ k+.
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Now, let us focus on the nontrivial indices in A+(x∗). That is, suppose that there
exists l ∈ A+(x∗) and xkl > 0 for all k ≥ k+. By the analysis given in the previous
paragraph, when k+ is sufficiently large,

either xki > 0 or xki = 0(5.4)

for all k ≥ k+ and i ∈ A+(x∗) (since an index i ∈ A+(x∗), which becomes active at
iterate xk, remains active for all the subsequent iterations). We consider the following
possible cases.

Case 1. For an infinite number of iterations k, xk is generated by the UA, and
the UA is restarted a finite number of times.

In this case, the ASA eventually performs only the UA, without restarts. By
U2 and U3, we have lim infk→∞ ‖gI(xk)‖ = 0. On the other hand, by assumption,
l ∈ I(xk) for k ≥ k+ and gl(x

∗) > 0, which is a contradiction since gl(xk) converges
to gl(x

∗).
Case 2. For an infinite number of iterations k, xk is generated by the UA, and

the UA is restarted an infinite number of times.
In this case, we will show that after a finite number of iterations, xki = 0 for

all i ∈ A+(x∗). Suppose, to the contrary, that there exists an l ∈ A+(x∗) such that
xkl > 0 for all k ≥ k+. By U4, each time the UA is restarted, we perform a Wolfe
line search. By the second half of (3.1), we have

φ′(αk) − φ′(0) ≥ (σ − 1)φ′(0).(5.5)

It follows from the definition (3.2) of φ(α) that

φ′(0) = −
∑

i∈I(xk)

g2
ki = −‖gI(xk)‖2 and(5.6)

φ′(αk) = −
∑

i∈I(xk+1)

gkigk+1,i

= −
∑

i∈I(xk)

gkigk+1,i +
∑

i∈A(xk+1)\A(xk)

gkigk+1,i.(5.7)

By the Lipschitz continuity of ∇f and P3, we have

‖g(xk) − g(xk+1)‖ = ‖g(P (xk)) − g(P (xk − αkgI(xk)))‖
≤ λαk‖gI(xk)‖.

Hence, by the Schwarz inequality,∣∣∣∣∣∣
∑

i∈I(xk)

gki(gki − gk+1,i)

∣∣∣∣∣∣ ≤ λαk‖gI(xk)‖2.(5.8)

Since A(xk+1) \ A(xk) ⊂ I(xk), the Schwarz inequality also gives∑
i∈A(xk+1)\A(xk)

gkigk+1,i ≤ ‖gI(xk)‖‖gk+1‖N ,(5.9)

where

‖gk+1‖2
N =

∑
i∈A(xk+1)\A(xk)

g2
k+1,i.
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Here N = A(xk+1) \ A(xk) corresponds to the set of constraints that are newly
activated as we move from xk to xk+1. Combining (5.5)–(5.9),

αk ≥ 1 − σ

λ
− ‖gk+1‖N

λ‖gI(xk)‖
, where ‖gk+1‖2

N =
∑

i∈A(xk+1)\A(xk)

g2
k+1,i.(5.10)

For k sufficiently large, (5.4) implies that the newly activated constraints A(xk+1) \
A(xk) exclude all members of A+(x∗). Since the xk converge to x∗, ‖gk+1‖N tends
to zero. On the other hand, ‖gI(xk)‖ is bounded away from zero since the index l is
contained in I(xk). Hence, the last term in (5.10) tends to 0 as k increases, and the
lower bound for αk approaches (1−σ)/λ. Since x∗

l = 0, it follows that xkl approaches
0. Since the lower bound for αk approaches (1 − σ)/λ, gl(x

∗) > 0, and xk converges
to x∗, we conclude that

xk+1,l = xkl − αkgkl < 0

for k sufficiently large. This contradicts the initial assumption that constraint l is
inactive for k sufficiently large. Hence, in a finite number of iterations, xki = 0 for all
i ∈ A+(x∗).

Case 3. The UA is executed a finite number of iterations.
In this case, the iterates are generated by the NGPA for k sufficiently large.

Suppose that (5.3) is violated for some l ∈ A+(x∗). We show that this leads to a
contradiction. By (5.4), xkl > 0 for all k ≥ k+. Since xk converges to x∗, x∗

l = 0, and
gl(x

∗) > 0, it is possible to choose k larger, if necessary, so that

xkl − gklαmin < 0.(5.11)

Since (5.3) is violated and xk converges to x∗, we can choose k larger, if necessary, so
that

xkl

‖xk − x∗‖2
≥ λ(2 + λ)2 max{1, αmax}2

2(1 − δ)gkl
,(5.12)

where 0 < δ < 1 is the parameter appearing in step 3 of the NGPA, and λ is the
Lipschitz constant for ∇f . We will show that for this k, we have

f(xk + dk) ≤ fR + δgT
kdk,(5.13)

where fR is specified in step 3 of the NGPA. According to step 3 of the NGPA, when
(5.13) holds, αk = 1, which implies that

xk+1,l = xkl + dkl.(5.14)

Since (5.11) holds and ᾱk ≥ αmin, we have

dkl = max{xkl − ᾱkgkl, 0} − xkl = −xkl.(5.15)

This substitution in (5.14) gives xk+1,l = 0, which contradicts the fact that xkl > 0
for all k ≥ k+.
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To complete the proof, we need to show that when (5.12) holds, (5.13) is satisfied.
Expanding in a Taylor series around xk and utilizing (5.15) gives

f(xk + dk) = f(xk) +

∫ 1

0

f ′(xk + tdk)dt

= f(xk) + gT
kdk +

∫ 1

0

(∇f(xk + tdk) − gT
k )dkdt

≤ f(xk) + gT
kdk +

λ

2
‖dk‖2

= f(xk) + δgT
kdk + (1 − δ)gT

kdk +
λ

2
‖dk‖2

≤ f(xk) + δgT
kdk + (1 − δ)gkldkl +

λ

2
‖dk‖2(5.16a)

= f(xk) + δgT
kdk − (1 − δ)gklxkl +

λ

2
‖dk‖2.(5.16b)

The inequality (5.16a) is due to the fact that gkidki ≤ 0 for each i. By P3, P4, P5,
and P7, and by the Lipschitz continuity of ∇f , we have

‖dk‖ ≤ max{1, αmax}‖d1(xk)‖
= max{1, αmax}‖d1(xk) − d1(x∗)‖
= max{1, αmax}‖P (xk − gk) − xk − P (x∗ − g(x∗)) + x∗‖
≤ max{1, αmax}(‖xk − x∗‖ + ‖P (xk − gk) − P (x∗ − g(x∗))‖)
≤ max{1, αmax}(‖xk − x∗‖ + ‖xk − gk − (x∗ − g(x∗))‖)
≤ max{1, αmax}(2‖xk − x∗‖ + ‖gk − g(x∗)‖)
≤ max{1, αmax}(2 + λ)‖xk − x∗‖.

Combining this upper bound for ‖dk‖ with the lower bound (5.12) for xkl, we conclude
that

λ

2
‖dk‖2 ≤ λ

2
max{1, αmax}2(2 + λ)2‖xk − x∗‖2

≤ 1

2

(
2(1 − δ)xklgkl
‖xk − x∗‖2

)
‖xk − x∗‖2

= (1 − δ)xklgkl.

Hence, by (5.16b) and by the choice for fR specified in step 3 of the NGPA, we have

f(xk + dk) ≤ f(xk) + δgT
kdk ≤ fR + δgT

kdk.(5.17)

This completes the proof of (5.13).
There is a fundamental difference between the gradient projection algorithm

presented in this paper and algorithms based on a “piecewise projected gradient”
[15, 16, 17]. For our gradient projection algorithm, we perform a single projection,
and then we backtrack towards the starting point. Thus we are unable to show that
the active constraints are identified in a finite number of iterations; in contrast, with
the piecewise project gradient approach, where a series of projections may be per-
formed, the active constraints can be identified in a finite number of iterations. In
Lemma 5.2 we show that even though we do not identify the active constraints, the
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components of xk corresponding to the strictly active constraints are on the order of
the error in xk squared.

If all the constraints are active at a stationary point x∗ and strict complementarity
holds, then convergence is achieved in a finite number of iterations.

Corollary 5.3. If f is twice-continuously differentiable, the iterates xk gener-
ated by the ASA with ε = 0 converge to a stationary point x∗, and |A+(x∗)| = n, then
xk = x∗ after a finite number of iterations.

Proof. Let xk,max denote the largest component of xk. Since ‖xk‖2 ≤ nx2
k,max,

we have

xk,max

‖xk‖2
≥ 1

nxk,max
.(5.18)

Since all the constraints are active at x∗, xk,max tends to zero. By (5.18) the con-
clusion (5.3) of Lemma 5.2 does not hold. Hence, after a finite number of iterations,
xk = x∗.

Recall [70] that for any stationary point x∗ of (1.1), the strong second-order
sufficient optimality condition holds if there exists γ > 0 such that

dT∇2f(x∗)d ≥ γ‖d‖2 whenever di = 0 for all i ∈ A+(x∗).(5.19)

Using P8, we establish the following.
Lemma 5.4. If f is twice-continuously differentiable near a stationary point x∗

of (1.1) satisfying the strong second-order sufficient optimality condition, then there
exists ρ > 0 with the following property:

‖x − x∗‖ ≤

√
1 +

(
(1 + λ)2

.5γ

)2

‖d1(x)‖(5.20)

for all x ∈ Bρ(x
∗), where λ is any Lipschitz constant for ∇f over Bρ(x

∗).
Proof. By the continuity of the second derivative of f , it follows from (5.19) that

for ρ > 0 sufficiently small,

(g(x) − g(x∗))T(x − x∗) ≥ .5γ‖x − x∗‖2(5.21)

for all x ∈ Bρ(x
∗) with xi = 0 for all i ∈ A+(x∗). Choose ρ smaller if necessary so

that

xi − gi(x) ≤ 0 for all i ∈ A+(x∗) and x ∈ Bρ(x
∗).(5.22)

Let x̄ be defined as follows:

x̄i =

{
0 if i ∈ A+(x∗),
xi otherwise.

(5.23)

Since (5.22) holds, it follows that

‖x − x̄‖ ≤ ‖d1(x)‖(5.24)

for all x ∈ Bρ(x
∗). Also, by (5.22), we have

[P (x̄ − g(x)) − x̄]i = 0 and d1(x)i = [P (x − g(x)) − x]i = −xi
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for all i ∈ A+(x∗), while

[P (x̄ − g(x)) − x̄]i = d1(x)i = [P (x − g(x)) − x]i

for i �∈ A+(x∗). Hence, we have

‖P (x̄ − g(x)) − x̄‖ ≤ ‖d1(x)‖(5.25)

for all x ∈ Bρ(x
∗). By the Lipschitz continuity of g, (5.24), (5.25), and P3, it follows

that

‖d1(x̄)‖ = ‖P (x̄ − g(x̄)) − P (x̄ − g(x)) + P (x̄ − g(x)) − x̄‖
≤ λ‖x̄ − x‖ + ‖d1(x)‖
≤ (1 + λ)‖d1(x)‖(5.26)

for all x ∈ Bρ(x
∗). By P8, (5.21), and (5.26), we have

‖x̄ − x∗‖ ≤
(

1 + λ

.5γ

)
‖d1(x̄)‖ ≤

(
(1 + λ)2

.5γ

)
‖d1(x)‖.(5.27)

Since ‖x − x̄‖2 + ‖x̄ − x∗‖2 = ‖x − x∗‖2, the proof is completed by squaring and
adding (5.27) and (5.24).

We now show that the undecided index set U becomes empty as the iterates
approach a stationary point, where the strong second-order sufficient optimality con-
dition holds.

Lemma 5.5. Suppose f is twice-continuously differentiable, x∗ is a stationary
point of (1.1) satisfying the strong second-order sufficient optimality condition, and
xk, k = 0, 1, . . . , is an infinite sequence of feasible iterates for (1.1) converging to x∗,
xk �= x∗ for each k. If there exists a constant ξ such that

lim sup
k→∞

xki

‖xk − x∗‖2
≤ ξ < ∞(5.28)

for all i ∈ A+(x∗), then U(xk) is empty for k sufficiently large.
Proof. To prove that U(x) is empty, we must show that for each i ∈ [1, n], one of

the following inequalities is violated:

|gi(x)| ≥ ‖d1(x)‖α or(5.29)

xi ≥ ‖d1(x)‖β .(5.30)

By Lemma 5.4, there exists a constant c such that ‖x−x∗‖ ≤ c‖d1(x)‖ for all x near
x∗. If i ∈ A+(x∗), then by (5.28), we have

lim sup
k→∞

xki

‖d1(xk)‖β
≤ lim sup

k→∞

ξ‖xk − x∗‖2

‖d1(xk)‖β
≤ lim sup

k→∞
ξc2‖d1(xk)‖2−β = 0

since β ∈ (1, 2). Hence, for each i ∈ A+(x∗), (5.30) is violated for k sufficiently large.
If i �∈ A+(x∗), then gi(x

∗) = 0. By Lemma 5.4, we have

lim sup
k→∞

|gi(xk)|
‖d1(xk)‖α

= lim sup
k→∞

|gi(xk) − gi(x
∗)|

‖d1(xk)‖α

≤ lim sup
k→∞

λ‖xk − x∗‖
‖d1(xk)‖α

≤ lim sup
k→∞

λc‖d1(xk)‖1−α = 0,
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since α ∈ (0, 1). Here, λ is a Lipschitz constant for g in a neighborhood of x∗. Hence,
(5.29) is violated if i �∈ A+(x∗).

Remark. If i ∈ A+(x∗) and the iterates xk converge to a stationary point x∗, then
gi(xk) is bounded away from 0 for k sufficiently large. Since d1(xk) tends to zero, the
inequality |gi(xk)| ≥ ‖d1(xk)‖α is satisfied for k sufficiently large. Hence, if U(xk) is
empty and i ∈ A+(x∗), then xki < ‖d1(xk)‖β where β ∈ (1, 2). In other words, when
U(xk) is empty, the components of xk associated with strictly active indices A+(x∗)
are going to zero faster than the error ‖d1(xk)‖.

Lemma 5.6. Suppose f is twice-continuously differentiable, x∗ is a stationary
point of (1.1) satisfying the strong second-order sufficient optimality condition, and
xk, k = 0, 1, . . . , is an infinite sequence of feasible iterates for (1.1) converging to x∗,
xk �= x∗ for each k. If there exists a constant ξ such that

lim sup
k→∞

xki

‖xk − x∗‖2
≤ ξ < ∞(5.31)

for all i ∈ A+(x∗), then there exist μ∗ > 0 such that

‖gI(xk)‖ ≥ μ∗‖d1(xk)‖(5.32)

for k sufficiently large.
Proof. Choose ρ > 0, and let λ be the Lipschitz constant for ∇f in Bρ(x

∗). As in
(5.23), let x̄ be defined by x̄i = 0 if i ∈ A+(x∗) and x̄i = xi otherwise. If xk ∈ Bρ(x

∗),
we have

‖d1(xk)‖ ≤ ‖d1(xk) − d1(x∗)‖
≤ ‖d1(xk) − d1(x̄k)‖ + ‖d1(x̄k) − d1(x∗)‖
≤ (2 + λ)(‖xk − x̄k‖ + ‖x̄k − x∗‖).(5.33)

Utilizing (5.31) gives

‖x̄k − xk‖ ≤
n∑

i=1

|x̄ki − xki|

=
∑

i∈A+(x∗)

xki ≤ nξ‖xk − x∗‖2

≤ nξ‖xk − x∗‖(‖xk − x̄k‖ + ‖x̄k − x∗‖).

Since xk converges to x∗, it follows that for any ε > 0,

‖x̄k − xk‖ ≤ ε‖x̄k − x∗‖(5.34)

when k is sufficiently large. Combining (5.33) and (5.34), there exists a constant c > 0
such that

‖d1(xk)‖ ≤ c‖x̄k − x∗‖(5.35)

for k sufficiently large.
Let k be chosen large enough that

‖xk − x∗‖ < min{x∗
i : i ∈ I(x∗)}.(5.36)
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Suppose, in this case, that i ∈ A(xk). If x∗
i > 0, then ‖xk − x∗‖ ≥ x∗

i , which
contradicts (5.36). Hence, x̄ki = x∗

i = 0. Moreover, if i ∈ A+(x∗), then by the
definition (5.23), x̄ki = x∗

i = 0. In summary,{
x̄ki = x∗

i = 0 for each i ∈ A(xk) ∪ A+(x∗),
gi(x

∗) = 0 for each i ∈ A+(x∗)c,
(5.37)

where A+(x∗)c is the complement of A+(x∗). Define Z = A(xk)
c ∩ A+(x∗)c.

By the strong second-order sufficient optimality condition and for x near x∗, we
have

γ

2
‖x̄ − x∗‖2 ≤ [x̄ − x∗]T

∫ 1

0

∇2f(x∗ + t(x̄ − x∗))dt [x̄ − x∗]

= (x̄ − x∗)T(g(x̄) − g(x∗)).(5.38)

We substitute x = xk in (5.38) and utilize (5.37) to obtain

(x̄k − x∗)T(g(x̄k) − g(x∗)) =

n∑
i=1

(x̄ki − x∗
i )(gi(x̄k) − gi(x

∗))

=
∑
i∈Z

(x̄ki − x∗
i )gi(x̄k)

≤ ‖x̄k − x∗‖

⎛⎝ ∑
i∈I(xk)

gi(x̄k)
2

⎞⎠1/2

,(5.39)

since Z ⊂ A(xk)
c = I(xk). Exploiting the Lipschitz continuity of ∇f , (5.39) gives

(x̄k − x∗)T(g(x̄k) − g(x∗)) ≤ ‖x̄k − x∗‖(‖gI(xk)‖ + λ‖x̄k − xk‖).(5.40)

Combining (5.34), (5.38), and (5.40), we conclude that for k sufficiently large,

γ

4
‖x̄k − x∗‖ ≤ ‖gI(xk)‖.(5.41)

Combining (5.35) and (5.41), the proof is complete.
Remark. If xk is a sequence converging to a nondegenerate stationary point

x∗, then (5.32) holds with μ∗ = 1, without assuming either the strong second-order
sufficient optimality condition or (5.31)—see Theorem 5.1. In Lemma 5.6, the opti-
mization problem could be degenerate.

We now show that after a finite number of iterations, the ASA will perform only
the UA with a fixed active constraint set.

Theorem 5.7. If f is twice-continuously differentiable and the iterates xk gen-
erated by the ASA with ε = 0 converge to a stationary point x∗ satisfying the strong
second-order sufficient optimality condition, then after a finite number of iterations,
the ASA performs only the UA without restarts.

Proof. By Lemma 5.2, the hypotheses (5.28) and (5.31) of Lemmas 5.5 and 5.6
are satisfied. Hence, for k sufficiently large, the undecided set U(xk) is empty and the
lower bound (5.32) holds. In step 1a, if ‖gI(xk)‖ < μ‖d1(xk)‖, then μ is multiplied
by the factor ρ < 1. When μ < μ∗, Lemma 5.6 implies that ‖gI(xk)‖ ≥ μ‖d1(xk)‖.
Hence, step 1a of the ASA branches to step 2, while step 2 cannot branch to step
1 since the condition ‖gI(xk)‖ < μ‖d1(xk)‖ is never satisfied in step 2a and U(xk)
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is empty in step 2b for k sufficiently large. Since the UA only adds constraints, we
conclude that after a finite number of iterations, the active set does not change.

Remark. If f is a strongly convex quadratic function, then by Corollary 4.2,
the iterates xk converge to the global minimizer x∗. If the UA is based on the
conjugate gradient method for which there is finite convergence when applied to a
convex quadratic, it follows from Theorem 5.7 that the ASA converges in a finite
number of iterations.

We now give the proof of Corollary 4.2; that is, when f is strongly convex and
twice-continuously differentiable on B, and assumption A3 of Theorem 4.1 is satisfied,
then the entire sequence of iterates generated by the ASA converges to the global
minimizer x∗. Note that the assumptions of Corollary 4.2 are weaker than those of
Corollary 2.3 (global convergence of the NGPA) since Corollary 4.2 requires only that
fr
k ≤ fmax

k infinitely often in the NGPA.
Proof. For a strongly convex function, A1 and A2 always hold. Since all the

assumptions of Theorem 4.1 are satisfied, there exists a subsequence xkj , j = 1, 2, . . . ,
of the iterates such that

lim
j→∞

‖d1(xkj )‖ = 0.

Since the UA is monotone and since the NGPA satisfies (2.12) and (2.13), it follows
from the strong convexity of f that the xkj are contained in a bounded set. Since
d1(·) is continuous, there exists a subsequence, also denoted xkj , converging to a limit
x∗ with d1(x∗) = 0. Since the unique stationary point of a strongly convex function
is its global minimizer, x∗ is the global solution of (1.1).

Case A. There exists an infinite subsequence, also denoted {xkj}, with the prop-
erty that xkj+1 is generated by the UA.

In this case, we are done since the UA is monotone and the inequality

f(xk) ≤ f(xkj )(5.42)

holds for all k ≥ kj (see (2.12) and (2.13)). Since xkj
converges to x∗, it follows

that f(xkj ) converges to f(x∗), and hence, by (5.42) and (2.32), the entire sequence
converges to x∗.

Case B. There exists an infinite subsequence, also denoted {xkj
}, with the prop-

erty that xkj+1 is generated by the NGPA.
Either

lim sup
j→∞

(xkj )i

‖xkj
− x∗‖2

< ∞ for all i ∈ A+(x∗)(5.43)

holds or (5.43) is violated. By the analysis given in Case 3 of the proof of Lemma
5.2, when (5.43) is violated, (5.13) holds, from which it follows that for j sufficiently
large,

xkj+1,i = 0 for all i ∈ A+(x∗).(5.44)

Hence, either the sequence xkj satisfies (5.43) or the sequence xkj+1 satisfies (5.44).
In this latter case, it follows from (5.17) that

f(xkj+1) ≤ f(xkj ).

Since f(xkj ) converges to f(x∗), we conclude that f(xkj+1) converges to f(x∗), and
xkj+1 converges to x∗.
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In either case (5.43) or (5.44), there exists a sequence Kj (either Kj = kj or
Kj = kj + 1) with the property that xKj converges to x∗ and

lim sup
j→∞

(xKj )i

‖xKj − x∗‖2
< ∞ for all i ∈ A+(x∗).

By Lemma 5.5, U(xKj ) is empty for j sufficiently large. By Lemma 5.6, there exists
μ∗ > 0 such that

‖gI(xKj )‖ ≥ μ∗‖d1(xKj )‖

for j sufficiently large. As in the proof of Theorem 5.7, at iteration Kj for j sufficiently
large, the ASA jumps from step 1 to the UA in step 2. Hence, for j sufficiently large,
xKj+1 is generated by the UA, which implies that Case A holds.

6. Numerical experiments. This section compares the CPU time performance
of the ASA, implemented using the nonlinear conjugate gradient code CG DESCENT
for the UA and the CBB method (see the appendix) for the NGPA, to the performance
of the following codes:

• L-BFGS-B [18, 84]: The limited memory quasi-Newton method of Zhu, Byrd,
and Nocedal (ACM algorithm 778).

• SPG2 version 2.1 [10, 11]: The nonmonotone spectral projected gradient
method of Birgin, Mart́ınez, and Raydan (ACM algorithm 813).

• GENCAN [9]: The monotone active set method with spectral projected gra-
dients developed by Birgin and Mart́ınez.

• TRON version 1.2 [63]: A Newton trust region method with incomplete
Cholesky preconditioning developed by Lin and Moré.

A detailed description of our implementation of the ASA is given in the appendix.
L-BFGS-B was downloaded from Jorge Nocedal’s Web page (http://www.ece.

northwestern.edu/∼nocedal/lbfgsb.html); TRON was downloaded from Jorge Moré’s
Web page (http://www-unix.mcs.anl.gov/∼more/tron/); and SPG2 and GENCAN
were downloaded on June 28, 2005, from the TANGO Web page maintained by
Ernesto Birgin (http://www.ime.usp.br/∼egbirgin/tango/downloads.php). All codes
are written in Fortran and compiled with f77 (default compiler settings) on a Sun
workstation. The stopping condition was

‖P (x − g(x)) − x‖∞ ≤ 10−6,

where ‖ · ‖∞ denotes the sup-norm of a vector. In running any of these codes, default
values were used for all parameters. In the NGPA, we chose the following parameter
values:

αmin = 10−20, αmax = 10+20, η = .5, δ = 10−4, M = 8.

Here M is the memory used to evaluate fmax
k (see (2.3)). In the ASA the parameter

values were as follows:

μ = .1, ρ = .5, n1 = 2, n2 = 1.

In the CBB method (see the appendix), the parameter values were the following:

θ = .975, L = 3, A = 40, m = 4, γ1 = M/L, γ2 = A/M.
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Fig. 6.1. Performance profiles, CPU time metric, 50 CUTEr test problems, gradient-based
methods.

The separation parameter Δ in condition R4 of the appendix was the natural sepa-
ration between floating point numbers. That is, R4 was satisfied when the floating
point version of fk+1 was strictly less than the floating point version of fmin

k .
The test set consisted of all 50 box constrained problems in the CUTEr library [13]

with dimensions between 50 and 15,625, and all 23 box constrained problems in the
MINPACK-2 library [1] with dimension 2500. TRON is somewhat different from the
other codes since it employs Hessian information and an incomplete Cholesky precon-
ditioner, while the codes ASA, L-BFGS-B, SPG2, and GENCAN utilize only gradient
information. When we compare our code to TRON, we use the same Lin–Moré pre-
conditioner [62] used by TRON for our unconstrained algorithm. The preconditioned
ASA code is called P-ASA. Since TRON is targeted to large-sparse problems, we
compare our code to TRON using the 23 MINPACK-2 problems and the 42 sparsest
CUTEr problems (the number of nonzeros in the Hessian was at most 1/5 the total
number of entries). The codes L-BFGS-B, SPG2, and GENCAN were implemented
for the CUTEr test problems, while ASA and TRON were implemented for both test
sets CUTEr and MINPACK-2.

The CPU time in seconds and the number of iterations, function evaluations,
gradient evaluations, and Hessian evaluations for each of the methods are posted
at the following Web site: http://www.math.ufl.edu/∼hager/papers/CG. In running
the numerical experiments, we checked whether different codes converged to different
local minimizers; when comparing the codes, we restricted ourselves to test problems
in which all codes converged to the same local minimizer, and where the running time
of the fastest code exceeded .01 seconds. The numerical results are now analyzed.

The performance of the algorithms, relative to CPU time, was evaluated using
the performance profiles of Dolan and Moré [34]. That is, for each method, we plot
the fraction P of problems for which the method is within a factor τ of the best time.
In Figure 6.1, we compare the performance of the four codes ASA, L-BFGS-B, SPG2,
and GENCAN using the 50 CUTEr test problems. The left side of the figure gives
the percentage of the test problems for which a method is the fastest; the right side
gives the percentage of the test problems that were successfully solved by each of the
methods. The top curve is the method that solved the most problems in a time that
was within a factor τ of the best time. Since the top curve in Figure 6.1 corresponds
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Fig. 6.2. Performance profiles, CPU time metric, 42 sparsest CUTEr problems, 23 MINPACK-
2 problems, ε = 10−6.
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Fig. 6.3. Performance profiles, CPU time metric, ε = 10−2‖d1(x0)‖∞.

to the ASA, this algorithm is clearly fastest for this set of 50 test problems with
dimensions ranging from 50 to 15,625. The relative difference in performance between
the ASA and the competing methods seen in Figure 6.1 is greater than the relative
difference in performance between CG DESCENT and the competing methods, as
seen in the figures given in [55, 57]. Hence, both the gradient projection algorithm
and the conjugate gradient algorithm are contributing to the better performance of
the ASA.

In Figure 6.2 we compare the performance of TRON to P-ASA and ASA for the
42 sparsest CUTEr test problems and the 23 MINPACK-2 problems. Observe that
P-ASA has the top performance, and that ASA, which utilizes only the gradient,
performs almost as well as the Hessian-based code TRON. The number of conjugate
gradient iterations performed by the P-ASA code is much less than the number of
conjugate gradient iterations performed by the ASA code. Finally, in Figure 6.3 we
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compare the performance of P-ASA to ASA for the relaxed convergence tolerance
ε = 10−2‖d1(x0)‖∞. Based on Figures 6.2 and 6.3, the preconditioned ASA scheme
is more efficient than unconditioned ASA for the more stringent stopping criterion,
while the unconditioned and preconditioned schemes are equally effective for a more
relaxed stopping criterion. Although the performance profile for ASA is beneath 1 in
Figure 6.2, it reaches 1 as τ increases—there are some problems in which P-ASA is
more than 16 times faster than ASA. Due to these difficult problems, the ASA profile
is still beneath 1 for τ = 16.

When we solve an optimization problem, the solution time consists of two parts,
as follows:

T1. The time associated with the evaluation of the function or its gradient or its
Hessian.

T2. The remaining time, which is often dominated by the time used in the linear
algebra.

The CPU time performance profile measures a mixture of T1 and T2 for a set
of test problems. In some applications, T1 (the evaluation time) may dominate. In
order to assess how the algorithms may perform in the limit, when T2 is negligible
compared to T1, we could ignore T2 and compare the algorithms based on T1. In
the next set of experiments, we explore how the algorithms perform in the limit, as
T1 becomes infinitely large relative to T2.

Typically, the time to evaluate the gradient of a function is greater than the time
to evaluate the function itself. Also, the time to evaluate the Hessian is greater than
the time to evaluate the gradient. If the time to evaluate the function is 1, then the
average time to evaluate the gradient and Hessian for the CUTEr bound constrained
test set is as follows:

function = 1, gradient = 2.6, Hessian = 21.0.

Similarly, for the MINPACK-2 test set, the relative evaluation times are

function = 1, gradient = 2.0, Hessian = 40.5

on average.
For each method and for each test problem, we compute an “evaluation time”

where the time for a function evaluation is 1, the time for a gradient evaluation is either
2.6 (CUTEr) or 2.0 (MINPACK-2), and the time for a Hessian evaluation is either
21.0 (CUTEr) or 40.5 (MINPACK-2). In Figure 6.4 we compare the performance
of gradient-based methods, and in Figure 6.5 we compare the performance of the
gradient-based ASA and the method which exploits the Hessian (P-ASA or TRON).

In Figure 6.4 we see that for the evaluation metric and τ near 1, L-BFGS-B
performs better than ASA, but as τ increases, ASA dominates L-BFGS-B. In other
words, in the evaluation metric, there are more problems in which L-BFGS-B is faster
than the other methods; however, ASA is not much slower than L-BFGS-B. When τ
reaches 1.5, ASA starts to dominate L-BFGS-B.

In Figure 6.5 we see that P-ASA dominates TRON in the evaluation metric.
Hence, even though TRON uses far fewer function evaluations, it uses many more
Hessian evaluations. Since the time to evaluate the Hessian is much greater than
the time to evaluate the function, P-ASA has better performance. In summary, by
neglecting the time associated with the linear algebra, the relative gap between P-
ASA and TRON decreases, while the relative gap between TRON and ASA increases,
as seen in Figure 6.5. Nonetheless, in the evaluation metric, the performance profile
for P-ASA is still above the profile for TRON.
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Fig. 6.4. Performance profiles, evaluation metric, 50 CUTEr test problems, gradient-based
methods.
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7. Conclusions. We have presented a new ASA for solving box constrained
optimization problems. The algorithm consists of a nonmonotone gradient projection
phase and an unconstrained optimization phase. Rules are given for deciding when
to branch from one phase to the other. The branching criteria are based on whether
the set of undecided indices is empty or the active set subproblem is solved with
sufficient accuracy. We show that for a nondegenerate stationary point, the algorithm
eventually reduces to unconstrained optimization without restarts. The analogous
result for a degenerate stationary point is established under the strong second-order
sufficient optimality condition.

For an implementation of the ASA which uses the CBB method [30] for the
nonmonotone gradient projection and which uses CG DESCENT [54, 55, 56, 57] for
unconstrained optimization, we obtained higher CPU time performance profiles than
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those of L-BFGS-B, SPG2, GENCAN, and TRON for a test set consisting of all 50
CUTEr [13] box constrained problems with dimension greater than 50, and all 23
MINPACK-2 [1] box constrained problems.

Appendix. An implementation of the ASA. For the numerical results in
section 6, our choice for the UA is the conjugate gradient algorithm CG DESCENT
[54, 55, 57, 56]. When an iterate lands outside the feasible set, we may increase the
size of the active set using an approach similar to that in [9]. Roughly, we perform
an approximate line search for the function

φ(α) = f(P (xk + αdk))

along the current search direction dk, and any components of xk+1 = P (xk + αkdk)
which reach the boundary are added to the current active set.

The initial stepsize ᾱk in the NGPA is generated using the CBB method [30].
In the remainder of this section, we explain in detail the initial stepsize computation
and choice for the reference function value fr

k in the NGPA (see [82] for preliminary
numerical results based on a closely related initial stepsize and reference function
value). We show that these choices satisfy the hypotheses of Theorem 2.2.

The BB stepsize [2] is given by

αBB
k+1 =

sT
ksk

sT
kyk

,(A.1)

where sk = xk+1 − xk and yk = gk+1 − gk. An attractive feature of the BB stepsize
is that for unconstrained optimization and without a line search, linear convergence
is achieved [30] for a starting guess in a neighborhood of the local minimizer with a
positive definite Hessian. Moreover, if the same BB stepsize is repeated for several
iterations, then even faster convergence is often achieved (see [30]). We refer to
schemes that employ the same BB stepsize for several iterations as cyclic BB (CBB)
schemes. From an asymptotic perspective, either BB or CBB schemes are inferior
to conjugate gradient schemes, for which the convergence rate can be superlinear.
On the other hand, for a bound constrained optimization problem, where the active
constraints at an optimal solution are unknown, the asymptotic convergence rate is
irrelevant until the active constraints are identified. A nonmonotone BB or CBB
iteration yields an efficient strategy for identifying active constraints.

When possible, the initial stepsize αk is given by the CBB formula

αk+j = αBB
k for j = 0, . . . ,m− 1,

where the BB step appears in (A.1) and m is the number of times the BB step is
reused. When αBB

k �∈ [αmin, αmax], we project it on the interval [αmin, αmax].
We now provide a more detailed statement of our algorithm for computing the

initial stepsize. The integer j counts the number of times the current BB step has
been reused, while the parameter m is the CBB memory (the maximum number of
times the BB step will be reused).

Initial stepsize.

I0. If k = 0, choose α0 ∈ [αmin, αmax] and a parameter θ < 1 near 1; set j = 0
and flag = 1. If k > 0, set flag = 0.

I1. If 0 < |dki| < ᾱk|gki| for some i, then set flag = 1.
I2. If αk = 1 in the NGPA, then set j = j + 1.
I3. If αk < 1 in the NGPA, then set flag = 1.



BOX CONSTRAINED OPTIMIZATION 553

I4. If j ≥ m or flag = 1 or sT
kyk/(‖sk‖‖yk‖) ≥ θ, then

a. If sT
kyk ≤ 0, then

1. If j ≥ 1.5m, then set t = min{‖xk‖∞, 1}/‖d1(xk)‖∞,
αk+1 = min{αmax,max[t, αk]}, and j = 0.

2. Else set αk+1 = αk.
b. Else set αk+1 = min{αmax,max[αmin, s

T
ksk/s

T
kyk]} and j = 0.

Since this procedure always generates an initial stepsize αk ∈ [αmin, αmax], it
complies with the requirement in step 1 of the NGPA. If the original BB step is
truncated (see I1), or an Armijo line search is performed (see I3), or the cycle number
j reaches m (see I4), or sT

kyk/(‖sk‖‖yk‖) is close to 1 (see I4), then we try to compute
a new BB step. The BB stepsize computation appears in step I4b. One motivation for
computing a new BB step when sT

kyk/(‖sk‖‖yk‖) is close to 1 is given in [30]; when f
is a quadratic, this condition is satisfied when the step sk is close to an eigenvector of
the Hessian. When sT

kyk ≤ 0 (see I4a), the function is not convex on the line segment
connecting xk and xk+1, and a relatively large stepsize is used in the next iteration.
A rationale for the step taken in this case appears in [57].

Now consider the reference function value fr
k . Let fk denote f(xk). In the algo-

rithm which follows, the integer a counts the number of consecutive iterations that
αk = 1 in the NGPA (and the Armijo line search in step 4 is skipped). The integer
l counts the number of iterations since the function value is strictly decreased by an
amount Δ > 0.

Reference function value.

R0. If k = 0, choose parameters A > L > 0, γ1 > 1, γ2 > 1, and Δ > 0; initialize
a = l = 0 and fmin

0 = fmax min
0 = fr

0 = fr
−1 = f0.

R1. Update fr
k as follows:

a. If l = L, then set l = 0 and

fr
k =

{
fmax min
k if

fmax
k −fmin

k

fmax min
k

−fmin
k

≥ γ1,

fmax
k otherwise.

b. Else if a > A, then set

fr
k =

{
fmax
k if fmax

k > fk and
fr
k−1−fk

fmax
k

−fk
≥ γ2,

fr
k−1 otherwise.

c. Otherwise, fr
k = fr

k−1.
R2. Set fR as follows in step 3 of the NGPA:

a. If j = 0 (first iterate in a CBB cycle), then fR = fr
k .

b. If j > 0, then fR = min{fmax
k , fr

k}.
If αk < 1 in the NGPA, then set a = 0.

R3. If αk = 1 in the NGPA, then set a = a + 1.
R4. If fk+1 ≤ fmin

k − Δ, then set fmax min
k+1 = fmin

k+1 = fk+1 and l = 0; otherwise,

put l = l + 1, fmin
k+1 = fmin

k , and fmax min
k+1 = max{fmax min

k , fk+1}.
The variable fmax

k , defined in (2.3), stores the maximum of recent function values.
The variable fmin

k stores the minimum function value to within the tolerance Δ. The
variable fmax min

k stores the maximum function value since the last new minimum was
recorded in fmin

k . More explanations concerning the choice of the reference function
value are given in [30, 31]. Now, let us check that the choice for fr

k given above
satisfies the requirements in step 2 of the NGPA.

Proof that fk ≤ fr
k . In R1, we set
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(i) fr
k = fmax min

k or
(ii) fr

k = fmax
k or

(iii) fr
k = fr

k−1.

By R4, fmax min
k ≥ fk. In case (ii), fmax

k ≥ fk by the definition of fmax
k . In steps 3

and 4 of the NGPA, we have fk ≤ fR ≤ fr
k−1. Hence, in each of the cases (i)–(iii), we

have fk ≤ fr
k .

Proof that fr
k ≤ max{fr

k−1, f
max
k }. In R1a, fr

k is equal to either fmax
k or fmax min

k .

Since γ1 > 1, we set only fr
k = fmax min

k when fmax min
k ≤ fmax

k . Hence, in R1a,
fr
k ≤ fmax

k . In R1b, fr
k is equal to either fmax

k or fr
k−1. Since γ2 > 1, we set only

fr
k = fr

k−1 when fr
k−1 ≥ fmax

k . Hence, in R1b, fr
k ≤ fmax

k . In R1c, we set fr
k = fr

k−1.
Combining these observations, fr

k ≤ max{fr
k−1, f

max
k } in R1a–R1c.

Proof that fr
k ≤ fmax

k infinitely often. The condition fk+1 ≤ fmin
k − Δ in R4 is

satisfied only a finite number of times when f is bounded from below. Thus for k
sufficiently large, fr

k is updated in R1a every L iterations. In this case, since γ1 > 1,
fr
k = fmax min

k only when fmax min
k ≤ fmax

k , which implies that fr
k ≤ fmax

k . Hence, for
large k, fr

k ≤ fmax
k every L iterations.
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Abstract. We describe a Jordan-algebraic version of results related to convexity of images of
quadratic mappings as well as related results on exactness of symmetric relaxations of certain classes
of nonconvex optimization problems. The exactness of relaxations is proved based on rank estimates.
Our approach provides a unifying viewpoint on a large number of classical results related to cones of
Hermitian matrices over real and complex numbers. We describe (apparently new) results related to
cones of Hermitian matrices with quaternion entries and to the exceptional 27-dimensional Euclidean
Jordan algebra.
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1. Introduction. Starting with [F1, F2], the Jordan-algebraic technique proved
to be useful as a unifying tool for the description and analysis of interior-point al-
gorithms. In the present paper we use this technique for similar goals, but with the
difference being that we use it to study the convexity images of quadratic mappings
between finite-dimensional vector spaces. This circle of problems has numerous con-
nections with optimization theory (see, e.g., [Pol] and the references therein for a
discussion of various connections of this type). In particular, questions such as under
what assumptions are semidefinite relaxations of quadratically constrained quadratic
programming problems exact (see, e.g., [YZ] and the references therein) or when can
one omit rank constraints in semidefinite programming problems (see [BM] and the
references therein) are important for modern optimization theory. Another very inter-
esting connection is with the famous S-lemma (see [BN, pp. 300–314]). Our approach
is modeled on the work of Barvinok [B2, B3, B1] but is developed within a more
general framework of Jordan algebras. The paper is organized as follows. In section
2 we briefly describe Jordan-algebraic concepts related to our discussion. In section 3
we give a complete description of the facial structure of a symmetric cone in the form
somewhat different from one in [FK]. Section 4 is of central importance and provides
estimates on the rank of a feasible point in the intersection of an affine subspace and
a symmetric cone. Our results are a direct (but not an immediate!) generalization
of the results of Barvinok, who considered the cones of Hermitian matrices over R
and C. In section 5 we derive from rank estimates some convexity results and re-
sults about exact convex relaxations of generally nonconvex optimization problems.
It is done within the general Jordan-algebraic context. The central object here is the
manifold of primitive idempotents in a simple Euclidean Jordan algebra (or its conic
hull). A very general Jordan-algebraic version of the well-known S-lemma is given.
In section 6 we interpret the results of section 5 for concrete symmetric cones. The
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cases of symmetric cones corresponding to algebras of Hermitian matrices over H and
exceptional 27-dimensional algebra seem to lead to new results.

Another type of convexity result (a Jordan-algebraic version of the Horn–Schur
theorem) was obtained in [LKF].

2. Jordan-algebraic concepts. We stick to the notation of an excellent book
[FK]. We do not attempt to describe the Jordan-algebraic language here but instead
provide detailed references to [FK]. Throughout this paper, we use the following
notation:

• V is a simple Euclidean Jordan algebra;
• rank(V ) stands for the rank of V ;
• x ◦ y is the Jordan algebraic multiplication for x, y ∈ V ;
• 〈x, y〉 = tr(x ◦ y) is the canonical scalar product in V ; here tr is the trace

operator on V ;
• Ω is the cone of invertible squares in V ;
• Ω̄ is the closure of Ω in V ;
• an element f ∈ V such that f2 = f and tr(f) = 1 is called a primitive

idempotent in V ;
• the set T (V ) of primitive idempotents is a smooth compact connected sub-

manifold in V ;
• given x ∈ V , we denote by L(x) the corresponding multiplication operator

on V , i.e.,

L(x)y = x ◦ y, y ∈ V ;

• given x ∈ V , we denote by P (x) the so-called quadratic representation of x,
i.e.,

P (x) = 2L(x)2 − L(x2).

Given x ∈ V, there exist idempotents f1, . . . , fk in V such that fi ◦ fj = 0 for
i �= j and such that f1 + f2 + · · · + fk = e, and distinct real numbers λ1, . . . , λk with
the following property:

x =

k∑
i=1

λifi.(1)

The numbers λi and idempotents fi are uniquely defined by x (see Theorem
III.1.1 in [FK]).

The representation (1) is called the spectral decomposition of x. Within the
context of this paper the notion of the rank of x is very important. By definition,

rank(x) =
∑

i:λi �=0

tr(fi).(2)

Given x ∈ V , the operator L(x) is symmetric with respect to the canonical scalar
product. If f is an idempotent in V , it turns out that the spectrum of L(f) belongs
to {0, 1

2 , 1}. Following [FK], we denote by V (1, f), V ( 1
2 , f), V (0, f) corresponding

eigenspaces.
It is clear that

V = V (0, f) ⊕ V (1, f) ⊕ V

(
1

2
, f

)
(3)
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and the eigenspaces are pairwise orthogonal with respect to the scalar product 〈, 〉.
This is the so-called Peirce decomposition of V with respect to an idempotent f .
However, eigenspaces have more structure (see [FK, Proposition IV.1.1]). In partic-
ular, V (0, f), V (1, f) are subalgebras in V . Let f1, f2 be two primitive orthogonal
idempotents. It turns out that

dimV

(
1

2
, f1

)
∩ V

(
1

2
, f2

)
does not depend on the choice of the pair f1, f2 (see Corollary IV.2.6, p. 71 in [FK]).
It is called the degree of V (notation d(V )).

If V is a simple Euclidean Jordan algebra, then

dimV = rank(V ) +
d(V )

2
rank(V )(rank(V ) − 1).

Note that two simple Euclidean Jordan algebras are isomorphic if and only if their
ranks and degrees coincide.

The next proposition will be frequently used in what follows.
Proposition 1. Let x, y ∈ Ω̄. Then 〈x, y〉 ≥ 0; 〈x, y〉 = 0 if and only if x◦y = 0.
For a proof see, e.g., [F2].
We summarize some of the properties of algebras V (1, f).
Proposition 2. Let f be an idempotent in a simple Euclidean Jordan algebra V .

Then V (1, f) is a simple Euclidean Jordan algebra with identity element f . Moreover,

rank(V (1, f)) = rank(f),

d(V (1, f)) = d(V ).

The trace operator on V (1, f) coincides with the restriction of the trace operator

on V . If Ω̃ is the cone of invertible squares in V (1, f), then ¯̃Ω = Ω̄ ∩ V (1, f).
Proposition 2 easily follows from the properties of Peirce decomposition on V (see

section IV.2 in [FK]). Notice that if c is a primitive idempotent in V (1, f), then c is
primitive idempotent in V , i.e., T (V (1, f)) = T (V ) ∩ V (1, f).

Indeed, let c = c1 + c2 where c1, c2 ∈ V and c21 = c1, c
2
2 = c2. Since c ∈ V (1, f), c ◦

(e− f) = 0, i.e., (e− f) ◦ c1 + (e− f) ◦ c2 = 0.
Hence, 〈e − f, c1〉 + 〈e − f, c2〉 = 0. But e − f, c1, c2 ∈ Ω̄. Hence, 〈e − f, c1〉 ≥

0, 〈e − f, c2〉 ≥ 0. We conclude that 〈e − f, c1〉 = 〈e − f, c2〉 = 0. By Proposition 1
(e−f)◦c1 = (e−f)◦c2 = 0, i.e., c1, c2 ∈ V (1, f). But c is primitive in V (1, f). Hence
c1 = 0 or c2 = 0, which proves that c is primitive in V .

Let f1, . . . , fr, where r = rank(V ), be a system of primitive idempotents such
that fi ◦fj = 0 for i �= j and f1 + · · ·+fr = e. Such a system is called a Jordan frame.
Given x ∈ V , there exists a Jordan frame f1, . . . , fr and real numbers λ1, . . . , λr such
that

x =

r∑
i=1

λifi.

The numbers λi (with their multiplicities) are uniquely determined by x (see Theorem
III.1.2 in [FK]).

It is clear that

tr(x) =

r∑
i=1

λi, rank(x) = card{i ∈ [1, r] : λi �= 0}.
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Since primitive idempotents in V (1, f) remain primitive in V , it easily follows that
the rank of x ∈ V (1, f) is the same as its rank in V .

3. Facial structure of the cone of squares. Throughout this paper we will
use notation Bε for an open ball in V with the center at 0 and of radius ε (with respect
to the norm induced by the canonical Euclidean product). Given a subset S ⊂ V,
we denote by Aff(S) the smallest affine subspace in V containing S (affine hull of S).
The notation ri(S) is used for the relative interior of S:

ri(S) = {x ∈ S : ∃ε > 0, (x + Bε) ∩ Aff(S) ⊂ S}.

Let S be a convex subset of V. A face of S is a convex subset T of S such that
whenever λx + μy ∈ T , where x, y ∈ S, λ, μ > 0, λ + μ = 1, then x, y ∈ T. Recall the
following theorem (Theorem 2.6.10 in [W]).

Theorem 1. Let a be a point of convex set S in V . Let Fa be the intersection
of all faces of S containing a. Then Fa is a face of S. Moreover, a ∈ ri(Fa) and the
relative interiors of the faces of S form a partition of S.

In this section we describe the facial structure of the cone of squares Ω̄ in V in a
form somewhat different from the one given in Proposition IV.3.1 of [FK].

Theorem 2. Let x ∈ ∂Ω = Ω̄\Ω and

x =

k+1∑
i=1

λi(x)fi(x)

be the spectral decomposition of x, where λi(x) > 0, i = 1, 2, . . . , k, λk+1(x) = 0 are
pairwise distinct eigenvalues of x. Let

Fx = {z ∈ Ω̄ : 〈fk+1(x), z〉 = 0}.

Then Fx is a face of Ω̄. Moreover, x ∈ ri(Fx),Aff(Fx) = V (0, fk+1(x)) = V (1, f1(x)+
· · · + fk(x)); ri(Fx) = Ω̃, where Ω̃ is the cone of invertible squares in V (0, fk+1(x)),
¯̃Ω = Ω̄ ∩ V (0, fk+1(x)).

Corollary 1. In particular,

dimFx = dimV (1, f1(x) + · · · + fk(x)) = ϕd(rank(x)),

ϕd(x) = x +
dx(x− 1)

2
.

Here d = d(V ) is the degree of V .
Proof of Theorem 2. Since x ∈ ∂Ω, fk+1(x) �= 0. Let Hx = {z ∈ V ; 〈z, fk+1(x)〉 =

0}. If z ∈ Ω̄, then 〈z, fk+1(x)〉 ≥ 0 (f2
k+1(x) = fk+1(x); hence, fk+1(x) ∈ Ω̄). This

implies that Hx is a supporting hyperplane to Ω̄ (x ∈ Hx). Thus, F = Hx ∩ Ω̄
is a face of Ω̄ and, moreover, x ∈ F . Furthermore, y ∈ F is equivalent to y ∈ Ω̄
and 〈y, fk+1(x)〉 = 0. But then, by Proposition 1, y ◦ fk+1(x) = 0 and consequently
y ∈ V (0, fk+1(x)) = V (1, e − fk+1(x)). Thus, F ⊂ V (0, fk+1(x)), which implies

Aff(F) ⊂ V (0, fk+1(x)). It is clear that x ∈ Ω̃ (with inverse
∑k

i=1(1/λi)fi(x) in
V (0, fk+1(x))).

Thus rankV (0, fk+1(x)) = rank(x). Since ¯̃Ω = Ω̄∩V (0, fk+1(x)) by Proposition 2
we conclude that Ω̃ ⊂ F , which implies that V (0, fk+1(x)) = Aff(Ω̃) ⊂ Aff(F). Thus

V (0, fk+1(x)) = Aff(F).

Since Ω̃ is relatively open in V (0, fk+1(x)), we see that Ω̃ ⊂ ri(F). On the other

hand, F = F ∩ Aff(F) = Ω̄ ∩ V (0, fk+1(x)) = ¯̃Ω. Hence, ri(F) = ri( ¯̃Ω) = Ω̃.
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4. Rank estimates. We are now in a position to generalize the main results of
[B2, B3] to arbitrary symmetric cones.

Theorem 3. Let A be an affine subspace in V such that

S = Ω̄ ∩ A �= ∅.

Then there exists x ∈ S such that

ϕd(rank(x)) ≤ codimV A.

Here d is the degree of V .
Proof. Since S is closed, nonempty, and does not contain straight lines, it contains

an extreme point x (see, e.g., [B1, p. 53], [B2, B3]). Let rank(x) = m. There exists a
unique face Fx of Ω̄ such that x ∈ ri(Fx). By Theorem 2, dimFx = ϕd(m). It is clear
that Fx∩A is a face of S and, moreover, x ∈ ri(Fx∩A). Indeed, x ∈ ri(Fx) implies that
∃ε > 0 such that (x+Bε)∩Aff(Fx) ⊂ Fx. But then (x+Bε)∩Aff(Fx)∩A ⊂ Fx ∩A.
Since Aff(Fx ∩A) ⊂Aff(Fx) ∩A we have x ∈ ri(Fx ∩A). Since x is an extreme point
of S, x ∈ ri(Fx ∩ A), and Fx ∩ A is a face of S, we conclude that Fx ∩ A = {x} (by
Theorem 1, there exists a unique face F of S such that x ∈ ri(F)).

Let Aff(Fx) = x + X,A = x + Y, where X,Y is a vector subspace of V . We
are going to show that X ∩ Y = 0. We know that there exists ε > 0 such that
(x+Bε)∩ (x+X) ⊂ Fx. Hence, (x+Bε)∩ (x+X)∩ (x+ Y ) = x+ (Bε ∩X ∩ Y ) ⊂
Fx ∩ A = {x}. If X ∩ Y �= 0, we would arrive at a contradiction. Now, X ∩ Y = 0
implies that dim(X + Y ) = dimX + dimY . On the other hand, dim(X + Y ) ≤
dimV . Hence, dimFx = dimX ≤ dimV− dimY = codimV A. We noticed before that
dimFx = ϕd(rank(x)). The result follows.

Remark. Let a1, . . . , ak ∈ V, b1, . . . , bk ∈ R, and

A = {z ∈ V : 〈ai, z〉 = bi, i = 1, . . . , k}.

It is clear that codimV A ≤ k, provided A �= ∅. In this case Theorem 3 implies that
ϕd(rank(x)) ≤ k.

Remark. In the case where V is the Jordan algebra of real symmetric matrices,
Theorem 3 coincides with the result on p. 194 of [B2]. See also [Pat]. In this case
d(V ) = 1.

Theorem 4. Let A be an affine subspace in V such that

S = Ω̄ ∩ A

is nonempty and bounded. Suppose that there exists an integer r ≥ 1 such that
codimV (A) ≤ ϕd(r + 1), rank(V ) ≥ r + 2. Then there exists x ∈ S such that
rank(x) ≤ r. Here d = d(V ) is the degree of V .

Proof. We need to consider several cases.
(i) Let A∩Ω = ∅. But A∩∂Ω �= ∅. Let y ∈ A∩∂Ω. Since A∩Ω = ∅, there exists

a hyperplane H in V separating A and Ω. Since A ∩ ∂Ω �= ∅ we should have that H
is a supporting hyperplane to Ω̄ and A (as an affine subspace) is a subset in H. Then
F = H ∩ Ω̄ is a proper face of Ω̄. By Theorem 2 H ∩ Ω̄ is the face of the form Ω̄0

where Ω̄0 is the cone of squares in the algebra V (0, f) and f is a nonzero idempotent
in V . Since A ⊂ H, we have S = A∩ Ω̄ ⊂ H ∩ Ω̄ = Ω̄0. Thus S ⊂ Ω̄0 ∩ (V (0, f)∩A).
Since Ω̄0 = Ω̄ ∩ V (0, f) ⊂ Ω̄, we have Ω̄0 ∩ (V (0, f) ∩ A) ⊂ Ω̄ ∩ A. Thus

S = Ω̄0 ∩ (V (0, f) ∩ A).
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Let us estimate codimV (0,f)A ∩ V (0, f).
Let A = y + Y, where y ∈ S, Y is a vector subspace in V . Denote V (0, f) by

W . We have dim(Y ∩ W ) = dim(W ) + dimY − dim(W + Y ). Now W + Y =
(y + Y ) + W ⊂ H. Hence, dim(W + Y ) ≤ dimH = dimV − 1. Consequently, dimW
− dim(Y ∩W ) = dim(W + Y ) − dimY ≤ dimV− dimY − 1 = codimV A− 1. Thus
codimW (Y ∩W ) ≤ codimV A− 1 ≤ ϕd(r + 1) − 1.

The last inequality is due to the assumptions of the theorem. We can apply
Theorem 3 to S = (A ∩ W ) ∩ Ω̄0 ⊂ W to conclude that there is x ∈ S such that
ϕd(rank(x)) ≤ ϕd(r + 1) − 1. Since ϕd is an increasing function on [0,+∞) (notice
that d ≥ 1), we conclude that rank(x) ≤ r.

Suppose now that A ∩ Ω �= ∅.
(ii) Consider first the case rank(V ) = r + 2, r ≥ 1,A ⊂ V , and codimV (A) =

ϕd(r + 1). Since A ∩ Ω �= ∅, we have ri(S) = A ∩ Ω, Aff(S) = A. Hence, dimS =
dimA = dimV − codimV A = ϕd(r + 2) − ϕd(r + 1) = 1 + d(r + 1). It is also clear
that ∂1S = rebdS = A ∩ ∂Ω. If there exists x ∈ ∂1S such that rank(x) ≤ r, there is
nothing to prove. For x ∈ ri(S), rank(x) = rank(V ) = r + 2. Otherwise, notice that
for x ∈ ∂1S rank(x) < rank(V ) = r + 2. Thus we should have rank(x) = r + 1 for
all x ∈ ∂1S. Take y ∈ A ∩ Ω. There exists ε > 0 such that (y + Bε) ∩ A ⊂ S. Let
A = y + Y, Y be a vector subspace in V . Consider Sε = ∂1(Bε ∩ Y ) = ∂Bε ∩ Y . It
is clear that Sε is homeomorphic to the d(r + 1)-dimensional sphere. Given z ∈ Sε,
there exists a unique positive t(z) such that y + t(z)z ∈ ∂1S = A∩ ∂Ω (recall that S
is a convex compact set). The map ψ : Sε → V, ψ(z) = y+ t(z)z is clearly continuous.
Since ψ(Sε) ⊂ ∂1S, we have rankψ(z) = r + 1 for any z ∈ Sε.

We need the following lemma.
Lemma 1. Let V be a simple Euclidean Jordan algebra, rank(V ) = l. Suppose

that 0 < s < l and

Ω̄s = {x ∈ Ω̄ : rank(x) = s}.

For x ∈ Ω̄s consider the spectral decomposition

x =

k+1∑
j=1

λj(x)fj(x),

where λk+1 = 0. The map γs = Ω̄s → V, γs(x) = fk+1(x) is continuous.
We postpone the proof of the lemma and continue with the proof of the theorem.
Consider ψ̃ : Sε → V, ψ̃(z) = γr+1(ψ(z)). Since ψ(Sε) ⊂ Ω̄r+1, the map ψ̃ is

continuous. Notice that ψ̃(Sε) ⊂ T (V ) (the manifold of primitive idempotents in

V ). Indeed, let ψ(z) =
∑k+1

j=1 λjfj be spectral decomposition and λk+1 = 0. Since

rank(ψ(z)) = r + 1, we have
∑k

j=1 tr(fj) = r + 1.

But
∑k+1

j=1 fj = e. Hence,
∑k+1

j=1 tr(fj) = tr(e) = rank(V ) = r + 2.
Thus, trfk+1 = 1, i.e., fk+1 ∈ T (V ). Notice that dimT (V ) = d(r + 1) (see

exercise 4a, p. 78 in [FK]). Hence ψ̃ : Sε → T (V ) is a continuous map between two
compact connected manifolds of the same dimension. But then ψ̃ cannot be injective.
Indeed, if ψ̃ is injective, then ψ̃ should be a homeomorphism of Sε onto T (V ) (see,
e.g., Corollary 28.4, p. 172 in [Ha]). However, under our assumptions T (V ) is not
homeomorphic to a sphere. Indeed, we assume that r ≥ 1 and rank(V ) = r + 2, i.e.,
rank(V ) ≥ 3. (Notice that if rank(V ) = 2, then T (V ) is homeomorphic to a sphere.)
We need to consider two separate cases.
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If d = 1, then T (V ) is homeomorphic to Pr+1(R) (see exercise 5, p. 99 in [FK]),
which is not homeomorphic to sphere for r ≥ 1.

If d > 1, r ≥ 3 (the only possible choices are d = 2, d = 4, d = 8), then according
to [H, p. 351], the following holds. Denote by bi(T (V )), i = 0, 1, . . . , d(r + 1), the
Betti numbers of T (V ). Then

bi(T (V )) =
{

1 when i = 0(mod d),
0 otherwise,

whereas bi(Sε) = 1, i = 0, i = d(r+1), and bi(Sε) = 0 otherwise. It is then clear that,
say, βd(T (V )) = 1 but βd(Sε) = 0 (recall that r ≥ 1!). Thus under our assumption,
there exist z1 �= z2 in Sε such that ψ̃(z1) = ψ̃(z2). Since z1 �= z2, it is clear that
ψ(z1) �= ψ(z2). Let c = ψ̃(z1) = ψ̃(z2). According to our construction of c, we have
that ψ(z1), ψ(z2) ∈ V (0, c) and, moreover, if Ω0 is the cone of invertible squares in
V (0, c), then both ψ(z1) and ψ(z2) ∈ Ω0 (see Theorem 2). Let L be a line passing
through ψ(z1) and ψ(z2). It is clear that L ⊂ A, and since Ω0 does not contain
lines, L hits its relative boundary at some point z0. Then rank(z0) < rank(ψ(z1)) =
rank(ψ(z2)) = r + 1. Clearly, z0 ∈ Ω̄0 ∩ A ⊂ S. Thus, rank(z0) ≤ r.

(iii) Consider now a general case, where codimV A ≤ ϕd(r+1), dimV ≥ r+2, r ≥ 1.
(We still assume that A ∩ Ω �= ∅.) If codimV A < ϕd(r + 1), then the result follows
from Theorem 3. It suffices to consider the case codimV A = ϕd(r + 1). By Theorem
3 there exists y ∈ S such that rank(y) ≤ r + 1. If rank(y) < r + 1, we are done.
Consider the case rank(y) = r + 1. Let

y =

k+1∑
j+1

λjfj(y)

be spectral decomposition of y and λk+1 = 0. Let fk+1(y) = c1 + · · · + cs, where
c1, . . . , cs are primitive pairwise orthogonal idempotents.

rank(fk+1(y)) = rank(V ) − rank(y) = rank(V ) − (r + 1) ≥ 1.

Thus s = rank(fk+1(y)) ≥ 1. Let W = V (0, c1 + c2 + · · · + cs−1). Notice that
〈y, fk+1(y)〉 = 0 implies 〈y, ci〉 = 0, i = 1, 2, . . . , s. Hence y ∈ W. Further, rank(W ) =
rank(y) + 1 = r + 2. Notice that codimW (A ∩W ) ≤ codimV (A) = ϕd(r + 1) (as we
saw in case (i)).

Let ΩW be the cone of invertible squares in W . Since y ∈ Ω̄W ∩(A∩W ) = S∩W ,
the result follows from Theorem 3 if codimW (A∩W ) < codimV (A), or we are in case
(ii) if codimW (A ∩ W ) = codimV A = ϕd(r + 2). This completes the proof of the
theorem.

Proof of Lemma 1. Since Ω̄s is an orbit of connected component of the group of
automorphisms of Ω (see Proposition IV.3.1 (iii) in [FK]), it is a smooth connected
submanifold in V .

Let x ∈ Ω̄s have a spectral decomposition

x =
k+1∑
j=1

λjfj(x),

λk+1 = 0. Using the Peirce decomposition associated with (complete) system of or-
thogonal idempotents f1(x), . . . , fk+1(x) (see section IV.2 in [FK]), one can easily see
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that

ImP (x) = V (1, f1(x) + f2(x) + · · · + fk(x)) = V (0, fk+1(x)).

Recall that P (x) is the quadratic representation of x. But dim ImP (x) = rank(P (x))
(rank of the R-linear map P (x) : V → V ) and rank(P (x)) is constant when x varies
over Ω̄s (see Proposition IV.3.1 (iv) in [FK]). Since Ω̄s is connected and the map
x → P (x) is continuous, we conclude that the map x → ImP (x) is continuous (see
Proposition 13.6.1, p. 408 in [GLR]). Let π(x) : V → ImP (x) be an orthogonal
projection (with respect to the canonical scalar product 〈, 〉). The continuity of the
map x → ImP (x) is equivalent to the continuity of the map x → π(x) (see [GLR,
Chapter 13]). But π(x) = P (f1(x) + f2(x) + · · · + fk(x)) (see [FK, p. 65]). On the
other hand, P (f1(x)+f2(x)+ · · ·+fk(x))e = f1(x)+ · · ·+fk(x) = e−fk+1(x), which
implies that the map x → fk+1(x) = γs(x) is continuous.

Remark. If V is the algebra of symmetric matrices with real entries, Theorem 4
coincides with Theorem 1.2 in [B3].

5. Some applications. The natural question within the Jordan-algebraic ap-
proach developed here concerns the convexity of the image of the manifold T (V ) of
primitive idempotents (or its conic hull) under linear maps. We will show how to
transform it to the setting of quadratic maps in the section 6.

Proposition 3. Let V be a simple Euclidean Jordan algebra of degree d. Given
a1, . . . , ak ∈ V, consider the linear map

N : V → Rk,

N(x) =

⎡⎢⎣ 〈a1, x〉
...

〈ak, x〉

⎤⎥⎦ .(4)

If ϕ−1
d (k) < 2, then

N

⎛⎝⋃
λ≥0

λT (V )

⎞⎠ = N(Ω̄).

In particular, N(
⋃

λ≥0 λT (V )) is a convex cone.

Proof. Denote
⋃

λ≥0 λT (V ) by K. Since K ⊂ Ω̄, it is clear that N(K) ⊂ N(Ω̄).

Let b = (b1, . . . , bk)
T ∈ N(Ω̄). Then there exists x ∈ Ω̄ such that N(x) = b. Consider

S = {y ∈ Ω̄ : N(y) = b}. It is clear that x ∈ S, i.e., S �= ∅. According to
Theorem 3, there exists z ∈ S such that ϕd(rank(z)) ≤ k or (using monotonicity of
ϕd) rank(z) ≤ ϕ−1

d (k) < 2. Hence, rank(z) = 1 or rank(z) = 0. In both cases, it is
clear that z ∈ K. Thus b ∈ N(K).

Proposition 4. Let V be a simple Euclidean Jordan algebra, d(V ) = d, rank(V ) ≥
3. Suppose that k = ϕd(2), a1, . . . , ak ∈ V are such that there exist τ1, . . . , τk ∈ R with
the property

k∑
i=1

τiai ∈ Ω.(5)
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Then

N

⎛⎝⋃
λ≥0

λT (V )) = N(Ω̄

⎞⎠ is a closed convex cone.

Proof. In the notation of the proof of Proposition 3, it is clear that N(K) ⊂ N(Ω̄).
Let b ∈ N(Ω̄), i.e., there exists x ∈ Ω̄ such that N(x) = b. The set S = {y ∈ Ω̄ :
N(y) = b} is nonempty. Moreover, it is bounded. Indeed,

S ⊂
{
y ∈ Ω̄ :

〈
k∑

i=1

τiai, y

〉
=

k∑
i=1

τibi

}
= T.

Since
∑k

i=1 τiai ∈ Ω, the set T is bounded (see Corollary I.1.6 in [FK]). Hence, S
is bounded. By Theorem 4 (with r = 1) there exists z ∈ Ω̄ such that rank(z) ≤ 1.
Hence, z ∈ K, i.e., N(K) = N(Ω̄). The closeness of N(Ω̄) immediately follows from
the fact that KerN ∩ Ω̄ = 0, which in turn easily follows from (5).

Proposition 5. Let d(V ) = d, let rank(V ) ≥ 3, let N be defined as in (4), and
let k = ϕd(2) − 1. Then N(T (V )) is convex.

Proof. Consider Ñ : V → Rk+1,

Ñ(x) =

⎡⎢⎢⎢⎣
〈a1, x〉

...
〈ak, x〉

tr(x) = 〈e, x〉

⎤⎥⎥⎥⎦ .

By Proposition 4 Ñ(
⋃

λ≥0 λT (V )) = Ñ(Ω̄). Indeed, (5) is clearly satisfied if we take

τ1 = τ2 = · · · = τk = 0, τk+1 = 1. Consider H = {(b1, . . . , bk+1)
T ∈ Rk+1 : bk+1 = 1}.

H is a hyperplane in Rk+1 and H ∩ Ñ(Ω̄) is convex. Denote by Ñ1 the restriction of
Ñ on (

⋃
λ≥0 λT (V )). It is clear that

Ñ−1
1 (H ∩ Ñ(Ω̄)) =

⎧⎨⎩z ∈
⋃
λ≥0

λT (V ) : tr(z) = 1

⎫⎬⎭ = T (V ).

This means that

N(T (V )) = H ∩ Ñ(Ω̄).

Proposition 6. Let d(V ) = d, rank(V ) ≥ 3, k < ϕd(2). Let c, ai, i = 1, 2, . . . , k,
in V be such that there exist τ, τi, i = 1, 2, . . . , k, in R with the property

τc +

k∑
i=1

τiai ∈ Ω.

Further, let bi, i = 1, 2, . . . , k, be in R.
Then

inf

⎧⎨⎩〈c, x〉 : 〈ai, x〉 = bi, i = 1, 2, . . . , k, x ∈
⋃
λ≥0

λT (V )

⎫⎬⎭
= inf{〈c, x〉 : 〈ai, x〉 = bi, i = 1, 2, . . . , k, x ∈ Ω̄}.
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Proof. We assume that the set S = {x ∈ Ω̄ : 〈ai, x〉 = bi, i = 1, 2, . . . , k} is not
empty. Otherwise, there is nothing to prove.

Let y ∈ S, 〈c, y〉 = t. Consider the map N : Ω̄ → Rk+1,

N(x) =

⎡⎢⎢⎢⎣
〈a1, x〉

...
〈ak, x〉
〈c, x〉

⎤⎥⎥⎥⎦ .

By Proposition 4 N(Ω̄) = N(
⋃

λ≥0 λT (V )).

Since (b1, . . . , bk, t)
T ∈ N(Ω̄), we have (b1, . . . , bk, t)

T ∈ N(
⋃

λ≥0 λT (V )). The
result follows.

Proposition 7. Let d(V ) = d, rank(V ) ≥ 3. Further, let c, ai, i = 1, 2, . . . , k, k <
ϕd(2) − 1. Suppose that the set

S = {x ∈ Ω̄ : 〈ai, x〉 = bi, i = 1, 2, . . . , k, tr(x) = 1} is not empty.

Then

min{〈c, x〉 : x ∈ T (V ), 〈ai, x〉 = bi, i = 1, 2, . . . , k}
= min{〈c, x〉 : 〈ai, x〉 = bi, i = 1, 2, . . . , k, tr(x) = 1, x ∈ Ω̄}.

Proof. Let y ∈ S, 〈c, y〉 = t. Consider the map N : V → Rk+2,

N(z) =

⎡⎢⎢⎢⎢⎢⎣
〈a1, z〉

...
〈ak, z〉

〈e, z〉 = tr(z)
〈c, z〉

⎤⎥⎥⎥⎥⎥⎦ .

We have N(Ω̄) ∩ {(d1, . . . , dk+2)
T ∈ Rk+2 : dk+1 = 1} = N(T (V )) by Propo-

sition 5 (or more precisely its proof). It is clear that (b1, . . . , bk, 1, t) ∈ N(Ω̄) ∩
{(d1, . . . , dk+2)

T ∈ Rk+2 : dk+1 = 1}. The result follows.
Proposition 8. Let d(V ) = d, r ≥ 1, and 1 ≤ k < ϕd(r + 1) be such that

rank(V ) ≥ r + 2. Let a1, . . . , ak ∈ V. Consider the map N described as in (4). Then
every point of convex hull conv(N(T (V ))) can be represented as a convex combination
of r (not necessarily distinct) points of N(T (V )).

Proof. Let b = (b1, . . . , bk)
T ∈ conv(N(T (V ))). Thus

b =

m∑
i=1

λiN(xi)

for some m ≥ 1, xi ∈ T (V ), λi ≥ 0,
∑m

i=1 λi = 1. Let x =
∑m

i=1 λixi. It is clear that
x ∈ Ω̄, N(x) = b, tr(x) =

∑m
i=1 λitr(xi) = 1.

It is clear that S = {z ∈ Ω̄ : N(x) = b, tr(x) = 1} is nonempty and bounded.
By Theorem 4 there exist z ∈ S such that rank(z) ≤ r. Let μ1, . . . , μt, f1, . . . , ft, t =
rank(V ) be such that f1, . . . , ft is a Jordan frame and

z =

t∑
s=1

μsfs.
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We notice earlier that rank(z) ≤ r is equivalent to card{s ∈ [1, t] : μs > 0} ≤ r.
Let J = {s ∈ [1, t] : μs > 0}. We have

z =

t∑
s∈J

μsfs.

Since tr(z) =
∑

s∈J μs = 1, and fs ∈ T (V ) for all s, we conclude that

N(z) = b, N(z) =
∑
s∈J

μsN(fs).

The result follows.
The next proposition can be interpreted as an abstract version of the well-known

S-lemma (see, e.g., [BN]).
Proposition 9. Let c, ai, i = 1, 2, . . . , k, in V be such that N(T (V )) is a convex

set. Here N : V → Rk+1,

N(x) =

⎡⎢⎢⎢⎣
〈a1, x〉

...
〈ak, x〉
〈c, x〉

⎤⎥⎥⎥⎦ .

Suppose that there exists x0 ∈ T (V ) such that 〈ai, x0〉 > 0 for i = 1, . . . , k.
Further, let

Γ = {x ∈ T (V ) : 〈ai, x〉 ≥ 0, i = 1, . . . , k}.

Then 〈c, x〉 ≥ 0, for all x ∈ Γ if and only if there exist nonnegative λ1, . . . , λk such
that

c−
k∑

i=1

λiai ∈ Ω̄.

Proof. We prove the (nontrivial) “only if” part. Let

Y = N

⎛⎝⋃
λ≥0

λT (V )

⎞⎠
and

Z = {z ∈ Rk+1 : zi ≥ 0, i = 1, . . . , k, zk+1 < 0}.

Then by our assumptions Y
⋂
Z = ∅. Both Y and Z are convex. Hence, by the

separation theorem there exist real μ1, . . . , μk, λ not all equal to zero, and real a such
that

k∑
i=1

μiyi + λyk+1 ≥ a for all y ∈ Y,

k∑
i=1

μizi + λzk+1 ≤ a for all z ∈ Z.
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The standard reasoning then shows that μi ≤ 0 for all i, λ ≥ 0, and a = 0. Let us
show that λ > 0. If λ = 0, then

k∑
i=1

μiyi ≥ 0

for all y ∈ Y, i.e., 〈
k∑

i=1

μiai, x

〉
≥ 0

for any x ∈ T (V ). This implies

k∑
i=1

μiai ∈ Ω̄.

By our assumptions there exists x0 ∈ T (V ) such that 〈ai, x0〉 > 0 for all i. We arrive
at the contradiction, since all μi are nonpositive and not equal to zero simultaneously.
Hence, λ > 0. But then

c−
k∑

i=1

λiai ∈ Ω̄

for λi = −μi/λ.

6. Interpretation in terms of quadratic mappings. To interpret the results
of section 5 in terms of quadratic mappings, we need to understand the structure of
manifolds T (V ) for various simple Euclidean Jordan algebras. If rank(V ) ≥ 3, every
such algebra is of the type Herm(m,A), where A = R,C,H, or O. Here R,C,H,O
are algebras of real, complex, quaternion, and octonion numbers, respectively, and
Herm(m,A) stands for the Jordan algebra of Hermitian matrices of size m×m with
entries in A. Notice that if A = O,m ≤ 3. The Jordan-algebraic multiplication in all
these cases is the same:

Given C,D ∈ Herm(m,A),

C ◦D =
CD + DC

2
,

where CD is the usual matrix multiplication. The list of corresponding manifolds
T (V ) is given on p. 99 of [FK]. We now consider the situation for concrete series
Herm(m,A).

Case 1. Let A = R. In this case the Jordan-algebraic operator tr coincides with
the usual operator Tr of the matrix.

Thus

〈C,D〉 = Tr(CD), C,D ∈ Herm(m,R),

and Herm(m,R) is the algebra of m × m symmetric matrices with real entries.

T (V ) = {C ∈ Herm(m,R) : C2 = C,Tr(C) = 1},
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i.e., T (V ) is a manifold of one-dimensional orthogonal projections. Consider the map
μ : Rm → T (V ), μ(x) = xxT . It is very well known that μ(Sm−1) = T (V ).

Proposition 10. Let qi(x) = xTCix, i = 1, 2, be two quadratic forms on Rm.
Here C1, C2 ∈ Herm(m,R). Consider the map ν : Rm → R2, ν(x) = (q1(x), q2(x))T .
Then ν(Rm) is a convex cone in R2

Proof. It is clear that μ(Rn) =
⋃

λ≥0 λT (V ). We are going to use Proposition 3.
Notice that d(Herm(m,R)) = 1 for any m ≥ 2. Hence, ϕd(2) = 3. Thus for k = 2 the
image N(

⋃
λ≥0 λT (V )) is convex. In our case

N ◦ μ(x) = (xTC1x, x
TC2x).

The result follows.
Remark. Proposition 10 is a classical theorem of Dines [D]. Similarly to Propo-

sition 4 we obtain the following result.
Proposition 11. Let qi(x) = xTCix, i = 1, 2, 3, be three quadratic forms on

Rm. Here C1, C2, C3 ∈ Herm(m,R) are such that there exist real τ1, τ2, τ3 with the
property that

τ1C1 + τ2C2 + τ3C3 > 0

(i.e., the corresponding matrix is positive definite). Then for m ≥ 3 the image ν(Rm)
is a convex closed cone.

Remark. Notice that rank(Herm(m,R)) = m. The result of Proposition 11 is
central in [Pol].

Similarly, Proposition 5 yields Brickman’s classical theorem [Br].
Case 2. Let A = C. Notice that rank(Herm(m,C)) = m, d(Herm(m,C)) = 2. In

this case tr(C) =Tr(C), where Tr is the usual matrix trace. Hence, for the canonical
scalar product we obtain

〈C,D〉 = Tr(CD), C,D ∈ Herm(m,C).

We have

T (Herm(m,C)) = {C ∈ Herm(m,C) : C2 = C,Tr(C) = 1}.

Once again T (V ) in this case is the manifold of orthogonal projections on (com-
plex) one-dimensional subspaces in Cm. The map μ : Cm → Herm(m,C), μ(x) = xx∗,
where x∗ = x̄T maps the unit sphere S2m−1 onto T (Herm(m,C)). Notice that in this
case ϕd(2) = 4 and all propositions from section 5 admit natural interpretation. For
example, Proposition 3 leads to the following result.

Proposition 12. Let qi(x) = x∗Cix, x ∈ Cm, i = 1, 2, 3, be three Hermitian
forms. Consider the map ν : Cm → R3,

ν(x) = (q1(x), q2(x), q3(x)).

Then ν(Cm) is a convex cone.
Remark. This result is also known (see, e.g., [Pol]).
Proposition 5 takes the following form.
Proposition 13. Under the assumption of Proposition 12 let m ≥ 3. Then

ν(S2m−1) is convex.
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Here S2m−1 = {x ∈ Cm : x∗x = 1}.
Remark. This result is in [AP].
Here is an interpretation of Proposition 8.
Proposition 14. Let r,m, k be such that r ≥ 1, m ≥ r + 2, and 1 ≤ k <

ϕ2(r+1) = (r+1)2. Let C1, . . . , Ck ∈ Herm(m,C). Consider the map ν : Cm → Rk,
ν(x) = (x∗C1x, x

∗C2x, . . . , x
∗Ckx). Then every element of conv(ν(S2m−1)) can be

represented as a convex combination of r (not necessarily distinct) points of the form
ν(x), x ∈ S2m−1.

Remark. This result is essentially in [Poon].
The next proposition immediately follows from Proposition 6.
Proposition 15. Let C0, . . . , C3 ∈ Herm(m,C) be such that

3∑
i=0

τiCi > 0

for some real τi. Further, let m ≥ 3. Consider the following quadratic optimization
problem:

q0(x) → min, qi(x) = bi, i = 1, 2, 3, x ∈ Cm.

Here bi are some real numbers. Further, consider its semidefinite relaxation:

Tr(C0Y ) → min, Tr(CiY ) = bi, i = 1, 2, 3, Y ≥ 0, Y ∈ Herm(m,C).

Then this semidefinite relaxation is exact.
Case 3. Consider the case A = H.
In principle, the same approach as that in Cases 1 and 2 works here. However,

we prefer to work with complex Hermitian matrices. Notice that d(Herm(m,H)) = 4,
rank(Herm(m,H)) = m.

Let J =
[

0 Im
−Im 0

]
. Consider a subalgebra

V = {C ∈ Herm(2m,C) : JC = C̄J}.

It is shown in [FK] (see, in particular, p. 88 and exercise 1 of Chapter 3) that
Herm(m,H) is isomorphic (as a Jordan algebra) to subalgebra V of Herm(2m,C).

Let C =
[
C1 C2

C3 C4

]
be a partition of a 2m × 2m matrix with complex entries into

four m × m blocks. Then C ∈ V if and only if C∗
1 = C1, C4 = C̄1, C

T
2 = −C2, and

C3 = −C̄2 (a direct computation). In other words, a typical element from V looks
like this: [

C1 C2

−C̄2 C̄1

]
,(6)

where C∗
1 = C1, C

T
2 = −C2.

We need to describe T (V ).
Lemma 2. Let ξ ∈ C2m be such that ξ∗ξ = 1. Consider f(ξ) = ξξ∗ + (Jξ̄)(Jξ̄)∗.

Then f(ξ) ∈ V , f(ξ)2 = f(ξ).
Proof. The proof is a direct computation.
Lemma 3. Let ξ1, . . . , ξm ∈ C2m be such that ξ∗i ξi = 1, i = 1, . . . ,m, ξ∗i ξj = 0,

ξ∗i Jξ̄j = 0 for i �= j. Then

f(ξi) ◦ f(ξj) = δijf(ξi), i, j = 1, 2, . . . ,m,
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and

f(ξ1) + · · · + f(ξm) = I2m.

Proof. Notice that under our assumptions ξ1, . . . , ξm, J ξ̄1, . . . , Jx̄im form an or-
thonormal basis in C2m. The result follows by a direct computation.

Since rank(V ) = m, we see that f(ξ1), . . . , f(ξm) form a Jordan frame in V . In
particular, tr(f(ξ)) = 1 if ξ∗ξ = 1. Since Tr(f(ξ)) = 2, we conclude that

tr(X) =
1

2
Tr(X), X ∈ V,

where Tr is the usual matrix trace.
Lemma 4.

T (V ) = {f(ξ) : ξ ∈ S4m−1}.

Proof. By Lemma 3 we have f(ξ) ∈ T (V ) if ξ∗ξ = 1. The connected compo-
nent of the identity of the group O(V ) of (Jordan-algebra) automorphisms of V acts
transitively on T (V ). In our case

O(V ) = {C ∈ Mat(2m,C) : C∗ = C−1, JC = C̄J}.

See p. 98 in [FK]. Let C ∈ O(V ). Then

C · f(ξ) = Cξξ∗C∗ + C(Jξ̄)(Jξ̄)∗C∗ = (Cξ)(Cξ)∗ + (JCξ)(JCξ)∗ = f(Cξ)).

Notice that Cξ ∈ S4m−1. We see that O(V ) maps {f(ξ) : ξ ∈ S4m−1} onto itself.
Hence we have the result.
Let us compute

Δ = tr(C ◦ f(ξ)) = 〈C, f(ξ)〉 for C ∈ V.

We have

Δ =
1

2
Tr(Cf(ξ)) =

1

2
Tr(ξ∗Cξ + (Jξ̄)∗C(Jξ̄)).

Now, (Jξ̄)∗C(Jξ̄) = −ξ̄∗JCJξ̄ = −ξ̄∗C̄J2ξ̄ = ξ̄∗C̄ξ̄ = ξ∗Cξ. But ξ∗Cξ is real,
since C is Hermitian. Hence, 〈C, f(ξ)〉 = ξ∗Cξ.

We summarize our results in the following proposition.
Proposition 16. Consider a realization of Herm(m,H) in the form

V = {C ∈ Herm(2m,C) : JC = C̄J}.

Then

T (V ) = {f(ξ) = ξ∗ξ + (Jξ̄)(Jξ̄)∗ : ξ ∈ S2m−1}.

Given C ∈ V, 〈C, f(ξ)〉 = ξ∗Cξ.
In particular, we see that μ : C2m → V, μ(ξ) = ξξ∗ + (Jξ̄)(Jξ̄)∗ is such that

μ(S2m−1) = T (V ).
We see now that Propositions 3–9 admit a natural interpretation in terms of

convexity of images of families of quadratic forms. Notice that ϕ4(2) = 6.
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As an example, consider the reformulation of Proposition 5.
Proposition 17. Let D1, . . . , D5 be matrices of the form (6). Let qi(x) =

x∗Dix, x ∈ C2m, m ≥ 3, with μ : C2m → R5 defined as

μ(x) = (q1(x), . . . , q5(x))T .

Then μ(S4m−1) is convex.
Here S4m−1 = {x ∈ C2m : x∗x = 1}.
Let now D0, . . . , D5 be matrices of the form (6) and such that

5∑
i=0

τiDi > 0

for some real τi. The next two propositions immediately follow from Propositions 6
and 9.

Proposition 18. Let m ≥ 3. Consider the following quadratic optimization
problem:

q0(x) → min, qi(x) = bi, i = 1, . . . , 5, x ∈ C2m.

Here bi are some real numbers and qi(x) = x∗Dix. Consider, further, its semidefinite
relaxation:

Tr(D0Y ) → min, Tr(DiY ) = bi, i = 1, . . . , 5,

Y ≥ 0, Y ∈ Herm(m,H)

(i.e., Y is of the form (6)). Then this semidefinite relaxation is exact.
Proposition 19. Let m ≥ 3,

Γ = {x ∈ C2m : qi(x) ≥ 0, i = 1, . . . , 5}.

Suppose that there exists x0 ∈ C2m such that qi(x) > 0, i = 1, . . . , 5. Further, let
q0(x) ≥ 0 for all x ∈ Γ. Then there exist real nonnegative λ1, . . . , λ5 such that

D0 −
5∑

i=1

λiDi ≥ 0.

Remark. Notice that all results obtained from Propositions 3–9 for A = H seem
to be new.

Case 4. Consider the last case A = O, V = Herm(3,O). In this case rank(V ) =
3, d(V ) = 8,dimV = 27. Notice that ϕ8(2) = 10.

Let

C =

⎡⎣ ξ1 x3 x̄2

x̄3 ξ2 x1

x2 x̄1 ξ3

⎤⎦ , D =

⎡⎣ η1 y3 ȳ2

ȳ3 η2 y1

y2 ȳ1 η3

⎤⎦ ∈ Herm(3,O).(7)

Here ξi, ηi ∈ R, xi, yi ∈ O, i = 1, 2, 3.
Recall (see, e.g., [E]) that octonions can be identified with the pair of quaternions:

z ∈ O ⇔ z = (z1, z2), z1, z2 ∈ H.
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Moreover, if t = (t1, t2) ∈ O, then

zt = (z1t1 − z̄2t2, z2t̄1 + t2z1),

z̄ = (z̄1,−z2). The trace operator tr coincides with the matrix Tr (see [FK, p. 88–90]).
Hence,

〈C,D〉 = Tr (C ◦D) = Tr
(CD + DC)

2
.

A short computation with C,D in the form (7) yields

〈C,D〉 =

3∑
i=1

ξiηi + Re

(
3∑

i=1

x̄iyi + xiȳi

)
=

3∑
i=1

ξiηi + 2

3∑
i=1

〈xi, yi〉O.

Here 〈x, y〉O = Re(xȳ), x, y ∈ O. Notice that the last equality follows from
Re(xy) = Re(yx), x, y ∈ O. See Proposition V.1.2 in [FK].

As usual,

T (V ) = {C ∈ V : C2 = C,Tr(C) = 1}.

A direct computation (see, e.g., [BP]) yields the following.
Proposition 20. Let C be parameterized as in (7). Then T (Herm(3,O)) =

{(x1, x2, x3, ξ1, ξ2, ξ3) ∈ O3 × R3 : ξ1 + ξ2 + ξ3 = 1, ξ1 = ξ2
1 + ‖x2‖2 + ‖x3‖2, ξ2 =

ξ2
2 +‖x1‖2+‖x3‖2, ξ3 = ξ2

3 +‖x1‖2+‖x2‖2, ξ1x̄1 = x2x3, ξ2x̄2 = x3x1, ξ3x̄3 = x1x2}.
Here ‖x‖2 = xx̄ = x̄x.
Propositions 3–8 are the statements about the convexity of linear images of the

manifold T (V ) or its conic hull. Notice that dimT (V ) = d(V )(rank(V ) − 1) = 16.
It is not so easy, however, to translate these results into ones concerning images

of quadratic forms. Acting in analogy with the cases of A = R,C,H, we need to
consider the map μ : O3 → Herm(3,O),

μ(d1, d2, d3) = (did̄j), i, j = 1, 2, 3.

Let S23 = {(d1, d2, d3) ∈ O3 : ‖d1‖2 + ‖d2‖2 + ‖d3‖2 = 1}.
Unfortunately, μ(S23) �= T (Herm(3,O)). More precisely T (Herm(3,O)) ⊂ μ(S23),

but the inclusion is strict. Similar construction for A = R,C,H yields a coincidence
of corresponding sets.

The problem is due to the fact that multiplication in O is not associative (see
[BP] for details). Nevertheless, we have the following proposition.

Proposition 21. Let μ̃ be the restriction of μ to O × O × R. Then μ̃(S16) =
T (V ).

Here S16 = {(d1, d2, ζ) ∈ O×O×R : ‖d1‖2+‖d2‖2+ζ2 = 1}, ‖d‖ =
√
dd̄, d ∈ O.

Proof. Let us show first that μ̃(S16) ⊂ T (V ). We simply need to check all
conditions of Proposition 20.

We have that μ(d1, d2, ζ) = (x1, x2, x3, ξ1, ξ2, ξ3) is equivalent to ξi = ‖di‖2, i =
1, 2, 3, x3 = d1d̄2, x̄2 = ζd1, x1 = ζd2. Let us check, for example, that ξ1 = ξ2

1 +
‖x2‖2 +‖x3‖2. We have Δ = ξ2

1 +‖x2‖2 +‖x3‖2 = ‖d1‖4 +ζ2‖d1‖2 +‖d1‖2‖d2‖2. Here
we used ‖d1d2‖ = ‖d1‖‖d2‖. Hence, Δ = ‖d1‖2(‖d1‖2 + ζ2 + ‖d2‖2) = ‖d1‖2 = ξ1.

The other conditions are verified similarly. Let us show that μ̃(S16) ⊃ T (V ). Let
(ξ1, ξ2, ξ3, x1, x2, x3) ∈ T (V ). Consider, first, the case where ξ3 > 0.
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Take d1 = x̄2√
ξ3

, d2 = x1√
ξ3

, ζ =
√
ξ3.

Notice that ‖d1‖2+‖d2‖2+ζ2 =
‖x2‖2+‖x1‖2+ξ2

3

ξ3
= 1 because of the one of the defin-

ing relations for T (V ). We can easily check that μ(d1, d2, ζ) = (ξ1, ξ2, ξ3, x1, x2, x3).
Consider now the case ξ3 = 0. Due to the condition ξ3 = ξ2

3 + ‖x1‖2 + ‖x2‖2, we
obtain x1 = x2 = 0. Hence, we have

ξ1 = ξ2
1 + ‖x3‖2, ξ2 = ξ2

2 + ‖x3‖2, ξ1 + ξ2 = 1.

This system has two solutions:

ξ1 =
1

2
±

√
1 − 4‖x3‖2

2
,

ξ2 =
1

2
∓

√
1 − 4‖x3‖2

2
,

provided ‖x3‖ ≤ 1
2 . Take d1 =

√
ξ1x3

‖x3‖ , d2 =
√
ξ2, ζ = 0 if x3 �= 0. If x3 = 0, then

ξ1 = 0, ξ2 = 1 or ξ1 = 1, ξ2 = 0. In both cases take d1 =
√
ξ1, d2 =

√
ξ2, ζ = 0. We

easily check that μ(d1, d2, η) = (ξ1, ξ2, ξ3, x1, x2, x3).
We identify O×O×R with R17. Consider on R17 quadratic forms of the following

type:

fy,η(d1, d2, ζ) = η1‖d1‖2 + η2‖d2‖2 + η3ζ
2

(8)
+ 2〈y1, d2〉Oζ + 2〈y2, d̄1〉Oζ + 2〈y3, d1d̄2〉Oζ.

Here y1, y2, y3 ∈ O, η1, η2, η3 ∈ R.
Notice that if D is constructed from (y1, y2, y3, η1, η2, η3) as in (7), then

fy,η(d1, d2, ζ) = Tr(D ◦ μ̃(d1, d2, ζ)).

We can now easily reformulate Propositions 3–8 in terms of quadratic forms fy,η
on R17. For example, Proposition 3 leads to the following result. Notice that ϕ8(2) =
10.

Proposition 22. Let qi, i = 1, 2, . . . , 9, be nine quadratic forms of type (8) on
R17 identified with O × O × R. Consider the map

ν(d1, d2, ζ) = (q1(d1, d2, ζ), . . . , q9(d1, d2, ζ)).

Then ν(R17) is a convex cone.

7. Concluding remarks. In the present paper we have considered a large num-
ber of classical results related to the convexity of image of quadratic mappings in a
general context of Euclidean Jordan algebras. The technique used is a generaliza-
tion of semidefinite relaxation technique which has been used by Barvinok for similar
purposes. Our context is more general and allows one to obtain convexity result cor-
responding to the series Herm(m,H) of Euclidean Jordan algebra and exceptional
27-dimensional algebra, which seem to be new. The present paper does not exhaust
all possibilities offered by the Jordan-algebraic technique for the analysis of this circle
of questions. We plan to address the remaining issues elsewhere.
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Abstract. Techniques that identify the active constraints at a solution of a nonlinear program-
ming problem from a point near the solution can be a useful adjunct to nonlinear programming
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1. Introduction. Consider the following nonlinear programming problem:

min f(x) subject to h(x) = 0, c(x) ≤ 0,(1.1)

where x ∈ Rn and f : Rn → R, c : Rn → Rm, and h : Rn → Rp are twice continuously
differentiable functions.

In this paper, we examine identification of active inequality constraints—the com-
ponents of c for which equality holds at a local solution x∗—using information avail-
able at a point x near x∗. We focus on identification schemes that do not require
good estimates of the Lagrange multipliers to be available a priori. Rather, in some
cases, such estimates are computed as an adjunct to the identification technique. In
most of our results, we relax the “standard” nondegeneracy assumptions at x∗ to al-
low linearly dependent active constraint gradients and weakly active constraints. We
consider three schemes that require solution of linear programs and one that requires
solution of a mixed integer program. We analyze the effectiveness of these schemes
and discuss computational issues of solving the linear and mixed-integer programs. Fi-
nally, we present results obtained on randomly generated problems and on degenerate
problems from the CUTEr test set [13].

One area in which identification schemes are useful is in “EQP” approaches to
sequential quadratic programming (SQP) algorithms, in which each iteration con-
sists of an estimation of the active set followed by solution of an equality constrained
quadratic program that enforces the apparently active constraints and ignores the
apparently inactive ones. The “IQP” variant of SQP, in which an inequality con-
strained subproblem is solved (thereby estimating the active set implicitly), has been
more widely studied in the past two decades, but the EQP variant has been revived
recently by Byrd et al. [5, 6].
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1.1. Assumptions and background. We describe here the notation and as-
sumptions used in the remainder of the paper.

The Lagrangian for (1.1) is

L(x, μ, λ) = f(x) + μTh(x) + λT c(x),(1.2)

where μ ∈ Rp and λ ∈ Rm are Lagrange multipliers. First-order necessary conditions
for x∗ to be a solution of (1.1), assuming a constraint qualification, are that there
exist multipliers (μ∗, λ∗) such that

∇xL(x∗, μ∗, λ∗) = 0,(1.3a)

h(x∗) = 0,(1.3b)

0 ≥ c(x∗) ⊥ λ∗ ≥ 0,(1.3c)

where the symbol ⊥ denotes vector complementarity; that is, a ⊥ b means aT b = 0.
We define the “dual” solution set as follows:

SD
def
= {(μ∗, λ∗) satisfying (1.3)},(1.4)

while the primal-dual solution set S is

S def
= {x∗} × SD.

The set of active inequality constraints at x∗ is defined as follows:

A∗ = {i = 1, 2, . . . ,m | ci(x∗) = 0}.

The weakly active inequality constraints A∗
0 are those active constraints i for which

λ∗
i = 0 for all optimal multipliers (μ∗, λ∗); that is,

A∗
0 = {i ∈ A∗ |λ∗

i = 0 for all (μ∗, λ∗) ∈ SD}.(1.5)

The constraints A∗ \ A∗
0 are said to be the strongly active inequalities.

In this paper, we make use of the following two constraint qualifications at x∗.
The linear independence constraint qualification (LICQ) is that

{∇hi(x
∗), i = 1, 2, . . . , p} ∪ {∇ci(x

∗), i ∈ A∗} is linearly independent.(1.6)

The Mangasarian–Fromovitz constraint qualification (MFCQ) is that there is a vector
v ∈ Rn such that

∇ci(x
∗)T v < 0, i ∈ A∗; ∇hi(x

∗)T v = 0, i = 1, 2, . . . , p,(1.7a)

{∇hi(x
∗), i = 1, 2, . . . , p} is linearly independent.(1.7b)

In some places, we use the following second-order sufficient condition: Defining

C def
= {v | ∇ci(x

∗)T v = 0, i ∈ A∗ \ A∗
0, ∇ci(x

∗)T v ≤ 0, i ∈ A∗
0,(1.8)

∇hi(x
∗)T v = 0, i = 1, 2, . . . , p},

we require that

vT∇2
xxL(x∗, μ∗, λ∗)v > 0 for all v ∈ C \ {0} and all (μ∗, λ∗) ∈ SD.(1.9)
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The following notation is used for first derivatives of the objective and constraint
functions at x:

g(x) = ∇f(x), J(x) = [∇hi(x)T ]i=1,2,...,p, A(x) = [∇ci(x)T ]i=1,2,...,m.

We use Ai(x) = ∇ci(x)T to denote the ith row of A(x), while for any index set
T ⊂ {1, 2, . . . ,m}, we use AT (x) to denote the |T |×n submatrix corresponding to T .
In some subsections, the argument x is omitted from the quantities c(x), A(x), Ai(x),
and AT (x) if the dependence on x is clear from the context. In some instances, we
also use ∇c∗i , g

∗, etc., to denote ∇ci(x
∗), g(x∗), etc., respectively.

Given a matrix B ∈ Rn×q we denote

range[B] = {Bz | z ∈ Rq}, pos[B] = {Bz | z ∈ Rq, z ≥ 0}.

The norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ all appear in the paper. When the subscript
is omitted, the Euclidean norm ‖ · ‖2 is intended.

We use the usual definition of the distance function dist (·, ·) between sets, that
is,

dist (S1,S2) = inf
s1∈S1,s2∈S2

‖s1 − s2‖.(1.10)

(Distance between a point and a set is defined similarly.)
For a vector z, function max(z, 0) (defined componentwise) is denoted by z+,

while z− denotes max(−z, 0). We use the notation e throughout the paper to denote
the vector (1, 1, . . . , 1)T . (The dimension of e is not specified but is clear from the
context.)

In assessing the accuracy of an active set estimate, a false positive is an index i
that is identified as active by our scheme but which actually does not belong to A∗,
while a false negative is an index i ∈ A∗ which is wrongly identified as inactive.

1.2. Related work. Some previous works have studied the behavior of nonlinear
programming algorithms in identifying active constraint sets, more or less as a by-
product of their progress toward a solution. Other papers have described the use of
these active set estimates to speed the convergence of the algorithm in its final stages.
We mention several works of both types here, in nonlinear programming and in the
context of other optimization and complementarity problems.

Bertsekas [1] proposed a two-metric algorithm for minimizing a nonlinear function
subject to bound constraints on the components of x. A key aspect of this method
is estimation of the active bounds at the solution. (Different second-order scalings
are applied to the apparently active components and the free components.) Strongly
active constraints are identified for all feasible x in a neighborhood of x∗. The latter
result is also proved by Lescrenier [16] for a trust-region algorithm.

Burke and Moré [3, 4] take a geometric approach, assuming the constraints to
be expressed in the form x ∈ Ω for a convex set Ω. This set can be partitioned into
faces, where a face F is defined to be a subset of Ω such that every line segment
in Ω whose relative interior meets F is contained in F . In this context, active set
identification corresponds to the identification of the face that contains the solution
x∗. In [3], it is shown that “quasi-polyhedral” faces are identified for all x close to x∗

provided that a geometric nondegeneracy condition akin to strict complementarity is
satisfied. (Quasi-polyhedrality is defined in [3, Definition 2.5]; curved faces are not
quasi-polyhedral.) Burke [2] takes a partly algebraic viewpoint and shows that the set



580 CHRISTINA OBERLIN AND STEPHEN J. WRIGHT

of active indices of a linear approximation to the problem at x near x∗ are sufficient
for the objective gradient to be contained in the cone of active constraint gradients—a
result not unlike Theorem 3.2 below.

Wright [21] also uses a hybrid geometric-algebraic viewpoint and considers convex
constraint sets Ω with (possibly curved) boundaries defined by (possibly nonlinear)
inequalities. The concept of a “class-Cp identifiable surface” is defined, and it is
shown that this surface is identified at all x close to x∗ provided that a nondegeneracy
condition is satisfied. Hare and Lewis [15] extend these concepts to nonconvex sets,
using concepts of prox-regularity and partly smooth functions developed elsewhere by
Lewis [17] and others.

Facchinei, Fischer, and Kanzow [10] describe a technique based on the algebraic
representation of the constraint set that uses estimates of the Lagrange multipliers
(μ, λ) along with the current x to obtain a two-sided estimate of the distance of
(x, μ, λ) to the primal-dual solution set. This estimate is used in a threshold test to
obtain an estimate of A∗. We discuss this technique further in section 2.

Conn, Gould, and Toint [8, Chapter 12] discuss the case of convex constraints,
solved with a trust-region algorithm in which a “generalized Cauchy point” is obtained
via gradient projection. They prove that when assumptions akin to strict complemen-
tarity and LICQ hold at the solution x∗, their approach identifies the active set once
the iterates enter a neighborhood of x∗; see, for example, [8, Theorem 12.3.8].

Active constraint identification has played an important role in finite termination
strategies for linear programming (LP). Ye [25] proposed such a strategy, which deter-
mined the active set estimate by a simple comparison of the primal variables with the
dual slacks. (An equality constrained quadratic program, whose formulation depends
crucially on the active set estimate, is solved in an attempt to “jump to” an optimal
point.) El-Bakry, Tapia, and Zhang [9] discuss methods based on “indicators” for
identifying the active constraints for LP.

Similar active identification and finite termination strategies are available for
monotone linear complementarity problems; see, for example, the paper of Monteiro
and Wright [18]. For monotone nonlinear complementarity problems, Yamashita, Dan,
and Fukushima [24] describe a technique for classifying indices (including degenerate
indices) at the limit point of a proximal point algorithm. This threshold is defined
similarly to the one in [10], while the classification test is similar to that of [18].

1.3. Organization of the paper. In section 2, we review a technique for iden-
tifying the active set using an estimate (x, μ, λ) of the primal-dual optimum. This
technique provides the basis for the identification techniques of subsections 3.2 and
3.3. Section 3 describes the main techniques for identifying the active set without
assuming that reliable estimates of the Lagrange multipliers (μ, λ) are available. Sub-
section 3.1 describes a technique used by Byrd et al. [5, 6] along with a dual variant;
subsection 3.2 describes a technique based on minimizing the primal-dual measure of
section 2, which can be formulated as a mixed integer program; and subsection 3.3
derives an LP approximation to the latter technique. In all cases, we prove results
about the effectiveness of these schemes and discuss their relationship to each other.
In section 4, we describe our implementation of the identification schemes and present
results obtained on randomly generated problems (with controlled degeneracy) and on
degenerate problems from the CUTEr test set. Some conclusions appear in section 5.

2. Identification from a primal-dual point. In this section, we suppose that
along with an estimate x of the solution x∗, we have estimates of the Lagrange multi-
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pliers (μ, λ). We describe a threshold test based on the function ψ defined as follows:

ψ(x, μ, λ) =

∥∥∥∥∥∥
⎡⎣ ∇xL(x, μ, λ)

h(x)
min(λ,−c(x))

⎤⎦∥∥∥∥∥∥
1

,(2.1)

where the min(·, ·) is taken componentwise. (Other norms could be used in this
definition, including weighted norms, but the �1 norm is convenient for computation
in later contexts.) The test based on ψ provides the starting point for the LPEC
(linear program with equilibrium constraints) scheme of subsection 3.2, where we fix
x and choose (μ, λ) to minimize ψ, rather than assuming that (μ, λ) are given.

The following result shows that for (x, μ, λ) close to S, this function provides
a two-sided estimate of the distance to the solution. (See Facchinei, Fischer, and
Kanzow [10, Theorem 3.6], Hager and Gowda [14], and Wright [22, Theorem A.1] for
proofs of results similar or identical to this one.)

Theorem 2.1. Suppose the KKT conditions (1.3), the MFCQ (1.7), and the
second-order condition (1.9) are satisfied at x∗. There are constants ε ∈ (0, 1] and
C > 0 such that, for all (x, μ, λ) with λ ≥ 0 and dist ((x, μ, λ),S) ≤ ε, we have

C−1ψ(x, μ, λ) ≤ dist ((x, μ, λ),S) ≤ Cψ(x, μ, λ).(2.2)

(The upper bound of 1 in the definition of ε is needed to simplify later arguments.)
For future reference, we define L to be a Lipschitz constant for the functions g,

c, h, A, and J in the neighborhood ‖x− x∗‖ ≤ ε, for the ε given in Theorem 2.1. In
particular, we have

‖g(x) − g(x∗)‖ ≤ L‖x− x∗‖, ‖c(x) − c(x∗)‖ ≤ L‖x− x∗‖,
‖A(x) −A(x∗)‖ ≤ L‖x− x∗‖, ‖h(x) − h(x∗)‖ ≤ L‖x− x∗‖,(2.3)

‖J(x) − J(x∗)‖ ≤ L‖x− x∗‖, for all x with ‖x− x∗‖ ≤ ε.

We define a constant K1 such that the following condition is satisfied:

K1 = max

(
‖c(x∗)‖∞, max

(μ∗,λ∗)∈SD

‖(μ∗, λ∗)‖∞
)

+ 1.(2.4)

(Note that finiteness of K1 is assured under MFCQ.)
The active set estimate is a threshold test, defined as follows for a given parameter

σ ∈ (0, 1):

A(x, μ, λ) = {i | ci(x) ≥ −ψ(x, μ, λ)σ}.(2.5)

The following result is an immediate consequence of Theorem 2.1. It has been
proved in earlier works (see, for example, [10]), but since the proof is short and
illustrative, we repeat it here.

Theorem 2.2. Suppose that the KKT conditions (1.3), the MFCQ (1.7), and the
second-order condition (1.9) are satisfied at x∗. Then there is ε̄1 > 0 such that for all
(x, μ, λ) with λ ≥ 0 and dist ((x, μ, λ),S) ≤ ε̄1, we have that A(x, μ, λ) = A∗.

Proof. First set ε̄1 = ε, where ε is small enough to satisfy the conditions in
Theorem 2.1. Taking any i /∈ A∗, we can decrease ε̄1 if necessary to ensure that the
following inequalities hold for all (x, μ, λ) with dist ((x, μ, λ),S) ≤ ε̄1:

ci(x) < (1/2)ci(x
∗) ≤ −ψ(x, μ, λ)σ,
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thus ensuring that i /∈ A(x, μ, λ).
We can reduce ε̄1 again if necessary to ensure that the following relation holds for

all i ∈ A∗ and all (x, μ, λ) with dist ((x, μ, λ),S) ≤ ε̄1:

|ci(x)| ≤ L‖x− x∗‖ ≤ Ldist ((x, μ, λ),S) ≤ LCψ(x, μ, λ) ≤ ψ(x, μ, λ)σ,

where L is the Lipschitz constant defined in (2.3). We conclude that i ∈
A(x, μ, λ).

High-quality estimates of the optimal Lagrange multipliers may be available in
primal-dual interior-point algorithms and augmented Lagrangian algorithms. In SQP
algorithms, an estimate (μ, λ) may be available from the QP subproblem solved at
the previous iteration, or from an approximation procedure based on the current esti-
mate of the active set (which usually also derives from the QP subproblem). However,
the use of devices such as trust regions or �1 penalty terms in the subproblem may
interfere with the accuracy of the Lagrange multiplier estimates. Moreover, in many
algorithms, there is not a particularly strong motivation for obtaining accurate esti-
mates of (μ, λ). For instance, in SQP algorithms that use exact second derivatives,
rapid convergence of the primal iterates to x∗ can be obtained even when (μ, λ) do
not converge to SD; see Theorem 12.4.1 of Fletcher [11] and the comments that follow
this result. The QP subproblem of the primal-dual algorithms in the Knitro software
package may return only the primal variables, in which case the multipliers must be
approximated using primal information [7].

Even in cases in which an estimate of (μ, λ) is available from the algorithm,
it may be desirable to seek alternative values of (μ, λ) that decrease the value of
ψ(x, μ, λ), thereby tightening the tolerance in the threshold test (2.5). This approach
forms the basis of the techniques described in subsections 3.2 and 3.3, which provide
asymptotically accurate estimates of the Lagrange multipliers as well as of the active
set A∗.

3. Identification from a primal point. We describe a number of techniques
for estimating A∗ for a given x near the solution x∗. We discuss the relationships
between these techniques and conditions under which they provide asymptotically
accurate estimates of A∗.

3.1. Linear programming techniques. We describe here techniques based
on a linearization of the �1 penalty formulation of (1.1). A linearized trust-region
subproblem is solved and an estimate of A∗ is extracted from the solution. One of
these techniques is used by Byrd et al. [5, 6] as part of their SQP-EQP approach.
(The idea of a linearized trust-region subproblem was proposed initially by Fletcher
and Sainz de la Maza [12].)

The following subproblem forms the basis of the techniques in this section:

min
d

gT d + ν‖Jd + h‖1 + ν‖(c + Ad)+‖1 subject to ‖d‖∞ ≤ Δ,(3.1)

where ν is a penalty parameter, Δ is the trust-region radius, and all functions are
assumed to be evaluated at x. This problem can be formulated explicitly as a linear
program by introducing auxiliary variables r, s, and t, and writing

min
(d,r,s,t)

gT d + νeT r + νeT s + νeT t subject to(3.2a)

Ad + c ≤ r, Jd + h = t− s, −Δe ≤ d ≤ Δe, (r, s, t) ≥ 0,(3.2b)
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where, as mentioned in the introduction, we have e = (1, 1, . . . , 1)T . The dual of this
problem is as follows:

min
(λ,μ,u,v)

−cTλ− hTμ + ΔeTu + ΔeT v subject to(3.3a)

ATλ + JTμ + g = u− v, 0 ≤ λ ≤ νe, −νe ≤ μ ≤ νe, (u, v) ≥ 0.(3.3b)

This formulation can be written more compactly as follows:

min
(λ,μ)

−cTλ− hTμ + Δ‖ATλ + JTμ + g‖1 subject to(3.4a)

0 ≤ λ ≤ νe, −νe ≤ μ ≤ νe.(3.4b)

The formulations above are feasible and bounded. Moreover, they admit some
invariance to scaling the constraints. Suppose, for some constraint ci, we have that
the λi component of the dual solution is strictly less than its upper bound of ν. By
duality, we then have ri = 0 at the solution of (3.2). If we scale constraint ci by
some σi > 0 (that is, we set ci ← σici and Ai ← σiAi), constraints (3.2b) and (3.3b)
continue to be satisfied, while the objectives (3.2a) and (3.3a) remain unchanged (and
therefore optimal) if we set λi ← λi/σi, provided that λi/σi ≤ ν. Similar comments
apply regarding the components of h.

The active set estimate can be derived from the solution of these linear programs
in different ways. We mention the following three possibilities:

Ac(x) = {i |Aid + ci ≥ 0},(3.5a)

Aλ(x) = {i |λi > 0},(3.5b)

AB(x) = {i |λi is in the optimal basis for (3.3)}.(3.5c)

The first of these activity tests (3.5a) cannot be expected to identify weakly active
constraints except when x = x∗. The second test (3.5b) will generally not identify
weakly active constraints, and will also fail to identify a strongly active constraint i if
the particular multiplier estimate used in the test happens to have λi = 0. The third
test (3.5c) does not attempt to estimate the full active set, but rather a “sufficient”
subset of it that can be used in subsequent calculations requiring a nonsingular basis
matrix for the active constraint gradients.

For the remainder of this section, we focus on Ac(x). The following simple lemma
shows that, for x sufficiently near x∗ and Δ sufficiently small, this activity test does
not contain false positives.

Lemma 3.1. There are positive constants ε̄2 and Δ̄ such that when ‖x−x∗‖ ≤ ε̄2
and Δ ≤ Δ̄, we have Ac(x) ⊂ A∗.

Proof. We first choose ε̄2 small enough such that for any x with ‖x − x∗‖ ≤ ε̄2
and any i /∈ A∗ we have ci(x) ≤ 1

2ci(x
∗) < 0. By decreasing Δ̄ if necessary, we also

have, for any ‖d‖∞ ≤ Δ ≤ Δ̄ with ‖x− x∗‖ ≤ ε̄2, that i /∈ A∗ ⇒ Ai(x)d + ci(x) < 0.
The result follows from the definition (3.5a) of Ac(x).

When the trust-region radius Δ is bounded in terms of ‖x−x∗‖ and a constraint
qualification holds, we can show that the set identified by (3.5a) is at least extensive
enough to “cover” the objective gradient g∗.

Theorem 3.2. If MFCQ holds at x∗, for any ζ ∈ (0, 1), there are positive
constants ν̄, ε̄2, and Δ̄ such that whenever the conditions ν ≥ ν̄, ‖x − x∗‖ ≤ ε̄2, and
Δ ∈ [‖x− x∗‖ζ , Δ̄] are satisfied, we have

−g∗ ∈ range[∇h∗] + pos[(∇c∗i )i∈Ac(x)].(3.6)
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Proof. We start by defining ε̄2 and Δ̄ as in Lemma 3.1. For these values (and any
smaller values) we have immediately that Ac(x) ⊂ A∗.

We require ν ≥ ν̄, where

ν̄
def
= max ({‖(μ∗, λ∗)‖∞ | (μ∗, λ∗) ∈ SD}) + 1.(3.7)

Note that ν̄ is well defined because the KKT and MFCQ conditions guarantee the
nonemptiness and boundedness of SD.

For any (μ∗, λ∗) ∈ SD, the dual problem (3.3) at x∗ with (μ, λ, u, v) = (μ∗, λ∗, 0, 0)
has objective value 0 because of the complementarity condition (1.3c). For the prob-
lem with x = x∗, we obtain a feasible point for (3.3) by setting

(μ, λ, u, v) =
(
μ∗, λ∗, (ATλ∗ + JTμ∗ + g)+, (A

Tλ∗ + JTμ∗ + g)−
)
.

The objective at this point is

−cTλ∗ − hTμ∗ + Δ‖ATλ∗ + JTμ∗ + g‖1

= (c(x∗) − c(x))Tλ∗ + (h(x∗) − h(x))Tμ∗

+Δ‖(A(x∗)T −A(x)T )λ∗ + (J(x∗)T − J(x)T )μ∗ + (g(x∗) − g(x))‖1

= O(‖x− x∗‖).(3.8)

The first equality is due to (1.3), while the second is due to the continuous differen-
tiability of f , c, and h and the boundedness of SD. The optimal point for (3.3) must
therefore have an objective value that is bounded above by a positive number of size
O(‖x− x∗‖).

Suppose for contradiction that regardless of how small we choose ε̄2, there is an
x with ‖x − x∗‖ ≤ ε̄2 such that the active set Ac(x) has the property that −g∗ /∈
range[∇h∗] + pos[(∇c∗i )i∈Ac(x)]. Since there are only a finite number of possible sets
Ac(x), we pick one of them for which this property holds for x arbitrarily close to
x∗ and call it A1. The set range[∇h∗] + pos[(∇c∗i )i∈A1

] is finitely generated and is
therefore closed; see Rockafellar [19, Theorem 19.1].

Using the definition for dist (·, ·) (1.10), we have that τ defined by

τ
def
= (0.5)dist (−g∗, range[∇h∗] + pos[(∇c∗i )i∈A1

])(3.9)

is strictly positive. After a possible reduction of ε̄2, we have that

dist (−g(x), range[∇h(x)] + pos[(∇ci(x))i∈A1 ]) ≥ τ(3.10)

for the given A1 and all x with ‖x− x∗‖ ≤ ε̄2. (The proof of the latter claim makes
use of standard arguments and appears in Appendix A.)

Given x with Ac(x) = A1, let the solutions to the problems (3.2) and (3.3) at x
be denoted by (dx, rx, sx, tx) and (μx, λx, ux, vx), respectively. For all i /∈ A1, we have
by (3.5a) and complementarity that Aidx + ci < 0, (rx)i = 0, and

(λx)i = 0 for all i /∈ A1.(3.11)

We now consider the objective of the dual problem (3.3) in two parts. We have
by using the property (3.11) that

ΔeTux + ΔeT vx ≥ Δ min
λ≥0,μ

∥∥∥∥∥g + JTμ +
∑
i∈A1

λi∇ci

∥∥∥∥∥
1

= Δdist (−g, range[∇h] + pos[(∇ci)i∈A1 ])

≥ Δτ.
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From ν ≥ ν̄ and (3.7), we also have

−cTλx − hTμx ≥ −ν‖c+‖1 − ν‖h‖1.

By substituting these relations into the dual objective (3.3), we have

−cTλx − hTμx + ΔeTux + ΔeT vx ≥ Δτ − ν‖c+‖1 − ν‖h‖1.

Finally, we decrease ε̄2 further if necessary so that

Δτ − ν‖c(x)+‖1 − ν‖h(x)‖1 ≥ (τ/2)‖x− x∗‖ζ

for ‖x−x∗‖ ≤ ε̄2. We note that such a choice is possible since Δ ≥ ‖x−x∗‖ζ and h(x)
and (c(x))+ are both O(‖x − x∗‖). Hence the optimal objective in (3.3) is bounded
below by (τ/2)‖x−x∗‖ζ . This bound contradicts our earlier observation in (3.8) that
the optimal objective is bounded above by a multiple of ‖x− x∗‖. We conclude that
τ = 0 in (3.9), and thus −g∗ ∈ range[∇h∗] + pos[(∇c∗i )i∈Ac(x)], as claimed.

When the assumptions are made stronger, we obtain the following result.
Corollary 3.3. If LICQ holds at x∗, for any ζ, ε̄2, Δ, ν, and x satisfying the

conditions of Theorem 3.2, A∗ \ A∗
0 ⊂ Ac(x) ⊂ A∗. If strict complementarity also

holds at x∗, then Ac(x) = A∗.
Proof. When LICQ holds at x∗, the multiplier (μ∗, λ∗) which satisfies equations

(1.3) is unique, and λ∗
i > 0 for all i ∈ A∗ \ A∗

0. For ζ, ε̄2, Δ, and ν defined in
Theorem 3.2, we must have i ∈ Ac(x) whenever λ∗

i > 0, since otherwise (3.6) would
not hold. Thus, A∗ \ A∗

0 ⊂ Ac(x). Lemma 3.1 supplies Ac(x) ⊂ A∗. The final
statement follows trivially from the equivalence of strict complementarity with A∗

0 =
∅.

The implementation of SQP-EQP known as Active [5, 6], which is contained in
the Knitro package, solves the formulation (3.2) using variants of the simplex method.
It is observed (Waltz [20]) that many simplex iterations are spent in resolving the
trust-region bounds −Δe ≤ d ≤ Δe. This effort would seem to be wasted; we are
much more interested in the question of which linearized inequality constraints from
(1.1) are active at the solution of (3.2) (and, ultimately, of (1.1)) than in the trust-
region bounds. The authors of Active have tried various techniques to terminate the
solution of (3.2) prematurely at an inexact solution, but these appear to increase the
number of “outer” iterations of the SQP algorithm.

Because there is no curvature, trust-region bounds in (3.1) may be active, re-
gardless of the size of Δ, even when x is arbitrarily close to x∗. The theorems above
highlight the importance of choosing Δ large enough to allow constraints in A∗ to
become active in (3.1) but small enough to prevent inactive constraints (those not in
A∗) from becoming active in (3.1). Byrd et al. [5, section 3] describe a heuristic for
Active in which Δ is adjusted from its value at the previous iteration of the outer
algorithm according to the success of the QP step, the norms of the QP step, the
solution d of (3.1), and whether or not the minimizer of the quadratic model in this
direction d lies at the boundary of the trust region.

The performance of these schemes also depends strongly on the value of ν in (3.1)
and (3.4). The bound

ν ≥ max

(
max

j
λ∗
j ,max

k
|μ∗

k|
)

(3.12)
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ensures global convergence. However, excessively large estimates of ν can slow con-
vergence. The heuristic used in Active [5, section 9] re-solves the LP for increasing
values of ν whenever a substantial decrease in infeasibility is possible. In addition,
ν is decreased whenever the bound (3.12) (using the current multiplier estimates) is
inactive for several consecutive successful, feasible LP iterations.

Theorem 3.2 and Corollary 3.3 suggest that the approaches of this section may
give false negatives for constraints that are weakly active, or which may have an
optimal Lagrange multiplier of zero. However, it is not obvious that failure to identify
such constraints would adversely affect the performance of nonlinear programming
algorithms. To first order, they are not critical to satisfying the KKT conditions.

3.2. A technique based on the primal-dual estimate. Here we describe a
scheme based on explicit minimization of ψ(x, μ, λ) in (2.1) with respect to (μ, λ) for
λ ≥ 0. We show that this minimization problem can be formulated as a linear pro-
gram with equilibrium constraints (LPEC), one that is related to the linear programs
discussed in subsection 3.1. However, in contrast to this earlier approach, we use a
threshold test like (2.5) to estimate the active set, rather than active set or Lagrange
multiplier information from the subproblem.

The LPEC subproblem is as follows:

ω(x)
def
= min

λ≥0,μ

m∑
i=1

|min(λi,−ci)| + ‖h‖1 + ‖ATλ + JTμ + g‖1.(3.13)

The activity test Alpec is defined as

Alpec(x) = {i | ci(x) ≥ −(βω(x))σ},(3.14)

where β > 0 and σ ∈ (0, 1) are constants.
The problem (3.13) can be formulated as the following LPEC:

ω(x)
def
= min

(λ,μ,s,u,v)
eT s +

∑
ci≥0

ci + ‖h‖1 + eTu + eT v subject to(3.15a)

0 ≤ (−c)+ − s ⊥ λ− s ≥ 0,(3.15b)

ATλ + JTμ + g = u− v, (λ, s, u, v) ≥ 0.(3.15c)

By introducing a large constant M and binary variables yi, i = 1, 2, . . . ,m (which
take on the value 0 if the minimum in min(−ci, λi) is achieved by −ci and 1 if it is
achieved by λi), we can write (3.15) as the following mixed-integer (binary) program:

ω(x)
def
= min

(λ,μ,s,y,u,v)
eT s + ‖h‖1 + eTu + eT v subject to(3.16a)

− ci − si ≤ −ciyi, i = 1, 2, . . . ,m,(3.16b)

λi − si ≤ M(1 − yi), i = 1, 2, . . . ,m,(3.16c)

ATλ + JTμ + g = u− v,(3.16d)

(λ, u, v) ≥ 0, s ≥ (c)+, yi ∈ {0, 1}, i = 1, 2, . . .m.(3.16e)

The validity of this formulation for (3.13) is based on the nonnegativity of λ and the
minimization of the eT s term. The large parameter M is necessary for (3.16c) but
not for (3.16b), because −c is a parameter while λ is a variable in the program.

There are notable similarities between the formulation (3.13) of the LPEC sub-
problem and the dual formulation (3.4) of the previous subsection. First, the term
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‖ATλ + JTμ + g‖1 appears in both objectives, though in (3.4) it is weighted by the
trust-region radius Δ. Second, the term ‖h‖1 in (3.13) (which is constant in (3.13) and
(3.16a)) corresponds to the rather different term −μTh in (3.4). Third, the parameter
ν which penalizes constraint violation does not appear in (3.13). Fourth, and perhaps
most interestingly, the minimum |min(−ci, λi)| in (3.13) is replaced by the product
(−ci)λi in (3.4). While the use of the minimum may lead to stronger identification
properties (see below), it is responsible for the presence of equilibrium constraints in
(3.13) and therefore makes the subproblem much harder to solve. In addition, the
attractive scale invariance property possessed by the −ciλi term is lost. If we multi-
ply ci and Ai by some σi > 0 and replace λi ← λi/σi to maintain constancy of the
product Aiλi, the minimum |min(−ci, λi)| will be replaced by |min(−σici, λi/σi)|,
which has a different value in general.

We now show that ω(x) defined in (3.13) provides a two-sided estimate of the dis-
tance to the solution and that the identification scheme (3.14) eventually is successful,
under appropriate assumptions.

Theorem 3.4. Suppose that the KKT conditions (1.3), the MFCQ (1.7), and the
second-order condition (1.9) are satisfied at x∗, and let ε be as defined in Theorem 2.1.
Then there are positive constants ε̄ ∈ (0, ε/2] and C̄ such that for all x with ‖x−x∗‖ ≤
ε̄, we have that

(i) the minimum in (3.13) is achieved at some (μ, λ) with dist ((μ, λ),SD) ≤ ε/2;
(ii) C̄−1ω(x) ≤ ‖x− x∗‖ ≤ C̄ω(x); and
(iii) Alpec(x) = A∗.
Proof.
(i) Note first that for any (μ∗, λ∗) ∈ SD and any x with ‖x − x∗‖ ≤ ε, we have

that

ω(x) ≤ ψ(x, μ∗, λ∗)

=

m∑
i=1

|min(λ∗
i ,−ci(x))| + ‖h(x)‖1 + ‖A(x)Tλ∗ + J(x)Tμ∗ + g(x)‖1

≤
m∑
i=1

|ci(x) − ci(x
∗)| + ‖h(x) − h(x∗)‖1

+ ‖(A(x) −A(x∗))Tλ∗ + (J(x) − J(x∗))Tμ∗ + (g(x) − g(x∗))‖1

≤ C1‖x− x∗‖(3.17)

for some constant C1. (In the second-to-last inequality, we used min(λ∗
i ,−ci(x

∗)) = 0,
which follows from (1.3c).) Hence, if the minimum in (3.13) occurs outside the set
{(μ, λ)|λ ≥ 0,dist ((μ, λ),SD) ≤ ε/2} for x arbitrarily close to x∗, we must be able to
choose a sequence (xk, μk, λk) with xk → x∗, λk ≥ 0, and dist ((μk, λk),SD) > ε/2
such that

ψ(xk, μk, λk) ≤ ψ(xk, μ∗, λ∗) ≤ C1‖xk − x∗‖ for all k.

In particular we have ψ(xk, μk, λk) → 0. Consider first the case in which (μk, λk) is
unbounded. By taking a subsequence if necessary, we can assume that

‖(μk, λk)‖ → ∞,
(μk, λk)

‖(μk, λk)‖ → (μ∗, λ∗), ‖(μ∗, λ∗)‖ = 1, λ∗ ≥ 0.

For any i /∈ A∗, we have, by taking a further subsequence if necessary, that ci(x
k) <

(1/2)ci(x
∗) < 0 for all k. Since |min(λk

i ,−ci(x
k))| ≤ ψ(xk, μk, λk) → 0, we have that
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λk
i → 0 and thus λ∗

i = 0 for all i /∈ A∗. We also have that A(xk)Tλk + J(xk)Tμk +
g(xk) → 0; thus when we divide this expression by ‖(μk, λk)‖ and take limits, we
obtain

A(x∗)Tλ∗ + J(x∗)Tμ∗ = AA∗(x∗)Tλ∗
A∗ + J(x∗)Tμ∗ = 0.

We can now use the usual argument based on the MFCQ property (1.7) (see Ap-
pendix A) to deduce that λ∗

A∗ = 0 and then μ∗ = 0, contradicting ‖(μ∗, λ∗)‖ = 1.
Hence, the sequence (μk, λk) must be bounded.

By taking a subsequence if necessary, we can define a vector (μ̂, λ̂) such that

(μk, λk) → (μ̂, λ̂), λ̂ ≥ 0.

The limit ψ(xk, μk, λk) → 0 thus implies that ψ(x∗, μ̂, λ̂) = 0, which in turn implies

that (μ̂, λ̂) ∈ SD, contradicting dist ((μk, λk),SD) > ε/2. Thus, there is some ε̄
such that for all x with ‖x − x∗‖ ≤ ε̄ the minimum occurs in the set {(μ, λ)|λ ≥
0,dist ((μ, λ),SD) ≤ ε/2}. Since this set is compact (boundedness of SD follows from
the MFCQ (1.7)), we conclude that the minimum in (3.13) is attained by some (μ, λ)
in this set.

(ii) The left-hand inequality is already proved by (3.17). We now show that, for
the ε̄ ∈ (0, ε/2] determined in part (i), we have

‖x− x∗‖ ≤ Cω(x) for all x with ‖x− x∗‖ ≤ ε̄(3.18)

for C defined in Theorem 2.1. First note that for any (μ, λ) with dist ((μ, λ),SD) ≤
ε/2, we have

dist ((x, μ, λ),S) ≤ ‖x− x∗‖ + dist ((μ, λ),SD) ≤ ε̄ + ε/2 ≤ ε,

so that from Theorem 2.1 we have

‖x− x∗‖ ≤ dist ((x, μ, λ),S) ≤ Cψ(x, μ, λ)(3.19)

for all (μ, λ) with dist ((μ, λ),SD) ≤ ε/2 and λ ≥ 0. We showed in part (i) that the
minimum of ψ(x, μ, λ) is attained in this set for sufficiently small choice of ε̄. Hence,
we have

‖x− x∗‖ ≤ C min
λ≥0,dist ((μ,λ),SD)≤ε/2

ψ(x, μ, λ) = Cω(x),

as required. The result follows by taking C̄ = max(C,C1), where C1 is from (3.17).
(iii) The proof of this final claim follows from an argument like that of Theorem

2.2.
We note that an exact solution of (3.13) (or (3.16)) is not needed to estimate the

active set. In fact, any approximate solution whose objective value is within a chosen
fixed factor of the optimal objective value will suffice to produce an asymptotically ac-
curate estimate. Computationally speaking, we can terminate the branch-and-bound
procedure at the current incumbent once the lower bound is within a fixed factor of
the incumbent objective value. Moreover, we can derive an excellent starting point
for (3.16) from the solution of the dual subproblem (3.3) of the previous subsection
or from the LP subproblem of the next section. (As our experiments of section 4
show, the branch-and-bound procedure often terminates at the root node, without
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doing any expansion of the branch-and-bound tree at all. When this occurs, the main
computational cost is the cost of solving a single LP relaxation of (3.16).)

The main differences between the schemes of this subsection and the previous one
can be summarized as follows:

• When a second-order sufficient condition holds, the scheme of this subsection
accurately estimates A∗ (including the weakly active constraints), whereas the
schemes of the previous subsection may identify only those active constraints
that are instrumental in satisfying the first KKT condition (1.3a).

• Effectiveness of the techniques of the previous subsection depends critically
on the choice of trust-region radius Δ, whereas no such parameter is present
in this subsection. However, the practical performance of the latter approach
may depend on the scaling of the constraints ci and their multipliers λi.
Performance may be improved for some problems by changing the relative
weightings of the terms ‖h‖1 and ‖ATλ + JTμ + g‖1 in ω(x). However, it is
difficult to determine a choice of weights that works reliably for a range of
problems.

3.3. A linear programming approximation to the LPEC. In this section,
we describe a technique that has the same identification properties as the scheme of
the previous subsection, as described in Theorem 3.4, but requires only the solution
of a linear program, rather than an LPEC. The key to the scheme is to obtain a
two-sided bound on ω(x), defined in (3.13), that can be obtained by solving a single
linear program.

We start by defining the following functions:

ρ(x, μ, λ)
def
=

∑
ci<0

−ciλi +
∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1,(3.20)

ρ̄(x, μ, λ)
def
=

∑
ci<0

(−ciλi)
1/2 +

∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1.(3.21)

These functions are related in the following elementary fashion.

Lemma 3.5. For any (μ, λ) with λ ≥ 0, we have

ρ̄(x, μ, λ) ≤ ρ(x, μ, λ) +
√
mρ(x, μ, λ)1/2.

Proof.

ρ̄(x, μ, λ) =

∥∥∥∥[(−ciλi)
1/2

]
ci<0

∥∥∥∥
1

+
∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1

≤
√
m

∥∥∥∥[(−ciλi)
1/2

]
ci<0

∥∥∥∥
2

+
∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1

=
√
m

[∑
ci<0

(−ciλi)

]1/2

+
∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1

≤
√
mρ(x, μ, λ)1/2 + ρ(x, μ, λ).

The next result defines the relationship between ρ, ρ̄, and the proximality measure
ψ defined in (2.1).
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Lemma 3.6. Let K2 ≥ 1 be given. Then for all (x, μ, λ) with λ ≥ 0 and

‖c‖∞ ≤ K2, ‖λ‖∞ ≤ K2,(3.22)

we have that

K−1
2 ρ(x, μ, λ) ≤ ψ(x, μ, λ) ≤ ρ̄(x, μ, λ).(3.23)

Proof. For ci < 0 and λi ≥ 0, we have

−ciλi = min(−ci, λi) max(−ci, λi) ≥ min(−ci, λi)
2(3.24)

and also

−ciλi ≤ K2 min(−ci, λi).(3.25)

From (3.24) we have

ψ(x, μ, λ) =
∑
ci<0

|min(−ci, λi)| +
∑
ci≥0

ci + ‖h‖1 + ‖g + ATλ + JTμ‖1

≤
∑
ci<0

(−ciλi)
1/2 +

∑
ci≥0

ci + ‖h‖1 + ‖g + ATλ + JTμ‖1

= ρ̄(x, μ, λ),

thereby proving the right-hand inequality in (3.23).
For the left-hand inequality, we have from (3.25) and K2 ≥ 1 that

ψ(x, μ, λ) ≥ K−1
2

∑
ci<0

(−ciλi) +
∑
ci≥0

ci + ‖h‖1 + ‖ATλ + JTμ + g‖1 ≥ K−1
2 ρ(x, μ, λ),

as required.
We are particularly interested in the solution (μx, λx) to the program

min
μ,0≤λ≤K1e

ρ(x, μ, λ),(3.26)

where K1 is the constant defined in (2.4). The problem of determining (μx, λx) can
also be expressed as the following linear program:

min
(λ,μ,u,v)

∑
ci<0

(−ciλi) +
∑
ci≥0

ci + ‖h‖1 + eTu + eT v subject to(3.27a)

ATλ + JTμ + g = u− v, 0 ≤ λ ≤ K1e, (u, v) ≥ 0.(3.27b)

We define the activity test associated with ρ̄ as follows:

Aρ̄(x) = {i = 1, 2, . . . ,m | ci(x) ≥ −(βρ̄(x, μx, λx))σ̄}(3.28)

for given constants β > 0 and σ̄ ∈ (0, 1).
We now prove a result similar to Theorem 3.4, showing in particular that un-

der the same assumptions as the earlier result, the identification scheme above is
asymptotically successful.

Theorem 3.7. Suppose that the KKT conditions (1.3), the MFCQ (1.7), and the
second-order condition (1.9) are satisfied at x∗, and let ε be as defined in Theorem 2.1.
Then there exists a positive constant ε̂ ∈ (0, ε/2] such that for all x with ‖x−x∗‖ ≤ ε̂,
we have
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(i) the minimum in (3.27) is attained at some (μ, λ) with dist ((μ, λ),SD) ≤ ε/2;
(ii) K−1

1 ρ(x, μx, λx) ≤ ω(x) ≤ ρ̄(x, μx, λx), where K1 is the constant defined in
(2.4); and

(iii) Aρ̄(x) = A∗.

Proof.

(i) Note that for any (μ∗, λ∗) ∈ SD and any x with ‖x− x∗‖ < ε, we have

ρ(x, μ∗, λ∗)

=
∑
ci<0

−ci(x)λ∗
i +

∑
ci≥0

ci(x) + ‖h(x)‖1 + ‖A(x)Tλ∗ + J(x)Tμ∗ + g(x)‖1

≤
∑
ci<0

(ci(x
∗) − ci(x))λ∗

i +
∑
ci≥0

(ci(x) − ci(x
∗)) + ‖h(x) − h(x∗)‖1

+ ‖(A(x) −A(x∗))Tλ∗ + (J(x) − J(x∗))Tμ∗ + (g(x) − g(x∗))‖1

≤ C2‖x− x∗‖

for some constant C2. (In the first inequality above, we used the fact λ∗
i c

∗
i = 0 for

all i to bound the first summation, and the fact that c∗i ≤ 0 for all i to bound the
second summation.) Note that since ‖(μ∗, λ∗)‖∞ ≤ K1, we have 0 ≤ λ∗ ≤ K1e, so
that (μ∗, λ∗), together with an obvious choice of (u, v), is feasible for (3.27). We note

also that any (μ̂, λ̂) for which ρ(x∗, μ̂, λ̂) = 0 and λ̂ ≥ 0 satisfies (μ̂, λ̂) ∈ SD. Using
these observations, the remainder of the proof closely parallels that of Theorem 3.4(i),
so we omit the details.

(ii) Reduce ε̂ if necessary to ensure that ε̂ ≤ ε̄ ≤ ε/2, where ε̄ is defined in
Theorem 3.4. Reduce ε̂ further if necessary to ensure that ‖c(x)‖∞ ≤ K1 for all
x with ‖x − x∗‖ ≤ ε̂. Note that by Theorem 3.4(i), the minimizer of (3.13) has
dist ((μ, λ),SD) ≤ ε/2, and therefore ‖λ‖∞ ≤ ‖λ∗‖∞ + 1 ≤ K1 for any (μ∗, λ∗) ∈ SD.

Using the result of Lemma 3.6 (with K1 replacing K2), we have that

K−1
1 ρ(x, μx, λx)

= min
μ,0≤λ≤K1e

K−1
1 ρ(x, μ, λ) ≤ min

μ,0≤λ≤K1e
ψ(x, μ, λ) ≤ ψ(x, μx, λx) ≤ ρ̄(x, μx, λx).

However, as we showed in Theorem 3.4(i), the minimizer of ψ(x, μ, λ) over the set of
(μ, λ) with λ ≥ 0 is attained at values of (μ, λ) that satisfy the restriction ‖λ‖∞ ≤ K1;
thus we can write

K−1
1 ρ(x, μx, λx) ≤ min

μ,0≤λ
ψ(x, μ, λ) ≤ ρ̄(x, μx, λx),

which yields the result, by (3.13).

(iii) We have from Lemma 3.5, Theorem 3.4(ii), and part (ii) of this theorem that
ρ̄(x, μx, λx) → 0 as x → x∗. Therefore, using continuity of ci, i = 1, 2, . . . ,m, we can
decrease ε̂ if necessary to ensure that for ‖x− x∗‖ ≤ ε̂, we have

ci(x) < (1/2)ci(x
∗) ≤ −(βρ̄(x, μx, λx))σ̄ for all i /∈ A∗.

Hence, i /∈ Aρ̄(x) for all such x.

For i ∈ A∗, we have for the Lipschitz constant L defined in (2.3), and using
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Theorem 3.4(ii) and part (ii) of this theorem, that

|ci(x)| ≤ L‖x− x∗‖
= L‖x− x∗‖1−σ̄‖x− x∗‖σ̄

≤ L‖x− x∗‖1−σ̄C̄ σ̄ω(x)σ̄

≤
[
L‖x− x∗‖1−σ̄C̄ σ̄/βσ̄

]
(βρ̄(x, μx, λx))σ̄

≤ (βρ̄(x, μx, λx))σ̄

for ε̂ sufficiently small. Hence, we have i ∈ Aρ̄(x) for all x with ‖x− x∗‖ ≤ ε̂.
Near the solution, ω(x) may be (and often is) much smaller than ρ̄(x, μx, λx),

because of the looseness of the estimate (3.24). To compensate for this difference, we
set σ̄ in the definition of Aρ̄ (3.28) to be larger than σ in the definition of Alpec (3.14)
in the tests described in the next section.

A referee has pointed out that some interesting insights are available from exam-
ination of the dual of the subproblem (3.27). Ignoring the upper bound λ ≤ K1e, we
can write the dual as

min gT d subject to

Aid + ci ≤ 0 for i with ci < 0,

Aid ≤ 0 for i with ci ≥ 0,

Jd = 0, −e ≤ d ≤ e.

It is not difficult to construct examples for which Aid+ci = 0 for an inactive constraint
i, even when x is arbitrarily close to x∗. (The referee gave the example of minimizing
a scalar x2 subject to −x− 0.5 ≤ 0 for x slightly greater than the optimum x∗ = 0.)
Thus, if the active set estimate were obtained from formulae such as (3.5), it may
not be asymptotically accurate. Hence, the use of the threshold test (3.28) in place
of activity tests (3.5) is key to the effectiveness of the approach of this section. In
this vein, it can be shown that if the (μ, λ) components of the solution of the earlier
LP problem (3.3) are inserted into the threshold test (3.28) in place of (μx, λx), an
asymptotically accurate estimate is obtained, under certain reasonable assumptions.
We omit a formal statement and proof of this claim, as we believe (μx, λx) to be a
better choice of the Lagrange multipliers, because their calculation does not depend
on the parameters ν and Δ that appear in (3.3).

4. Computational results. In this section, we apply the techniques of section 3
to a variety of problems in which x is slightly perturbed from its (approximately)
known solution x∗. The resulting active set estimate is compared with our best guess
of the active set at the solution. We report the false positives and false negatives
associated with each technique, along with the runtimes required to execute the tests.

The LP techniques of subsection 3.1 are referred to as LP-P for the primal formu-
lation (3.2) and LP-D for the dual formulation (3.3). For these formulations, we use
both activity tests Ac and Aλ of (3.5), modified slightly with activity thresholds. We
also implement the LPEC scheme of subsection 3.2 and the LP approximation scheme
of subsection 3.3, which we refer to below as LPEC-A. We implemented all tests in C,
using the CPLEX callable library (version 9.0) to solve the linear and mixed-integer
programs.

The times required to implement the tests are related to the size and density of the
constraint matrix for each formulation. The matrix dimensions for each formulation
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Table 4.1

Problem dimensions as a function of the number of inequalities (m), variables (n), and equalities
(p).

LP-D LP-P LPEC-A LPEC
Rows n m + p n 5m + n

Columns m + 2n + p m + n + 2p m + 2n + p 4m + 2n + p

are given in Table 4.1. Except for problems with many equality constraints, the LPEC
formulation has the largest constraint matrix. Further, it is the only formulation with
binary variables.

Subsection 4.1 discusses some specifics of the formulations, such as the choice
of parameters and tolerances in the identification procedures. In subsection 4.2, we
apply the identification techniques to a set of random problems, for which we have
control over the dimensions and amount of degeneracy. In subsection 4.3, we consider a
subset of constrained problems from the CUTEr test set, a conglomeration of problems
arising from theory, modeling, and real applications [13]. While the random problems
are well scaled with dense constraint Jacobians, the CUTEr problems may be poorly
scaled and typically have sparse constraint Jacobians. Subsection 4.4 contains some
remarks about additional testing.

4.1. Implementation specifics.

4.1.1. Choosing parameters and tolerances. The following implementation
details are common to both random and CUTEr test sets. We bound the �∞ norm of
the perturbation x from the (approximately) optimal point x∗ by a noise parameter
noise. Denoting by φ a random variable drawn from the uniform distribution on
[−1, 1], we define the perturbed point x as follows:

xi = x∗
i +

noise

n
φ, i = 1, 2, . . . , n.(4.1)

A second parameter DeltaFac controls the bound on the trust-region radius for the
LP-P and LP-D programs. We set

Δ = DeltaFac
noise

n
,

so that when DeltaFac ≥ 1, the trust region is large enough to contain the true
solution x∗. For the results tabulated below, we use DeltaFac = 4. This value is
particularly felicitous for the LP-P and LP-D schemes, as it yields a Δ large enough
to encompass the solution yet small enough to exclude many inactive constraints. The
number of false positives therefore tends to be small for LP-P and LP-D in our tables.
The relatively small trust region also allows the CPLEX presolver to streamline the
LP formulations before calling the simplex code, thus reducing the solve times for the
linear programs in LP-P and LP-D. (Specifically, for each inequality constraint that
is inactive over the entire trust region, the LP-P subproblem is reduced by one row
and column, while the LP-D subproblem is reduced by one column.) It is unlikely
that a nonlinear programming algorithm that uses LP-P or LP-D as its identification
technique could in practice choose a value of Δ as nice as the one used in these tests.

The activity tests Ac (3.5a) and Aλ (3.5b) were modified to include a tolerance,
as follows:

Ac(x) = {i |Aid + ci ≥ −ε0}(4.2)
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and

Aλ(x) = {i |λi ≥ ε0},(4.3)

with ε0 = 10−4.

In the tests Alpec(x) (3.14) for LPEC and Aρ̄ (3.28) for LPEC-A, we set β =
1/(m+n+p). The value 0.75 is used for σ in Alpec (3.14), while the larger value 0.90
is used for σ̄ in Aρ̄ (3.28).

By default, the mixed-integer solver in CPLEX makes use of various cut gen-
eration schemes, including flow covers, MIR cuts, implied bound cuts, and Gomory
fractional cuts. We disabled these schemes because, given our usually excellent start-
ing point for the LPEC test, the cost of cut generation is excessive compared to the
cost of solving the root relaxation. However, for all tests, we allowed both linear and
mixed-integer solvers to perform their standard presolving procedures, as they gener-
ally improved the performance. For the mixed-integer solver in LPEC, we accept the
solution if it is within a factor of 2 of the lower bound.

For both linear and integer programming solvers, we tightened the general fea-
sibility tolerance eprhs from 10−6 to 10−9 because problems in the CUTEr test set
(notably BRAINPC0 and BRAINPC3) report infeasibilities after scaling for LPEC-A
under the default tolerance. In addition, we observed LP-P objective values that were
too negative when using default eprhs values. Specifically, for some of the constraints
Aid + ci − ri ≤ 0 in (3.2), the solver would find a d with Aid + ci slightly positive,
while setting ri to zero. Thus, the constraint would be satisfied to the specified toler-
ance, while avoiding the larger value of gT d that would be incurred if it were satisfied
exactly.

4.1.2. Formulation details. For all test problems, the parameter ν of the LP-P
and LP-D programs is assigned a value large enough to ensure that the known optimal
multipliers (μ∗, λ∗) are feasible for (3.4). The results of this paper, theoretical and
computational, are otherwise insensitive to the choice of ν. (However, the choice
of ν appears to be important for global convergence of the nonlinear programming
algorithm, as discussed in Byrd et al. [6].)

The computational efficiency of the LPEC mixed-integer program (3.16) is sen-
sitive to the magnitude of M . Recall that the formulation (3.16) is identical to the
LPEC (3.15) provided that M is sufficiently large, in particular, larger than ‖c+λ∗‖∞,
where λ∗ is an optimal multiplier. However, excessively large M values may result in
long runtimes. We observed runtime reductions of as much as 50% when we replaced
heuristically chosen values of M with near-minimal values.

We describe some heuristics for setting M and ν in the following subsections.

In solving LPEC, we use a starting point based on the solution for LPEC-A.
Specifically, we set λ, μ, u, and v to their optimal values from (3.27); set yi = 0
if −ci < λi and yi = 1 otherwise; and set si = |min(−ci, λi)|. In most cases, this
starting point is close to an acceptable solution for LPEC and little extra work is
needed beyond solving an LP relaxation of the LPEC at the root node and verifying
that the starting point is not far from the lower bound obtained from this relaxation.
The solution to LP-D also provides a useful starting point for LPEC in most cases.

For LPEC and LPEC-A, no attempt is made to scale the constraints ci or the
components of the threshold functions ω(x) and ρ̄(x, μx, λx). Heuristics to adjust such
weightings may improve the performance of LPEC and LPEC-A techniques.
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4.2. Random problems. We generate random problems involving dense Jaco-
bians J and A to mimic the behavior of a nonlinear program near a local solution x∗.
Besides choosing the dimensions n, m, and p, we influence the amount of degeneracy
in the problem by specifying the row rank of J and A and the proportion of weakly
active constraints.

4.2.1. Problem setup. Parameters specific to the random problem setup are
fStrong and fWeak (approximate proportion of strongly and weakly active inequality
constraints, respectively) and degenA and degenJ (proportional to the ranks of the
null spaces of A and J , respectively). We first fill out the first (1 − degenA)m rows
of the optimal inequality constraint Jacobian A∗ with components 5φ (where, as
above, φ represents a random variable uniformly distributed in [−1, 1]). We then
set the last (degenA)m rows of A∗ to be random linear combinations of the first
(1−degenA)m rows, where the coefficients of the linear combinations are chosen from
φ. A similar process is used to choose the optimal equality constraint Jacobian J∗

using the parameter degenJ.
We set the solution to be x∗ = 0. Recall that x is a perturbation of x∗ (4.1).

First, we set each component of μ∗ to 1
2φ(φ + 1). Next, we randomly classify each

index i ∈ {1, 2, . . . ,m} as “strongly active,” “weakly active,” or “inactive,” such that
the proportion in each category is approximately fStrong, fWeak, and (1−fStrong−
fWeak), respectively. For the inactive components, we set c∗i = − 5

2 (φ + 1)2, while for
the strongly active components, we set λ∗

i = 5
2 (φ + 1)2. Other components of c∗ and

λ∗ are set to zero. To make the optimality condition (1.3a) consistent, we now set
g∗ = −(A∗)Tλ∗ − (J∗)Tμ∗. Naturally, h∗ = 0.

In accordance with the assumed Lipschitz properties, we set

gi = g∗i + (noise/n)φ, i = 1, 2, . . . ,m,

Aij = A∗
ij + (noise/n)φ, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

Jij = J∗
ij + (noise/n)φ, i = 1, 2, . . . , p, j = 1, 2, . . . , n.

Since c(x) = c∗ + A∗(x− x∗) + O(‖x− x∗‖2) = c∗ + A∗x + O(‖x‖2), we set

ci = c∗i + A∗
i x + (noise/n)2φ, i = 1, 2, . . . ,m.

A similar scheme is used to set h.
The data thus generated is consistent to first order, but there is no explicit as-

surance that the second-order condition holds. (This condition is required for The-
orems 3.4 and 3.7 concerning the exact identification properties of the LPEC and
LPEC-A schemes.)

By setting ν to the large value 100, we ensure that solutions of LP-P and LP-D
have r = 0 and s = t = 0. For the LPEC problem (3.16), we define M = 5 maxj(|cj |).
This value is large enough to secure local optimality of the LPEC programs of our
test problems.

4.2.2. Nondegenerate problems. Results for a set of random nondegenerate
problems are shown in Table 4.2, with runtimes in Table 4.3. Nondegeneracy is
assured by setting fWeak = 0, degenA = 0, and degenJ = 0. The number of equality
constraints p is n/5, and we set noise = 10−3. Each entry in Table 4.2 shows the
numbers of false positives and false negatives for the problem and test in question.
For LP-P and LP-D, we report both active sets Ac (4.2) and Aλ (4.3). The case
m = 400, n = 200, fStrong=0.50 does not appear because the expected number of
degrees of freedom (n− p− (fStrong + fWeak)m) is nonpositive.
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Table 4.2

Nondegenerate random problems: False positives/false negatives. p = n/5, noise = 10−3,
fWeak = 0.00, degenA = 0.00, DeltaFac = 4.00.

m n fStrong LP-D LP-P LPEC-A LPEC
Ac Aλ Ac Aλ

50 200 0.10 0/0 0/0 0/0 0/0 1/0 1/0
50 200 0.50 0/0 0/0 0/0 0/0 0/0 0/0
50 1000 0.10 0/0 0/0 0/0 0/0 0/0 0/0
50 1000 0.50 0/0 0/0 0/0 0/0 0/0 0/0
100 200 0.10 0/0 0/0 0/0 0/0 0/0 0/0
100 200 0.50 0/0 0/0 0/0 0/0 1/0 0/0
100 1000 0.10 0/0 0/0 0/0 0/0 0/0 0/0
100 1000 0.50 0/0 0/1 0/0 0/1 0/0 0/0
400 200 0.10 0/0 0/0 0/0 0/0 2/0 1/1
400 1000 0.10 1/0 0/0 1/0 0/0 3/0 1/0
400 1000 0.50 1/0 0/0 1/0 0/0 4/0 3/0

Table 4.3

Nondegenerate random problems: Time (secs). p = n/5, noise = 10−3, fWeak = 0.00, degenA =
0.00, DeltaFac = 4.00.

m n fStrong LP-D LP-P LPEC-A LPEC

50 200 0.10 0.07 0.03 0.11 0.16
50 200 0.50 0.09 0.05 0.11 0.13
50 1000 0.10 7.08 4.61 7.34 7.94
50 1000 0.50 7.73 4.79 6.98 7.85
100 200 0.10 0.08 0.03 0.19 0.26
100 200 0.50 0.13 0.10 0.18 0.26
100 1000 0.10 7.05 4.46 9.35 9.99
100 1000 0.50 8.84 6.77 9.41 10.40
400 200 0.10 0.15 0.11 0.47 8.05
400 1000 0.10 9.80 5.59 20.70 171.24
400 1000 0.50 17.87 18.17 21.57 26.35

The identification techniques are accurate on these problems. Because the LICQ
conditions hold (to high probability), even the LP-P and LP-D procedures are guar-
anteed to be asymptotically correct. Indeed, the LP-P and LP-D schemes generally
perform best; the LPEC-A and LPEC schemes show a few false positives on the larger
examples. For these problems, it is not necessary for the LPEC to search beyond the
root node in the branch-and-bound tree, except in the case m = 400, n = 200,
fStrong = 0.10, for which one additional node is considered.

In agreement with the theory of section 3, the false positives reported in LPEC-A
and LPEC results disappear for smaller noise values. In particular, for noise = 10−7

the identification results are perfect for the LPEC-A and LPEC methods, while the
LP-D and LP-P methods still give some errors.

Runtimes are shown in Table 4.3. The differences between the approaches are
not significant, except for two of the n = 400 cases, for which LPEC is substantially
slower than LPEC-A.

4.2.3. Degenerate problems. Results for a set of random degenerate problems
are shown in Table 4.4, with runtimes in Table 4.5. In these tables, we fixed fStrong =
0.2, noise = 10−3, degenJ = 0, and p = n/5. The values of fWeak and degenA were
varied, along with the dimensions m and n.
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Table 4.4

Degenerate random problems: False positives/false negatives: p = n/5, noise = 10−3,
fStrong = 0.20, DeltaFac = 4.00.

m n fWeak degenA LP-D LP-P LPEC-A LPEC
Ac Aλ Ac Aλ

50 200 0.05 0.0 1/1 0/2 1/1 0/2 1/0 1/0
50 200 0.05 0.1 0/2 0/2 0/2 0/2 0/0 0/1
50 200 0.05 0.3 0/0 0/2 0/0 0/2 0/0 0/0
50 200 0.20 0.0 1/3 0/6 1/3 0/6 1/0 1/0
50 200 0.20 0.1 0/2 0/6 0/2 0/6 0/0 0/0
50 200 0.20 0.3 0/4 0/6 0/4 0/6 0/0 0/0
50 1000 0.05 0.0 0/0 0/2 0/0 0/2 0/0 0/0
50 1000 0.05 0.1 0/2 0/2 0/2 0/2 0/0 0/0
50 1000 0.05 0.3 0/2 0/2 0/2 0/2 0/1 0/1
50 1000 0.20 0.0 0/3 0/6 0/3 0/6 0/0 0/0
50 1000 0.20 0.1 0/3 0/6 0/3 0/6 0/0 0/0
50 1000 0.20 0.3 0/4 0/6 0/4 0/6 0/2 0/1
400 200 0.05 0.0 0/10 0/19 0/10 0/19 2/0 1/0
400 200 0.05 0.1 1/5 0/19 1/5 0/19 7/0 3/5
400 200 0.05 0.3 1/11 0/19 1/11 0/19 6/1 2/6
400 1000 0.05 0.0 2/8 0/19 2/9 0/19 3/0 1/0
400 1000 0.05 0.1 1/8 0/19 1/8 0/19 1/0 0/1
400 1000 0.05 0.3 4/7 0/19 4/7 0/19 6/0 5/7
400 1000 0.20 0.0 1/25 0/77 1/25 0/77 4/0 1/0
400 1000 0.20 0.1 0/22 0/77 0/22 0/77 1/0 0/6
400 1000 0.20 0.3 1/28 0/77 1/28 0/77 4/2 2/10

Table 4.5

Degenerate random problems: Time (secs). p = n/5, noise = 10−3, fStrong = 0.20,
DeltaFac = 4.00.

m n fWeak degenA LP-D LP-P LPEC-A LPEC

50 200 0.05 0.0 0.08 0.04 0.11 0.15
50 200 0.05 0.1 0.08 0.04 0.10 0.15
50 200 0.05 0.3 0.08 0.04 0.12 0.16
50 200 0.20 0.0 0.06 0.04 0.10 0.13
50 200 0.20 0.1 0.09 0.05 0.11 0.16
50 200 0.20 0.3 0.09 0.04 0.11 0.38
50 1000 0.05 0.0 7.51 4.05 6.99 7.81
50 1000 0.05 0.1 7.26 4.70 6.71 7.70
50 1000 0.05 0.3 7.08 4.47 7.22 17.15
50 1000 0.20 0.0 7.54 4.43 7.47 8.04
50 1000 0.20 0.1 8.11 4.28 6.80 7.75
50 1000 0.20 0.3 7.52 4.80 7.28 17.04
400 200 0.05 0.0 0.23 0.28 0.41 2.71
400 200 0.05 0.1 0.27 0.28 0.41 9.69
400 200 0.05 0.3 0.22 0.30 0.39 3.81
400 1000 0.05 0.0 12.06 7.99 21.35 71.89
400 1000 0.05 0.1 10.99 9.73 21.99 29.76
400 1000 0.05 0.3 11.36 9.71 22.78 138.38
400 1000 0.20 0.0 15.59 12.33 20.98 141.82
400 1000 0.20 0.1 13.97 10.94 22.39 29.67
400 1000 0.20 0.3 13.47 11.24 22.56 131.26
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All methods perform well when m = 50. The LPEC and LPEC-A approaches
rarely make an identification error on these problems, whereas LP-P and LP-D record
a few false negatives. For the problems with 400 inequality constraints, the numbers
of errors made by LPEC-A and LPEC are lower than those made by LP-P and LP-
D. The misidentifications for LP-D and LP-P tend to be false negatives, and their
numbers increase with the number of weakly active constraints. This experience is
in accordance with the theory of subsection 3.1, which gives no guarantee that the
weakly active constraints will be identified. The numbers of false negatives are larger
for test Aλ than for Ac—nearly as large as the number of degenerate constraints. (For
m = 400, fWeak = 0.05 there are 20 such constraints, while for m = 400 and fWeak =
0.20 there are 80.) This observation indicates that the multiplier (μ, λ) determined
by the LP-P and LP-D solution is similar to the optimal multiplier (μ∗, λ∗) for the
original problem, for which λ∗

i = 0 when constraint i is weakly active. The errors for
LPEC-A and LPEC contain both false positives and false negatives, indicating that
the values of σ and σ̄ and the factor β that we use in the activity test are appropriate.
(For larger values of σ and σ̄, the numbers of false negatives increase dramatically.)

The methods can usually be ranked in order of speed as LP-P, LP-D, LPEC-A,
and LPEC. The differences between LP-P and LP-D are likely due to problem size
reductions by the presolver, which are greater for LP-P, and which are significant
because the matrix is dense. As expected (see our discussion in subsection 4.1.1),
we observed size reductions corresponding to the number of inactive constraints. In
contrast, no presolver reductions were observed for LPEC-A.

For the mixed-integer program arising in the LPEC test, an additional node
beyond the root node of the branch-and-bound tree is considered only for the case
m = 400, n = 200, fWeak = 0.05, and degenA = 0.1. We observed large initial scaled
dual infeasibilities and runtimes that are sensitive to the LPEC parameter M . For the
case m = 400, the relative slowness of the LPEC method may be due to the relatively
large size of the matrix generated by the LPEC (see Table 4.1).

4.3. CUTEr problems. We now consider a subset of constrained minimization
problems from the CUTEr test set [13]. The subset contains degenerate problems
of small or medium size for which the Interior/Direct algorithm of Knitro 4.x

terminates successfully within 3000 iterations (with default parameter values). From
the output of this code, we obtain approximations x∗ to a solution and (μ∗, λ∗) to the
optimal Lagrange multipliers.

The format of the CUTEr test problems differs from that of (1.1) in that bound
constraints are treated separately from general constraints and all constraints are two-
sided; that is, they have both lower and upper bounds. We implemented alternative
formulations for our four tests which treated the bounds explicitly and combined them
with the trust-region constraints, thereby reducing the total number of constraints
and/or variables. We found that these formulations gave little or no improvement in
performance, so we do not report on them further. For the results below, we rewrite
the CUTEr test problems in the format (1.1), treating bound constraints in the same
way as general inequality constraints.

4.3.1. Determining the “true” active set. In contrast to the random prob-
lems of section 4.2, the true active set A∗ is not known but must be estimated from
the solution determined by Interior/Direct. Inevitably, this solution is approxi-
mate; the code terminates when the constraint-multiplier product for each inequality
constraint falls below a given tolerance, set by default to 10−6 (see Byrd, Hribar,
and Nocedal [7]). If one of λi or −ci is much smaller than the other, classification
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of the constraint is easy, but in many cases these two quantities are of comparable
magnitude. For example, the Interior/Direct solutions of problems such as CAR2,
BRAINPC*, and READING1 (when formulated as (1.1)) display patterns in which
−ci increases steadily with i while λi decreases steadily, or vice versa. It is difficult
to tell at which index i the line should be drawn between activity and inactivity.

In our tables below, we define A∗ by applying the LPEC-A test (3.28) with
σ̄ = .75 and β = 1/(m + n + p) to the solution returned by Knitro. (LPEC could
be used in place of LPEC-A to estimate A∗ because both schemes are theoretically
guaranteed to return the true active set for x close enough to x∗.) We also wish to
determine the weakly active inequality set A∗

0, defined by (1.5). Procedure ID0 from
[23, section 3], which involves repeated solution of linear programs, could be used to
determine this set. However, for purposes of Table 4.6, we populated A∗

0 with those
indices in the estimated A∗ that fail the test (4.3) when applied to the multipliers
returned by LPEC-A at x∗. Note that this technique produces a superset of A∗

0 in
general.

4.3.2. Implementation details. The penalty parameter in the LP-P and LP-D
formulations is defined by

ν = 1.5 max(max
j

(λ∗
j ),max

k
(|μ∗

k|), 1),

where (μ∗, λ∗) are the approximately optimal multipliers that were reported by the
Interior/Direct algorithm. This heuristic guarantees that these particular multi-
pliers (μ∗, λ∗) are feasible for the LP-D formulation (3.3) at the Interior/Direct

approximate solution x∗. For the parameter M in (3.16) we use

M = 3 max(max
j

(λ∗
j ),max

j
(|cj(x)|)).

Function and gradient evaluations are obtained through the Fortran and C tools
contained in the CUTEr distribution and through a driver modeled after the routine
loqoma.c (an interface for the code LOQO), which is also contained in CUTEr.

4.3.3. Test results and runtimes. Results for noise = 10−3 are shown in
Table 4.6. The numbers of elements in our estimate of the optimal active set A∗

and weakly active set A∗
0 are listed as |A∗| and |A∗

0|. Each entry in the main part of
the table contains the false positive/false negative count for each combination of test
problem and identification technique. Table 4.7 shows the dimensions of each problem
in the format m/n/p, with the main part of the table displaying runtimes in seconds.
The LPEC column additionally reports the number of nodes beyond the root needed
to solve the LPEC to the required (loose) tolerance. For many of the problems, the
root node is within a factor of 2 of the optimal solution, and the reported number is
therefore zero. If the LPEC test exceeds our time limit of 180 seconds, we qualify the
approximate solution with the symbol “†”.

Trends. In Table 4.6, the LP-D and LP-P results are nearly identical, indicating
that the two methods usually find the same solution. The errors for both tests are
mostly false negatives, which is expected, because the theory of section 3.1 gives no
guarantee that weakly active constraints will be identified. Further, false positives are
unlikely because the nice value of Δ (set up by the choice of parameter DeltaFac = 4)
excludes most inactive constraints from the trust region. The number of false negatives
for the Aλ test is usually higher than for Ac, because weakly active constraints will
generally fail the Aλ test (4.3), while they may pass the Ac test (4.2). This behavior
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Table 4.6

CUTEr problems: False positives/false negatives. noise = 10−3, σ = 0.75, σ̄ = 0.90,
DeltaFac = 4.00.

Problem |A∗|/|A0
∗| LP-D LP-P LPEC-A LPEC

Ac Aλ Ac Aλ

A4X12 191/88 0/21 0/122 0/21 0/122 6/0 0/32
AVION2 21/5 0/6 0/9 0/6 0/10 7/0 4/0

BIGBANK 0/0 0/0 0/0 0/0 0/0 0/0 0/0
BRAINPC0 3/3 0/0 0/1 0/0 0/3 65/0 67/0
BRAINPC1 3/3 4/0 0/2 4/0 0/3 33/0 38/0
BRAINPC3 3/3 0/0 0/1 0/0 0/3 67/0 69/0
BRAINPC4 9/9 6/0 0/9 6/0 0/9 22/0 56/0

CAR2 883/1 0/312 0/883 0/321 0/883 0/112 53/0†

CORE1 21/3 0/0 0/7 0/0 0/7 0/0 0/0
CORKSCRW 505/6 0/3 0/190 0/3 0/189 0/3 0/6

C-RELOAD 136/7 0/38 0/124 0/38 0/124 0/19 0/18†

DALLASM 3/1 0/0 0/1 0/0 0/1 0/0 0/0
DALLASS 1/0 0/0 0/1 0/0 0/1 0/0 0/0
DEMBO7 21/8 0/1 0/7 0/1 0/11 0/0 0/1

FEEDLOC 20/19 0/0 0/19 0/0 0/19 0/7 0/0
GMNCASE4 350/175 0/0 0/175 0/0 0/175 0/0 0/0
GROUPING 100/100 0/0 0/44 0/0 0/44 0/8 0/0
HANGING 2310/40 0/48 0/72 0/48 0/72 0/12 0/68
HELSBY 8/2 0/0 0/5 0/0 0/1 0/0 0/0

HIMMELBK 20/10 0/0 0/10 0/0 0/9 0/0 1/0
HUES-MOD 277/0 0/1 0/78 0/1 0/78 0/1 0/277
KISSING2 181/87 0/0 0/88 0/0 0/88 0/0 0/2
LISWET10 1999/0 0/2 0/237 0/2 0/254 1/0 0/6

LSNNODOC 3/1 0/0 0/1 0/0 0/1 0/0 0/0
MAKELA3 20/19 0/0 0/19 0/0 0/19 0/0 0/20
MINPERM 0/0 0/0 0/0 0/0 0/0 0/0 0/0

NET1 7/2 0/0 0/2 0/0 0/2 0/0 0/0
NGONE 102/0 0/0 0/86 0/0 0/86 0/0 0/5
OET7 110/105 0/15 0/105 0/15 0/105 38/21 86/20

POLYGON 105/4 0/0 0/4 0/0 0/4 0/0 0/17
PRIMALC8 505/2 0/4 0/505 0/4 0/505 0/0 0/0
PRODPL0 39/0 0/0 0/0 0/0 0/0 0/0 0/0

QPCBLEND 80/42 0/24 0/45 0/24 0/45 0/12 0/24
QPCBOEI1 309/49 0/0 0/47 0/0 0/49 4/0 0/18
QPCSTAIR 163/20 0/50 0/59 0/50 0/56 20/0 0/51

READING1 174/147 0/173 0/174 0/173 0/174 0/141 0/86†

SARO 675/2 0/43 0/675 0/43 0/675 0/44 0/58†

SAROMM 343/0 0/0 0/343 0/0 0/343 0/0 0/10†

SMBANK 0/0 0/0 0/0 0/0 0/0 0/0 0/0
SMMPSF 481/1 0/5 0/66 0/5 0/66 0/1 0/10
SOSQP1 2500/2500 0/2500 0/2500 0/2500 0/2500 0/2500 0/0

SREADIN3 180/154 0/180 0/180 0/180 0/180 0/146 0/104†

SSEBNLN 133/25 0/2 0/35 0/2 0/25 0/0 0/2
STEENBRA 381/95 0/0 0/55 0/0 0/51 0/0 0/0
TRIMLOSS 94/51 1/69 0/93 0/67 0/93 0/7 0/33
TRUSPYR2 8/1 0/0 0/1 0/0 0/0 0/0 4/0

TWIRIMD1 660/80 0/257 0/659 0/258 0/659 0/56 0/56†

TWIRISM1 140/29 0/15 0/83 0/15 0/84 0/15 0/18

ZAMB2 1259/0 0/673 0/1259 0/673 0/1259 0/102 0/102†
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Table 4.7

CUTEr problems: Time (secs). noise = 10−3, σ = 0.75, σ̄ = 0.90, DeltaFac = 4.00.

Problem m/n/p |A∗|/|A0
∗| LP-D LP-P LPEC-A LPEC/nodes

A4X12 384/ 130/ 16 191/ 88 0.02 0.03 0.01 5.62/66
AVION2 98/ 49/ 15 21/ 5 0.00 0.00 0.00 0.03/5

BIGBANK 3844/2230/1420 0/ 0 0.42 0.17 0.12 1.16/0
BRAINPC0 6905/6907/6902 3/ 3 3.98 6.82 22.52 31.47/0
BRAINPC1 6905/6907/6902 3/ 3 4.84 18.81 0.44 1.44/0
BRAINPC3 6905/6907/6902 3/ 3 2.87 6.64 25.42 58.82/0
BRAINPC4 6905/6907/6902 9/ 9 4.06 5.98 8.75 2.95/0

CAR2 4997/5999/4004 883/ 1 5.13 0.54 0.65 189†/7065
CORE1 139/ 65/ 41 21/ 3 0.00 0.00 0.00 0.01/0

CORKSCRW 4500/4506/3009 505/ 6 0.92 0.80 0.19 93.25/1

C-RELOAD 684/ 342/ 200 136/ 7 0.10 0.07 0.04 181†/40420
DALLASM 392/ 196/ 151 3/ 1 0.01 0.01 0.00 0.13/0
DALLASS 92/ 46/ 31 1/ 0 0.00 0.00 0.00 0.03/0
DEMBO7 53/ 16/ 0 21/ 8 0.00 0.00 0.00 0.03/1
FEEDLOC 462/ 90/ 22 20/ 19 0.00 0.00 0.00 0.18/0

GMNCASE4 350/ 175/ 0 350/ 175 0.05 0.08 0.04 0.12/0
GROUPING 200/ 100/ 125 100/ 100 0.00 0.00 0.00 0.01/0
HANGING 2330/3600/ 12 2310/ 40 27.40 44.70 6.46 10.04/0
HELSBY 685/1408/1399 8/ 2 0.22 0.20 0.03 0.50/0

HIMMELBK 24/ 24/ 14 20/ 10 0.00 0.00 0.00 0.00/0
HUES-MOD 5000/5000/ 2 277/ 0 1.34 0.15 0.24 1.08/0
KISSING2 625/ 100/ 6 181/ 87 0.01 0.02 0.01 14.89/492
LISWET10 2000/2002/ 0 1999/ 0 0.31 0.12 0.31 20.04/0

LSNNODOC 6/ 5/ 4 3/ 1 0.00 0.00 0.00 0.01/0
MAKELA3 20/ 21/ 0 20/ 19 0.00 0.00 0.00 0.00/0
MINPERM 1213/1113/1033 0/ 0 0.20 0.06 0.11 15.55/0

NET1 65/ 48/ 43 7/ 2 0.00 0.00 0.00 0.01/0
NGONE 5246/ 200/ 3 102/ 0 0.02 0.03 0.02 21.18/1
OET7 1002/ 7/ 0 110/ 105 0.01 0.02 0.00 0.29/0

POLYGON 5445/ 200/ 2 105/ 4 0.02 0.03 0.02 28.98/1
PRIMALC8 511/ 520/ 0 505/ 2 0.04 0.03 0.01 0.11/0
PRODPL0 69/ 60/ 20 39/ 0 0.00 0.00 0.00 0.02/0

QPCBLEND 114/ 83/ 43 80/ 42 0.01 0.01 0.00 0.50/141
QPCBOEI1 971/ 384/ 9 309/ 49 0.03 0.02 0.02 17.07/26
QPCSTAIR 532/ 467/ 291 163/ 20 0.05 0.03 0.02 2.65/38

READING1 8002/4002/2001 174/ 147 0.61 0.36 0.22 192†/2600

SARO 2920/4754/4025 675/ 2 3.17 4.57 2.67 182†/347

SAROMM 2920/5120/4390 343/ 0 4.68 7.13 1.71 182†/19
SMBANK 234/ 117/ 64 0/ 0 0.01 0.00 0.00 0.02/0
SMMPSF 743/ 720/ 240 481/ 1 0.11 0.04 0.03 4.82/255
SOSQP1 10000/5000/2501 2500/2500 0.08 0.08 0.30 7.94/0

SREADIN3 8004/4002/2001 180/ 154 0.80 0.32 0.23 187†/2385
SSEBNLN 384/ 194/ 74 133/ 25 0.01 0.01 0.01 0.03/0

STEENBRA 432/ 432/ 108 381/ 95 0.02 0.01 0.01 0.44/1
TRIMLOSS 319/ 142/ 20 94/ 51 0.00 0.00 0.01 0.45/31
TRUSPYR2 16/ 11/ 3 8/ 1 0.00 0.00 0.00 0.01/0

TWIRIMD1 2685/1247/ 521 660/ 80 3.86 0.97 1.02 182†/110
TWIRISM1 775/ 343/ 224 140/ 29 0.09 0.06 0.04 18.87/501

ZAMB2 7920/3966/1446 1259/ 0 0.50 0.14 0.21 190†/2025
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is highlighted in the results for the problems GMNCASE4 and OET7. Their numbers
of false negatives for the Aλ test correspond exactly to |A∗

0|, while the corresponding
numbers of false negatives for the Ac test are much lower.

In contrast to the results for LP-D and LP-P, the results for LPEC-A and LPEC
show a mixture of false positives and false negatives. Further, the results for LPEC-
A and LPEC are similar for most problems. For several problems, for example,
TWIRIMD1 and ZAMB2, the results for LPEC-A agree with those for LPEC but not
with those for LP-D and LP-P.

The runtimes given in Table 4.7 are typically much shorter than for the ran-
dom problems in Tables 4.3 and 4.5 because the constraint Jacobians in the CUTEr
problems are usually sparse (OET7 is an exception). The LP-D times are similar to
the LP-P times, and LPEC-A times are generally comparable. With few exceptions,
LPEC requires more execution time than LPEC-A. In cases for which LPEC requires
significantly more time than LPEC-A, the LPEC identification performance is not
better in general.

The LPEC method is usually the slowest, despite initialization from a good start-
ing point. (The use of this starting point reduces significantly the solve time and
the number of searched nodes for several problems, including HANGING, NGONE,
SMMPSF, TRIMLOSS, and TWIRISM1.)

Anomalies. For several problems, the numbers of false negatives for LP-D and
LP-P with test Aλ are larger than |A∗

0|; see, for example, SREADIN3. This may
happen because the LP-P and LP-D programs find a sparse λ, one that has many
more zeros than the λ∗ that we used to form our estimate of A∗

0 as described above.
For certain problems, all methods return large numbers of false negatives. These

problems often contain many bound constraints, for example, C-RELOAD, READ-
ING1, SREADIN3, TRIMLOSS, TWIRIMD1, and ZAMB2. We note that these errors
still occurred when we reformulated the tests to treat the bound constraints explicitly.

For LPEC-A and LPEC, the BRAINPC* and OET7 problems have many false
positives, as a result of many inactive constraints having values of ci(x) close to zero,
below the threshold for determining activity.

For the problem SOSQP1, a quadratic program, only the LPEC method detects
any active constraints; in fact, it makes no identification errors. A smaller choice for
the parameter σ̄ in the LPEC-A identification test would produce perfect identification
for the LPEC-A technique also.

We remark on a few more of the anomalies in Table 4.7. Runtimes for HANGING
are especially large, given its size. The LP solvers performed many perturbations,
and the MIP solver for the LPEC test reports trouble identifying an integer solution.
For LPEC, an extremely large number of iterations and nodes is reported for C-
RELOAD, again due to difficulty in finding feasible integer solutions. Allowing the use
of heuristics by the MIP solver yielded a large reduction in the number of considered
nodes for this problem, but the runtime did not change significantly.

4.4. Additional remarks. We conclude this section with some general com-
ments on the numerical results and on additional testing not reported above.

In general, the LP-P and LP-D tests give similar identification results, with a
tendency to underestimate the active set (that is, false negatives). The primal activity
test Ac is superior to the dual activity test Aλ for these methods. LP-P tended to
take less time to solve, probably because of the greater reductions due to presolving.

We tested the effect of using a much larger Δ in the LP-P and LP-D formulations
for the random test problems. Runtimes were slightly longer on the largest problems,
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and the time advantage that LP-P has for smaller Δ disappears. The Aλ activity
test returned the same poor underestimate of the active set as for the smaller Δ, while
the Ac activity test made many more identification errors.

The LPEC-A test obviously is preferable to LPEC, as the results are similar (with
the anomalies easily explained) and the runtimes are sometimes much shorter. We
note that it might be possible to improve the performance of these methods by better
scaling of the constraints.

We used a noise value of 10−3 in all reported results, but performed additional
experiments with other values of this parameter. For smaller values of noise, LP-P
and LP-D tend to have similar false positive counts, but show higher false negative
counts in some cases. LPEC and LPEC-A show an overall improvement; for example,
at noise = 10−7 the BRAINPC* problems’ results for LPEC and LPEC-A are nearly
perfect. However, more false negatives are reported on some CUTEr problems. These
difficult problems are the ones for which our estimate of the true active set A∗ is
sensitive to the parameters β, σ, and σ̄ used in the threshold test (see subsection 4.3.1),
and for which the estimate of the true active set changes significantly if we use LPEC
in place of LPEC-A. Specifically, on problems LISWET10, OET7, and READING1,
the additional false negatives that were reported when noise was decreased from
10−3 to 10−7 disappeared when σ̄ was changed or when LPEC was used in place of
LPEC-A in the determination of A∗.

As expected, the results of the random problems in Tables 4.2 and 4.3 for the
LPEC and LPEC-A techniques are nearly perfect for noise = 10−7. (noise must be
decreased to an even smaller value to remove a single false positive in some cases; this
identification error is caused by a constraint that is only very slightly inactive.)

For values of noise larger than 10−3, LP-P and LP-D report more false positives
on the random problems and fewer false negatives on the CUTEr problems. The
LPEC and LPEC-A tests tend to give more false positives, while the false negative
count decreases on the CUTEr problems and increases on the random problems.

Following a suggestion of a referee, and in line with the discussion at the end
of section 3, we obtained a new identification technique by inserting the solution of
(3.3) in place of (μx, λx) in the threshold test (3.28). We found that, indeed, this
“threshold LP-D” estimate of the active set was more accurate than those obtained
from (3.5a) and (3.5b), as is done in the standard LP-D technique. On the random
problem set, the results for threshold LP-D for noise = 10−7 are identical to those
for LPEC-A, in accordance with our claim that both techniques are asymptotically
exact.

5. Conclusions. We have described several schemes for predicting the active set
for a nonlinear program with inequality constraints, given an estimate x of a solution
x∗. The effectiveness of some of these schemes in identifying the correct active set for x
sufficiently close to x∗ is proved, under certain assumptions. In particular, the scheme
of subsection 3.3 has reasonable computational requirements and strong identification
properties and appears to be novel. Computational tests are reported which show the
properties of the various schemes on random problems and on degenerate problems
from the CUTEr test set.

Knowledge of the correct active set considerably simplifies algorithms for inequal-
ity constrained nonlinear programming, as it removes the “combinatorial” aspect from
the problem. However, it remains to determine how the schemes above can be used
effectively as an element of a practical algorithm for solving nonlinear programs. It
may be that reliable convergence can be obtained in general without complete knowl-
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edge of the active set; some “sufficient subset” may suffice. What are the required
properties of such a subset, and can we devise inexpensive identification schemes,
based on the ones described in this paper, that identify it? We leave these and other
issues to future research.

Appendix A. Proof of (3.10).
We prove this statement by contradiction. Suppose that there is a sequence {xk}

with xk → x∗ such that

dist
(
−g(xk), range[∇h(xk)] + pos[(∇ci(x

k))i∈A1 ]
)
< τ(A.1)

for all k. By closedness, there must be vectors zk and yk ≥ 0 such that the

dist
(
−g(xk), range[∇h(xk)] + pos[(∇ci(x

k))i∈A1 ]
)

=

∥∥∥∥∥∇h(xk)zk +
∑
i∈A1

∇ci(x
k)yki + g(xk)

∥∥∥∥∥ ≤ τ

for all k. If {(zk, yk)} is unbounded, we have by compactness of the unit ball, and
by taking a subsequence if necessary, that ‖(zk, yk)‖ ↑ ∞ and (zk, yk)/‖(zk, yk)‖ →
(z∗, y∗) with ‖(z∗, y∗)‖ = 1 and y∗ ≥ 0. Hence, by dividing both sides in the expression
above by ‖(zk, yk)‖ and taking limits, we have

(∇h∗)z∗ +
∑
i∈A1

(∇c∗i )y
∗
i = 0.(A.2)

From Lemma 3.1, we have A1 ⊂ A∗, so that the MFCQ condition (1.7) holds at x∗ for
A1 replacing A∗. Hence, for the vector v in this condition, we have that ∇h(x∗) has
full column rank and that (∇h∗)T v = 0 and ∇(c∗i )

T v < 0 for all i ∈ A1. By taking
inner products of (A.2) with v, we can deduce first that y∗ = 0 and subsequently
that z∗ = 0, by a standard argument, contradicting ‖(z∗, y∗)‖ = 1. Therefore, the
sequence {(zk, yk)} must be bounded. Since the sequence remains in a ball about the
origin (that is, a compact set), it has an accumulation point.

By taking a subsequence again if necessary, suppose that (zk, yk) → (ẑ, ŷ). We
then have that∥∥∥∥∥∇h(xk)ẑ +

∑
i∈A1

∇ci(x
k)ŷi + g(xk)

∥∥∥∥∥
≤

∥∥∥∥∥∇h(xk)zk +
∑
i∈A1

∇ci(x
k)yki + g(xk)

∥∥∥∥∥ + ‖∇h(xk)‖‖zk − ẑ‖

+
∑
i∈A1

‖∇ci(x
k)‖ |yki − ŷi|

≤ τ + o(1)

for all k sufficiently large. By taking limits in this expression, we deduce that

dist (−g∗, range[∇h∗] + pos[(∇c∗i )i∈A1
]) ≤ τ,

which contradicts the definition of τ , for τ > 0. Hence, a sequence {xk} with the
property (A.1) cannot exist, so (3.10) holds for all ε̄2 sufficiently small.
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Abstract. A previous analysis of second-order behavior of generalized pattern search algorithms
for unconstrained and linearly constrained minimization is extended to the more general class of
mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of
the ability of MADS to generate an asymptotically dense set of search directions, we are able to
establish reasonable conditions under which a subsequence of MADS iterates converges to a limit
point satisfying second-order necessary or sufficient optimality conditions for general set-constrained
optimization problems.
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1. Introduction. In this paper, we consider the class of derivative-free mesh
adaptive direct search (MADS) algorithms applied to general constrained optimization
problems of the form

min
x∈Ω

f(x)(1.1)

with f : Rn → R ∪ {+∞} and Ω ⊆ Rn.
We treat the constraints by the “barrier” approach of applying the algorithm, not

to f , but to the barrier objective function fΩ = f + ψΩ, where ψΩ is the indicator
function for Ω; i.e., it is zero on Ω, and infinity elsewhere. If a point x is not in Ω,
then we set fΩ(x) = ∞, and f is not evaluated. This is important in many practical
engineering problems in which f is expensive to evaluate.

The class of MADS algorithms was introduced and analyzed in [4], as an exten-
sion of generalized pattern search (GPS) algorithms [3, 21] for solving nonlinearly
constrained problems. Rather than applying a penalty function [18] or filter [5] ap-
proach to handle the nonlinear constraints, MADS defines an additional parameter
that enables the algorithm to perform an exploration of the space of variables in an
asymptotically dense set of directions. Under mild assumptions, the Clarke [9] cal-
culus together with three types of tangent cones (hypertangent, Clarke tangent, and
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contingent cones) is used to prove convergence of a subsequence of iterates to a point
satisfying certain first-order conditions for optimality. An implementable instance of
MADS is introduced in [4], in which positive spanning directions are chosen in a ran-
dom fashion and almost sure convergence to a first-order stationary point is obtained.
A similar first-order analysis is done in [15] for the direct algorithm.

This paper extends the MADS analysis to show convergence to points satisfying
certain second-order stationarity properties, in a manner similar to that of [1] for
GPS. An important result of [1] is that the iterates produced by a GPS algorithm on
a sufficiently smooth problem cannot converge in an infinite number of steps to a local
maximizer. We show here that it may, unfortunately, converge in an infinite number
of steps to a saddle point. The analysis in the present paper gives sufficient conditions
under which a subsequence of the iterates produced by a MADS algorithm converges
to a strict local minimizer. The necessary optimality condition is not based on any of
the three tangent cones used in [4] but rather on the cone of feasible directions.

The paper is outlined as follows. The MADS algorithm is briefly described in
section 2, with first-order properties restated in section 3. Section 4 introduces the
generalized Hessian [16] with some associated properties, followed by second-order
necessary and sufficient optimality conditions and convergence results. Section 5
provides some examples to illustrate the strength of these results, and section 6 offers
some concluding remarks.

Notation. R, Z, and N denote the set of real numbers, integers, and nonnegative
integers, respectively. For any set S, int(S) denotes its interior, and cl(S) its closure.
For any matrix A, the notation a ∈ A means that a is a column of A. For x ∈ Rn

and ε > 0, we denote by Bε(x) the open ball {y ∈ Rn : ‖y − x‖ < ε}. We say that f
is C1,1 near x if there exists an open set S containing x such that f is continuously
differentiable with Lipschitz derivatives for every point in S. The reader is invited to
consult [16] for a discussion and examples of C1,1 functions.

2. Mesh adaptive direct search. Like GPS methods, each iteration k of a
MADS algorithm is characterized by two steps—an optional search step and a local
poll step, in which fΩ is evaluated at specified points that lie on a mesh. The
mesh is constructed from a finite fixed set of nD directions D ⊂ Rn scaled by a
mesh size parameter Δm

k > 0. The directions form a positive spanning set [14] (i.e.,
nonnegative linear combinations of D must span Rn), and each direction d ∈ D must
be constructed as the product Gz, where G ∈ Rn×n is a nonsingular generating matrix
and z ∈ Zn is a vector of integers.

The following definition, taken from [4] and [5], precisely defines the current mesh
so that all previously visited points lie on the current mesh.

Definition 2.1. At iteration k, the current mesh is defined to be the following
union:

Mk =
⋃

x∈Sk

{x + Δm
k Dz : z ∈ NnD} ,

where Sk is the finite set of points where the objective function f has been evaluated
by the start of iteration k and S0 is a finite set of initial feasible points.

In both the search and poll steps, the algorithm seeks to find an improved
mesh point; i.e., a point y ∈ Mk for which fΩ(y) < fΩ(xk), where xk is the current
iterate or incumbent best iterate found thus far.

The search step allows evaluation of fΩ at any finite set of mesh points. Any
strategy may be used, including none. This is more restrictive than the frame meth-
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ods of Coope and Price [12], but it helps to ensure convergence without a sufficient
decrease condition or any other assumptions on mesh directions. The search step
adds nothing to the convergence theory, but well-chosen search strategies can greatly
improve algorithm performance (see [2, 6, 7, 19]).

In the poll step, fΩ is evaluated at points adjacent to the current iterate in
a subset of the mesh directions. Unlike GPS, the class of MADS algorithms has a
second mesh parameter Δp

k, called the poll size parameter, which satisfies Δm
k ≤ Δp

k

for all k, and also

lim
k∈K

Δm
k = 0 ⇔ lim

k∈K
Δp

k = 0 for any infinite subset of indices K.(2.1)

Under this construction, GPS methods now become the specific MADS instance in
which Δk = Δp

k = Δm
k .

The set of points generated in the poll step is called a frame, with xk referred
to as the frame center. These terms are now formally defined as follows.

Definition 2.2. At iteration k, the MADS frame is defined to be the set

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Dk is a positive spanning set such that for each d ∈ Dk, the following hold:
• d �= 0 can be written as a nonnegative integer combination of the directions

in D: d = Du for some vector u ∈ NnD that may depend on the iteration
number k.

• The distance from the frame center xk to a poll point xk +Δm
k d is bounded by

a constant times the poll size parameter: Δm
k ‖d‖ ≤ Δp

k max{‖d′‖ : d′ ∈ D}.
• Limits (as defined in Coope and Price [11]) of the normalized sets Dk are

positive spanning sets.
In GPS, the set of directions Dk used to construct the frame is a subset of the

finite set D. There is more flexibility in MADS. In [4], an instance of MADS is
presented in which the closure of the cone generated by the set

⋃∞
k=1{ d

‖d‖ : d ∈ Dk}
equals Rn. In this case, we say that the set of poll directions is asymptotically dense
in Rn.

Figure 2.1 illustrates typical GPS and MADS frames in R2 using the standard
2n coordinate directions. In each case, the mesh Mk is the set of points at the
intersections of the horizontal and vertical lines. The thick lines delimit the points
that are at a relative distance equal to the poll size parameter Δp

k from the frame
center xk. In MADS, the mesh size parameter Δm

k is much smaller than the poll size
parameter; this allows many more possibilities in the frame construction.

If the poll step fails to produce an improved mesh point, Pk is said to be a
minimal frame with minimal frame center xk. If either the search or poll step is
successful in finding an improved mesh point, the improved mesh point becomes the
new current iterate xk+1 ∈ Ω and the mesh is either retained or coarsened. If neither
step is successful, then the minimal frame center is retained as the current iterate
(i.e., xk+1 = xk) and the mesh is refined.

Rules for refining and coarsening the mesh are as follows. Given a fixed rational
number τ > 1 and two integers w− ≤ −1 and w+ ≥ 0, the mesh size parameter Δm

k

is updated according to the rule

Δm
k+1 = τwkΔm

k

for some wk ∈
{

{0, 1, . . . , w+} if an improved mesh point is found,
{w−, w− + 1, . . . ,−1} otherwise.

(2.2)
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Fig. 2.1. GPS and MADS frames Pk = {p1, p2, p3, p4} around the frame center xk, with the
same poll size parameter Δp

k.

The class of MADS algorithms is stated formally as follows:

A general MADS algorithm

0. Initialization: Let x0 ∈ Ω, set Δp
0 ≥ Δm

0 > 0. Set iteration counter to k = 0.

1. Search and poll step: Perform the search and poll steps to completion, or
until an improved mesh point xk+1 is found on the mesh Mk (see Definition 2.1).

• Optional search: Evaluate fΩ on a finite subset of trial points on the
mesh Mk.

• Local poll: Evaluate fΩ on the frame Pk (see Definition 2.2).

2. Parameter update: Update Δm
k+1 according to (2.2), and Δp

k+1 according
to (2.1). Increment k ← k + 1 and go to step 1.

3. Existing first-order stationarity results. Before presenting new results,
we reproduce known convergence properties of MADS, originally published in [4]. All
results are based on the following assumptions:

A1. A feasible initial point x0 is provided.
A2. The initial objective function value f(x0) is finite.
A3. All iterates {xk} generated by MADS lie in a compact set.

Under these assumptions, Audet and Dennis [4] proved that

lim inf
k→+∞

Δp
k = lim inf

k→+∞
Δm

k = 0.

This ensures the existence of infinitely many minimal frame centers, since Δm
k shrinks

only when a minimal frame is found. The following definition, taken from [4], is
needed for later results.

Definition 3.1. A subsequence of the MADS iterates consisting of minimal
frame centers, {xk}k∈K for some subset of indices K, is said to be a refining subse-
quence if {Δp

k}k∈K converges to zero.

Let x̂ be the limit of a convergent refining subsequence. If limk∈L
dk

‖dk‖ exists for

some subset L ⊆ K with poll direction dk ∈ Dk, and if xk + Δm
k dk ∈ Ω for infinitely

many k ∈ L, then this limit is said to be a refining direction for x̂.
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Existence of refining subsequences for MADS was proved in [4]. The following
four definitions [9, 17, 20] are needed in the main theorems.

Definition 3.2. A vector v ∈ Rn is said to be a hypertangent vector to the set
Ω ⊂ Rn at the point x ∈ Ω if there exists a scalar ε > 0 such that

y + tw ∈ Ω for all y ∈ Ω ∩Bε(x), w ∈ Bε(v), and 0 < t < ε.(3.1)

The set of hypertangent vectors to Ω at x is called the hypertangent cone to Ω at x
and is denoted by TH

Ω (x).

Definition 3.3. A vector v ∈ Rn is said to be a Clarke tangent vector to the
set Ω ⊂ Rn at the point x ∈ cl(Ω) if for every sequence {yk} of elements of Ω that
converges to x and for every sequence of positive real numbers {tk} converging to zero,
there exists a sequence of vectors {wk} converging to v such that yk + tkwk ∈ Ω. The
set TCl

Ω (x) of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone to
Ω at x.

Definition 3.4. A vector v ∈ Rn is said to be a tangent vector to the set Ω ⊂ Rn

at the point x ∈ cl(Ω) if there exists a sequence {yk} of elements of Ω that converges
to x and a sequence of positive real numbers {λk} for which v = limk λk(yk −x). The
set TCo

Ω (x) of all tangent vectors to Ω at x is called the contingent cone (or sequential
Bouligand tangent cone) to Ω at x.

Definition 3.5. The set Ω is said to be regular at x if TCl
Ω (x) = TCo

Ω (x).

In addition to these definitions, we add the following clarifying remarks, due to
Clarke [9] unless otherwise noted:

• Any convex set is regular at each of its points.
• Both TCo

Ω (x) and TCl
Ω (x) are closed, and both TCl

Ω (x) and TH
Ω (x) are convex.

• TH
Ω (x) ⊆ TCl

Ω (x) ⊆ TCo
Ω (x).

• Rockafellar [20] showed that if TH
Ω (x) is nonempty, TH

Ω (x) = int(TCl
Ω (x)), and

therefore, TCl
Ω (x) = cl(TH

Ω (x)).

In order to establish the results of this section, we apply a generalization of the
Clarke [9] directional derivative, as presented in [17], in which function evaluations
are restricted to points in the domain. Specifically, the Clarke generalized directional
derivative of the locally Lipschitz function f at x ∈ Ω in the direction v ∈ Rn is
defined by

f◦(x; v) := lim sup
y→x, y∈Ω

t ↓ 0, y + tv ∈ Ω

f(y + tv) − f(y)

t
.(3.2)

The fundamental result upon which the entire first order convergence analysis [4] of
MADS relies is that if f is Lipschitz near the limit point x̂ of a refining subsequence,
then f◦(x̂; v) ≥ 0 for any refining direction v in the hypertangent cone TH

Ω (x̂). The
next definition, also from [4], provides some nonsmooth terminology for stationarity.

Definition 3.6. Let f be Lipschitz near x∗ ∈ Ω. Then x∗ is said to be a Clarke
(resp., contingent) stationary point of f over Ω if f◦(x∗; v) ≥ 0 for every direction v
in the Clarke tangent cone (resp., contingent cone) to Ω at x∗.

In addition, x∗ is said to be a Clarke (resp., contingent) KKT stationary point of
f over Ω if −∇f(x∗) exists and belongs to the polar of the Clarke tangent cone (resp.,
contingent cone) to Ω at x∗.

If Ω = Rn or x∗ lies in the interior of Ω, then a stationary point as described by
Definition 3.6 meets the condition that f◦(x∗; v) ≥ 0 for all v ∈ Rn. This is equivalent
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to 0 ∈ ∂f(x∗), the generalized gradient of f at x∗ [9], which is defined by

∂f(x) :=
{
s ∈ Rn : f◦(x; v) ≥ vT s for all v ∈ Rn

}
.

The function f is said to be strictly differentiable at x if the generalized gradient of f
at x is a singleton; i.e., ∂f(x) = {∇f(x)}.

The main results of [4] can now be summarized in the next theorem.
Theorem 3.7. Let x̂ ∈ Ω be the limit of a refining subsequence, and assume that

TH
Ω (x̂) �= ∅ and the set of refining directions is dense in TH

Ω (x̂).
1. If f is Lipschitz near x̂, then x̂ is a Clarke stationary point of f onΩ.
2. If f is strictly differentiable at x̂, then x̂ is a Clarke KKT stationary point of

f onΩ.
Furthermore, if Ω is regular at x̂, then the following hold:

1. If f is Lipschitz near x̂, then x̂ is a contingent stationary point of f onΩ.
2. If f is strictly differentiable at x̂, then x̂ is a contingent KKT stationary point

of f onΩ.

4. New second-order stationarity results. This section contains second-
order convergence theory for MADS. In section 4.1 we recall the definition of the
generalized Hessian and identify some useful properties. In section 4.2 we present
second-order necessary and sufficient conditions for optimality for set-constrained op-
timization problems. Finally, in section 4.3, we establish conditions under which con-
vergence of MADS iterates to a point satisfying second-order necessary and sufficient
conditions is achieved.

4.1. Generalized second-order derivatives. Before proving convergence to
second-order points, we present nonsmooth notions of second derivatives and in-
troduce second-order optimality conditions. Generalized second-order directional
derivatives are developed in [10] and [16], consistent with the Clarke [9] calculus
for first-order derivatives. In this paper, we follow the Hiriart-Urruty, Strodiot, and
Nguyen [16] definition of a generalized Hessian, given as follows.

Definition 4.1. Let g : Rn → R be C1,1 near x ∈ Ω ⊆ Rn. The generalized
Hessian of g at x, denoted by ∂2g(x), is the set of matrices defined as the convex hull
of the set

{A ∈ Rn×n : ∃xk → x with g twice differentiable at xk and ∇2g(xk) → A}.

By construction, ∂2g(x) is a nonempty, compact, and convex set of symmetric
matrices [16]. The function g is said to be twice strictly differentiable at x if the
generalized Hessian is a singleton; i.e., ∂2g(x) = {∇2g(x)}. Furthermore, as a set-
valued mapping, x ⇒ ∂2g(x) has two key properties, also identified in [16], which are
necessary to establish optimality conditions in the next section.

• ∂2g(x) is a locally bounded set-valued mapping:
Given a matrix norm ‖ · ‖, there exist an ε > 0 and η ∈ R such that

sup{‖A‖ : A ∈ ∂2g(y), y ∈ Bε(x)} ≤ η;

• ∂2g(x) is a closed set-valued mapping:
If xk → x and Ak → A with Ak ∈ ∂2g(xk) for all k, then A ∈ ∂2g(x).

The following second-order Taylor series result also comes from [16].
Theorem 4.2. Let g : Rn → R be C1,1 in a open set U ⊂ Rn, and let [a, b] ⊂ U

be a line segment. Then there exist an x ∈ ]a, b[ and a matrix Ax ∈ ∂2f(x) such that

g(b) = g(a) + (b− a)T∇f(a) +
1

2
(b− a)TAx(b− a).
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In the next section, we apply this result to feasible points that may lie on the
boundary of Ω. We are able to do this because our assumptions on the local smooth-
ness of f are independent of Ω.

4.2. Second-order optimality conditions. Second-order necessary and suf-
ficient optimality conditions for constrained problems are traditionally expressed in
terms of the Lagrangian function. However, our use of the barrier approach in han-
dling constraints provides no useful information about the constraint gradients, and
thus prevents us from proving anything with respect to traditional optimality condi-
tions. Therefore, instead of dealing with the Lagrangian function, we extend optimal-
ity conditions for set-constrained problems (see [8] for further discussions).

We now establish Clarke-based second-order necessary and sufficient conditions
for set-constrained optimality. The proof for the former is very similar to one found
in [16] for unconstrained problems, the only difference being the first-order condition
satisfied by the local minimizer. It is expressed in terms of feasible directions, formally
given in Definition 4.3.

Definition 4.3. The direction v ∈ Rn is said to be feasible for Ω ⊂ Rn at x ∈ Ω
if there exists an ε > 0 for which x + tv ∈ Ω for all 0 ≤ t < ε. The set of feasible
directions for Ω at x ∈ Ω is a cone and is denoted by TF

Ω (x).
It follows immediately that TH

Ω (x) ⊆ TF
Ω (x) ⊆ TCo

Ω (x) for any x ∈ Ω. Moreover,
if TH

Ω (x) �= ∅ for some x ∈ Ω, and if Ω is regular at x, then cl(TH
Ω (x)) = cl(TF

Ω (x)) =
TCl

Ω (x) = TCo
Ω (x). However, without regularity it is possible that either of the follow-

ing holds:
• TCl

Ω (x) ⊂ int(TF
Ω (x)): e.g., if Ω = {(a, b) ∈ R2 : a ≥ 0 or b ≥ 0}, then

TCl
Ω (0, 0) = R2

+ and TF
Ω (0, 0) = Ω,

• cl(TF
Ω (x)) ⊂ int(TCl

Ω (x)): e.g., if Ω = R2\{(− 1
k , b) ∈ R2 : b ∈ R, k = 1, 2, . . . },

then TF
Ω (0, 0) = {(a, b) ∈ R2 : a ≥ 0} and TCl

Ω (0, 0) = R2.
Theorem 4.4 (second-order necessary condition for set-constrained optimality).

Let x∗ ∈ Ω be a local solution of (1.1). If f is C1,1 near x∗, then any feasible direction
v ∈ TF

Ω (x∗) for which vT∇f(x∗) = 0 satisfies vTAv ≥ 0 for some A ∈ ∂2f(x∗).
Proof. Let v ∈ Rn be a feasible direction that satisfies vT∇f(x∗) = 0, and

consider the sequence {xk}, where xk = x∗ + 1
kv. It follows that xk ∈ Ω when k is

sufficiently large. Then by second-order Taylor series in a neighborhood of the local
minimizer x∗, we have for each k sufficiently large

0 ≤ f(xk) − f(x∗) =
1

k
∇f(x∗)T v +

1

2k2
vTAkv =

1

2k2
vTAkv,(4.1)

where Ak ∈ ∂2f(x̄k) for some x̄k ∈ ]x∗, xk[.
Since ∂2f is locally bounded and x̄k → x∗, the sequence {Ak} is locally bounded

and thus possesses an accumulation point A. Furthermore, since ∂2f is a closed set-
valued mapping, we have A ∈ ∂2f(x∗). Taking limits in (4.1) leads to vTAv ≥ 0.

Theorem 4.4 applies to the set of hypertangent vectors as well as feasible directions
since the set of feasible directions contains the hypertangent cone. However, this
necessary condition does not necessarily hold for directions in the Clarke tangent or
contingent cone, as the following example shows.

Example 4.5. Consider the quadratic optimization problem, in which f : R2 → R

is defined by f(a, b) = −(a2 + b2), and Ω = {(a, b) ∈ R2 : a2 + (b − 1)2 ≤ 1}. The
optimal solution is at (0, 2), where

TH
Ω (0, 2) = TF

Ω (0, 2) = {(v1, v2) : v2 < 0},
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TCl
Ω (0, 2) = TCo

Ω (0, 2) = {(v1, v2) : v2 ≤ 0}.

The direction v = (1, 0)T ∈ TCl
Ω (0, 2) = TCo

Ω (0, 2) is not a feasible direction and
makes a zero inner product with ∇f(0, 2) = (0,−4)T , but the Hessian matrix is given
by

∇2f(0, 2) =

[
−2 0

0 −2

]
,

which yields vT∇2f(0, 2)v = −2 < 0.
Theorem 4.6 (second-order sufficient condition for set-constrained optimality).

Let x∗ ∈ Ω be a contingent stationary point for the optimization problem defined
in (1.1), and suppose that TH

Ω (x∗) �= ∅ and that Ω is convex near x∗. If f is C1,1 near
x∗, and if vTAv > 0 for all matrices A ∈ ∂2f(x∗) and all nonzero tangent directions
v ∈ TCo

Ω (x) that satisfy vT∇f(x∗) = 0, then x∗ is a strict local solution of (1.1).
Proof. The proof is by contraposition. Suppose that x∗ is not a strict local

minimizer. Then there exists a sequence {yk} ⊂ Ω (with yk �= x∗) converging to x∗

satisfying f(yk) ≤ f(x∗) for all k. By taking subsequences if necessary, we can assume

that the sequence {wk} with wk = yk−x∗

‖yk−x∗‖ converges to some vector v ∈ Rn.

Local convexity of Ω near x∗ implies that v and wk are contingent directions for
all k ≥ 	, for some integer 	 ≥ 0. Moreover, since x∗ is assumed to be a contingent
stationary point, and since f is continuously differentiable, then vT∇f(x∗) ≥ 0 and
wT

k ∇f(x∗) ≥ 0 for all k ≥ 	. However, since f(yk) ≤ f(x∗) for all k, then vT∇f(x∗) =
0.

Theorem 4.2 on Taylor series ensures that for each k ≥ 	, there exists some matrix
Ak ∈ ∂2f(x̄k) with x̄k ∈ ]x∗, yk[ such that

0 ≥ f(yk) − f(x∗) = (yk − x∗)T∇f(x∗) +
1

2
(yk − x∗)TAk(yk − x∗)

≥ 1

2
(yk − x∗)TAk(yk − x∗).(4.2)

Now, since x̄k → x∗, and since ∂2f(x∗) is a closed locally bounded set-valued mapping,
there exists an accumulation point A ∈ ∂2f(x∗) of the sequence {Ak}. Dividing (4.2)
by ‖yk −x∗‖2 and taking limits leads to 0 ≥ 1

2v
TAv, where v �= 0 belongs to TCo

Ω (x∗)
and satisfies vT∇f(x∗) = 0.

The previous theorem requires as an assumption that the set Ω is locally convex.
The following example shows that regularity of Ω is not sufficient to guarantee a local
minimizer.

Example 4.7. Consider the quadratic optimization problem, in which f : R2 → R

is defined by f(a, b) = a2 + 2b, and Ω = {(a, b) ∈ R2 : 2a2 + b ≥ 0}. The solution
xT = (0, 0) is a contingent stationary point, and Ω is regular at x since

TCl
Ω (x) = TCo

Ω (x) = {(v1, v2) : v2 ≥ 0}.

The vector v = (1, 0)T ∈ TCo
Ω (x) satisfies vT∇f(x) = 0 and vT∇2f(x)v = 2 > 0.

However, (ε,−ε2) belongs to the strict interior of Ω for all ε �= 0, and f(ε,−ε2) =
−ε2 < 0 = f(x).

4.3. Second-order stationarity results for MADS. The next two results
are the main contributions of this paper. The first theorem establishes convergence of



614 MARK A. ABRAMSON AND CHARLES AUDET

a subsequence of MADS iterates to a point satisfying the second-order necessary con-
dition identified in Theorem 4.4, and the second establishes the sufficiency conditions
of Theorem 4.6.

Theorem 4.8. Let f be C1,1 near a limit x̂ of a refining subsequence, and assume
that TH

Ω (x̂) �= ∅ and that Ω is regular near x̂. If the set of refining directions is dense

in TH
Ω (x̂), then x̂ satisfies the second-order necessary condition for set-constrained

optimality.
Proof. Let v ∈ Rn be any nonzero feasible direction that satisfies vT∇f(x̂) = 0,

and suppose, by way of contradiction, that vT Âv < 0 for all matrices Â ∈ ∂2f(x̂).
Since ∂2f(x̂) is nonempty and compact, and ∂2f is a closed set-valued mapping, there
exists some ε > 0 such that vTAv < 0 for all A ∈ ∂2f(x) and for all x ∈ Bε(x̂).

Let K denote the set of indices of unsuccessful iterations. Regularity of Ω, to-
gether with the assumption that TH

Ω (x̂) �= ∅, guarantees that cl(TH
Ω (x̂)) = TCo

Ω (x̂) =
cl(TF

Ω (x̂)). Therefore, the denseness of the set of refining directions in TH
Ω (x̂) ensures

the existence of {wk}k∈K converging to v with wk = dk

‖dk‖ , dk ∈ Dk, for each k ∈ K.

Applying Taylor series yields

f(xk + Δp
kdk) − f(xk) = Δp

kd
T
k∇f(xk) +

1

2
(Δp

k)
2dTkA

+
k dk,(4.3)

f(xk − Δp
kdk) − f(xk) = −Δp

kd
T
k∇f(xk) +

1

2
(Δp

k)
2dTkA

−
k dk,(4.4)

where A+
k ∈ ∂2f(x+) for some x+ ∈ ]xk, xk + Δp

kdk[ and A−
k ∈ ∂2f(x−) for some

x− ∈ ]xk, xk − Δp
kdk[. Since Δk → 0+ and xk → x̂, there is a subsequence for

which A+
k converges to some A+ ∈ ∂2f(x̂), and A−

k converges to some A− ∈ ∂2f(x̂).

Moreover, since ∂2f(x̂) is a convex set, A = 1
2 (A+ + A−) ∈ ∂2f(x̂).

Adding (4.3) and (4.4) and substituting dk = ‖dk‖wk yields

1

Δp
k‖dk‖

[
f(xk + Δp

k‖dk‖wk) − f(xk)

Δp
k‖dk‖

+
f(xk − Δp

k‖dk‖wk) − f(xk)

Δp
k‖dk‖

]
= wT

k Akwk,

(4.5)

where Ak = 1
2 (A+

k + A−
k ). Furthermore, since wk → v and vTAv < 0, there exists

γ < 0 such that wT
k Akwk ≤ γ < 0 for all sufficiently large k ∈ K, which forces the

left-hand side of (4.5) to also be negative and bounded away from zero. But since
dk ∈ Dk for all sufficiently large k ∈ K, we have that f(xk) ≤ f(xk + Δp

kdk), which
makes nonnegative the first term of the left-hand side of (4.5) (for all sufficiently large
k ∈ K). Thus it must be the case that

f(xk − Δp
k‖dk‖wk) − f(xk)

Δp
k‖dk‖

≤ γ < 0(4.6)

for all sufficiently large k ∈ K. Taking the limit of (4.6) as k → ∞ in K yields
∇f(x̂)T (−v) < 0, or ∇f(x̂)T v > 0, which contradicts the assumption that ∇f(x̂)T v =
0.

The following result shows that the sufficient conditions of Theorem 4.6 can be
satisfied by a subsequence of MADS iterates, given stronger hypotheses than those of
Theorem 4.8.

Theorem 4.9. Let f be twice strictly differentiable at a limit x̂ of a refining
subsequence, and assume that TH

Ω (x̂) �= ∅, Ω is convex near x̂, and ∇2f(x̂) is non-
singular. If the set of refining directions is dense in TH

Ω (x̂), then x̂ is a strict local
minimizer of f on Ω.
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Proof. Since f is twice strictly differentiable at x̂, ∂2f(x̂) = {∇2f(x̂)}. Thus, it
follows from Theorem 4.8 that vT∇2f(x̂)v ≥ 0 for all feasible directions v ∈ TF

Ω (x̂)
satisfying ∇f(x̂)T v = 0. But since ∇2f(x̂) is assumed to be nonsingular, this in-
equality is strict. Furthermore, by Theorem 3.7 and the smoothness of f near x̂, x̂
is a first-order contingent stationary point. Thus the hypotheses of Theorem 4.6 are
satisfied, and the result is proved.

Clearly, these are strong results for a direct search method. However, in prac-
tice, achieving denseness of the refining directions in the hypertangent cone (a key
assumption) requires increasingly more poll directions per iteration. To overcome this
problem, an implementable instance of MADS is introduced in [4], called LTMADS,
in which the positive spanning directions used at each iteration are limited in number
but are chosen randomly from among the increasing number of possible poll direc-
tions. While this is not difficult to implement, the drawback is that denseness of the
refining directions is only achieved almost surely (i.e., with probability one). Thus, in
practice, the convergence results proved both here and in [4] are only attained almost
surely. This is a weaker measure of convergence, but it works well in practice [4]. We
apply LTMADS to one of the numerical examples in the next section.

5. Examples. Second order results for GPS are presented in [1]. They are not as
strong as those presented here for MADS. In this section, we illustrate this difference
through two quadratic examples in R2. The first shows how GPS, but not MADS,
can converge in an infinite number of iterations to a saddle point with wide cones of
descent. This result is actually proved, but doing so requires an uncommon set of
parameter choices. The second example [1] uses more realistic parameter choices, and
numerical tests show that GPS stalls at a saddle point with narrow cones of descent,
but MADS successfully avoids it.

5.1. An example where GPS converges in an infinite number of it-
erations to a saddle point. Consider the unconstrained quadratic optimization
problem in which the polynomial objective function in R2 is f(a, b) = a2 + 3ab + b2.
The point (0,0) is a saddle point, at which the descent directions lie in the cone
generated by a = 1

2b(−3 ±
√

5).

We apply an instance of GPS where Dk = D = {e1, e2,−e1,−e2} is constant
throughout all iterations. On iterations that fail to improve the incumbent, the mesh
size parameter is divided by 16. On successful iterations that follow an unsuccessful
one, the mesh size is kept constant, and on other successful iterations, the mesh size
parameter is multiplied by 8. Thus, the GPS parameters are G = I (the identity
matrix), Z = D = [I; −I], τ = 2, w− = −4, and w+ = 3.

Furthermore, we use an empty search and an opportunistic poll, i.e., an iter-
ation terminates as soon as an improved mesh point is generated. Moreover, when
the iteration number k modulo 3 is 1, the poll step first evaluates xk − Δke2, and
otherwise, the poll step first evaluates xk −Δke1. The order in which the other poll
points are explored is irrelevant to this example.

The initial parameters are xT
0 = (1, 1) with f(x0) = 5 and Δ0 = 8. Figure 5.1

displays the first iterates generated by the algorithm. The figure also displays some
level sets of f .

We next show that the entire sequence of iterates converges to the origin. This
happens because this instance of GPS never generates any trial points in the cone
where f is negative. It either jumps over the cone, which results in an unsuccessful
iteration, or takes a small step which falls short of reaching the cone. For example,
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Fig. 5.1. Initial GPS iterates.

Table 5.1

Iterations k = 3� to k = 3(� + 1).

k xk Δk Trial poll points at xk = (ak, bk)

3� (2−�, 2−�) 23−� f(ak + Δk, bk) = f(9 × 2−�, 2−�) = 109 × 4−�

= f(2−�, 9 × 2−�) = f(ak, bk + Δk)

f(ak − Δk, bk) = f(−7 × 2−�, 2−�) = 29 × 4−�

= f(2−�,−7 × 2−�) = f(ak, bk + Δk)

3� + 1 (2−�, 2−�) 2−�−1 f(ak, bk − Δk) = f(2−�, 2−�−1) = 11 × 4−�−1

3� + 2 (2−�, 2−�−1) 2−�−1 f(ak − Δk, bk) = f(2−�−1, 2−�−1) = 5 × 4−�−1

3(� + 1) (2−�−1, 2−�−1) 22−� . . .

at iteration k = 9, the trial poll points are (9
8 , 1), (1, 9

8 ), (− 7
8 , 1), and (1,− 7

8 ). These
four trial points are represented by the symbol ⊗ in the figure.

Proposition 5.1. For any integer 	 ≥ 0, the GPS iterates are such that x3� =
x3�+1 =

(
2−�, 2−�

)
, x3�+2 =

(
2−�, 2−�−1

)
, and Δ3� = 23−�, Δ3�+1 = Δ3�+2 = 2−�−1.

Proof. The proof is done by induction. The result is true for the initial iteration
k = 0. Suppose that iteration k = 3	 is initiated with Δk = 23−� and xk =

(
2−�, 2−�

)
.

The current objective function value is f(xk) = 5×4−�. Table 5.1 details the objective
function values at the poll points for iterations k = 3	, 3	+1, and 3	+2. Trial points
that improve the incumbent appear in shaded boxes. This table shows that the iterate
for k = 3(	 + 1) is (2−�−1, 2−�−1) and that the corresponding mesh size parameter is
22−�. This concludes the proof.
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Fig. 5.2. For f(a, b) = (9a − b)(11a − b), the cones of descent at the saddle point (0,0) are
shown in the shaded area between the lines b = 9a and b = 11a.

The previous proposition shows that the entire sequence of iterates generated by
GPS converges to the saddle point (0, 0), which is not a local minimizer. Theorem 4.8
ensures that any MADS instance with an asymptotically dense set of refining direc-
tions will not converge to that saddle point, since the necessary optimality condition
is not satisfied: vT = (−1, 1) is a feasible direction for which vT∇f(0, 0) = 0, but

vT∇2f(0, 0)v = vT
[

2 3
3 2

]
vT = −2

is negative.

5.2. An example where GPS reaches and stalls at a saddle point. Con-
sider the bound constrained problem

min
−2≤a,b≤2

f(a, b) = 99a2 − 20ab + b2 = (9a− b)(11a− b).

At the saddle point (0, 0), directions of descent lie only in the narrow cone formed
by the lines b = 9a and b = 11a. Thus to avoid stalling at the saddle point, GPS
or MADS would have to generate a feasible iterate that lies inside this cone (see
Figure 5.2). In this example, the search step is empty and the initial point is chosen
to be (1.01, 0.93). This starting point is chosen to be nonintegral to make it more
difficult for GPS to reach the integral point (0, 0). Both GPS and MADS were run
using the NOMAD software package [13] with primarily default settings: G = I,
Z = D = [I; −I], τ = 2, w− = −1, w+ = 0, and standard 2n coordinate directions
as poll directions.
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GPS reaches the saddle point at the 358th function evaluation with a poll size
parameter of 10−17. This implies that, regardless of the termination tolerance chosen,
it stalls there because none of the poll directions are directions of descent. On the
other hand, NOMAD’s implementation of LTMADS successfully moved off of the
saddle point to reach a local minimizer in 100 of 100 runs. This is again consistent
with Theorem 4.8, since vT = (1, 10) is a feasible direction for which vT∇f(0, 0) = 0
but

vT∇2f(0, 0)v = vT
[

198 −20
−20 2

]
vT = −2

is negative.

6. Concluding remarks. The theoretical results presented here establish strong
convergence results for MADS. In spite of MADS being a derivative-free method, we
have shown convergence of a subsequence of MADS iterates to a second-order sta-
tionary point under conditions weaker than standard Newton assumptions, namely,
that f is continuously differentiable with Lipschitz derivatives near the limit point.
Moreover, if Ω is locally convex and f is twice strictly differentiable near the limit
point, then the limit point is a local minimizer for (1.1).

In section 5, we provided examples to illustrate the superior convergence proper-
ties of MADS over GPS. However, since our implementation involves random selection
of positive spanning directions, the convergence properties established in section 4.3
are achieved, in practice, with probability one. We envision a future area of research
being the clever enumeration of these directions so that the stronger type of con-
vergence is retained by an implementable instance of the algorithm. Specifically, we
would like to deterministically generate an asymptotically dense set of directions in
such a way that, after any finite number of iterations, the directions used by the
algorithm are uniformly spaced (or as close to it as possible).
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ON THE MINIMUM VOLUME COVERING ELLIPSOID OF
ELLIPSOIDS∗

E. ALPER YILDIRIM†

Abstract. Let S denote the convex hull of m full-dimensional ellipsoids in Rn. Given ε > 0
and δ > 0, we study the problems of computing a (1 + ε)-approximation to the minimum volume
covering ellipsoid of S and a (1 + δ)n-rounding of S. We extend the first-order algorithm of Kumar
and Yıldırım [J. Optim. Theory Appl., 126 (2005), pp. 1–21] that computes an approximation to the
minimum volume covering ellipsoid of a finite set of points in Rn, which, in turn, is a modification of
Khachiyan’s algorithm [L. G. Khachiyan, Math. Oper. Res., 21 (1996), pp. 307–320]. Our algorithm
can also compute a (1 + δ)n-rounding of S. For fixed ε > 0 and δ > 0, we establish polynomial-time
complexity results for the respective problems, each of which is linear in the number of ellipsoids
m. In particular, our algorithm can approximate the minimum volume covering ellipsoid of S in
asymptotically the same number of iterations as that required by the algorithm of Kumar and
Yıldırım to approximate the minimum volume covering ellipsoid of a set of m points. The main
ingredient in our analysis is the extension of polynomial-time complexity of certain subroutines in
the algorithm from a set of points to a set of ellipsoids. As a byproduct, our algorithm returns a
finite “core” set X ⊆ S with the property that the minimum volume covering ellipsoid of X provides
a good approximation to the minimum volume covering ellipsoid of S. Furthermore, the size of
the core set depends only on the dimension n and the approximation parameter ε, but not on the
number of ellipsoids m. We also discuss the extent to which our algorithm can be used to compute
an approximate minimum volume covering ellipsoid and an approximate n-rounding of the convex
hull of other sets in Rn. We adopt the real number model of computation in our analysis.

Key words. minimum volume covering ellipsoids, Löwner ellipsoids, core sets, rounding of
convex sets, approximation algorithms
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1. Introduction. Given m full-dimensional ellipsoids E1, . . . , Em in Rn, let S
denote their convex hull. In this paper, we are concerned with the problems of approx-
imating the minimum volume covering ellipsoid (MVCE) of S, denoted by MVCE(S),
also known as the Löwner ellipsoid of S, and computing an approximate n-rounding
of S.

Ellipsoidal approximations of a compact convex set S ⊂ Rn with a nonempty
interior play an important role in several applications. By the Löwner–John theorem
(see Theorem 2.1), MVCE(S) provides a good rounding of the set S, which implies
that certain characteristics of S can be approximated using an ellipsoidal rounding as
long as MVCE(S) can be computed efficiently. For instance, an ellipsoidal rounding
of S can be used to efficiently compute lower and upper bounds for a quadratic
optimization problem over S (see Proposition 2.6).

The idea of approximating complicated objects using simpler ones is widely used
in computational geometry and computer graphics. A common approach is to replace
a complicated but more realistic model of a complex object with a simpler model of
a less complex object covering the original object such as a minimum volume box
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or a sphere. More recently, ellipsoidal models have been proposed in the literature
as they usually provide better approximations than bounding boxes or spheres (see,
e.g., [25, 26, 14, 10]). The key idea is to construct a so-called bounding volume
hierarchy [11], which is simply a tree of bounding volumes. The bounding volume at
a given node encloses the bounding volumes of its children. The bounding volume of
a leaf encloses a primitive. Such a data structure can be used for detection collision
or ray tracing. For instance, if a ray misses the bounding volume of a particular node,
then the ray will miss all of its children, and the children can be skipped. The ray
tracing algorithm traverses this hierarchy, usually in depth-first order, and determines
if the ray intersects an object. Therefore, if an ellipsoidal approximation is used, the
construction of a bounding volume hierarchy requires the computation of the MVCE
of a union of ellipsoids at every node.

There is an extensive body of research on MVCEs of a finite set of points. We
refer the reader to [15, 29, 18] and the references therein for a detailed account of
numerous applications and several algorithms. In contrast, we are not aware of any
specialized algorithms for the MVCE of ellipsoids in the literature. It is known that
the problem can be formulated as an instance of a convex determinant optimization
problem with linear matrix inequalities [5, 2, 6], which is amenable to theoretically
efficient algorithms proposed in [32, 31]. Our main objective in this paper is to estab-
lish that the problem of MVCE of ellipsoids admits a sufficiently rich structure that
enables us to extend the first-order algorithm of Kumar and Yıldırım [18], which, in
turn, is a modification of Khachiyan’s algorithm [15], that computes an approximate
MVCE of a finite set of points in an almost verbatim fashion to a set of ellipsoids. The
main ingredient in our analysis is the extension of polynomial-time complexity of cer-
tain subroutines in the algorithm of [18] from a set of points to a set of ellipsoids. We
mainly rely on the complexity results of Porkolab and Khachiyan [21] on semidefinite
optimization with a fixed number of constraints, which leads to the polynomial-time
complexity of quadratic optimization over an ellipsoid—one of the subroutines in our
algorithm (see Proposition 2.6). Throughout this paper, we adopt the real number
model of computation [4]; i.e., arithmetic operations with real numbers and compar-
isons can be done with unit cost.

Given ε > 0 and a compact convex set S ⊂ Rn, an ellipsoid E is said to be a
(1 + ε)-approximation to MVCE(S) if

E ⊇ S, vol E ≤ (1 + ε) vol MVCE(S),(1)

where vol E denotes the volume of E . Given δ > 0 and a compact convex set S ⊂ Rn,
an ellipsoid Ẽ is said to be a (1 + δ)n-rounding of S if

1

(1 + δ)n
Ẽ ⊆ S ⊆ Ẽ ,(2)

where the ellipsoid on the left-hand side of (2) is obtained by scaling Ẽ around its center
by a factor of 1/((1+δ)n). If S is centrally symmetric (i.e., S = −S), then we replace
the factor on the left-hand side by 1/

√
(1 + δ)n. In this paper, we extend the first-

order algorithm of [18] to compute a (1+ ε)-approximation to the MVCE of ellipsoids
for ε > 0. In particular, we establish that our extension has precisely the same
iteration complexity as that of the algorithm of [18] (see Theorem 4.7). Furthermore,
the overall complexity result is given by O(mnO(1)(log n+ [(1 + ε)2/n − 1]−1)), which
depends only linearly on the number of ellipsoids m (see Theorem 4.8). In addition,
our algorithm can also compute a (1 + δ)n-rounding of the convex hull of a finite
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number of ellipsoids for δ > 0 in O(mnO(1)(log n + δ−1)) arithmetic operations (see
Corollary 5.1). In both complexity results, O(1) denotes a universal constant greater
than four that does not depend on the particular instance. Therefore, our algorithm
has polynomial-time complexity for fixed ε > 0 and for fixed δ > 0 and is especially
well-suited for instances with m � n and moderately small values of ε or δ.

As a byproduct, our algorithm computes a finite set X ⊂ ∪i=1,...,mEi with the
property that the convex hull of X , denoted by conv(X ), provides a good approxima-
tion of S = conv (∪i=1,...,mEi). Moreover, the size of X depends only on the dimension
n and the parameter ε but is independent of the number of ellipsoids m. In particular,
X satisfies

vol MVCE(X ) ≤vol MVCE(S) ≤vol E ≤(1 + ε)vol MVCE(X ) ≤(1 + ε)vol MVCE(S),

where E denotes the (1 + ε)-approximation to the MVCE of S computed by our algo-
rithm, which implies that E is simultaneously a (1 + ε)-approximation to MVCE(X )
and to MVCE(S) (see Proposition 4.9).

Following the literature, we refer to X as an “ε-core set” (or a “core set”) [8, 7,
17, 18] since conv(X ) provides a compact approximation to the input set S. Recently,
core sets have received significant attention, and small core set results have been es-
tablished for several geometric optimization problems such as the minimum enclosing
ball problem and related clustering problems [17, 8, 7, 9, 1, 18]. Small core set results
form a basis for developing practical algorithms for large-scale problems since many
geometric optimization problems can be solved efficiently for small input sets.

The paper is organized as follows. We define our notation in the remainder of this
section. In section 2, we present some preliminary results and discuss the complex-
ity of semidefinite feasibility and optimization. We then establish that the ellipsoid
containment problem can be cast as a linear matrix inequality and can therefore be
checked in polynomial time. Section 3 is devoted to a deterministic volume approx-
imation algorithm that will serve as an initialization stage for our algorithm. In
section 4, we present and analyze a first-order algorithm for the MVCE problem.
Section 5 establishes that our algorithm can also be used to compute an approximate
n-rounding. We discuss how to extend our algorithm to other input sets in section 6.
Section 7 concludes the paper with future research directions.

1.1. Notation. Vectors will be denoted by lowercase roman letters. For a vector
u, ui denotes its ith component. Inequalities on vectors will apply to each component.
e will be reserved for the vector of ones in the appropriate dimension, which will be
clear from the context. ej is the jth unit vector. Uppercase roman letters will be
reserved for matrices. Sn denotes the space of n × n real symmetric matrices. The
inner product in Sn is given by U • V := trace(UV ) =

∑
i,j UijVij for any U, V ∈ Sn.

Note that uTAu = A • uuT for any A ∈ Sn and u ∈ Rn. For A ∈ Sn, A 	 0 (A 
 0)
indicates that A is positive definite (semidefinite) (i.e., the eigenvalues of A are strictly
positive (nonnegative)). det(A) and rank(A) denote the determinant and the rank of
a square matrix A, respectively. The identity matrix will be denoted by I. For a finite
set of vectors V, span(V) denotes the linear subspace spanned by the vectors in V.
The convex hull of a set T ∈ Rn is referred to as conv(T ). For a function f : Rn → R,
we use x∗ = arg max f(x) and x∗ = arg min f(x) to denote a global maximizer and
a global minimizer of f , respectively. Superscripts will be used to refer to members of
a sequence of vectors or matrices. Lowercase Greek letters will represent scalars. i, j,
and k will be reserved for indexing purposes, and m and n will refer to the problem
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data. Uppercase calligraphic letters will be used for all other objects such as sets,
operators, and ellipsoids.

2. Preliminaries. A full-dimensional ellipsoid E in Rn admits a representation
that is specified by an n×n symmetric positive definite matrix Q and a center c ∈ Rn

and is defined as

E = {x ∈ Rn : (x− c)TQ(x− c) ≤ 1}.(3)

The matrix Q determines the shape and the orientation of E . In particular, the
axes of E are the eigenvectors d1, . . . , dn ∈ Rn of Q, and the length of each axis is
given by 1/

√
λ1, . . . , 1/

√
λn, where λ1, . . . , λn are the corresponding eigenvalues of Q.

Therefore, the volume of E , denoted by vol E , is given by

vol E = η det Q− 1
2 = η

(
1/
√

Πn
i=1λi

)
,(4)

where η is the volume of the unit ball in Rn [12]. Note that an ellipsoid E induces
a norm on Rn via ‖x‖E := (xTQx)1/2. Therefore, every ellipsoid can be viewed as a
translation of the unit ball in terms of the ellipsoidal norm induced by it.

Throughout this paper, we will assume that each of the input ellipsoids E1, . . . , Em
⊂ Rn is full-dimensional. Note that this assumption is without loss of generality
since any lower-dimensional ellipsoid can easily be approximated by a “thin” full-
dimensional one. We remark that this assumption is merely for technical convenience,
which allows us to have a uniform representation of each of the ellipsoids in the
form given by (3). In addition, this assumption guarantees that conv(∪m

i=1Ei) is
full-dimensional and leads to a simpler characterization of the ellipsoid containment
problem (see Proposition 2.7). In particular, the full-dimensionality assumption on
each of the ellipsoids can be relaxed by the weaker assumption that conv(∪m

i=1Ei) is
full-dimensional and our analysis would still carry over to this slightly more general
setting (see the discussion after Proposition 2.6). We refer the reader to [2] for further
discussions on extremal ellipsoids.

We start with a classical result on the quality of the approximation of MVCE(S)
of a convex set S ⊂ Rn.

Theorem 2.1 (Löwner–John [13]). Let S ⊂ Rn be a compact, convex set with a
nonempty interior. Then, MVCE(S) exists and is unique and satisfies

1

n
MVCE(S) ⊆ S ⊆ MVCE(S),(5)

where the ellipsoid on the left-hand side is obtained by scaling MVCE(S) around its
center by a factor of 1/n. Furthermore, if S is symmetric around the origin, then the
factor on the left-hand side of (5) can be improved to 1/

√
n.

We next state a well-known lemma that will be useful for our analysis.

Lemma 2.2 (Schur complement). Let

A =

[
B C
CT D

]
be a symmetric matrix with B ∈ Sα and D ∈ Sβ. Assume that D 	 0. Then, A 
 0
if and only if B − CD−1CT 
 0.
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2.1. Complexity of semidefinite feasibility and optimization. Consider
the following feasibility problems:

1. (PF) Given A1, A2, . . . , Aκ ∈ Sn and β1, . . . , βκ ∈ R, determine whether
there exists a matrix X ∈ Sn such that

Ai •X ≤ βi, i = 1, . . . , κ, X 
 0.

2. (DF) Given B0, B1, . . . , Bκ ∈ Sn, determine whether there exist real numbers
y1, . . . , yκ such that

B0 + y1B1 + y2B2 + · · · + yκBκ 
 0.

The complexity of the problems (PF) and (DF) is still a fundamental open prob-
lem. In the real number model of computation, both problems are in NP since one can
check in polynomial time whether a given symmetric matrix is positive semidefinite
using Cholesky factorization. Ramana [22] proved that both problems belong to NP
∩ co-NP. Porkolab and Khachiyan [21] established the following complexity results,
which, in turn, are mainly based on the first-order theory of the reals developed by
Renegar [24].

Theorem 2.3. Problems (PF) and (DF) can be solved in κnO(min{κ,n2}) and

O(κn4) + nO(min{κ,n2}) operations over the reals, respectively.
In addition, let us consider the following optimization versions:
1. (PO) Given D,A1, A2, . . . , Aκ ∈ Sn and β1, . . . , βκ ∈ R, solve

α∗ := inf
X∈Sn

{D •X : Ai •X ≤ βi, i = 1, . . . , κ, X 
 0}.

2. (DO) Given B0, B1, . . . , Bκ ∈ Sn and d ∈ Rκ, solve

β∗ := sup
y1,...,yκ∈R

{
κ∑

i=1

diyi : B0 + y1B1 + y2B2 + · · · + yκBκ 
 0

}
.

The complexity results of Theorem 2.3 also extend to the optimization versions
(PO) and (DO) [21].

Theorem 2.4. For problems (PO) and (DO), each of the following can be solved

in κnO(min{κ,n2}) and O(κn4)+nO(min{κ,n2}) operations over the reals, respectively: (i)
feasibility, (ii) boundedness, (iii) attainment of the optimal value, and (iv) computation
of a least norm optimal solution.

One important consequence of Theorems 2.3 and 2.4 is that semidefinite feasibility
and semidefinite optimization can be solved in polynomial time if κ is fixed. We state
this as a separate corollary.

Corollary 2.5. Each of the four problems (PF), (DF), (PO), and (DO) can
be solved in polynomial time for fixed κ.

This result will play a key role in our algorithm as the semidefinite feasibility and
semidefinite optimization problems we will encounter will always satisfy the condition
of the corollary.

2.2. Ellipsoid containment. In this section, we study the problem of deciding
whether a given full-dimensional ellipsoid E is contained in another full-dimensional
ellipsoid E∗. Furthermore, we establish how to efficiently compute a point in E that
is furthest from the center of E∗ in terms of the ellipsoidal norm induced by E∗.
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We start with the following well-known result about polynomiality of quadratic
optimization over an ellipsoid (see, e.g., [34]). We remark that this result can be found
elsewhere in the literature (see, e.g., [27, 23, 28, 36, 6]). We mainly include it here
for the sake of completeness. Our treatment can be considered as a special case of
the more general proof of [28] and relies on the fact that the possibly nonconvex opti-
mization problem admits a tight semidefinite programming (SDP) relaxation, whose
optimal solution can be used to recover an optimal solution for the original problem.

Proposition 2.6. Any quadratic function f : Rn → R can be maximized over a
full-dimensional ellipsoid in O(nO(1)) operations, where O(1) is a universal constant
greater than three.

Proof. Let f(x) := xTAx + 2bTx + γ, where A ∈ Sn, b ∈ Rn, and γ ∈ R, and let
E ⊂ Rn denote a full-dimensional ellipsoid, which admits a representation given by
E := {x ∈ Rn : (x− c)TQ(x− c) ≤ 1}, where Q ∈ Sn is positive definite and c ∈ Rn.
We wish to solve

(P) max
x∈Rn

{f(x) : x ∈ E}.

We consider the following SDP relaxation:

(SP) max
X∈Sn+1

{F •X : G •X ≤ 0, En+1 •X = 1, X 
 0},

where

F :=

[
A b
bT γ

]
, G :=

[
Q −Qc

−cTQ cTQc− 1

]
, En+1 = en+1(en+1)T .

Note that (SP) is a relaxation of (P) since for any feasible solution x ∈ Rn of (P),[
x
1

]
[xT 1] =

[
xxT x
xT 1

]

 0

is a feasible solution of (SP) with the same objective function value. We claim that
the relaxation is exact in the sense that the optimal values of (P) and (SP) coincide
and an optimal solution of (SP) can be converted into an optimal solution of (P).

Consider the following Lagrangian dual of (SP):

(SD) min
λ,β

{β : λG + βEn+1 
 F, λ ≥ 0}.

We now make several observations about (SP) and (SD). Note that (SP) satisfies the
Slater condition since the solution given by

X̃ :=

[
ccT + αI c

cT 1

]
satisfies En+1 • X̃ = 1, G • X̃ = −1 + αQ • I < 0, for sufficiently small α > 0,
and X̃ 	 0, which implies that X̃ is a strictly feasible solution of (SP). Therefore,
strong duality holds between (SP) and (SD), and the optimal value is attained in
(SD). Furthermore, the feasible set of (SP) is bounded because the only solution to
the system

G • Y ≤ 0, En+1 • Y = 0, Y 
 0, Y ∈ Sn+1

is Y = 0 since Q 	 0. Therefore, the optimal value is also attained in (SP).
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By Corollary 2.5, we can solve (SP) in O(nO(1)) time (one can replace the equality
constraint with two inequality constraints). Let X∗ and (λ∗, β∗) denote optimal
solutions of (SP) and (SD), respectively. It follows from optimality conditions that

X∗ • (λ∗G + β∗En+1 − F ) = 0, λ∗(G •X∗) = 0.(6)

Since G • X∗ ≤ 0, we can compute a rank-one decomposition of X∗ :=∑ρ
i=1 p

i(pi)T , where ρ := rank(X∗) ≥ 1 and pi ∈ Rn+1, pi �= 0, i = 1, . . . , ρ, in

O(n3) operations such that (pi)TGpi ≤ 0, i = 1, . . . , ρ [28, Proposition 3]. We now
construct a rank-one optimal solution of (SP) using this decomposition.

By (6),
∑ρ

i=1(p
i)T (λ∗G + β∗En+1 − F )pi = 0, which implies that

(pi)T (λ∗G + β∗En+1 − F )pi = 0, i = 1, . . . , ρ,(7)

by dual feasibility. Similarly, λ∗(G •X∗) = λ∗ ∑ρ
i=1(p

i)TGpi = 0, which implies that

λ∗(pi)TGpi = 0, i = 1, . . . , ρ,(8)

since (pi)TGpi ≤ 0, i = 1, . . . , ρ, and λ∗ ≥ 0.
Let j be any index in {1, 2, . . . , ρ} and let us define

pj =

[
xj

αj

]
,

where xj ∈ Rn and αj ∈ R. We claim that αj �= 0. Otherwise, 0 ≥ (pj)TGpj =
(xj)TQxj , which implies that xj = 0 since Q 	 0, contradicting the fact that pj �= 0.
We now let xj

∗ := (1/αj)pj . Since G • xj
∗(x

j
∗)

T ≤ 0 and En+1 • xj
∗(x

j
∗)

T = 1, it follows
from (7) and (8) that xj

∗(x
j
∗)

T is a rank-one optimal solution of (SP), which implies
that (1/αj)xj is an optimal solution of (P). (We remark that each of the indices in
{1, 2, . . . , ρ} can be used to compute a different optimal solution of (P).)

In fact, Proposition 2.6 holds true even if the ellipsoid defining the feasible region
of the optimization problem is lower-dimensional. In this case, one can restrict the
quadratic function f to the smallest affine subspace containing the ellipsoid and invoke
the same analysis in the proof. We now use Proposition 2.6 to give a simple proof of
the well-known characterization of the ellipsoid containment problem.

Proposition 2.7. Let E ⊂ Rn and E∗ ⊂ Rn denote two full-dimensional el-
lipsoids with representations given by E := {x ∈ Rn : (x − c)TQ(x − c) ≤ 1} and
E∗ := {x ∈ Rn : (x − c∗)TQ∗(x − c∗) ≤ 1}, where Q ∈ Sn and Q∗ ∈ Sn are positive
definite and c ∈ Rn and c∗ ∈ Rn. Then, E ⊆ E∗ if and only if there exists τ > 0 such
that

τ

[
Q −Qc

−cTQ cTQc− 1

]



[
Q∗ −Q∗c∗

−c∗TQ∗ c∗TQ∗c∗ − 1

]
.(9)

Proof. The statement follows directly from the S-lemma [33] (see also [20] for a
comprehensive treatment). However, we give a simple proof using standard duality
arguments.

If (9) is satisfied, then we must have τ > 0 since Q 	 0 and Q∗ 	 0. Consider

(P) max
x∈Rn

{(x− c∗)TQ∗(x− c∗) − 1 : (x− c)TQ(x− c) − 1 ≤ 0}.
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By an argument similar to that in the proof of Proposition 2.6, it follows that

(SP) max
X∈Sn+1

{F •X : G •X ≤ 0, En+1 •X = 1, X 
 0}

is a tight SDP relaxation of (P), where F ∈ Sn+1 and G ∈ Sn+1 are respectively
given by

F =

[
Q∗ −Q∗c∗

−c∗TQ∗ c∗TQ∗c∗ − 1

]
, G =

[
Q −Qc

−cTQ cTQc− 1

]
.

The dual of (SP) is

(SD) min
λ,β

{β : λG + βEn+1 
 F, λ ≥ 0}.

Let v(P ), v(SP ), and v(SD) denote the optimal values of (P), (SP), and (SD),
respectively. It follows from the proof of Proposition 2.6 that

v(P ) = v(SP ) = v(SD).(10)

Obviously, E ⊆ E∗ if and only if v(P ) ≤ 0. If (9) is feasible, then (λ, β) = (τ, 0)
is a feasible solution of (SD), which implies that v(P ) = v(SD) ≤ 0. Conversely,
if v(P ) ≤ 0, then let (λ∗, β∗) be an optimal solution of (SD) with optimal value
v(SD) = v(P ) = β∗ ≤ 0. Then

λ∗G 
 λ∗G + β∗En+1 
 F,

since En+1 
 0 and β∗ ≤ 0, which implies that λ∗ is a feasible solution of (9). This
completes the proof.

We close this subsection by giving an equivalent characterization of (9).
Lemma 2.8. Condition (9) is equivalent to

τ

⎡⎣ Q −Qc 0
−cTQ cTQc− 1 0

0 0 0

⎤⎦ 


⎡⎣ Q∗ −Q∗c∗ 0

−c∗TQ∗ −1 c∗TQ∗

0 Q∗c∗ −Q∗

⎤⎦.(11)

Proof. We use the notation of Lemma 2.2. After rewriting (11) as a constraint
of the form A 
 0, we let B denote the top left 2 × 2 block and define C and D
accordingly. The equivalence now simply follows from the Schur complement lemma
since D := Q∗ 	 0.

We remark that condition (9) (or, equivalently, condition (11)) is a semidefinite
constraint in a single variable. Therefore, it follows from Corollary 2.5 that ellipsoid
containment can be checked in polynomial time.

It follows from (11) that the problem of computing the MVCE of a set of m
full-dimensional ellipsoids can be formulated as a convex determinant maximization
problem (see, e.g., [5, 6, 2]) with m linear matrix inequalities of size (2n+1)×(2n+1),
m nonnegative variables τ1, . . . , τm, an n × n positive definite matrix variable Q∗

that determines the shape and the orientation of the optimal ellipsoid, and an n-
dimensional vector variable z∗ := Q∗c∗, from which the center of the optimal ellipsoid
can be recovered. As the dimension of the problem grows, the computational cost
of interior-point algorithms [32, 31] quickly becomes prohibitive. This is one of our
motivations to develop a specialized algorithm for the MVCE problem.
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3. Initial volume approximation. Let E1, . . . , Em denote m full-dimensional
ellipsoids, which admit representations given by

Ei := {x ∈ Rn : (x− ci)TQi(x− ci) ≤ 1}, i = 1, . . . ,m,(12)

where Qi ∈ Sn is positive definite and ci ∈ Rn, i = 1, . . . ,m. We define S :=
conv (∪m

i=1Ei). In this section, we present a simple deterministic algorithm that iden-
tifies a finite subset X0 ⊂ ∪m

i=1Ei of size 2n such that vol MVCE(X0) is a provable
approximation to vol MVCE(S).

Algorithm 3.1 (volume approximation algorithm).

Require: Input set E1, . . . , Em ⊂ Rn

1: Ψ ← {0}, X0 ← ∅, k ← 0.
2: While Rn \ Ψ �= ∅ do
3: loop
4: k ← k+1. Pick an arbitrary unit vector bk ∈ Rn in the orthogonal complement

of Ψ.
5: x2k−1 ← arg maxi=1,...,m{(bk)Tx : x ∈ Ei}, X0 ← X0 ∪ {x2k−1}.
6: x2k ← arg mini=1,...,m{(bk)Tx : x ∈ Ei}, X0 ← X0 ∪ {x2k}.
7: Ψ ← span(Ψ, {x2k−1 − x2k}).
8: end loop
9: Output: X0

Lemma 3.1. Algorithm 3.1 terminates after O(mn3) arithmetic operations and
returns a subset X0 ⊂ ∪m

i=1Ei with |X0| = 2n such that

vol MVCE(S) ≤ n2nvol MVCE(X0).(13)

Proof. We first establish the running time of Algorithm 3.1. At step k, Ψ is given
by the span of k linearly independent vectors since S is full-dimensional. Hence,
upon termination, Ψ = Rn. It follows that |X0| = 2n. At each step, we optimize
a linear function over each of the m ellipsoids Ei. Let Qi = (U i)TU i, i = 1, . . . ,m,
denote the Cholesky factorization of Qi, i = 1, . . . ,m, which can be computed in
O(mn3) operations. Note that Ei = {x ∈ Rn : x = (U i)−1u + ci, ‖u‖ ≤ 1}, i =
1, . . . ,m. Therefore, at step k, each optimization problem has a closed form solution
given by x̃i,k

max,min := ci ± (1/‖(U i)−T bk‖)(U i)−1(U i)−T bk with an optimal value of

(bk)T ci± (1/‖(U i)−T bk‖)(bk)T (U i)−1(U i)−T bk. For each ellipsoid Ei, x̃i,k
max,min can be

computed in O(n2) operations since U i is upper triangular, which yields an overall
computational cost of O(mn3) operations after n steps. Therefore, Algorithm 3.1
terminates after O(mn3) arithmetic operations.

We now prove (13). It follows from the results of Betke and Henk [3] that vol S ≤
n! vol conv(X0). Combining this inequality with Theorem 2.1, we obtain

1

nn
vol MVCE(S) ≤ vol S ≤ n! vol conv(X0) ≤ n! vol MVCE(X0),

which implies that vol MVCE(S) ≤ n!nnvol MVCE(X0) ≤ n2nvol MVCE(X0).

4. A first-order algorithm. In this section, we present a first-order algorithm
to compute a (1 + ε)-approximation to the MVCE of the union of a set of full-
dimensional ellipsoids E1, . . . , Em ⊂ Rn for ε > 0. Our algorithm is a generalization of
the first-order algorithm presented in [18] to compute the MVCE of a finite set of m
points, which, in turn, is obtained from a modification of Khachiyan’s algorithm [15].
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Our treatment closely follows the interpretation of Khachiyan’s algorithm presented
in [18].

As a by-product, we establish the existence of a finite core set X ⊂ ∪i=1,...,m Ei
whose size depends on only the dimension n and the parameter ε, but is independent
of the number of ellipsoids m.

Algorithm 4.1 (a first-order algorithm that computes a (1 + ε)-approximation
to MVCE(S)).
Require: Input set of ellipsoids E1, . . . , Em ⊂ Rn given by (12) and ε > 0.
1: Run Algorithm 3.1 on E1, . . . , Em to obtain output X0 := {x1, . . . , x2n}.
2: u0 ← (1/2n)e ∈ R2n.

3: w0 ←
∑2n

j=1 x
ju0

j .

4: (M0)−1 ← n
∑2n

j=1 u
0
j (x

j − w0)(xj − w0)T .

5: F0 ← {x ∈ Rn : (x− w0)TM0(x− w0) ≤ 1}.
6: x2n+1 ← arg maxi=1,...,m{(x− w0)TM0(x− w0) : x ∈ Ei}.
7: ε0 ← (x2n+1 − w0)TM0(x2n+1 − w0) − 1.
8: k ← 0.
9: While εk > (1 + ε)2/n − 1 do

10: loop
11: βk ← εk

(n+1)(1+εk) .

12: k ← k + 1.

13: uk ←
[

(1 − βk−1)u
k−1

βk−1

]
.

14: wk ←
∑2n+k

j=1 xjuk
j .

15: (Mk)−1 ← n
∑2n+k

j=1 uk
j (x

j − wk)(xj − wk)T .

16: Fk ← {x ∈ Rn : (x− wk)TMk(x− wk) ≤ 1}.
17: Xk ← Xk−1 ∪ {x2n+k}.
18: x2n+k+1 ← arg maxi=1,...,m{(x− wk)TMk(x− wk) : x ∈ Ei}.
19: εk ← (x2n+k+1 − wk)TMk(x2n+k+1 − wk) − 1.
20: end loop
21: Output:

√
1 + εk Fk, Xk

We now describe Algorithm 4.1. Given m full-dimensional ellipsoids E1, . . . , Em ⊂
Rn with representations given by (12), the algorithm calls Algorithm 3.1 and computes
a finite set X0 ⊂ ∪m

i=1Ei with |X0| = 2n. Next, a “trial ellipsoid” F0 is defined. Note
that the center w0 of F0 is simply the sample mean of X0 and M0 is the inverse of
the (scaled) sample covariance matrix of X0. εk measures the extent to which Fk

should be enlarged around its center in order to cover S := conv(∪m
i=1Ei). uk can be

viewed as a nonnegative weight vector whose components sum up to one. Note that
the dimension of uk increases by one at each iteration and is equal to |Xk|. Unless
the termination criterion is satisfied, the algorithm proceeds in an iterative manner
as follows: At Step 13, uk gets updated and is used to define wk and Mk for the next
trial ellipsoid Fk. Observe that x2n+k is precisely the farthest point in S from the
center of the trial ellipsoid Fk−1 in terms of its ellipsoidal norm. It is straightforward
to verify that

wk = (1 − βk−1)w
k−1 + βk−1x

2n+k, k = 1, 2, . . . ,(14)

and

(Mk)−1 = (1 − βk−1)(M
k−1)−1 + n(1 − βk−1)βk−1d

k(dk)T(15)
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for k = 1, 2, . . . , where dk := x2n+k−wk−1. It follows that the next trial ellipsoid Fk is
obtained by shifting the center of Fk−1 towards x2n+k, and its shape is determined by
a nonnegative combination of (Mk−1)−1 and a rank-one update. This update can be
viewed as “enriching the eigenspace of (Mk−1)−1 in the direction dk := x2n+k−wk−1.”
We refer the reader to [18, section 4.3] for a related discussion. The parameter βk−1 ∈
[0, 1) solves the following line search problem as observed by Khachiyan [15]:

(LS(k)) max
β∈[0,1]

log det
[
(1 − β)(Mk−1)−1 + n(1 − β)βdk(dk)T

]
for k = 1, 2, . . . , where dk := x2n+k − wk−1. Algorithm 4.1 terminates when the
desired accuracy is achieved.

Algorithm 4.1 is an extension of the one proposed in [18] that computes a (1+ ε)-
approximation to the MVCE of a finite set of m points in Rn, which, in turn, is a
modification of Khachiyan’s algorithm [15]. The algorithm in [15] can be viewed as
a sequential linear programming algorithm (or, equivalently, as a Frank–Wolfe algo-
rithm [29]) for the nonlinear optimization problem arising from the dual formulation
of the MVCE problem (cf. (D(X0)) in the proof of Theorem 4.1) for a finite set of
points (see, e.g., the discussion in [18, section 4.1]). Algorithm 4.1 is motivated by
the simple observation that the union of a set of ellipsoids in Rn can be viewed as
an infinite set of points. Despite the fact that the finite-dimensional optimization
formulation on which Khachiyan’s algorithm is based no longer carries over to this
more general setting, our main goal in this paper is to establish that essentially the
same framework can be used with proper modifications to approximate the MVCE of
the union of a finite number of ellipsoids. Since the algorithm is driven by linearizing
the nonlinear objective function of the dual optimization formulation, we continue to
refer to Algorithm 4.1 as a first-order algorithm. We remark that the interior-point al-
gorithms of [32, 31] also rely on the second-order information arising from the Hessian
of the objective function.

We next analyze the complexity of Algorithm 4.1. Our analysis resembles those
of Khachiyan [15] and Kumar and Yıldırım [18]. The key ingredient in the complex-
ity analysis is to demonstrate that Algorithm 4.1 produces a sequence {Fk} of trial
ellipsoids with strictly increasing volumes. We utilize Lemma 3.1 to show that vol F0

is already a provable approximation to vol MVCE(S). The analysis will then be
complete by establishing that each step of Algorithm 4.1 can be executed efficiently.

We start by proving that vol F0 is a provable approximation to vol MVCE(S).
Theorem 4.1. The ellipsoid F0 ⊂ Rn defined in Algorithm 4.1 satisfies

log vol F0 ≤ log vol MVCE(S) ≤ log vol F0 + 2n log n +
n

2
log 2.(16)

Proof. We first establish that

log vol F0 ≤ log vol MVCE(X0),(17)

where X0 = {x1, . . . , x2n} denotes the set of 2n points returned by Algorithm 3.1.
Consider the following dual formulation to compute MVCE(X0) (see, e.g., [15] or
[29]):

(D(X0)) maxu log det Π0(u)

s.t. eTu = 1,

u ≥ 0,
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where u ∈ R2n is the decision variable and Π0 : R2n → Sn+1 is a linear operator given
by

Π0(u) :=

2n∑
j=1

uj

[
xj(xj)T xj

(xj)T 1

]
.

MVCE(X0) can be recovered from an optimal solution u∗ of (D(X0)) [18, Lemma 2.1].
Furthermore, the optimal value of (D(X0)) satisfies

log vol MVCE(X0) = log η +
n

2
log n +

1

2
log det Π0(u

∗),(19)

where η is the volume of the unit ball in Rn.
Let us consider the feasible solution u0 := (1/2n)e ∈ R2n of (D(X0)). We have

Π0(u
0) =

[
(1/2n)

∑2n
j=1 x

j(xj)T w0

(w0)T 1

]
,

=

[
I w0

0 1

] [
(1/n)(M0)−1 0

0 1

] [
I 0

(w0)T 1

]
,

(20)

which implies that

log det Π0(u
0) = −n log n + log det(M0)−1 = −n log n + 2 log det(M0)−1/2.(21)

However, log vol F0 = log η+log det(M0)−1/2. Combining this equality with (21), we
obtain

log vol F0 = log η +
n

2
log n +

1

2
log det Π0(u

0).

Since u0 is a feasible solution for the maximization problem (D(X0)), it follows from
(19) that log vol F0 ≤ log vol MVCE(X0).

Since X0 ⊂ S, we clearly have log vol MVCE(X0) ≤ log vol MVCE(S), which
proves the first inequality in (16). To prove the second inequality, let

B := [x1, . . . , x2n] ∈ Rn×2n.

Then, w0 = (1/2n)Be and it is easy to verify that (M0)−1 = (1/2)BPBT , where P :=
I − (1/2n)eeT is an orthogonal projection matrix onto the orthogonal complement of
the vector e. Note that Pej = ej − (1/2n)e, j = 1, . . . , 2n. Therefore, for any
j = 1, . . . , 2n, we have

(xj − w0)TM0(xj − w0) = 2(ej − (1/2n)e)TBT (BPBT )−1B(ej − (1/2n)e),

= 2(Pej)TPBT (BP 2BT )−1BP (Pej),

≤ 2‖Pej‖2,

=
2n− 1

n
,

< 2,

where we used P = P 2 on the second line and the fact that PBT (BP 2BT )−1BP
is an orthogonal projection matrix to derive the first inequality. Consequently, the
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ellipsoid G := {x ∈ Rn : (x− w0)T (1/2)M0(x− w0) ≤ 1} covers X0. Therefore,

log vol MVCE(X0) ≤ log vol G,
= log η +

n

2
log 2 + log det(M0)−1/2,

=
n

2
log 2 + log vol F0,

which implies that log vol F0 ≥ log vol MVCE(X0) − (n/2) log 2. By Lemma 3.1, we
have log vol MVCE(X0) ≥ log vol MVCE(S)−2n log n. Combining these two inequal-
ities, we obtain log vol F0 +2n log n+(n/2) log 2 ≥ log vol MVCE(S) as desired.

The next lemma relates log vol Fk to log vol MVCE(S).
Lemma 4.2. For any k = 0, 1, 2, . . . , we have

log vol Fk ≤ log vol MVCE(S) ≤ log vol Fk +
n

2
log(1 + εk).(22)

Proof. By definition of εk,
√

1 + εk Fk ⊇ S, where
√

1 + εk Fk is given by expand-
ing Fk around its center wk by a factor of

√
1 + εk. Therefore, log vol MVCE(S) ≤

log vol Fk + (n/2) log(1 + εk), which proves the second inequality in (22).
We follow an argument similar to that in the proof of Theorem 4.1 to establish

the first inequality (cf. (20), (21), and (19)). At step k of Algorithm 4.1, uk ∈ R2n+k

is a feasible solution of the optimization problem (D(Xk)). Therefore,

log vol Fk = log η +
n

2
log n +

1

2
log det Πk(u

k),

≤ log η +
n

2
log n +

1

2
log det Πk(u

k
∗),

= log vol MVCE(Xk),

where uk
∗ denotes the optimal solution of (D(Xk)) and Πk : R2n+k → Sn+1 is a linear

operator given by

Πk(u) :=

2n+k∑
j=1

uj

[
xj(xj)T xj

(xj)T 1

]
.(23)

Since Xk ⊂ S, the first inequality follows.
The following corollary immediately follows from Lemma 4.2.
Corollary 4.3. For any k = 0, 1, 2, . . . , εk ≥ 0. Furthermore, if Algorithm 4.1

does not terminate at step k, then εk > (1 + ε)2/n − 1.
So far, we have established the following results: (i) vol F0 is a provable ap-

proximation to vol MVCE(S) and (ii) the sequence of ellipsoids Fk generated by
Algorithm 4.1 yields a sequence of lower bounds on vol MVCE(S). Our next goal is
to demonstrate that {vol Fk}, k = 0, 1, . . . , is a strictly increasing sequence, which im-
plies that Algorithm 4.1 produces increasingly sharper lower bounds to vol MVCE(S).
At this stage, it is worth noticing that the line search problem LS(k) precisely com-
putes the next trial ellipsoid which yields the largest increase in the volume for the
particular updating scheme of Algorithm 4.1.

Proposition 4.4. For any k = 0, 1, 2, . . . ,

log vol Fk+1 ≥ log vol Fk +

⎧⎨⎩
1
2 log 2 − 1

4 > 0 if εk ≥ n+1
n ,

1
16ε

2
k if εk < n+1

n .
(24)
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Proof. Our proof mimics Khachiyan’s argument [15]. By the definition of εk, we
have 1+ εk = (x2n+k+1−wk)TMk(x2n+k+1−wk). Let zk := x2n+k+1−wk. It follows
from (15) that

log det(Mk+1)−1 = log det
{
(1 − βk)

[
(Mk)−1 + nβkz

k(zk)T
]}
,

= n log(1 − βk) + log det
[
(Mk)−1

(
I + nβkM

kzk(zk)T
)]
,

= log det(Mk)−1 + n log(1 − βk) + log [1 + nβk(1 + εk)],

= log det(Mk)−1 − n log

(
1 +

βk

1 − βk

)
+ log

(
1 +

(
n

n + 1

)
εk

)
,

= log det(Mk)−1 − n log

(
1 +

εk
(n + 1)(1 + εk) − εk

)
+ log

(
1 +

(
n

n + 1

)
εk

)
,

≥ log det(Mk)−1 −

(
n

n+1

)
εk

1 +
(

n
n+1

)
εk

+ log

(
1 +

(
n

n + 1

)
εk

)
,

where we used the definition of βk in the last two equalities and the inequality
log(1 + ζ) ≤ ζ for ζ > −1. Since log vol Fk = log η + log det(Mk)−1/2 = log η +
(1/2) log det(Mk)−1, it follows that

log vol Fk+1 ≥ log vol Fk +
1

2
log

(
1 +

(
n

n + 1

)
εk

)
−

(
n

n+1

)
εk

2
(
1 +

(
n

n+1

)
εk

) .
The assertion follows from the observation that f(ν) := (1/2) log(1+ν)−ν/[2(1+ν)]
is a strictly increasing function for ν ≥ 0 and f(ν) ≥ ν2/16 for ν ∈ [0, 1].

We are now ready to analyze the iteration complexity of Algorithm 4.1. To this
end, we define the following parameters:

τρ := min

{
k :

(
n

n + 1

)
εk ≤ 1/2ρ

}
, ρ = 0, 1, 2, . . . .(25)

The next lemma establishes certain properties of τρ.
Lemma 4.5. τρ satisfies the following relationships:

τ0 = O(n log n),(26)

τρ − τρ−1 ≤ n2ρ+5, ρ = 1, 2, . . . .(27)

Proof. By Theorem 4.1, log vol F0 ≤ log vol MVCE(S) ≤ log vol F0 + 2n log n +
(n/2) log 2. At every iteration k with εk > (n + 1)/n, we have log vol Fk+1 −
log vol Fk ≥ (1/2) log 2 − 1/4 > 0 by Proposition 4.4. Therefore, τ0 = O(n log n).

Let us now consider τρ−τρ−1, ρ ≥ 1. For simplicity, let γ := τρ−1. By definition of
τρ−1, it follows from Lemma 4.2 that log vol Fγ ≤ log vol MVCE (S) ≤ log vol Fγ +
(n/2) log(1 + [(n + 1)/n]2−(ρ−1)) ≤ log vol Fγ + (n + 1)2−ρ. By Proposition 4.4,

log vol Fk+1 − log vol Fk ≥ [(n + 1)/n]22−(2ρ+4) ≥ 2−(2ρ+4) at every iteration k with
εk > [(n + 1)/n]2−ρ. Therefore, τρ − τρ−1 ≤ [(n + 1)2−ρ]/2−(2ρ+4) = (n + 1)2ρ+4 ≤
n2ρ+5, which completes the proof.

Lemma 4.5 enables us to establish the following result.
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Lemma 4.6. Let μ ∈ (0, 1). Algorithm 4.1 computes an iterate with εk ≤ μ in
O(n(log n + μ−1)) iterations.

Proof. Let σ be a positive integer such that [(n+1)/n]2−σ ≤ μ ≤ [(n+1)/n]21−σ.
Therefore, after k = τσ iterations, we already have εk ≤ [(n+1)/n]2−σ ≤ μ. However,

τσ = τ0 +

σ∑
ρ=1

(τρ − τρ−1) ≤ τ0 + 64n

σ∑
ρ=1

2ρ−1 ≤ τ0 + 64n2σ ≤ O

(
n log n +

n

μ

)
,

where we used Lemma 4.5 and the inequality 2σ ≤ 4/μ.
We are now in a position to establish the iteration complexity of Algorithm 4.1.
Theorem 4.7. Let ε > 0. Algorithm 4.1 computes a (1 + ε)-approximation to

MVCE(S) after at most O(n(log n + [(1 + ε)2/n − 1]−1)) iterations.
Proof. We first establish that Algorithm 4.1 returns a (1 + ε)-approximation to

MVCE(S) upon termination. Let κ denote the index of the final iterate. We have
εκ ≤ (1 + ε)2/n − 1. The trial ellipsoid Fκ satisfies S ⊆

√
1 + εκ Fκ, which together

with Lemma 4.2 implies that

vol Fκ ≤ vol MVCE(S) ≤ vol
√

1 + εκFκ = (1 + εκ)n/2vol Fκ ≤ (1 + ε)vol Fκ.

Therefore,
√

1 + εκ Fκ is indeed a (1 + ε)-approximation to MVCE(S).
We now prove the iteration complexity. If ε ≥ [2+(1/n)]n/2−1, then (1+ ε)2/n−

1 ≥ (n + 1)/n, which implies that at most τ0 = O(n log n) iterations already suffice.
Otherwise, the result follows from Lemma 4.6.

Remark 1. The iteration complexity of Algorithm 4.1 is asymptotically identi-
cal to that of the algorithm of Kumar and Yıldırım [18] that computes a (1 + ε)-
approximation to the MVCE of a finite set of m points.

We now establish the overall complexity of Algorithm 4.1.
Theorem 4.8. Algorithm 4.1 computes a (1 + ε)-approximation to MVCE(S) in

O
(
mnO(1)(log n + [(1 + ε)2/n − 1]−1)

)
operations, where O(1) denotes a universal constant greater than four.

Proof. We already have the iteration complexity from Theorem 4.7. We need
only analyze the computational cost of each iteration.

Let us start with the initialization stage. By Lemma 3.1, Algorithm 3.1 runs in
O(mn3) operations. w0 and (M0)−1 can be computed in O(n2) and O(n3) opera-
tions, respectively. The furthest point x2n+1 from the center of F0 can be determined
by solving m separate quadratic optimization problems with a single ellipsoidal con-
straint. By Proposition 2.6, each optimization problem can be solved in O(nO(1)+n3)
operations. Finally, it takes O(n2) operations to compute ε0. Therefore, the overall
complexity of the initialization step is O(m(nO(1) + n3)) operations. Similarly, at
iteration k, the major work is the computation of the furthest point x2n+k+1, which
can be performed in O(m(nO(1)+n3)) operations. Therefore, the overall running time
of Algorithm 4.1 is given by O(mnO(1)(log n + [(1 + ε)2/n − 1]−1)) operations.

Remark 2. The overall complexity of Algorithm 4.1 is linear in m, the number
of ellipsoids. This suggests that, in theory, Algorithm 4.1 is especially well-suited for
instances of the MVCE problem that satisfy m � n and for moderate values of ε. In
addition, if ε ∈ (0, 1), we have (1+ ε)2/n−1 = Θ(ε/n), in which case the running time
of Algorithm 4.1 can be simplified to O((1/ε)mnO(1)) operations, where O(1) is now
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a universal constant greater than five. Note that the running time of Algorithm 4.1
is polynomial for fixed ε.

We close this section by establishing that the convex hull of the finite set of points
collected by Algorithm 4.1 serves as a reasonably good approximation to S in the sense
that their respective MVCEs are closely related.

Proposition 4.9. Let κ denote the index of the final iterate of Algorithm 4.1.
Then, Xκ satisfies

vol MVCE(Xκ) ≤ vol MVCE(S) ≤ (1 + ε)vol MVCE(Xκ).(28)

In addition,

|Xκ| = O
(
n(log n + [(1 + ε)2/n − 1]−1)

)
.(29)

Proof. We first prove (28). Note that the first inequality is obvious since Xκ ⊂ S.
The second inequality follows from the relationships vol Fκ ≤ vol MVCE(Xκ) ≤
vol MVCE(S) (see the proof of Lemma 4.2) and vol MVCE(S) ≤ (1 + ε)vol Fκ (see
the proof of Theorem 4.7).

Since |Xκ| = 2n + κ, (29) simply follows from Theorem 4.7.

Remark 3. Proposition 4.9 establishes that Algorithm 4.1 computes a finite set
of points Xκ ⊂ S whose MVCE is related to MVCE(S) via (28). In addition, |Xκ|
depends only on the dimension n and the approximation factor ε but is independent
of the number of ellipsoids m. Furthermore, for ε ∈ (0, 1), we have |Xκ| = O(n2/ε).
Therefore, Xκ serves as a finite core set for S. Viewed from this perspective, Proposi-
tion 4.9 is an addition to the previous core set results for other geometric optimization
problems [17, 8, 7, 9, 1, 18].

Remark 4. In [18], a similar core set result has been established for the MVCE
problem for a finite set of m points in Rn. It is remarkable that asymptotically the
same result holds regardless of the difference in the underlying geometric structures
of the two input sets. In particular, the main ingredient in [18] that leads to the
improved complexity result over Khachiyan’s algorithm [15] as well as the core set
result is the initial volume approximation. In a similar manner, the counterpart of
this initialization stage (cf. Algorithm 3.1) enables us to extend the algorithm of
Kumar and Yıldırım to a set of ellipsoids. Khachiyan’s algorithm cannot be extended
to a set of ellipsoids as it relies on the finiteness property of the input set at the
initialization stage.

5. Rounding. In this section, we establish that Algorithm 4.1 can also be used
to compute a (1 + δ)n-rounding of S := conv(∪m

i=1Ei), where E1, . . . , Em ⊂ Rn are
full-dimensional ellipsoids and δ > 0. We assume that S is not symmetric around the
origin.

Our analysis closely follows Khachiyan’s treatment for an input set of a finite
number of points in Rn [15]. At iteration k of Algorithm 4.1, let qj := [(xj)T , 1]T ∈
Rn+1, j = 1, . . . , 2n+k, and let Qk := conv({±q1, . . . ,±q2n+k}), which is a centrally
symmetric polytope in Rn+1 (i.e., Qk = −Qk).

Let uk ∈ R2n+k denote the iterate at iteration k of Algorithm 4.1. Let us define
a full-dimensional ellipsoid Gk ⊂ Rn+1 given by

Gk := {y ∈ Rn+1 : yTΠk(u
k)−1y ≤ 1},(30)
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where Πk : R2n+k → Sn+1 is a linear operator defined by (23). Since uk is a feasible
solution of (D(Xk)), it follows from [15, Lemma 2] that Gk ⊆ Qk. Furthermore, for
any qj , j = 1, . . . , 2n + k, we have

(qj)TΠk(u
k)−1qj = [(xj)T 1]

[
I 0

−(wk)T 1

] [
nMk 0

0 1

][
I −wk

0 1

][
xj

1

]
,

= n(xj − wk)TMk(x
j − wk) + 1,

≤ n(1 + εk) + 1,

which, together with the previous inclusion, implies that

Gk ⊆ Qk ⊆
√

1 + n(1 + εk)Gk;(31)

i.e.,
√

1 + n(1 + εk)Gk is a
√

(1 + δ̃)(n + 1)-rounding of Qk, where δ̃ := (nεk)/(n+1).

Let Hk := {x ∈ Rn : [xT 1]T ∈
√

1 + n(1 + εk)Gk ∩ Λ}, where

Λ := {y ∈ Rn+1 : yn+1 = 1}.(32)

Note that Hk ⊂ Rn is a full-dimensional ellipsoid. By [15, Lemma 5],

1

(1 + εk)n
Hk ⊆ conv(Xk) ⊆ Hk;(33)

i.e., Hk ⊂ Rn is a (1 + εk)n-rounding of conv(Xk). However, it is straightforward to
verify that x ∈ Hk if and only if (x− wk)TMk(x− wk) ≤ 1 + εk, which implies that
Hk =

√
1 + εk Fk. Since conv(Xk) ⊆ S ⊆

√
1 + εk Fk, it follows from (33) that

1

(1 + εk)n
Hk ⊆ conv(Xk) ⊆ S ⊆ Hk;(34)

i.e., Hk is simultaneously a (1 + εk)n-rounding of conv(Xk) and of S. Therefore, in
order to obtain a (1+ δ)n-rounding of S, it suffices to run Algorithm 4.1 until εk ≤ δ.
We summarize this result in the following corollary, whose proof follows directly from
Lemma 4.6.

Corollary 5.1. Given δ > 0, Algorithm 4.1 computes a (1 + δ)n-rounding of S
in

O(mnO(1)(log n + δ−1))

arithmetic operations, where O(1) is a universal constant greater than four. In addi-
tion, upon termination of Algorithm 4.1, the ellipsoid computed by Algorithm 4.1 is
also a (1+ δ)n-rounding of the convex hull of a finite subset Xk ⊂ S with the property
that

|Xk| = O
(
n(log n + δ−1)

)
.(35)

Remark 5. Upon termination of Algorithm 4.1 with a (1 + δ)n-rounding of S,
Corollary 5.1 establishes that Xk is an ε̃-core set for S, where ε̃ := (1 + δ)n/2 − 1. In
fact, Khachiyan’s algorithm [15] is motivated by first computing a (1 + δ)n-rounding
of S and then choosing δ in such a way that the ellipsoid computed by the algorithm
is a (1 + ε)-approximation to the MVCE.

We close this section by noting that Corollary 5.1 can be improved if S is centrally
symmetric. In this case, we no longer need to “lift” the vectors in Xk to Rn+1. A
similar argument can be invoked to establish that Hk :=

√
1 + εk Fk satisfies

1√
(1 + εk)n

Hk ⊆ conv({±x1, . . . ,±x2n+k}) ⊆ S ⊆ Hk.
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6. Extensions to other sets. In this section, we discuss the extent to which
Algorithm 4.1 can be used to compute an approximate MVCE and an approximate
n-rounding of other input sets. Let T1, T2, . . . , Tm denote m objects in Rn and let T :=
∪m
i=1Ti. In order to extend Algorithm 4.1, we identify the following two subroutines

that need to be implemented efficiently:

1. Subroutine 1: Optimizing a linear function over T .
2. Subroutine 2: Maximizing a quadratic function over T .

Note that Subroutine 1 is required by Algorithm 3.1. Similarly, the computation
of the furthest point from the center of a trial ellipsoid (in its ellipsoidal norm) is
equivalent to Subroutine 2. All of the other operations of Algorithm 4.1 can be
performed efficiently for any input set T .

Let us now consider specific examples of input sets. Clearly, a finite set of points
and a finite set of balls would be special cases of a finite set of ellipsoids. Therefore,
Algorithm 4.1 would be trivially applicable in these cases. We just remark that certain
subroutines can be implemented more efficiently for these input sets. For a finite set
of points, Subroutines 1 and 2 can be performed in O(mn) and O(mn2) operations,
respectively. We then recover the algorithm of Kumar and Yıldırım [18]. For a
finite set of balls, while Subroutine 1 can still be implemented in O(mn) operations,
Subroutine 2 would require the same computational cost as that required by a set of
ellipsoids. Therefore, the running time of Algorithm 4.1 would asymptotically remain
the same for a finite set of balls. A similar argument also holds for an input set of
ellipsoids, each of which is defined by the same matrix Q = Qi, i = 1, . . . ,m, since
such an input set can be a priori transformed into a set of balls.

6.1. Set of half ellipsoids. Let Ti := {x ∈ Rn : (x − ci)TQi(x − ci) ≤
1, (f i)Tx ≤ αi}, where ci ∈ Rn and Qi ∈ Sn are positive definite, f i ∈ Rn with
f i �= 0, and αi ∈ R, i = 1, . . . ,m. Ti is simply given by the intersection of a full-
dimensional ellipsoid and a half-space. We will refer to each Ti as a half-ellipsoid. To
avoid trivialities, we assume that each Ti has a nonempty interior. It follows from
the results of Sturm and Zhang [28] that the problem of optimizing any quadratic
(hence linear) objective function over Ti can be cast as an equivalent SDP problem
with a fixed number of constraints using a technique similar to that used in the proof
of Proposition 2.6. Since both Subroutines 1 and 2 naturally decompose into a lin-
ear and quadratic optimization problem over each Ti, respectively, it follows from
Corollary 2.5 that both of them can be implemented in polynomial time. Therefore,
Algorithm 4.1 can compute an approximate MVCE and an approximate n-rounding
of a set of half-ellipsoids in polynomial time.

6.2. Set of intersections of a pair of ellipsoids. Let Ti := {x ∈ Rn : (x −
ci)TQi(x − ci) ≤ 1, (x − hi)TQi(x − hi) ≤ 1}, where ci ∈ Rn, hi ∈ Rn, and Qi ∈ Sn

are positive definite, i = 1, . . . ,m. Note that each Ti is given by the intersection
of two ellipsoids defined by the same matrix Qi with different centers. Similarly to
the previous case, Sturm and Zhang [28] establish that the problem of optimizing
any quadratic (hence linear) objective function over Ti can be decomposed into two
quadratic (linear) optimization problems over a half-ellipsoid, each of which can be
solved in polynomial time. Therefore, Algorithm 4.1 can compute an approximate
MVCE and an approximate n-rounding of a set of intersections of a pair of ellipsoids
in polynomial time. We remark that the complexity of solving a general quadratic
optimization problem over the intersection of two arbitrary ellipsoids is still an open
problem.
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6.3. Other sets and limitations. Based on the previous examples, it is clear
that Algorithm 4.1 can be applied to any input set as long as Subroutines 1 and 2
admit efficient implementations. While Subroutine 1 can be performed efficiently for
a rather large class of input sets (e.g., classes of convex sets that admit efficiently
computable barrier functions [19]), Subroutine 2 can be efficiently implemented only
in very special cases, some of which have been outlined in this section.

For instance, if T is given by the union of polytopes Ti := {x ∈ Rn : Aix ≤ bi},
where Ai ∈ Rm×n and bi ∈ Rm, i = 1, . . . ,m, then Subroutine 1 reduces to linear
programming, which can be solved efficiently using interior-point methods combined
with a finite termination strategy [35]. However, maximizing a convex quadratic
function over a polytope is in general an NP-hard problem. Therefore, even in the
case of a single polytope defined by linear inequalities, the problem of computing an
approximate MVCE is computationally intractable. We remark that the maximum
volume inscribed ellipsoid in a polytope defined by linear inequalities can be efficiently
approximated (see, e.g., [16]).

In summary, the extent to which Algorithm 4.1 can be applied to other input sets
is largely determined by whether Subroutine 2 can be implemented efficiently. Since
quadratic optimization over various feasible regions is an active area of research [28,
36], further progress in establishing polynomial complexity may widen the domain of
input sets to which Algorithm 4.1 can be applied.

7. Concluding remarks. In this paper, we established that the first-order al-
gorithm of Kumar and Yıldırım [18] that computes an approximate MVCE of a finite
set of points can be extended to compute the MVCE of the union of finitely many
full-dimensional ellipsoids without compromising the polynomial-time complexity for
a fixed approximation parameter ε > 0. Moreover, the iteration complexity of our
extension and the core set size remain asymptotically identical. In addition, we estab-
lish that our algorithm can also compute an appproximate n-rounding of the convex
hull of a finite number of ellipsoids. We discuss how the framework of our algorithm
can be extended to compute an approximate MVCE and an approximate n-rounding
of other input sets in polynomial time and present certain limitations. Our core set
result is an addition to the recent sequence of works on core sets for several geometric
optimization problems [17, 8, 7, 9, 1, 18].

While our algorithm has a polynomial-time complexity in theory, it would be
especially well suited for instances of the MVCE problem with m � n and moderately
small values of ε. In particular, our algorithm would be applicable to the problem of
constructing a bounding volume hierarchy as the objects lie in three-dimensional space
(i.e., n = 3) and a fixed parameter ε usually suffices for practical applications. To the
best of our knowledge, this is the first result in the literature towards approximating
the convex hull of a union of ellipsoids by that of a finite subset whose size depends
on only the dimension n and the parameter ε.

On the other hand, our algorithm would probably not be practical if a higher
accuracy (i.e., a smaller ε) were required or if the dimension n were large. In addition,
it is well known that first-order algorithms in general suffer from slow convergence
in practice, especially for smaller values of ε. Our preliminary computational results
indicate that both of the first-order algorithms of [15, 18] for an input set of points
tend to take an excessive number of iterations as ε is decreased, which suggests that
the practical performance of these algorithms is indeed closely related to the worst-
case theoretical complexity bounds. Motivated by the core set result established in
this paper and the encouraging computational results based on a similar core set
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result for the minimum enclosing ball problem [17], we intend to work on a column
generation algorithm for the MVCE problem with an emphasis on establishing an
upper bound on the number of subproblems solved to obtain a desired accuracy.

Very recently, Todd and Yıldırım [30] proposed a modification of the algorithm of
Kumar and Yıldırım [18] that computes an approximate MVCE and an approximate
n-rounding of a finite set of points. Their modification allows “dropping” points from a
working core set throughout the algorithm and maintains the same complexity bound
as that of the algorithm of [18]. As such, it has the potential of computing smaller
core sets in practice. We remark that the same idea can easily be incorporated into
our algorithm for a set of ellipsoids without any increase in the asymptotic complexity
bound.
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FINDING OPTIMAL ALGORITHMIC PARAMETERS USING
DERIVATIVE-FREE OPTIMIZATION∗
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Abstract. The objectives of this paper are twofold. We devise a general framework for identify-
ing locally optimal algorithmic parameters. Algorithmic parameters are treated as decision variables
in a problem for which no derivative knowledge or existence is assumed. A derivative-free method for
optimization seeks to minimize some measure of performance of the algorithm being fine-tuned. This
measure is treated as a black-box and may be chosen by the user. Examples are given in the text.
The second objective is to illustrate this framework by specializing it to the identification of locally
optimal trust-region parameters in unconstrained optimization. The derivative-free method chosen
to guide the process is the mesh adaptive direct search, a generalization of pattern search methods.
We illustrate the flexibility of the latter and in particular make provision for surrogate objectives.
Locally, optimal parameters with respect to overall computational time on a set of test problems are
identified. Each function call may take several hours and may not always return a predictable result.
A tailored surrogate function is used to guide the search towards a local solution. The parameters
thus identified differ from traditionally used values, and allow one to solve a problem that remained
otherwise unsolved in a reasonable time using traditional values.

Key words. derivative-free optimization, black-box optimization, parameter estimation, surro-
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1. Introduction. Most algorithms, be it in optimization or any other field,
depend more or less critically on a number of parameters. Some parameters may
be real numbers, such as an initial trust-region radius, or a scalar that dictates the
precision at which a subproblem needs to be solved. These parameters may be required
to remain between two, possibly infinite bounds, or may be constrained in a more
complex way. They may also be discrete, such as the maximal number of iterations
or the number of banned directions in a taboo search heuristic, or even categorical,
such as a Boolean indicating whether exact or inexact Hessian is used, or which
preconditioner to use. The overall behavior of the algorithm is influenced by the
values of these parameters. Unfortunately, for most practical cases, it remains unclear
how a user should proceed to determine good, let alone optimal, values for those
parameters. We devise a framework for fine-tuning such parameters which is general
enough to encompass most numerical algorithms from engineering, numerical analysis
and optimization. The design of the framework relies on the observation that measures
of performance can be derived from the dependency of the algorithm on its parameters.
These measures are context- and problem-dependent and for this reason, we wish to
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treat them as black-boxes in the remainder of this paper. We shall, however, give
examples in the context of a particular application.

An optimization problem is formulated where such a measure of performance is
minimized as a function of the parameters, over a domain of acceptable values. We
use a class of nonsmooth optimization algorithms to solve this problem which makes
provision for an optional surrogate function to guide the search strategy. A surrogate
function is a simplification of the real objective function that possesses similar be-
havior, but is believed to be less costly to evaluate, or easier to manipulate, in some
sense. Surrogate functions range from simplified physical models to approximation
surfaces, such as Kriging models. The reader is invited to consult [6] for a general
framework for the use of surrogates in an optimization context.

As an illustration of how to use this framework, we address the study of standard
parameters present in trust-region algorithms for unconstrained optimization and try
to identify some locally optimal values. The quality of a set of parameters is measured
by the overall computational time required by a trust-region algorithm to solve a
significant number of test problems to a prescribed precision. Other possibilities of
performance measures include the overall number of function calls, the number of
failures, the total number of iterations or the agreement of the algorithm with some
prescribed behavior. In the numerical tests presented, the test problems originate
from the CUTEr [19] collection. We formulate an optimization problem, where each
evaluation of the objective function requires solving a collection of test problems. This
objective function is time-consuming to evaluate, is highly nonlinear and no derivative
is available or even proved to exist. Moreover, evaluating the objective twice with the
same arguments may lead to slightly different function values since the computational
time is influenced by the current machine load and fluctuates with network activity.
We opted for the mesh adaptive direct search (mads) [4] as derivative-free method
for reasons which we explain below. In our context, a surrogate function is obtained
by applying the same trust-region algorithm to a set of easier problems. The trust-
region parameters obtained by mads allow the solution of a problem which remained
otherwise unsolved in reasonable time by the trust-region method.

Related work on locally optimal parameter identification in a similar trust-region
framework is presented in [17], where the parameter space is discretized and a thor-
ough search is carried out. However, even for a modest number of discretized values,
devising a mechanism able to compare so many variants of an algorithm becomes an
issue. In recent years, performance profiles [13] have been extensively used to compare
algorithms, but it remains unclear how to use them to efficiently compare more than
five or six. We circumvent this issue in the present paper by delegating the task to
another optimization algorithm.

In recent years, pattern-search methods have proved to perform decently on molec-
ular geometry and conformation problems [1, 28]. The paper [23] provides a review
of direct search methods.

The paper is structured as follows. In section 2, we describe a derivative-free
framework, then outline a specific implementation of the mads class of algorithms, and
highlight the main convergence results. We also describe how a surrogate function can
be used within this algorithm. Section 3 describes a standard trust-region algorithm,
and discusses the four algorithmic parameters to be fine-tuned. In section 4, we
present a methodology specializing our framework to identify locally optimal trust-
region parameters using a mads algorithm. Results are presented in secton 5, and we
give concluding remarks in section 7.
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2. A framework for nondifferentiable problems. A general optimization
problem may be stated as

min
p∈Ω

ψ(p),(2.1)

with ψ : Ω ⊆ R� → R ∪ {+∞}. The nature and structure of the function ψ and
the domain Ω limit the type of algorithms that may be used to attempt to solve this
problem. Global optimization is often only possible when the problem structure is
sufficiently rich and exploitable, and when the problem size is reasonable, but fre-
quently out of reach in acceptable time. Under appropriate smoothness assumptions,
we are thus often content with first-order critical solutions. For example, when ψ is
continuously differentiable over Ω, an appropriate variant of Newton’s method com-
bined with a globalizing scheme yields a critical point under reasonable assumptions.
When ψ is nondifferentiable, discontinuous or fails to evaluate for some values of its
argument p ∈ Ω, problem (2.1) cannot be satisfactorily approached by such a method.
This is often the case when evaluating the objective entices running a computer code.
In order to evaluate, the code may, for instance, have to solve a coupled system of
differential equations, and may, for some internal reasons, fail to return a meaning-
ful value. In this case, the function value is simply considered to be infinite. In a
helicopter rotor blade design application [5], the objective function failed to return
a value two times out of three. Randomness may also be present in the evaluation
of a function, as in [29], where two evaluations of ψ at the same point p return
slightly different values. In this less optimistic case, the best optimality condition
which can be hoped for is to find a refined point. We shed light on this concept in
section 2.3.

2.1. A general overview of pattern search type methods with surrogate.
In the special case where Ω is defined by finitely many linear inequalities, algorithms
from the broad class of generalized pattern search (gps) methods [3] are natural
candidates to perform the minimization. They have the advantage of being relatively
simple and easy to implement.

Algorithms of the pattern search type attempt to locate a minimizer of the func-
tion ψ over Ω by means of the barrier function

ψΩ(p) =

{
+∞ if p �∈ Ω
ψ(p) otherwise.

(2.2)

We will refer to ψ as being the truth function or, sometimes, simply the truth.
As is frequent in nonlinear programming, a second function, σ : Ω → R ∪ {+∞},

playing the role of a model for ψ, may be used to steer the iterates towards promising
regions. In the context of nondifferentiable optimization and pattern search methods,
a model is often referred to as a surrogate. The surrogate may be an approximation
to the truth, or it may be a simplified function whose behavior is similar to that of
the truth. An important feature of the surrogate is that it should be cheaper than the
truth, in some sense—less costly in terms of time or other. The previous sentences are
left intentionally vague, since the formal convergence analysis is independent of the
quality of the approximation of ψ by σ. However, in practice, appropriate surrogates
may improve the convergence speed. A barrier surrogate σΩ is defined similarly to
(2.2).

Pattern search type methods are iterative procedures where each iteration es-
sentially consists of two steps. First, a global exploration of the space of variables
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is conducted in hopes of improving the best feasible solution so far, or incumbent,
pk ∈ Ω. This flexible exploration stage, called the search step, returns a set of
candidates, but the truth function need not be evaluated at all of them. To decide at
which of these the truth ψΩ will be evaluated, they are ordered in increasing surrogate
function values. After ordering, the set of candidates L = {q1, q2, . . . , qm} satisfies
σΩ(q1) ≤ σΩ(q2) ≤ · · · ≤ σΩ(qm). A candidate qj ∈ L will be considered promis-
ing if σΩ(qj) ≤ σΩ(pk) + v|σΩ(pk)|, where v ∈ R+ ∪ {+∞} is a threshold supplied
by the user. Candidates which are not promising are eliminated from the search

list.
The truth function is then evaluated at the promising candidates in L with in-

creasing values of i, and terminating the process as soon as ψΩ(qi) < ψΩ(pk). In this
case, an improved incumbent is found and we set pk+1 = qi.

In the event where the search fails to identify an improved iterate, a local ex-
ploration about pk is performed. This is called the poll step. Again, the surrogate
function is used to order the trial points. The convergence analysis relies only on
this step and it must obey stricter rules. In particular, it prohibits the pruning of
candidates.

A inconvenience about gps algorithm is that they require some prior knowledge
on the structure of Ω to decide on a set of appropriate search directions. Lack of such
knowledge may prevent progress towards a minimizer [26]. So as to make a provision
for more general Ω and bypass such a prior knowledge requirement, we opted for an
extension of gps named the mesh adaptive direct search (mads) [4], which is also
based on the above principles. mads allows a more general exploration of the space
of variables ensuring stronger convergence results than gps. Indeed, gps confines the
poll at each iteration to a fixed finite set of directions, while the set of directions for
the mads poll may vary at each iteration, and in the limit the union of these poll
directions over all iterations is dense in the whole space.

2.2. An iteration of a MADS algorithm. We now present a lower-level de-
scription of mads. The reader is invited to refer to [4] for a complete algorithmic de-
scription, a detailed convergence analysis and numerical comparisons with gps. The
version presented here is specialized to our purposes and some algorithmic choices
were made.

Let S0 ⊂ Ω denote a finite set of initial guesses, provided by the user (a strategy
exploiting the surrogate to determine S0 is presented in section 4.4). Set p0 to be the
best initial guess in S0. A mads algorithm is constructed in such a way that any trial
point generated by the search or poll step is required to lie on the current mesh,
the coarseness of which is governed by a mesh size parameter Δk ∈ R+. The mesh is
formally defined in Definition 2.1.

Definition 2.1. At iteration k, the current mesh is defined to be the union

Mk =
⋃

p∈Sk

{
p + Δkz : z ∈ Z�

}
,

where Sk is the set of points where the objective function ψ has been evaluated by the
start of iteration k and Z denotes the set of integers.

The goal of the iteration is to find a trial mesh point with a lower objective
function value than the current incumbent value ψΩ(pk). Such a trial point is called
an improved mesh point, and the iteration is called a successful iteration. There are
no sufficient decrease requirements: any improvement in ψΩ leads to a successful
iteration. The iteration is said to be unsuccessful if no improved point is found.
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Fig. 1. Two consecutive frames Fk, Fk+1 in R2 with Δk = 1
2
, Δk+1 = 1

8
.

The poll step evaluates ψΩ at 2� trial points surrounding the current incumbent.
These neighboring points are called the frame, and are denoted by

Fk = {pk ± Δkd : d ∈ Dk},(2.3)

where Dk = {d1, d2, . . . , d�} is a basis in Z�. To ensure convergence, the radii
(max{‖Δkd‖∞ : d ∈ Dk}) of successive frames must converge to zero at a slower
rate than the mesh size parameter. The construction of the basis Dk proposed in [4]
ensures that

‖Δkd‖∞ = O(
√

Δk) for all d ∈ Dk.(2.4)

Figure 1 shows an example of two consecutive frames in R2. The figure on the
left represents iteration k. The mesh Mk is represented by the intersection of all
lines. Suppose that Δk = 1

2 . The thick lines delimit the frame, i.e., the region in
which all four poll points must lie. In this example, the frame points q1 and q3
are obtained by the randomly generated direction d1 = (0,−2), and q2 and q4 are
obtained by d2 = (2, 1). The figure on the right displays a possible frame if iteration
k is unsuccessful. The mesh is finer at iteration k + 1 than it was at iteration k, and
there are more possibilities in choosing a frame. More precisely, Δk+1 = Δk

4 = 1
8 and,

as in (2.4), the distance from the boundary of the frame to the incumbent is reduced

by a factor of 2; ‖ri − pk+1‖∞ =
√

1
4‖qj − pk‖∞ for all i, j. The direction used to

construct the frame points r1 and r3 are d1 = (−3, 4), and the direction for r2 and r4
are d2 = (4, 0). In the event that iteration k + 1 is successful at the mesh poll point
r3, iteration k + 2 would be initiated at the new incumbent pk+2 = r3 with a larger
mesh size parameter Δk+2 = 4Δk+1 = 1

2 .
When the poll step fails to generate an improved mesh point then the frame is

called a minimal frame, and the frame center pk is said to be a minimal frame center.
At iteration k, the rule for updating the mesh size parameter is

Δk+1 =

⎧⎨⎩
Δk/4 if pk is a minimal frame center,
4Δk if an improved mesh point is found, and Δk ≤ 1

4 ,
Δk otherwise.

(2.5)
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Algorithm 2.1. [A mads algorithm]

Step 0 [Initialization] Let S0 be given, p0 ∈ arg min{ψ(p) : p ∈ S0}, Δ0 > 0,
and v ∈ R+ ∪ {+∞}. Set the iteration counter k = 0, and go to Step 1.

Step 1 [search step] Let L = {q1, q2, . . . , qm} ⊂ Mk be a finite (possibly empty)
set of mesh points such that σΩ(qi) ≤ σΩ(qj) ≤ σΩ(pk) + v|σΩ(pk)| when
1 ≤ i < j ≤ m.
Let i0 be the smallest i ∈ {1, . . . ,m} such that ψΩ(qi) < ψΩ(pk).
If no such index i0 exists, go to Step 2.
Otherwise, declare k successful, set pk+1 = qi0 and go to Step 3.

Step 2 [poll step] Construct the frame Fk = {q1, q2, . . . , q2�} as in (2.3) and
order the points so that σΩ(qi) ≤ σΩ(qj) when 1 ≤ i < j ≤ 2�.
Let i0 be the smallest i ∈ {1, . . . , 2�} such that ψΩ(qi) < ψΩ(pk).
If no such index i0 exists, declare k unsuccessful and go to Step 3.
Otherwise, declare k successful, set pk+1 = qi0 and go to Step 3.

Step 3 [Parameter update] If iteration k was declared unsuccessful, then pk is
a minimal frame center and pk+1 is set to pk. Otherwise pk+1 is an
improved mesh point.
Update Δk+1 according to (2.5). Increase k ← k + 1 and go back to
Step 1.

The previous description is summarized in Algorithm 2.1.
Given the functions ψ and σ, the only steps that are not completely defined in

Algorithm 2.1 are the selection of the set of initial guesses S0 and the search strategy.
Particular choices in the framework of an application are discussed in section 4.4.

2.3. Convergence properties of MADS. We restrict ourselves to the case
where Ω is convex and full dimensional, i.e., with nonempty interior. This encom-
passes the case where Ω is defined by (possibly strict) linear inequalities. It seems
reasonable to assume that in practice, most algorithms depend on parameters satis-
fying this assumption. Moreover, the mads convergence analysis greatly simplifies.
This section presents the specialized results. The proofs of these results are special
cases of the proofs in [4].

Let cl(A) denote the closure of a set A. Under our conditions, the tangent cone
to Ω at some p̂ ∈ cl(Ω), denoted by TΩ(p̂), becomes the closure of the set {μ(v − p̂) :
μ ∈ R+, v ∈ Ω}. The normal cone to Ω at p̂ ∈ cl(Ω) is the polar of the tangent cone
NΩ(p̂) = TΩ(p̂)◦ = {w ∈ R� | wT v ≤ 0 ∀v ∈ TΩ(p̂)}. If the gradient ∇ψ(p̂) exists
at p̂ ∈ cl(Ω), we say that p̂ is first-order critical for (2.1) if −∇ψ(p̂) ∈ NΩ(p̂). For
nonconvex domains, more general definitions of tangency from nonsmooth analysis
are used in [4].

The analysis relies on Assumption 2.1.
Assumption 2.1. At least one initial guess p0 ∈ S0 ⊆ Ω has finite ψ(p0) value

and all iterates {pk} produced by Algorithm 2.1 lie in a compact set.
The mechanism of Algorithm 2.1 ensures the following property.
Lemma 2.2. The sequence of mesh size parameters satisfies lim infk→∞ Δk = 0.

Moreover, since Δk shrinks only at minimal frames, it follows that there are infinitely
many minimal frame centers.

Definition 2.3 specifies important subsequences of iterates and limiting directions.
Definition 2.3. A subsequence of the mads iterates consisting of minimal frame

centers, {pk}k∈K for some subset of indices K, is said to be a refining subsequence
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if {Δk}k∈K converges to zero. Any accumulation point of {pk}k∈K will be called a
refined point.

Let {pk}k∈K be a convergent refining subsequence, with refined point p̂, and let v
be any accumulation point of the set { dk

‖dk‖ : pk + Δkdk ∈ Ω, k ∈ K} ⊂ R�. Then v is

said to be a refining direction for p̂.
Along a refining subsequence, we thus always have ψ(pk+1) ≤ ψ(pk). Note that

under Assumption 2.1, there always exists at least one convergent refining subse-
quence, one refining point and a positive spanning set of refining directions.

Recall that the Clarke generalized directional derivative [7, 22] of ψ at p̂ in the
direction v �= 0 is defined as

ψ◦(p̂; v) ≡ lim sup
y → p̂, y ∈ Ω,

t ↓ 0, y + tv ∈ Ω

ψ(y + tv) − ψ(y)

t
.

The following result presents a hierarchy of optimality conditions satisfied at a
refining point. The weakest conclusion is a direct consequence of Definition 2.3. The
next conclusions result from increasingly strong assumptions on ψ. The main result is
that the Clarke derivatives of ψ at a refined point p̂ are nonnegative for all directions
in the tangent cone.

Theorem 2.4. Let p̂ ∈ cl(Ω) be a refined point of a refining subsequence {pk}k∈K ,
and assume that the set of refining directions for p̂ is dense in TΩ(p̂).

• p̂ is the limit of minimal frame center on frames that become infinitely fine,
• if ψ is lower semicontinuous at p̂, then ψ(p̂) ≤ limk∈K ψ(pk),
• if ψ is Lipschitz near p̂, then ψ◦(p̂, v) ≥ 0 for every v ∈ TΩ(p̂),
• if ψ is Lipschitz near p̂ ∈ int(Ω), then 0 ∈ ∂ψ(p̂) ≡ {s ∈ R� : ψ◦(x̂; v) ≥ vT s,

∀v ∈ R�},
• if ψ is strictly differentiable [24] at p̂ ∈ Ω, then p̂ is first-order critical for

(2.1) and is a KKT point of (2.1).
Note that the above convergence results rely only on the poll step, and are

independent of the surrogate function and of the search step. Furthermore, even
though Algorithm 2.1 is applied to ψΩ instead of ψ, the convergence results are linked
to the local smoothness of ψ and not ψΩ, which is obviously discontinuous on the
boundary of Ω.

Practical implementations of mads ensure that the density assumption of Theo-
rem 2.4 is satisfied [4].

3. Trust-region methods. In this section, we briefly cover a globally conver-
gent framework for unconstrained programming. This framework depends on a num-
ber of parameters which influence the impact of the main convergence result.

To successfully tackle a smooth nonlinear nonconvex programming problem from
a remote starting guess, the iteration must often be embedded into a globalization
scheme, the most popular of which are the linesearch, the trust region [10], and the
more recent filters [14, 20]. The first two are probably the most well known and
their philosophies may be seen as dual; a linesearch strategy computes a step length
along a predetermined direction, while a trust-region strategy considers all acceptable
directions but limits the maximal step length.

3.1. A basic trust-region algorithm. Trust-region methods appear to date
back to a 1944 paper in which they were used to solve nonlinear least-squares prob-
lems [25]. After updating rules were introduced in 1966 [15] for the size of the region,
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global convergence of a particular algorithm was proved in 1970 [30]. Trust-region
methods now form one of the most popular globalization schemes and are often
praised for their robustness and flexibility. They are used throughout optimization,
from regularization problems to derivative-free and interior-point methods. For lists
of references, historical notes, and thorough theoretical developments across the whole
optimization spectrum we refer the interested reader to [10].

For simplicity, assume we wish to solve the unconstrained programming problem

min
x∈Rn

f(x),(3.1)

where f : Rn → R is a twice-continuously differentiable function which might be
highly nonlinear and/or costly to evaluate. For problem (3.1) to be well defined,
we will assume that f is bounded below. At iteration k, instead of manipulating f
directly, f is replaced by a suitable local model mk which is easier and cheaper to
evaluate. A region Bk ⊂ Rn, referred to as the trust region, is defined around xk to
represent the extent to which mk is believed to reasonably model f . The trust region
is defined as the ball

Bk ≡ {xk + s ∈ Rn : ‖s‖ ≤ δk} ,

where δk > 0 is the current trust-region radius and ‖ · ‖ represents any norm on
Rn. To simplify the exposition, we choose the Euclidean norm but other choices are
acceptable [10]. The model mk is approximately minimized within Bk. If the decrease
thus achieved is sufficient, and if the agreement between f and mk at the trial point
is satisfactory, the step is accepted and the radius δk is possibly increased. Otherwise,
the step is rejected and the radius is decreased. This last option indicates that mk

might have been trusted in too large a neighborhood of xk.
Global convergence of trust-region schemes is ensured by mild assumptions on

mk and on the decrease that should be achieved at each iteration. In practice, one of
the most popular models is the quadratic model

mk(xk + s) = f(xk) + ∇f(xk)
T s +

1

2
sT∇2f(xk)s.(3.2)

Sufficient decrease in the model at a trial point xk + s is achieved if the decrease
in mk is at least a fraction of that obtained at the Cauchy point xC

k—the minimizer
of mk along the steepest descent direction d = −∇mk(xk) within Bk—i.e.,

mk(xk) −mk(xk + s) ≥ θ [mk(xk) −mk(x
C

k)] ,(3.3)

where 0 < θ < 1 is independent of k.
A typical trust-region framework for problem (3.1) may be stated as Algorithm 3.1.
The updating rule (3.4) at Step 3 of Algorithm 3.1 is not the only one used

in practice, but most likely the most common one. Other rules involve polynomial
interpolation of ρk = ρ(sk) as a function of the step sk [12], while others devise more
sophisticated functions to obtain the new radius [21, 38].

The lengthy subject of how to solve the subproblems at Step 1 of Algorithm 3.1
while ensuring (3.3) is out of the scope of this paper. We shall simply argue in section 4
that the method used in our implementation ensures this.

3.2. Convergence properties of the basic algorithm. We recall in this sec-
tion the important global convergence properties of Algorithm 3.1 without proof. The
proofs may be found in [10].
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Algorithm 3.1. [Basic trust-region algorithm]

Step 0 [Initialization] An initial point x0 ∈ Rn and an initial trust-region radius
δ0 > 0 are given, as well as parameters

0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2.

Compute f(x0) and set k = 0.
Step 1 [Step calculation] Define the model (3.2) of f(xk + s) in Bk and compute

a step sk ∈ Bk which satisfies (3.3).
Step 2 [Acceptance of the trial point] Compute f(xk + sk) and

ρk =
f(xk) − f(xk + sk)

mk(xk) −mk(xk + sk)
.

If η1 ≤ ρk, then set xk+1 = xk + sk; otherwise, set xk+1 = xk.
Step 3 [Trust-region radius update] Set

δk+1 =

⎧⎨⎩
α1‖sk‖ if ρk < η1

δk if η1 ≤ ρk < η2

max[α2‖sk‖, δk] if η2 ≤ ρk.
(3.4)

Increment k by one, and go to Step 1.

Step 2 of Algorithm 3.1 is often referred to as the computation of achieved versus
predicted reduction. Achieved reduction is the actual reduction in the objective f ,
defined by aredk = f(xk)−f(xk +sk). Predicted reduction is the reduction suggested
by the model, predk = mk(xk) −mk(xk + sk). A step sk is thus accepted whenever
aredk ≥ η1predk, an iteration we refer to as successful.

Requirements on the function f and each model mk are gathered in Assump-
tion 3.1.

Assumption 3.1. The function f is bounded below and its Hessian matrix re-
mains bounded over a set containing all iterates xk.

The first stage in the global convergence analysis of Algorithm 3.1 is usually
summarized by Theorem 3.1.

Theorem 3.1. Suppose that Assumption 3.1 is satisfied. Then

lim inf
k→∞

‖∇f(xk)‖ = 0.

Theorem 3.1 was first proved in [30] in a framework where η1 = 0, i.e., where all
trial points are accepted as soon as they produce a decrease in the objective. This
result proves that if {xk} has limit points, at least one of them is critical. In fact,
this is as good a convergence result as we can obtain when η1 = 0 [39]. Algorithm 3.1
is more demanding on the trial point—sufficient reduction must be achieved. This
sheds some light on the importance of the value of η1 in the framework, for as the
next result shows, a much stronger conclusion holds in this case.

Theorem 3.2. Suppose Assumption 3.1 is satisfied, and that η1 > 0. Then

lim
k→∞

‖∇f(xk)‖ = 0.

In other words, Theorem 3.2 shows that all limit points are first-order critical for
(3.1). The distinction between Theorem 3.1 and Theorem 3.2 was reinforced by the



FINDING OPTIMAL ALGORITHMIC PARAMETERS USING MADS 651

careful example of [39], where it is shown that an algorithm with η1 = 0 may very
well produce limit points which are not critical.

The importance of the parameters η1 and η2, but also α1 and α2 of Algorithm 3.1
will be of interest to us in the remainder of this paper. In particular, we shall come
back to the issue of reduction versus sufficient reduction.

4. Methodology. An objective of the paper is to address a long-standing ques-
tion of identifying four optimal parameters found in a trust-region update (3.4),
namely η1, η2, α1, and α2. In this section, we present a general methodology to
address this issue.

4.1. A black-box approach to parameter estimation. Suppose that Algo-
rithm A depends on a set of continuous parameters p restricted to lie in Ω ⊂ R�,
where � is typically small. Let PO = {Pi | i ∈ O} be a set of nO ≥ 1 problem in-
stances believed to be representative of the class of problems for which Algorithm A
was designed, or to be of particular interest in the context of Algorithm A. Define a
function ψ : Ω → R so that for any p ∈ Ω, ψ(p) is some measure of the performance
of Algorithm A in solving the set of problems Pi ∈ PO and such that, the smaller the
value of ψ(p), the better the performance of the algorithm, in a context-dependent
sense.

In an optimization context, examples of a function ψ would include the total CPU
time required to solve the complete test set, the number of problems unsuccessfully
solved or the cumulative number of iterations or of function evaluations. In other
contexts, any appropriate measure may be used.

The above description qualifies as a black-box optimization problem in the sense
that a computer program must in general be run in order to evaluate ψ(·) at a given
parameter value p ∈ Ω. For all allowed values of the parameters p, we seek to minimize
a global measure of the performance of Algorithm A. In other words, we wish to solve
problem (2.1).

Problem (2.1) is usually a small-dimensional nondifferentiable optimization prob-
lem with expensive black-box function evaluation. As an additional difficulty, evalu-
ating the objective function of (2.1) twice at the same value of p might produce two
sligthly different results.1 It therefore seems natural to use the mads algorithm to
approach it.

In the present context, there is a natural way to define a less expensive surrogate
function that would have an overall behavior similar to that of ψ. Let PS = {Pj | j ∈
S} be a set of nS ≥ 1 easy problems and for any p ∈ Ω, define σ(p) to be the same
measure (as with ψ) of performance of Algorithm A in solving the set PS of problems.
The quality of an approximation of the behavior of ψ by the surrogate function σ
depends on nS and on the features of the problems in PS . The more problems, the
better the approximation, but the cost of surrogate evaluations will increase. There
is therefore a trade-off between the quality and the cost of a surrogate function. It
would thus make sense to include in PS problems that are less expensive to solve and
possibly, but not necessarily, we may choose S ⊆ O.

Another interesting possibility for a surrogate would be to solve the problems in
PS to a looser accuracy.

Note that this framework is sufficiently general to encompass algorithmic param-
eter estimation in almost any branch of applied mathematics or engineering.

1And thus technically, ψ is not a function in the mathematical sense.
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4.2. An implementation of the basic trust-region Algorithm 3.1. Our
implementation of the trust-region method is relatively conventional and relies on
the building blocks of the GALAHAD library for optimization [18]. Trust-region sub-
problems are solved by means of the Generalized Lanczos method for Trust Regions
GLTR [16, 18]. This method is attractive for its ability to naturally handle negative
curvature and to stop at the Steihaug–Toint point, i.e., the intersection of the trust-
region boundary with a direction of sufficiently negative curvature [35, 37]. It ensures
satisfaction of (3.3).

We now discuss the termination criteria of applying the trust-region Algorithm 3.1
to the unconstrained problem

(Pi) ≡ min
x∈Rni

fi(x),

where fi : Rni → R, for i ∈ O ∪ S. The trust-region algorithm stops as soon as an
iterate xk satisfies

‖∇fi(xk)‖2 ≤ 10−5.

The algorithm is also terminated when this criterion was not met in the first 1000
iterations. We elected against scaling the problem or the stopping test, as this intro-
duced a new parameter in the procedure. Following the Steihaug–Toint procedure,
the subproblem in s ∈ Rni

min ∇fi(xk)
T s + 1

2s
T∇2fi(xk)s

s.t. ‖s‖2 ≤ δk

is successfully solved as soon as

‖∇fi(xk + s)‖2 ≤ min

[
1

10
, ‖∇fi(xk)‖1/2

2

]
or ‖s‖2 = δk.

The initial trust-region radius was chosen according to

δ0 = max

(
1

10
‖∇fi(x0)‖2, 1

)
.(4.1)

4.3. Measures of performance. In our experiments below, a single function
ψ(·) is considered, the evaluation of which involves running a computer program which
has a given trust-region algorithm for unconstrained optimization solve a series of
problems with given values of the parameters. The parameters are p = (η1, η2, α1, α2)
from Step 3 of Algorithm 3.1, � = 4, and

Ω =
{
p ∈ R4 | 0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2 ≤ 10

}
.(4.2)

A strategy to fine-tune the parameter δ0 appears in [32]. We have chosen to exclude
this parameter from Ω, as the problem-dependent value (4.1) seems more sensible
both conceptually and in our tests. This also makes comparisons with the results
of [17] more manageable.

Note that Assumption 2.1 is satisfied since the domain Ω is a full-dimensional
bounded convex set. The upper bound on α2 was introduced on the one hand to
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satisfy Assumption 2.1, and on the other hand because it does not appear intuitive,
or useful, to enlarge the trust-region by an arbitrarily large factor on very successful
iterations. The domain Ω is handled by mads through the barrier approach, i.e., if a
parameter value violates any linear constraint, the resulting value of the objective is
set to infinity.

To ensure that a change in Δ in Algorithm 2.1 is comparable for all four param-
eters, the latter are scaled using⎡⎢⎢⎣

η̃1

η̃2

α̃1

α̃2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1000

100
100

10

⎤⎥⎥⎦
⎡⎢⎢⎣

η1

η2

α1

α2

⎤⎥⎥⎦ .(4.3)

mads then works with the variables (η̃1, η̃2, α̃1, α̃2).
Suppose a set of nO unconstrained problems from the CUTEr [19] collection is

chosen. An evaluation of the black-box function ψ(·) is defined by the solution of
these problems using Algorithm 3.1 and the current parameter values p ∈ Ω. The
outcome of this evaluation is either a real number—our measure of performance—or
an infinite value, resulting from a computer or algorithmic failure in one or more
problems. Failures may occur because the maximum number of iterations has been
exceeded, because of memory or system-dependent errors or perhaps because of a
floating-point exception.

Noticeably, in the context of Algorithm 3.1, the same parameter values

pC = (η1, η2, α1, α2) =

(
1

4
,
3

4
,
1

2
, 2

)
(4.4)

are often recommended in the literature [8, 9, 11, 31, 33, 34]. We shall refer to those
as the classical parameter values. Our contention is to show that the values (4.4)
are arbitrary and that much better options are available. We use Algorithm mads to
identify them. In our tests, the initial trial point considered by mads is pC.

If evaluating the objective function is relatively cheap compared to the algorithm’s
internal work, which might be the case when the dimension of the problem is large and
the linear algebra therefore more expensive, then the overall CPU time is an obvious
choice for measuring performance. Since this turned out to be the case for several
problems in our objective list, it is the measure of performance which we chose. If
we denote by τi(p) the CPU time which was necessary to solve problem Pi with the
parameters p, we may define

ψcpu(p) =
∑
i∈O

τi(p).(4.5)

Obviously, similar performance functions may be defined to minimize the overall num-
ber of function evaluations—a measure justified in the frequent case where objective
function evaluations are computationally costly and dominate the other internal work
of the algorithm.

From the mads point of view, each objective function evaluation requires the
computation of nO values: τi(·) for i ∈ O.

4.4. The role and choice of surrogate function σ. A surrogate function
plays three important roles in the present context. First, it is used as if it were the
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real objective function, for the sole purpose of obtaining a better starting point than
pC before restarting the procedure with the objective function defined by the objective
list. Its purpose is thus to postpone the long computations until a basin containing a
local minimizer is reached. No surrogate approximation of the surrogate σ was used.
Starting from pC given by (4.4), mads terminates with some solution pS. After having
obtained these parameters, we can now apply mads on the truth function ψ and use
the surrogate function σ to guide the algorithm. The set of initial guesses was chosen
as S0 = {pC, pS}.

Second, the surrogate is used to order trial points generated by the mads poll or
search steps, as described in section 2.1. If the surrogate is appropriate, the ordering
should produce a successful iterate for the real objective function before all directions
have been explored.

Finally, the third role of the surrogate is to eliminate from consideration the trial
search points at which the surrogate function value exceeds the user threshold value
v (introduced in section 2.1), which is in our case set to 0.1.

In the present application, the search strategy differs from one iteration to an-
other, and goes as follows. When k = 0, the search consists of a 64 point Latin
hypercube sampling of Ω in hopes of identifying promising basins [27, 36]. At it-
eration k ≥ 1, the search consists of evaluating the surrogate barrier function at
8 randomly generated mesh points and at the point produced by the dynamic search
described in [4] (when applicable). This dynamic search is only called after a suc-
cessful iteration, and essentially consists of evaluating ψ at the next mesh point in a
previously successful direction.

In the present context, a function evaluation consists in solving a list of problems
with the trust-region Algorithm 3.1 and combining the results on each problem into
a unique real number. The objective function was defined by a list of relatively hard
problems of significant dimension. A surrogate function σ, as described in section 4.1,
was defined by a set of smaller problems which could be expected to be solved in
overall reasonable time. The surrogate function is simply

σcpu(p) =
∑
j∈S

τj(p).(4.6)

The problems were chosen as follows.
The trust-region algorithm described in section 4.2 with the classical parame-

ter values pC was run on the 163 unconstrained regular problems from the CUTEr
collection, using the default dimensions. From those, some problems failed to be
solved for memory reasons and some reached the maximum number of iterations of
1000. Two test lists were extracted from the results. The surrogate list S con-
sists of those problems for which ni < 1000 and 0.01 ≤ τi(p

C) ≤ 30 (measured in
seconds). The surrogate list contains 54 problems of small to moderate dimension,
2 ≤ ni ≤ 500 and such that

∑
i∈S τi(p

C) = 68.20 seconds. We may thus expect
that running through the surrogate list, i.e., evaluating the surrogate, should not take
much longer than two minutes. Problems in this list and their dimension are summa-
rized in Table 5. The objective list O consists in those problems for which ni ≥ 1000
and τi(p

C) ≤ 3600. This yields a list of 55 problems with 1000 ≤ ni ≤ 20000 and
such that

∑
i∈O τi(p

C) = 13461 seconds, which amounts to approximately 3 hours
and 45 minutes. The latter is the time that one objective function evaluation may
be expected to take. Problems in this list and their dimension are summarized in
Table 4.
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Table 1

Minimization of the surrogate function to improve the initial solution. The measure σcpu(p) is
in seconds.

#f evals σcpu(p) η̃1 η̃2 α̃1 α̃2

1 68.20 250 75 50 20
3 66.11 538.86719 77.480469 43.765625 17.914062

57 56.94 221.65625 89.175781 39.511719 23.042969
138 56.53 221.65625 89.300781 39.402344 23.136719
139 54.42 221.65625 89.675781 39.074219 23.417969
141 53.88 221.65625 89.675781 39.074219 22.917969
154 53.67 221.65625 90.175781 39.074219 22.667969
194 52.57 221.6875 90.175781 38.996094 22.792969
224 52.43 221.625 90.203125 38.996094 22.792969
289 52.35 221.625 90.207031 38.996094 22.792969

5. Numerical results. All tests were run on a 500 MHz Sun Blade 100 running
SunOS 5.8. The implementation of mads is a C++ package called nomad.2

5.1. Improving the initial solution with a surrogate function. The first
run consisted of applying mads to the surrogate function (4.6) from the classical
parameters pC. Results are reported in Table 1. The first column contains the number
of mads function evaluations required to improve the measure to the value in the
second column. The other columns contain the corresponding parameter values.

mads stopped after 310 function evaluations as the mesh size parameter Δk

dropped below the stopping tolerance of 10−6. The best set of parameters

pS = (0.221625, 0.90207031, 0.38996094, 2.2792969)

was identified at the 289th evaluation. This strategy allowed the improvement of
the truth initial value from ψcpu(pC) = 13461 to ψcpu(pS) = 11498 seconds, i.e., an
improvement of approximately 33 minutes or 14.58%.

Note that the value of the surrogate at pC had to be evaluated again during
the first iteration and that its differred by approximately 1% from the one we had
first obtained section 4.4 before building the surrogate. This is an illustration of the
nondeterministic aspect of such objective functions.

5.2. Performance profiles. Comparison between the initial and final values of
the objective function, i.e., the benchmarking of the trust-region method on a set of
nonlinear unconstrained programs for the initial and final values of the parameters,
will be presented using performance profiles. Originally introduced in [13], we briefly
recall here how to read them.

Suppose that a given algorithm Ai from a competing set A reports a statistic
uij ≥ 0 when run on problem j from a test set S, and that the smaller this statistic
the better the algorithm is considered. Let the function

ω(u, u∗, α) =

{
1 if u ≤ αu∗

0 otherwise

be defined for all u, u∗ and all α ≥ 1. The performance profile of algorithm Ai is the
function

πi(α) =

∑
j∈S ω(uij , u

∗
j , α)

|S| with α ≥ 1,

2May be downloaded from www.gerad.ca/NOMAD.
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Table 2

Minimization of the objective function from improved starting point. The measure ψcpu(p) is
in seconds.

#f evals ψcpu(p) η̃1 η̃2 α̃1 α̃2

1 11498.02 221.625 90.207031 38.996094 22.792969
5 11241.23 221.375 90.207031 38.871094 22.917969
7 10757.54 221.375 90.207031 38.871094 23.417969

13 10693.04 219.375 90.207031 38.871094 24.417969
40 10691.43 219.25 90.207031 38.871094 24.417969
42 10617.41 219.25 90.207031 38.621094 24.417969
73 10617.41 219.25 90.207031 38.621094 24.417969
74 10279.85 221.25 94.457031 37.996094 23.042969
77 10183.95 221.25 94.457031 37.933594 23.042969
97 10183.95 221.25 94.457031 37.933594 23.042969
98 10195.39 221.25 94.457031 37.933594 23.042969

115 10195.39 221.25 94.457031 37.933594 23.042969
116 10193.14 221.25 94.457031 37.933594 23.042969
142 10193.14 221.25 94.457031 37.933594 23.042969

where u∗
j = mini∈A uij . Thus, πi(1) gives the fraction of the number of problems

for which algorithm Ai was the most effective, according to the statistics uij , πi(2)
gives the fraction for which algorithm Ai is within a factor of 2 of the best, and
limα→∞ πi(α) gives the fraction of examples for which the algorithm succeeded.

5.3. Minimizing the total computing time. Algorithm 2.1 was restarted
using the objective function ψcpu(·). The starting point was the parameter values
suggested by the surrogate function in Table 1. The stopping condition this time was
to perform a maximum of 150 truth evaluations. Based on the estimate of roughly
3 hours and 45 minutes per function evaluation, this amounts to an expected total
running time of just about three weeks. Fragments of the evolution of ψcpu(·) are
given in Table 2.

The final iterate

p∗ = (0.22125, 0.94457031, 0.37933594, 2.3042969)(5.1)

produced by mads gives a value ψcpu(p∗) = 10193.14, and reduces the total computing
time to just under 2 hours and 50 minutes; a reduction of more than 11% of the
computing time when compared to pS and of almost 25% when compared to pC. This
p∗ is clearly in favor of a sufficient decrease condition rather than of η1 ≈ 0.

The values ψcpu(pC) and ψcpu(p∗) can be visualized in the profile of Figure 2
which compares the cpu-time profiles of Algorithm 3.1 applied to the objective list
for the initial and final parameter values. The profile of Figure 3 presents a similar
comparison, using the number of function evaluations.

5.4. Interpretation of the results. The above results must be interpreted
in light of the objective function used in the minimization procedure. Figures 2
and 3 result from a minimization of ψcpu(·). A minimization of the total number of
trust-region function evaluations ψfval(·) would likely have produced a different set
of parameters. Moreover, the simplicity of ψfval(·) and ψcpu(·) is counterbalanced by
their disadvantage of computing global measures. More sophisticated objectives in
the present application could penalize the fact that a particular problem took a long
time to fail for some parameter values while for others, failure was quickly detected.
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Fig. 2. Profile comparing the CPU time required for one evaluation of the mads objective for
the initial and final parameter values.

Similarly, they do not treat differently problems which are uniformly solved in a
fraction of a second for nearly all parameter values and problems whose running time
varies with great amplitude. Such effects might, and do, cause mads to elect against
exploring certain regions.

To illustrate this point, we note that the parameter values recommended by mads

differ significantly from those recommended in [17]. In a separate preliminary series
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Fig. 3. Profile comparing the number of function evaluations required for one evaluation of the
mads objective for the initial and final parameter values. The scale of the α axis has been extended.
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Fig. 4. Profile comparing the CPU time required for one evaluation of the mads objective for
the initial, final, and alternative parameter values.

of tests, the surrogate function σcpu(·) was minimized over Ω (4.2) without using the
scaling (4.3). The final, alternative, set of parameters thus produced

pA = (0.000008, 0.9906, 0.3032, 3.4021),(5.2)

is rather close to the recommendations of [17] and seems to indicate that enforcing
sufficient descent is not particularly beneficial in practice. The value ψcpu(pA) = 13707
is surprisingly higher than ψcpu(pC) = 13461. However, the corresponding profile
appears significantly better than the reference algorithm using pC as illustrated by
Figures 4 and 5. Problems with long solution times are gathered in Table 3. The
first three of those do not appear to influence the behavior of mads by much, as their
solution time varies little. Some problems failed to be solved for any values of the
parameter. Among those, GENHUMPS is particularly detrimental to the value ψcpu(pA)
as the failure takes 10 times longer to be detected than at p∗. Likely, the value pA

would produce much better results if GENHUMPS were not present. We see nonetheless
in the present case that mads performed its task as it should have and that, perhaps,
it is the objective function ψcpu(·) which should take such outliers into account, since
the presence of problems like GENHUMPS cannot be anticipated.

Table 3

Problems with relatively high and varying solution times. A “F” indicates a failure. CPU times
are in seconds.

Problem Pi τi(p
C) τi(p

∗) τi(p
A)

DIXON3DQ 2728.24 1572.75 1286.14
EIGENALS 1768.25 1177.19 1119.76
NCB20B 1444.47 1152.80 964.25
CHAINWOO 1224.25 F 1224.10 F 1392.78 F
GENHUMPS 615.29 F 444.96 F 4028.99 F
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Fig. 5. Profile comparing the number of function evaluations required for one evaluation of the
mads objective for the initial, final, and alternative parameter values.

A phenomenon of a much more optimistic kind is revealed by problem CRAGGLVY

which could not be solved in less than 1000 iterations using pC, which took 83.3 sec-
onds, but was solved in 20 iterations and 6.59 seconds using p∗.

6. Discussion. As mentioned earlier, the determination of useful parameter val-
ues for the management of the trust region was examined in the past in [17], where,
on a much smaller list of 24 problems and after discretizing Ω into 3960 values for the
parameters, the final value pA (5.2) was identified. In order to supplement Figures
4 and 5 and to validate the final parameter value p∗ (5.1) produced by mads, we
performed an additional series of tests.

We restarted mads with the initial value pA to determine whether or not it would
identify pA as a local minimum, or escape and move to a different region. To make
the task more difficult for mads, it was initialized with a small initial mesh size
Δ0 = 4−4 = 0.00390625. The initial search was disabled to force the algorithm to
explore only nearby regions. As before, the surrogate was used and all other algorith-
mic parameters were left unaltered. To limit the effort, we imposed a maximum of
100 truth function evaluations.

After almost 16 days of computation and 100 evaluations of the truth function,
mads moved away from p∗ and exited with final parameter values

p = (0.0023205, 0.999233, 0.356989, 3.39077)

and objective value ψcpu(p) = 11144. Most noticeably, the values of the first and
third parameters changed the most, causing an improvement of 42 minutes. From
the output of the algorithm, it is likely that it would have kept moving away towards
larger values of η1. We believe this is due to the diverse nature of the problems in O
and in particular, GENHUMPS, cf. Table 3. This indicates that, in the present case, pA

is not a local minimizer.
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To simply compare the computational burden involved in the tests with mads

and those of [17], notice that one function evaluation in [17] takes between 8.76 and
63.9 seconds, which is comparable to the cost of our surrogate. According to Table 1,
it only took 289 evaluations of the surrogate to identify pS which is already rather close
to p∗. Even if ψcpu(pS) is not as good as ψcpu(p∗), it is much lower than ψcpu(pA). The
overall cost of the tests of section 5.1 on the surrogate function is about 4 hours—only
marginally more than an expected evaluation of ψcpu. We could therefore estimate
that the total cost of identifying p∗ is the 142 evaluations reported in Table 2 plus
the evaluation of section 5.1, or 143 evaluations. This is 27.7 times less than the 3960
evaluations required by the exhaustive exploration.

With an expected 3 hours and 45 minutes per function evluation, discretizing as
in [17] and evaluating ψcpu at the 3960 different parameter values might have taken
us as much as 3960 × 3.75 hours ≈ 619 days. Pessimistically speaking, this almost
represents 2 years of computation. While this might be perceived as the price to
pay for global information, there still is no guarantee that a global minimizer has
been found. We prefer to think in terms of regions instead of precise parameter
values.

7. Conclusion. We presented a framework for the optimization of algorithmic
parameters, which is general enough to be applied to many branches of engineering
and computational science. Using the algorithm presented in [2], this framework may
also be extended to the case where some parameters are categorical. The framework is
illustrated on an example which at the same time addresses the long-standing question
of determining locally optimal trust-region parameters in unconstrained minimization.
The mads algorithm for nonsmooth optimization of expensive functions [4] is at the
core of the framework.

The very notion of optimality for such problems is not well defined. Hence, our
aim in designing this framework was to suggest values for the parameters which seem
to perform better, in a sense specified by the user, on a set of problems which are
context-dependent and can also be specified by the user. In real applications, we be-
lieve this black-box approach is beneficial since it allows users to take full advantage of
their knowledge of the context to design appropriate test sets and performance mea-
sures. As our numerical experience indicates, the choice of objective to be optimized
will likely influence the results.

We reserve the exploration of more elaborate objective functions, making pro-
vision for outliers, and the study of scaling strategies for mads for future work.
We also wish to explore modifications of the algorithm to accept more general
constraints.

Appendix. Tables. Tables 4 and 5 report numerical results on the objective and
surrogate lists. In these tables, n is the number of variables, #f eval is the number
of function evaluations, τi(·) is the CPU time in seconds, and ϕi(·) is the number of
trust-region function evaluations. These statistics are reported at the three sets of
parameters pC, p∗, and pA.
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paper.
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Table 4

Results on the objective list O. Timings τi(·) are in seconds. The measure ϕi(·) is the number
of function evaluations in each case. Failures occur when ϕi(·) = 1001.

Name n τi(p
C) τi(p

∗) τi(p
A) ϕi(p

C) ϕi(p
∗) ϕi(p

A)

ARWHEAD 5000 0.95 0.92 0.93 7 7 7
BDQRTIC 5000 5.24 5.26 5.24 18 18 17
BROYDN7D 5000 443.70 242.95 205.03 331 264 261
BRYBND 5000 5.83 6.35 4.87 15 15 13
CHAINWOO 4000 1224.25 1224.10 1392.78 1001 1001 1001
COSINE 10000 1.83 1.63 1.70 14 12 13
CRAGGLVY 5000 83.30 6.59 6.39 1001 20 19
DIXMAANA 3000 0.53 0.56 0.48 12 12 11
DIXMAANB 3000 0.46 0.51 0.51 12 13 12
DIXMAANC 3000 0.55 0.52 0.53 14 13 13
DIXMAAND 3000 0.64 0.63 0.56 15 15 14
DIXMAANE 3000 7.19 7.87 8.90 15 15 16
DIXMAANF 3000 37.29 21.00 24.47 26 24 20
DIXMAANG 3000 30.91 7.20 23.65 24 18 24
DIXMAANH 3000 12.84 25.33 30.62 22 24 27
DIXMAANI 3000 178.43 193.92 185.57 17 17 16
DIXMAANJ 3000 455.60 399.68 317.44 35 32 30
DIXMAANL 3000 461.46 278.59 364.61 40 29 32
DIXON3DQ 10000 2728.24 1572.75 1286.14 10 8 8
DQDRTIC 5000 1.25 1.13 1.07 13 12 12
DQRTIC 5000 2.33 2.37 2.22 53 50 47
EDENSCH 2000 0.98 1.06 1.02 21 21 19
EG2 1000 0.06 0.07 0.06 4 4 4
EIGENALS 2550 1768.25 1177.19 1119.76 98 77 80
ENGVAL1 5000 2.47 1.77 1.71 18 15 14
EXTROSNB 1000 78.29 96.82 69.68 1001 1001 1001
FLETCBV3 5000 314.52 420.17 454.31 1001 1001 1001
FLETCHBV 5000 314.96 408.22 449.52 1001 1001 1001
FLETCHCR 1000 77.14 85.28 76.15 1001 1001 1001
FMINSRF2 5625 151.81 166.47 177.89 140 239 333
FMINSURF 5625 134.09 129.05 212.60 122 169 488
FREUROTH 5000 2.37 2.19 67.56 18 16 1001
GENHUMPS 5000 615.29 444.96 4028.99 1001 1001 1001
INDEF 5000 260.57 200.16 273.50 1001 1001 1001
LIARWHD 5000 1.74 1.84 1.50 20 22 18
MODBEALE 20000 38.46 23.39 28.13 23 16 17
NCB20 5010 639.83 457.02 336.32 86 71 55
NCB20B 5000 1444.47 1152.80 964.25 23 23 21
NONCVXU2 5000 647.52 539.34 538.52 1001 1001 1001
NONCVXUN 5000 708.77 555.75 551.77 1001 1001 1001
NONDIA 5000 0.61 0.51 0.58 8 8 8
NONDQUAR 5000 415.12 168.80 331.19 164 92 123
PENALTY1 1000 0.43 0.44 0.50 62 56 62
POWELLSG 5000 1.85 1.81 1.78 25 24 24
POWER 10000 54.74 54.96 54.65 44 44 43
QUARTC 5000 2.36 2.31 2.18 53 50 47
SCHMVETT 5000 3.85 3.79 3.82 11 10 10
SINQUAD 5000 2.72 2.77 2.78 16 16 17
SPARSQUR 10000 17.10 17.04 16.03 28 27 26
SROSENBR 5000 0.56 0.51 0.55 11 10 10
TESTQUAD 5000 37.97 36.40 37.64 18 17 16
TOINTGSS 5000 3.60 2.81 1.03 23 19 12
TQUARTIC 5000 1.20 1.17 1.15 15 14 15
TRIDIA 5000 28.40 30.07 29.15 17 16 15
WOODS 4000 6.09 6.34 7.61 66 68 74

Total ψ 13641.01 10193.14 13707 11837 10771 12173
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Table 5

Results on the surrogate list S. Timings τi(·) are in seconds. The measure ϕi(·) is the number
of function evaluations in each case. Failures occur when ϕi(·) = 1001.

Name n τi(p
C) τi(p

∗) τi(p
A) ϕi(p

C) ϕi(p
∗) ϕi(p

A)

3PK 30 0.14 0.10 0.12 74 58 61
ARGLINA 200 0.45 0.46 0.42 6 6 5
BIGGS6 6 0.02 0.02 0.00 27 26 25
BOX3 3 0.03 0.01 0.02 9 9 9
BROWNAL 200 0.30 0.30 0.30 7 7 7
BROWNBS 2 0.02 0.01 0.01 26 24 18
BROWNDEN 4 0.02 0.01 0.01 13 12 12
CHNROSNB 50 0.32 0.29 0.54 69 70 109
CLIFF 2 0.02 0.00 0.02 30 30 30
CUBE 2 0.02 0.01 0.02 48 43 42
DECONVU 61 2.91 0.75 0.57 93 35 27
DENSCHND 3 0.03 0.00 0.02 34 34 35
DIXMAANK 15 0.02 0.01 0.02 12 12 12
DJTL 2 0.08 0.07 0.08 171 150 156
ERRINROS 50 0.25 0.22 0.22 74 73 72
GENROSE 500 28.54 25.04 21.78 465 413 377
GROWTHLS 3 0.12 0.12 0.08 186 189 168
GULF 3 0.18 0.16 0.14 58 49 44
HAIRY 2 0.04 0.03 0.02 82 47 41
HEART6LS 6 0.59 0.59 0.57 1001 1001 1001
HEART8LS 8 0.25 0.12 0.14 263 148 186
HIELOW 3 2.73 1.81 1.95 15 10 11
HIMMELBF 4 0.11 0.07 0.08 205 113 113
HUMPS 2 0.44 0.43 0.27 1001 1001 588
LOGHAIRY 2 0.44 0.48 0.44 1001 1001 1001
MANCINO 100 11.61 6.13 5.54 24 20 18
MARATOSB 2 0.34 0.32 0.34 1001 1001 1001
MEYER3 3 0.54 0.56 0.48 1001 1001 1001
OSBORNEA 5 0.09 0.08 0.08 74 80 75
OSBORNEB 11 0.19 0.16 0.15 25 22 24
PALMER1C 8 0.68 0.70 0.73 1001 1001 1001
PALMER1D 7 0.06 0.02 0.02 54 19 19
PALMER2C 8 0.59 0.61 0.63 1001 1001 1001
PALMER3C 8 0.31 0.50 0.17 651 1001 301
PALMER4C 8 0.08 0.39 0.09 85 1001 132
PALMER6C 8 0.13 0.07 0.05 234 112 100
PALMER7C 8 0.41 0.47 0.06 1001 1001 193
PALMER8C 8 0.14 0.11 0.08 273 233 167
PENALTY2 200 0.39 0.38 0.37 18 18 18
PFIT1LS 3 0.28 0.16 0.23 630 363 477
PFIT2LS 3 0.10 0.09 0.11 247 184 222
PFIT3LS 3 0.11 0.09 0.11 280 204 215
PFIT4LS 3 0.21 0.16 0.23 515 317 412
SENSORS 100 11.13 9.47 11.21 22 20 33
SISSER 2 0.02 0.01 0.00 15 15 15
SNAIL 2 0.04 0.03 0.07 80 76 154
TOINTGOR 50 0.04 0.04 0.04 12 12 11
TOINTPSP 50 0.02 0.04 0.03 21 25 19
TOINTQOR 50 0.02 0.01 0.02 11 10 9
VARDIM 200 0.02 0.05 0.03 31 30 30
VAREIGVL 50 0.09 0.07 0.07 15 15 14
VIBRBEAM 8 2.39 2.39 2.33 1001 1001 1001
WATSON 12 0.04 0.03 0.04 11 11 11
YFITU 3 0.06 0.05 0.07 77 76 140

Total σ 68.20 54.30 51.22 14381 14431 11964
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Européen des Systèmes Automatisés, 37 (2003), pp. 587–605.

[30] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,
J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, London, 1970, pp.
31–65.

[31] A. Sartenaer, Armijo-type condition for the determination of a generalized Cauchy point in
trust region algorithms using exact or inexact projections on convex constraints, Belg. J.
Oper. Res. Statist. Comput. Sci., 33 (1993), pp. 61–75.

[32] A. Sartenaer, Automatic determination of an initial trust region in nonlinear programming,
SIAM J. Sci. Comput., 18 (1997), pp. 1788–1803.

[33] Ch. Sebudandi and Ph. L. Toint, Nonlinear optimization for seismic travel time tomography,
Geophysical Journal International, 115 (1993), pp. 929–940.

[34] J. S. Shahabuddin, Structured Trust-Region Algorithms for the Minimization of Nonlinear
Functions, Ph.D. thesis, Department of Computer Science, Cornell University, Ithaca, NY,
1996.

[35] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[36] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technomet-
rics, 29 (1987), pp. 143–151.

[37] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, 1981, pp. 57–88.

[38] J. M. B. Walmag and E. J. M. Delhez, A note on trust-region radius update, SIAM J.
Optim., 16 (2005), pp. 548–562.

[39] Y. Yuan, An example of non-convergence of trust region algorithms, in Advances in Nonlinear
Programming, Y. Yuan, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998, pp. 205–218.



SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 17, No. 3, pp. 665–687

BEND MINIMIZATION IN PLANAR ORTHOGONAL DRAWINGS
USING INTEGER PROGRAMMING∗

PETRA MUTZEL† AND RENÉ WEISKIRCHER‡

Abstract. We consider the problem of minimizing the number of bends in a planar orthogonal
graph drawing. While the problem can be solved via network flow for a given planar embedding of
a graph, it is NP-hard if we consider all planar embeddings. Our approach for biconnected graphs
combines a new integer linear programming (ILP) formulation for the set of all embeddings of a planar
graph with the network flow formulation of the bend minimization problem for fixed embeddings. We
report on extensive computational experiments with two benchmark sets containing a total of more
than 12,000 graphs where we compared the performance of our ILP-based algorithm with a heuristic
and a previously published branch & bound algorithm for solving the same problem. Our new
algorithm is significantly faster than the previously published approach for the larger graphs of the
benchmark graphs derived from industrial applications and almost twice as fast for the benchmark
graphs from the artificially generated set of hard instances.

Key words. graph drawing, planar drawing, orthogonal drawing, bend minimization, graph the-
ory applications, mixed integer programming, combinatorial optimization, polyhedral combinatorics,
branch-and-bound, branch-and-cut, applications of mathematical programming

AMS subject classifications. 05C90, 68R05, 90C11, 90C27, 90C57, 90C90

DOI. 10.1137/040614086

1. Introduction. Drawing graphs is important in many scientific and economic
areas. Applications include the drawing of UML diagrams in software engineering,
business process modeling as well as the design and visualization of databases. A
popular way of drawing graphs is representing the vertices as boxes and the edges as
sequences of horizontal and vertical line segments connecting the boxes. This drawing
style is called orthogonal drawing. A point where two segments of an edge meet is
called a bend. Figure 1 shows an orthogonal drawing of a graph.

A well-known approach for computing orthogonal drawings of general graphs is
the topology-shape-metrics method (see, for example, [7]). In the first step, the
topology of the drawing is computed. The objective in this phase is to minimize the
number of edge crossings. In the second step, the shape of the drawing is defined
in terms of bends along the edges and angles around the vertices. The objective is
to minimize the number of bends for the given topology. Finally, the metrics of the
drawing is computed. Commonly adopted optimization requirements in this step are
short edge lengths and small area for the given shape. In this paper, we focus on
the bend minimization step (the second step). Given a planar graph, the task is to
compute an orthogonal representation with the minimum number of bends.

The infinite set of different planar drawings of a graph can be partitioned into a
finite set of equivalence classes called embeddings of a graph. An embedding defines

∗Received by the editors August 30, 2004; accepted for publication (in revised form) February
4, 2006; published electronically September 19, 2006. Results in this paper appeared in preliminary
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Fig. 1. An orthogonal drawing of a graph with 130 nodes and 205 edges.

the topology of a planar drawing without assigning lengths or shapes to the edges or
fixing the shapes and positions of vertices.

A combinatorial embedding fixes the sequence of incident edges around each vertex
in clockwise order. This also fixes the list of faces of a drawing. The faces are the
connected regions of the plane defined by a planar drawing. A planar embedding
additionally defines the outer (unbounded) face of a planar drawing. Orthogonal
representations are equivalence classes of orthogonal drawings that fix the planar
embedding and the bends and angles in an orthogonal drawing.

There are some results in the literature on the topic of optimizing certain func-
tions over the set of all embeddings of a graph. Bienstock and Monma studied the
complexity of covering vertices by faces [3] and minimizing certain distance measures
on the faces of a graph with respect to the outer face [4, 5]. Tamassia presented the
first algorithm for minimizing the number of bends in a planar orthogonal drawing
for the case where the embedding is fixed [21]. Garg and Tamassia showed that opti-
mizing the number of bends in an orthogonal drawing over the set of all embeddings
of a planar graph is NP-hard [14]. In [9], Di Battista, Liotta, and Vargiu show that
the problem is polynomially solvable for series-parallel graphs and 3-planar graphs.

If we consider only orthogonal drawings where the bends of the edges are placed
on the same grid as the vertices and all vertices occupy only one grid point, we can
only represent graphs with a maximum degree of four (so called four-graphs). In [11],
Didimo and Liotta present an algorithm that produces planar orthogonal drawings
of four-graphs with the minimum number of bends. The running time is exponential
only in the number of vertices with degree four.

Bertolazzi, Di Battista, and Didimo [2] used the SPQR-tree data structure to
devise a branch & bound algorithm for solving the bend minimization problem over
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the set of all embeddings of a planar graph in a more general orthogonal model where
a vertex can have degree greater than four. In this paper, we attack the same problem
using integer linear programming. To do this, we have developed a new integer linear
program describing the set of all combinatorial embeddings of a planar biconnected
graph. To our knowledge, this is the first practicable description of the set of all
combinatorial embeddings of a planar graph as an integer linear program. We achieve
a manageable size of the program by computing the set of variables and constraints
recursively using the SPQR-tree data structure. By combining our new integer linear
program with a linear program that describes the set of all orthogonal representations
of a planar graph with a fixed embedding, we obtain a mixed integer linear program
that represents the set of all orthogonal representations for a planar biconnected graph
over the set of all embeddings.

We use this new mixed integer linear program to minimize the number of bends
in an orthogonal drawing over the set of all embeddings of a planar graph. Like
the approach in [2], our new method can only guarantee optimality for biconnected
graphs because we also use the SPQR-tree data structure, which is only defined for
graphs that have this property. Our algorithm first computes the mixed integer linear
program and then uses a commercial solver (CPLEX) to find an optimal solution.
This solution is then transformed into an orthogonal representation of the graph.

We tested our approach on two different benchmark sets of graphs. The first con-
sists of graphs derived from industrial applications and the second of graphs computed
by a graph generator. The latter set was also used in [2] to measure the performance
of the branch & bound algorithm. Our new approach is faster for the larger graphs in
the first benchmark set than the branch & bound approach of Bertolazzi, Di Battista,
and Didimo [2] and about twice as fast on the graphs in the seconds benchmark set,
as our computational results show.

Preliminary descriptions of the computation of the integer linear program that
describes all embeddings of a planar biconnected graph can be found in [18] and [19].
A preliminary description of the combination with the integer linear program that
describes all orthogonal representations for a fixed embedding and first computational
results can be found in [20].

In section 2, we give a short overview of SPQR-trees. We present the four different
types of nodes in the tree and the properties of the tree that are important for our
approach. Section 3 summarizes the recursive construction of the new integer linear
program that describes the combinatorial embeddings of a graph and contains the
proof of correctness.

The linear program describing the orthogonal representations of a graph for a fixed
embedding is the topic of section 4. This is basically the formulation of a minimum
cost flow problem in a special network constructed from the graph and the embedding
as a linear program. In section 5, we present the mixed integer linear program that
is the result of merging the new integer linear program describing the embeddings of
a graph with the linear program that describes the orthogonal representations for a
graph where the embedding is fixed.

The topic of section 6 is the algorithm that we use to compute an orthogonal
representation of a graph with the minimum number of bends over the set of all
embeddings. The computational results we obtained by applying the algorithm to two
sets containing a total of more than 12,000 benchmark graphs are given in section 7.
We compare the algorithm with a heuristic and with the branch & bound algorithm
of Bertolazzi, Di Battista, and Didimo. The conclusion (section 8) summarizes the
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main results and contains possible starting points for future work.

2. SPQR-trees. In this section, we give a brief overview of the SPQR-tree
data structure for biconnected graphs. A graph is biconnected if it is connected and
cannot be disconnected by deleting a single vertex. SPQR-trees have been developed
by Di Battista and Tamassia [10]. They represent a decomposition of a biconnected
graph into its triconnected components. A connected graph is triconnected if there
is no pair of vertices in the graph whose removal splits the graph into two or more
components. Such a pair of vertices is called a split pair.

An SPQR-tree has four types of nodes and with each node we associate a bicon-
nected graph which is called the skeleton of that node. This graph can be seen as a
simplified version of the original graph where certain subgraphs are replaced by edges.
The vertices in a skeleton are vertices of the original graph. The edges in a skeleton
either correspond to edges in the original graph or represent subgraphs. Thus, each
node of the SPQR-tree defines a decomposition of the graph. The node types and
their skeletons are as follows:

1. Q-node: The skeleton consists of two vertices connected by two edges. There
is one Q-node for each edge in the graph.

2. S-node: The skeleton is a simple cycle with at least three vertices.
3. P -node: The skeleton consists of two vertices connected by at least three

edges.
4. R-node: The skeleton is a triconnected graph with at least four vertices.

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P - or R-nodes.
When we see the SPQR-tree as an unrooted tree, then it is unique for every bicon-
nected graph. Another important property of these trees is that their size (including
the skeletons) is linear in the size of the original graph and that they can be con-
structed in linear time [17, 15]. See Figure 2 for examples of the skeletons of inner
nodes of an SPQR-tree and the decomposition of the graph they define.

As described in [10], SPQR-trees can be used to represent the set of all combina-
torial embeddings of a biconnected planar graph. Every combinatorial embedding of
the original graph defines a unique combinatorial embedding for the skeleton of each
node in the SPQR-tree. Conversely, when we define an embedding for the skeleton
of each node in the SPQR-tree, we define a unique embedding for the original graph.
The skeletons of S- and Q-nodes are simple cycles, so they have only one embedding.
But the skeletons of the R- and P -nodes have at least two different combinatorial
embeddings. This is the reason why they determine the embedding of the graph and
we call these nodes the decision nodes of the SPQR-tree.

3. The ILP-formulation describing the set of all embeddings. Our new
integer linear program (ILP) describing the set of all combinatorial embeddings of a
planar graph is constructed recursively using the SPQR-tree data structure. Because
SPQR-trees are only defined for biconnected graphs, the same is true for the ILP.
We construct the program recursively by splitting the SPQR-tree into smaller SPQR-
trees, constructing ILPs for the corresponding smaller graphs, and then merging them
into an ILP for the original graph. The basis of the recursive construction are graphs
whose SPQR-trees have only one inner node (S-, P - or R-node).

3.1. The ILP for graphs where the SPQR-tree has only one inner node.
If the SPQR-tree for a graph G has exactly one inner node μ, then G is isomorphic
to the skeleton Sμ of μ. It follows that the graph is either a simple cycle (μ is an
S-node), a triconnected graph (μ is an R-node) or consists of two vertices connected
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Fig. 2. The skeletons of the inner nodes of an SPQR-tree together with the decomposition of
the graph they define. The grey shapes on the right depict the subgraphs represented by the edges
with the same number on the left.

by at least three edges (μ is a P -node).

In all three cases, the set of combinatorial embeddings is easy to describe. If the
graph is a cycle, it has only one combinatorial embedding. If it is a triconnected
graph, it has two embeddings that are mirror images of each other. If it consists of
two vertices and at least three edges, the embeddings are determined by the different
circular permutations of the edges connecting the two vertices.

The variables of the ILP correspond to the set of directed cycles of the graph,
that are face cycles in at least one embedding. A directed cycle is a face cycle in an
embedding, if the area of the plane on the right side of the cycle is empty in every
planar drawing that realizes the embedding. First we describe the three possible
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cases for graphs whose SPQR-tree has only one inner node together with the ILPs
that describe their embeddings. We distinguish the three cases by the type of the
only inner node of the SPQR-tree.

3.1.1. The ILP for graphs whose only inner node in the SPQR-tree is
an S-node. In this case, G is a simple cycle. Therefore, G contains exactly two
directed cycles and both are face cycles in the only combinatorial embedding of G.
It follows that the corresponding ILP has two variables that are both equal to one in
the only solution. So the ILP that describes all embeddings of a graph whose only
inner node in its SPQR-tree is an S-node is simply x1 = x2 = 1.

3.1.2. The ILP for graphs whose only inner node in the SPQR-tree is
an R-node. In this case the graph G is triconnected. A triconnected graph has two
combinatorial embeddings that are mirror images of each other. This means that for
any directed cycle c that is a face cycle in the first embedding, the directed cycle
c̄ passing the same edges as c in the opposite direction is a face cycle of the other
embedding.

To find all potential face cycles of the graph, we first compute an arbitrary embed-
ding of G, using for example the linear time planarity test of Hopcroft and Tarjan [16].
The face cycles in this embedding together with their reversal cycles form the set of
all cycles in G that are face cycles in at least one embedding.

Let l be the number of faces in an embedding of G (note that l = m − n + 2
if m is the number of edges in G and n the number of vertices). Then there are 2l
directed cycles in G that are face cycles in an embedding. If we write down the two
embeddings of G as two vectors �s1, �s2 ∈ {0, 1}2l, then each of the vectors contain l
ones. Any entry with value one in �s1 has value zero in �s2 and vice versa. Therefore
it is straightforward to describe the embeddings of G as an ILP.

If we order the variables for the face cycles such that the variables with odd
numbers represent the face cycles of the first embedding and the variables with even
numbers represent the second embedding, the ILP has a very simple structure. Let
the variables of the problem be x1 to x2l. Then the ILP describing the embeddings
is the following:

x2i−1 + x2l = 1 for 1 ≤ i ≤ l,

x2i − x2l = 0 for 1 ≤ i ≤ l − 1,

xi ≥ 0 for 1 ≤ i ≤ 2l,

xi ≤ 1 for 1 ≤ i ≤ 2l.

Note that this is a complete description of the polytope that describes the com-
binatorial embeddings of a triconnected graph. So if we want to optimize a linear
function over the set of all embeddings, there is no need to demand that the solutions
are integral.

3.1.3. The ILP for graphs whose only inner node in the SPQR-tree is
a P -node. In this case, the graph G consists of two vertices connected by k edges
with k ≥ 3. Since combinatorial embeddings can be defined by the circular sequence
of the edges around each vertex, G has (k − 1)! different embeddings. Each pair of
edges in G corresponds to two directed cycles and all cycles are face cycles in at least
one of the embeddings. Therefore, there are d = k2 − k variables in the ILP.

We realized that in this case the set of embeddings of G can be interpreted as
the set of Hamiltonian tours in a complete directed graph H. The graph H has one
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Fig. 3. A graph where the only inner node in its SPQR-tree is a P -node and the corresponding
graph H.

vertex for every edge of G and one edge for each directed cycle. The edge in H that
corresponds to the directed cycle c in G connects the vertices of H that correspond
to the two edges in G that form the cycle c.

Figure 3 shows this correspondence. The edges of the graph on the left correspond
to the vertices in the complete directed graph H on the right. Edge (vi, vj) in H
corresponds to the cycle in G that passes edge ei from va to vb and edge ej from vb
to va. The cycles that are face cycles in the embedding of G on the left correspond to
the thick edges in the graph H on the right. Thus, the embedding of G shown on the
left corresponds to the tour in H consisting of the thick edges. Note that the sequence
of the edges in clockwise order around vertex va corresponds to the sequence of the
vertices defined by the tour.

Because of the correspondence between the Hamiltonian tours in H and the em-
beddings of G, we can use the ILP-formulation for the asymmetric traveling salesman
problem (ATSP) to describe the set of embeddings of G. We use the formulation of [6],
which consists of a linear number of degree constraints and an exponential number
of subtour elimination constraints. In our case, the degree constraints say that each
edge in G is contained in exactly two face cycles of each embedding, once for each
direction. The subtour elimination constraints say that for each proper subset E′ of
the edges of G, there must be at least one face cycle that consists of an edge in E′

and of an edge in E \ E′.

Because the number of subtour elimination constraints grows exponentially with
the number of edges in G (there is one constraint for each proper subset of the edges
of G), we define the ILP for a graph whose SPQR-tree has a P -node as the only
inner node just as the set of degree constraints. To cope with the subtour elimination
constraints, we use the same approach that is used for the ATSP-problem: We separate
the subtour elimination constraints during the optimization process.

So we first compute a solution vector �s ∈ {0, 1}d for the problem without the
subtour elimination constraints and then check if �s violates any of the subtour elimi-
nation constraints. If this is not the case, we have found a valid solution representing
a combinatorial embedding of G. Otherwise, we add the violated subtour elimination
constraint to the set of constraints and reoptimize. To check if there is a violated
subtour elimination constraint, we find a minimum cut in the graph H where the
weight of each edge is defined by the corresponding component of the vector �s.

3.2. The ILP for graphs whose SPQR-tree has more than one inner
node. If the SPQR-tree of G has more than one inner node, we split the tree at an
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Fig. 4. Splitting an SPQR-tree at an inner node.

arbitrary decision node (R- or P -node). This is done as shown in Figure 4. In this
figure, the split node is v. We split all the edges that connect v to the rest of the tree
by inserting two new Q-nodes per edge. This is necessary to ensure that all leaves of
the resulting trees are Q-nodes. In this way, we obtain smaller SPQR-trees, the split
trees.

The graph represented by a split tree is called split graph. Each split graph can
be obtained from G by replacing subgraphs connected to the rest of G only via a pair
of vertices by an edge. These new edges, the virtual edges, correspond to the Q-nodes
we add in the splitting process. Figure 5 shows a graph together with the split graphs
resulting from splitting its SPQR-tree at its R-node. The grey edges are the virtual
edges of the split graphs.

One of the resulting split trees contains v as the only inner node and so the ILP
for the corresponding split graph has already been defined in the last section. We call
this split graph the center split graph. In Figure 5, the center split graph is G0. All
other split trees contain at least one decision node less than the original tree, because
they do not contain v. We continue the recursive splitting process until we have only
SPQR-trees with just one inner node. This is always possible because any SPQR-tree
with more than one inner node contains at least one decision node (two S-nodes can
never be adjacent).

After recursively computing the ILPs for the split graphs, we merge them into an
ILP for the original graph G. To achieve this, we need to lift the constraints computed
for the split graphs, since G contains more potential face cycles than the split graphs.
Therefore, the ILP describing its embeddings has more variables and thus a higher
dimension. The number of variables and thus the number of potential face cycles in
the original graph depend to a large degree on v. If it is a P -node, the number of
potential face cycles in the original graph is roughly a multiple of the number of face
cycles in the split graph where the multiplication factor is the number of face cycles
in the skeleton of v. In all other cases, the number of face cycles and thus of variables
in the ILP will be about the same as the sum of the number of variables in all split
graphs.

The crucial idea in the computation of the merged ILP is to find for each cycle c
in a split graph the set Lc of cycles of G that are represented by c. We say a cycle c′

in G is represented by cycle c in the split graph Gi if the set of edges in c′ that are
also edges in Gi is identical to the set of nonvirtual edges in c and these edges are
passed in the same direction in both cycles.
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Fig. 5. A graph G and its split graphs G0, G1, and G2. Grey edges are virtual.

Let G0, . . . , Gk be the split graphs of G and G0 the center split graph. Let Ci

for 0 ≤ i ≤ k be the set of cycles in Gi that are represented by a variable in the
corresponding ILP and C =

⋃k
i=0 Ci. We can split C into two sets: The set CL of

cycles that do not include a virtual edge of a split graph (called local cycles, because
they contain only nonvirtual edges of one of the Gi) and the set CM of cycles that
contain a virtual edge (called component cycles).

The local cycles in CL are also represented by variables in the ILP for G. We use
the component cycles in CM to construct cycles in G. Every cycle c in Ci ∩CM with
1 ≤ i ≤ k contains exactly one virtual edge. If we remove this edge, we get a path p
in Gi connecting the two vertices of Gi that it shares with G0. If we take a cycle c of
C0 ∩ CM and replace each virtual edge by a path p in the corresponding split graph
obtained from a cycle in CM , we get a cycle c′ ∈ Lc in G.

Consider, for example, Figure 5. We construct cycles in G by taking a cycle c0
in the center split graph G0 and combining it with a cycle c1 in G1 and a cycle c2 in
G2 that both contain the virtual edge (all split graphs except the center split graph
contain exactly one virtual edge). This is done by replacing the virtual edges in c0
by the paths in the split graphs obtained from the cycles in G1 and G2 by deleting
the virtual edge. We choose the component cycle c0 given by the vertex sequence
(0, 1, 2, 3). We combine c0 with the component cycle c1 = (1, 4, 2) in G1 and the
component cycle c1 = (2, 6, 3) in G2. The result is the cycle c3 = (0, 1, 4, 2, 6, 3) in G.
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The set Lc0 consists of the four different cycles that we can obtain by combining the
two possible paths through G1 and G2.

The variables in the ILP for G correspond to the cycles in CL and to the cycles
in G that we can construct by combining cycles in CM . The latter are called global
cycles because they contain edges from more than one of the split graphs. In general,
a component cycle in CM is used to construct several global cycles in G. We store for
each component cycle c the set Lc of global cycles in G constructed by combining c
with other cycles. For each cycle in CL, we define Lc as the cycle itself.

By constructing the variables set in this way, we make sure that the set of variables
corresponds exactly to the set of directed cycles that are face cycles in at least one
embedding of the graph. This can be shown in a similar way as in the proof of
the correctness of the ILP in section 3.3. So we have all the variables necessary
to represent all embeddings but significantly less variables than if we introduced a
variable for each directed cycle in the graph. The computational results in section 7
show that the number of variables grows only linearly with the size of the benchmark
graphs.

Let c be a cycle in a split graph that is represented by variable xc in the corre-
sponding ILP. The set Lc defines a set Lxc of variables in the ILP for the original
graph. We use these sets Lxc

to lift the constraints of the ILPs of the split graphs.
We simply replace each variable xc in each constraint computed for a split graph by
the sum of the variables in Lxc

. We call the constraints generated in this way the
lifted constraints.

Remember that we have not explicitly computed the subtour elimination con-
straints for graphs whose only inner node in the SPQR-tree is a P -node. Instead,
there is a complete directed graph H for each P -node where we can find violated
subtour elimination constraints by computing a minimum cut. When we compute the
ILP for G from the ILPs of the split graphs, we have to update the set of cycles that
are represented by each edge of H.

If the only inner node of an SPQR-tree is a P -node, every edge e in H represents
exactly one directed cycle c of the graph. The weight of e is the value of the corre-
sponding cycle variable xc in the current solution vector. When we compute the ILP
of the original graph from the ILPs of the split graphs, we assume that every edge in
H represents a set of cycles.

Let us now assume that H is the complete directed graph computed for the
separation of subtour elimination constraints in a split graph and e an edge in H
representing the set Ce of cycles. After we have computed the global cycles of the
original graph, we replace each cycle c in Ce by the set Lc of global cycles generated
using c. Thus, the new set of cycles represented by e consists of the set of all the
global cycles in G constructed from cycles in Ce.

So each edge e in the complete bidirected graph H corresponds to a set C(e) of
cycles in G. To separate the subtour elimination constraints, we define the weight
w(e) of each edge e in H as

∑
c∈C(e) xc, where xc is the binary variable of the ILP

associated with the cycle c. If there is a proper subset V ′ of the vertices of H such
that the sum of the weights of the edges connecting vertices of V ′ is greater than
|V ′ − 1|, we have found a violated constraint. We call these constraints the lifted
subtour elimination constraints.

After we have computed the new variables, lifted the constraints of the split
graphs, and updated the complete directed graphs computed for each P -node skeleton,
we add two types of additional constraints. The first type of constraints says that
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Fig. 6. Two cycles that pass a split component in the same direction cannot both be face cycles
in the same embedding.

out of all global cycles created using the same component cycle, at most one can be a
face cycle in any embedding of the original graph. This is true because there is a split
component of a split pair of the graph that all these cycles pass in the same direction.
We call this type of constraints the choice constraints. If c is a cycle in a split graph,
than the corresponding choice constraint is:∑

c′∈Lc

xc′ ≤ 1.

To get an intuition why two such cycles can never be face cycles in the same
embedding consider Figure 6. We assume that v1 and v2 are a split pair of the graph
with the split components G1 and G2. We also assume that the two directed cycles c1
and c2 use the same path p in G1 but different paths (p1 and p2) in G2. If we assume
that both c1 and c2 are face cycles in the same embedding Π of G, then we have a
contradiction: Since c1 is a face cycle, the area right of c1 must be empty in Π and
so the edges of p2 must be left of p1. But since c2 is also a face cycle, the area to the
right of c2 must be empty and the path p1 must be left of p2.

The second type of constraints fixes the number of global cycles that are face
cycles in each embedding. This number must be equal to the number of face cycles
in an embedding of the center split graph that contain virtual edges. This constraint
is called the center graph constraint.

3.3. Correctness of the ILP.
Theorem 3.1. Every feasible solution of the ILP corresponds to a combinatorial

embedding of the given biconnected planar graph G and vice versa: every combinatorial
embedding of G corresponds to a feasible solution for the generated ILP.

The proof is split into three lemmas. They rely on the fact that by fixing the
combinatorial embedding of each decision node in the SPQR-tree of a graph G, we
define a unique combinatorial embedding of G. On the other hand, a combinatorial
embedding of G defines a unique combinatorial embedding for the skeleton of each
decision node in the SPQR-tree of G. From this fact, we can easily derive the following
lemma:

Lemma 3.2. Let G be a biconnected planar graph and let T be its SPQR-tree. Let
μ be a decision node in T , T0, . . . , Td be the split trees of μ (T0 is the center split tree)
and G0, . . . , Gd the associated split graphs. Every combinatorial embedding Γ of G
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defines a unique embedding for each Gi. On the other hand, if we fix a combinatorial
embedding Γi for each Gi, we have defined a unique embedding for G.

To prove the main theorem, we first define the incidence vector of a combinatorial
embedding. Let C be the set of all directed cycles in the graph that are face cycles
in at least one combinatorial embedding of the graph. Then the incidence vector of
an embedding Γ is given as a vector in {0, 1}|C|, where the components representing
the face cycles in Γ have value one and all other components have value zero.

Lemma 3.3. Let Γ be a combinatorial embedding of the biconnected planar graph
G. Then the incidence vector χΓ satisfies all constraints of the ILP we defined.

Proof. We prove the lemma using induction over the number n of decision nodes in
the SPQR-tree T of G. The value χ(xc) is the value of the component in χ associated
with the variable for cycle c. We do not consider the case n = 0, because G is a simple
cycle in this case and has only one combinatorial embedding.

1. n = 1:
No splitting of the SPQR-tree is necessary, the ILP is defined directly by G.
The variables are defined as the set of all directed cycles that are face cycles
in at least one combinatorial embedding of G. If the decision node in T is an
R-node, the constraints we have defined form a complete description of the
polytope of all embeddings of G and thus the claim is true.
Otherwise, the decision node is a P -node and the claim follows from the fact
that the embeddings of G correspond to the tours in an ATSP problem and
thus satisfy the degree constraints and subtour elimination constraints.

2. n > 1:
From the previous lemma we know that Γ uniquely defines embeddings Γi

with incidence vectors χi for the split graphs Gi. We will use the induction
basis to show that χΓ satisfies all lifted constraints. We know that the choice
constraints are satisfied by χΓ because in any embedding there can be only
one cycle passing a certain split pair in the same direction (see section 3.2
where we defined the choice constraints).
Let u be a constraint computed for a split graph Gi and c be a component
cycle of Gi that is represented by the variable xc in u. When we lift u, we
replace xc by the sum

∑
c′∈Lc

xc′ , where Lc is the set of global cycles in
G generated using c. Since the choice constraints are satisfied, this sum is
either 0 or 1. Using the fact that the choice constraints are satisfied and by
construction of the χi from χΓ, we can show that∑

c′∈Lc

χ(xc′) = χi(xc).

Therefore, all lifted constraints are satisfied. This is also true for the lifted
subtour elimination constraints.
To see that the center graph constraint is satisfied, we observe that we can
construct any embedding of G from an embedding Γ0 of G0 by replacing edges
by the embeddings of subgraphs. The global face cycles in Γ are represented
by face cycles in Γ0 and each local face cycle in G0 is also a face cycle in Γ0.
Therefore the center graph constraint is satisfied.

It follows that every embedding of G satisfies the constraints of the ILP.
Lemma 3.4. Let G be a biconnected planar graph and χ ∈ {0, 1}|C| a vector sat-

isfying all constraints of the ILP including the lifted subtour elimination constraints.
Then χ is the incidence vector of a combinatorial embedding Γ of G.
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Proof. Again, we use induction on the number n of decision nodes in the SPQR-
tree T of G and we disregard the case n = 0.

1. n = 1:
Like in the previous lemma, our claim holds by definition of the ILP.

2. n > 1:
The proof works in two stages: First we construct vectors χi for each split
graph from χ and prove that these vectors satisfy the ILPs for the Gi, and
are therefore incidence vectors of embeddings Γi of the Gi by induction basis.
In the second stage, we use the Γi to construct an embedding Γ for G and
show that χ is the incidence vector of Γ.
The construction of the χi works as follows: When xc is a variable in the ILP
of Gi and the corresponding cycle c is a local cycle, then xc in the ILP of Gi

is defined as the value of xc in χ. Otherwise, if c is a component cycle, we
define the value of xc as the sum of the values of all variables in χ representing
global cycles constructed using c,

χi(xc) :=
∑
c′∈Lc

χ(xc′) .

This value is either 0 or 1 because χ satisfies the choice constraints.
Because χ satisfies the lifted constraints, each χi constructed in this way must
satisfy the constraints of the ILP for Gi and by induction basis we know that
each χi represents an embedding Γi of Gi. By combining the embeddings χi

for the split graphs, we construct an embedding Γ for G.
To show that χ is the incidence vector of Γ, we define χΓ as the incidence
vector of Γ and show that χ and χΓ are identical. By construction of Γ and
χΓ, the components in χΓ and χ corresponding to local cycles must be equal.
The number of global cycles whose variable in χ has value 1 must be equal
to the number of faces in Γ consisting of such cycles. This is guaranteed by
the center graph constraint. Using the fact that for all face cycles in Γ0 that
contain a virtual edge (the embedding of the center split graph) there must
be a represented global cycle in G whose component in χ and in χΓ is 1 we
can show that both vectors also agree on the values of the variables of the
global cycles, and thus must be identical.

It follows that a vector that satisfies all constraints of the ILP is the incidence vector
of a combinatorial embedding.

A more detailed version of the proof for Theorem 3.1 can be found in [22].

4. The linear program describing orthogonal representations for a fixed
embedding. Orthogonal representations not only fix the planar embedding of a
graph but also the number, type, and sequence of the bends on each edge and the
angles between edges incident to the same vertex in an orthogonal drawing. However,
they do not fix the lengths of the edge segments in the drawing. The first efficient
algorithm for computing an orthogonal representation of a graph with the minimum
number of bends for a fixed planar embedding was presented by Tamassia [21]. This
algorithm constructs a flow network using the planar embedding and then computes
a minimum cost flow in this network. This flow can be translated into an orthog-
onal representation of the graph with the minimum number of bends for the fixed
embedding.

The drawback of the original method of Tamassia is that it cannot deal with
vertices of degree greater than four. Some modifications of the algorithm have been



678 PETRA MUTZEL AND RENÉ WEISKIRCHER

published that overcome this constraint. The approach we use implements the pode-
vsnef drawing convention (planar orthogonal drawings with equal vertex size and
nonempty faces) defined in [13]. According to this convention, the vertices are drawn
as squares of equal size and the edges are positioned on a finer grid than the vertices.
Because of this modification, more than one edge can be incident to each of the four
sides of a vertex (see Figure 1 on page 666 for an example of a podevsnef drawing).

Bertolazzi, Di Battista, and Didimo describe a minimum cost flow network N
that can be used to compute an orthogonal representation in a simplified podevsnef
model with the minimum number of bends for a fixed embedding [2]. The model is
simplified, because whenever edges run parallel, the first bend of the rightmost edge
in the bundle is a bend to the right. Another property of the simplified model is that
a vertex with degree at least four always has at least one edge attached to each side.
This is the case in Figure 1 on page 666. We have chosen this model for our approach
because it is the only podevsnef model we are aware of that can be modeled as a
standard min-cost-flow problem.

The network N for G contains one node for every vertex of G (called v-nodes)
and one node for every face cycle of the given embedding (called f-nodes). The basic
idea of the network is that the flow on its arcs corresponds to bends on edges and to
the angles between neighboring edges incident to the same vertex. One unit of flow
corresponds to an angle of 90 degrees. The supply of flow assigned to each node and
the capacity of the edges guarantee that a feasible flow corresponds to an orthogonal
representation of the graph. The costs of the arcs are defined such that the cost of a
flow is equal to the number of bends in the corresponding orthogonal representation.

We used this network and transformed it into a linear program. There is one
variable fe for each arc e in the network that represents the amount of flow routed
via e. One constraint for each vertex in the network makes sure that the outgoing
amount of flow minus the incoming amount is equal to the supply of the node. Some
nodes in the network have negative supply, and thus consume flow. We have one
constraint for each arc that says that the flow on the arc must be nonnegative and we
also introduce upper bounds on the flow on arcs that start or end in a v-node. The
objective function minimizes the sum of the amount of flow over each arc multiplied
by the cost of the arc. An optimal solution represents a minimum cost flow in N and
thus an orthogonal representation with the minimum number of bends.

LP 1 shows the corresponding linear program (LP). The set EN is the set of arcs
in the network, V the set of vertices in G and F the set of faces in the embedding.
The face fo is the outer face of the embedding. The degree of a face is defined as the
number of edges that form the boundary of the face. The variable fe denotes the flow
on arc e. The constraints guarantee that the solution corresponds to an orthogonal
representation of G.

LP 1

min
∑

e∈EN

cost(e) · fe

subject to ∑
e=(v,w)∈EN

fe −
∑

e=(w,v)∈EN

fe = 4 − deg(b−1(v)) ∀ nodes v with b−1(v) �= fo

∑
e=(b(fo),w)∈EN

fe −
∑

e=(w,b(fo))∈EN

fe = − 4 − deg(fo)
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fe ≤ 4 − deg(b−1(v)) ∀ e = (v, w) ∈ Evf

fe ≤ 1 ∀ e ∈ Efv

fe ≥ 0 ∀ e ∈ EN

Since this linear program is a straightforward formulation of the flow network
introduced in [2], the correctness follows directly from the correctness of the flow
network.

5. The mixed integer linear program describing the set of all orthogo-
nal representations of a graph. The flow network N of the last section describing
the set of orthogonal representations of a graph for a fixed embedding contains one
f -node for every face of the embedding. When we want to optimize over the set of
all embeddings of a graph, we do not know at the beginning which cycles will be face
cycles in an optimal solution. Therefore, we construct a new network N ′, where we
have one c-node for every directed cycle in the graph, that is a face cycle in at least
one embedding. These nodes play a similar role to the f -nodes in the linear program
for a fixed embedding we presented in the previous section. The set of cycles that are
face cycles in at least one embedding of the graph corresponds to the set of variables
in our ILP from section 3 that describes the set of all embeddings of a graph.

In a solution of the embedding ILP, the variable corresponding to a cycle has
value one if this cycle is a face cycle in the embedding represented by the solution and
zero otherwise. The capacities of the arcs in the network N ′ depend on the values of
the cycle variables. If the cycle-variables represent an embedding Γ of the graph, then
the set of feasible flows in N ′ corresponds to the set of feasible flows in the network
N constructed for embedding Γ. Let A be the set of arcs incident to the c-node for
cycle c in N ′ and the variable for c in the embedding ILP be zero. Then all arcs in A
must have capacity zero. This has the same effect on the flow as removing the c-node
from the network.

We first compute the capacities of the arcs and the demand of each c-node anal-
ogously to the corresponding values for the f -nodes in the network N . Then we
multiply the amount of flow produced or consumed by a c-node with the value of the
corresponding variable in the ILP. This ensures that vertices in N ′ that correspond
to cycles in G that are not face cycles do not produce or consume flow.

Any arc that starts or ends at a c-node has capacity zero if the c-node corresponds
to a cycle whose ILP-value is zero. If the capacity of the arc is limited even if the
corresponding cycle is a face cycle, we can just multiply this limit with the ILP-value
of the cycle to achieve this behavior. But the arcs in the network N that connect two
f -nodes have unlimited capacity. However, we can easily compute an upper bound
fmax for the flow produced in the whole network N , by computing the sum of all
positive supplies in the network. The resulting value can be used as the upper bound
on the flow on any arc. For each arc a in N ′ connecting two c-nodes v1 and v2, we
set the capacity to the minimum of fmaxx1 and fmaxx2, where xi for i ∈ {1, 2} is the
binary variable in the embedding ILP for the cycle corresponding to node vi. This
guarantees that the flow on a is zero if at least one of the cycles represented by the
nodes vi is not a face cycle in the represented embedding.

In this way, the capacities of the arcs and the amount of flow produced and
consumed by the vertices in N ′ depend on the values of the cycle variables in the ILP.
We transform N ′ into a linear program and merge it with the ILP that represents
the embeddings of the graph. To correctly set the supply and demand of the c-nodes,
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we need to know the cycle chosen as the outer face cycle. Therefore, we introduce an
outer face variable for each cycle and add constraints that guarantee that exactly one
of the cycles chosen as face cycles is chosen as the outer face cycle. The result is a
mixed integer linear program, where an optimal solution corresponds to an orthogonal
representation with the minimum number of bends over the set of all embeddings of
the input graph.

MILP 1 is the resulting mixed integer linear program (MILP). We omitted the
constraints that define the embedding because they are defined recursively. Again,
variable fe denotes the flow on arc e. The set C is the set of cycles in G that are face
cycles in at least one embedding. For each of these cycles c, the variable xc is one
if c is a face cycle and variable oc is one if c is the outer face cycle. The set Ecc is
the set of arcs that connect two c-nodes. Arcs in Evc start in a v-node and end in a
c-node while the arcs in Ecv start in a c-node and end in a v-node. The expression
len(c) denotes the number of edges in cycle c. The function b is the bijection from the
vertices of G to the v-nodes in N ′ and from the directed cycles in C to the c-nodes of
the network.

MILP 1

min
∑

e∈EN

cost(e) · fe

subject to ∑
c∈C

oc = 1(5.1)

xc − oc ≥ 0 ∀ c ∈ C(5.2) ∑
e=(v,w)∈EN

fe −
∑

e=(w,v)∈EN

fe = 4 − deg(v) ∀ v ∈ V(5.3)

∑
e=(c,w)∈EN

fe −
∑

e=(w,c)∈EN

fe =xc(4 − len(c)) − 8oc∀ c ∈ C(5.4)

fe ≤ xc(4 − deg(v)) ∀ e = (v, c) ∈ Evc(5.5)

fe ≤ xc ∀ e = (c, v) ∈ Ecv(5.6)

fe ≤ xc1fmax ∀ e = (c1, c2) ∈ Ecc(5.7)

fe ≤ xc2fmax ∀ e = (c1, c2) ∈ Ecc(5.8)

fe ≥ 0 ∀ e ∈ EN(5.9)

xc, oc ∈ {0, 1} ∀ c ∈ C(5.10)

Constraint 5.1 says that there is exactly one cycle chosen as the outer face cycle
and the constraints of type 5.2 guarantee that this cycle is also chosen as a face cycle.
Constraint 5.3 is the same as in the LP of the previous section because the supply of
the nodes representing vertices of G is independent of the chosen embedding. A node
in N ′ corresponding to a cycle that is not chosen as a face cycle does not consume
or supply any flow since its cycle variable and its outer face variable are both zero.
This is guaranteed by constraint 5.4. If the outer face variable of a cycle is one, the
constraint sets its supply to −4− len(c) and if the cycle variable is one but the outer
face variable is zero to 4 − len(c).
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The constraints of type 5.5, 5.6, 5.7, and 5.8 make sure that the arcs incident to c-
vertices where the corresponding cycle is not a face cycle in the chosen embedding have
capacity zero. If a cycle is chosen as face cycle, the arcs incident to the corresponding
c-node in N ′ have either the same capacities as in the network N of the previous
section or if the capacity in N is unbounded (for the arcs in Ecc), the capacity is now
set to an upper bound for the flow in the network.

6. The algorithm for minimizing the number of bends. The algorithm
first computes the recursive ILP describing the set of all combinatorial embeddings of
the graph. This is done by recursively splitting the SPQR-tree into smaller trees and
computing the ILPs for the corresponding split-graphs. Then we compute the set of
cycle-variables for the original graph by combining the cycles that are represented as
variables in the ILPs for the split graph. This also gives us for each cycle variable in
the ILPs of the split graphs the list of corresponding cycle variables in the original
graph. Using this information, we can lift the constraints of the ILPs, compute the
choice constraints, the center graph constraint, and update the complete directed
graphs computed for the P -nodes used for the separation of the subtour elimination
constraints.

After this step, we use the set of cycle variables computed for the original graph
to compute the network N ′ and the corresponding MILP. We use CPLEX (version
6.5) to compute an integer solution and then check if there are any violated subtour
elimination constraints by computing a minimum cut in the complete directed graphs
computed for each P -node skeleton. If we find a violated constraint, we add it to the
MILP and reoptimize. When we have found a feasible solution, we transform it into
an orthogonal representation of the graph.

To improve the performance of the algorithm, we modified the MILP slightly. We
realized that we only need outer face variables for half of the cycles. The reason is that
for every cycle c represented by a variable in the embedding ILP, the cycle c̄ passing the
same edges in the opposite direction is also represented by a variable. The orthogonal
representations we exclude by introducing outer face variables only for one direction of
each undirected cycle are mirror images of other orthogonal representations that can
still be represented. Of course, every orthogonal representation has the same number
of bends as its mirror image and therefore we do not exclude all optimal solutions.

The second modification is that we hard-coded a complete description of the set
of embeddings for P -node skeletons with less than five vertices into our program to
reduce the need for separating subtour elimination constraints.

7. Computational results. To test our approach, we used two sets of bench-
mark graphs. The first was introduced in [8] and consists of 11,529 graphs that either
come from industrial applications or were derived from such graphs by introducing
small changes. We call this set the real world set. The second set consists of randomly
generated graphs that were used in [2] to test the performance of the branch & bound
approach for minimizing the number of bends. We call this set the artificial set.

The graphs in the artificial set are already biconnected and planar, so we can
directly apply our new algorithm for minimizing the number of bends and compare it
with the branch & bound algorithm from [2]. The majority of the graphs in the real
world set are not planar and biconnected. Therefore, we used a standard approach
to transform them into planar biconnected graphs whose drawing can be easily trans-
formed back into a drawing of the original graph.

This is done as follows: We first determine the topology of the graph using the
standard planarization method implemented in the AGD-library [1]. This method



682 PETRA MUTZEL AND RENÉ WEISKIRCHER

computes an embedding of a planar subgraph of the original graph and then inserts
the missing edges one by one into the current embedding. The crossings produced by
inserting an edge are replaced by artificial vertices with degree four. If the resulting
graph is not biconnected, we introduce new edges while maintaining planarity using
the heuristic presented in [12] that is also implemented in the AGD-library. Note that
these operations can increase the number of vertices and edges of a graph considerably.

If we have computed a drawing for the modified graph, it is straightforward to
transform it into a drawing for the original graph. We remove all edges from the
drawing that were introduced to make the graph biconnected and replace the drawings
of the artificial vertices by crossings. Note that this always works because the simple
podevsnef standard guarantees that a vertex with degree four has one incident edge
on each side of the vertex. Therefore, we can easily replace the drawing of an artificial
vertex with an orthogonal crossing. The result is a drawing of the original graph. Note
that because of the artificial vertices and edges introduced before the optimization
step, this drawing does not necessarily have the minimum number of bends over all
embeddings of the original graph.

We compared the results produced by our algorithm for minimizing the number
of bends over all embeddings to the results computed by the following heuristic: We
use the linear planarity test of Hopcroft and Tarjan [16] to compute an embedding for
the graph and then compute a minimum cost flow in the network given in section 4.
The flow defines an orthogonal representation of the graph with the minimum number
of bends for the chosen embedding.

Let h be the number of bends in the orthogonal representation computed by
the heuristic and o the number of bends in an orthogonal representation with the
minimum number of bends over all embeddings. For each graph in the benchmark
sets, we computed the value h−o

h 100%. This is the percentage of the improvement we
get using an optimal algorithm.

We broke the set of all graphs of each benchmark set into ten subsets. The first
subset contained the graphs where the improvement was smaller than ten percent,
the second subset contained the graphs where the improvement was at least ten and
smaller than 20 percent and so on. The last subset contained the graphs where the
improvement was at least 90 percent. Note that the improvement is 100 percent if
the heuristic solutions contains bends while the optimum solution contains no bends.

The x-axes in Figure 7 show the improvement ranges while the height of the
boxes corresponds to the number of graphs that fall into that range. Figure 7(a)
shows the data for the real world graphs while Figure 7(b) shows the data for the
artificial graphs. Both diagrams are remarkably similar. For about half of all graphs,
optimizing over all embeddings results in a significant reduction of the number of
bends (at least 10 percent).

We compared the average running times for graphs with the same number of ver-
tices of our new algorithm (MIX) and the branch & bound algorithm (B&B) from [2].
Both algorithms are written in C++ and were compiled with the flag -O using gcc
version 2.95.1. The algorithms ran on a Sun Enterprise 450 Model 4400 with four
Sun UltraSPARC-II 400 MHz CPUs and 4 GB of memory. Figure 8 shows the corre-
sponding diagrams for the real world graphs (Figure 8(a)) and for the artificial graphs
(Figure 8(b)). The x-axes show the number of vertices while the y-axes give the av-
erage time in seconds needed for a problem instance. Note that the times given for
MIX include the time needed for constructing the recursive ILP, the flow network,
and solving the MILP.
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Fig. 7. Improvement ranges of our algorithm compared to the heuristic for the real world
benchmark set (a) and the artificial benchmark set (b).

Figure 8(a) shows that B&B is faster for graphs with up to 120 vertices, but for
larger graphs our new algorithm is faster. For example, for one graph with 130 vertices
and 205 edges, B&B needed 5244 seconds while MIX found an optimal solution in
only 108 seconds. The corresponding drawing is shown in Figure 1 on page 666.

There were 197 graphs in the real world benchmark set that B&B could not
solve in one hour computation time. Our algorithm could not solve 25 graphs within
the same time limit. Another interesting fact is that we only had to add subtour
elimination constraints and reoptimize for six graphs out of 11,529. This shows the
effect of hard-coding the complete ILP-description for P -nodes with up to four edges.
We never had to add more than one subtour elimination constraint.

As Figure 8(b) shows, the speed advantage of our new algorithm is very pro-
nounced for the artificial graphs. The B&B needs on average almost twice as long to
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Fig. 8. Runtime comparison of our new algorithm with the branch & bound algorithm for the
real world benchmark set (a) and the artificial benchmark set (b).

compute an optimal solution compared to our new method.

Figure 9 shows the average number of embeddings for graphs with the same
number of vertices for the real world benchmark set and the artificial benchmark set.
Again, the x-axes show the number of vertices. The y-axes have a logarithmic scale
and show the average number of embeddings for the graphs.

Figure 9(a) shows the number of embeddings of the real world graphs. Until
about 150 vertices, the average number of embeddings grows exponentially with the
size of the graphs (remember that the y-axis is logarithmic). The reason for the drop
in the number of embeddings for larger graphs is the planarization method. Graphs
where many edges have to be deleted to obtain a planar graph tend to have large tri-
connected components after the planarization method is applied because this method
replaces crossings with vertices of degree four.
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Fig. 9. The average number of embeddings for graphs in the real world benchmarks set (Fig-
ure 9(a)) and the artificial benchmark set (Figure 9(b)).

The growth of the average number of embeddings for the artificial graphs is also
roughly exponential until about 80 vertices, as Figure 9(b) shows. The number of
embeddings varies widely for graphs with the same number of vertices because the
set was generated using five different settings for the parameters of the generation
algorithm that influence the number of embeddings. The details of the generation
algorithm and the parameter settings can be found in [2].

Figure 10 shows the average number of constraints and embeddings in the MILP
computed by our algorithm for the real world graphs (Figure 10(a)) and for the
artificial graphs (Figure 10(b)). For both benchmarks sets, the number of variables
and constraints grows roughly linear with the size of the graphs. This benign growth
behavior is in sharp contrast to the exponential growth of the number of embeddings.
The spike at 35 vertices in Figure 10(a) mirrors the smaller spike in the number of
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Fig. 10. The average number of constraints and variables in the mixed integer linear programs
for the real world benchmark set (a) and the artificial benchmark set (b).

embeddings for the real world graphs.

8. Conclusion. Using methods of integer linear programming to minimize the
number of bends in an orthogonal drawing seems to be a promising approach. The
main drawback is that at the moment, the algorithm can only guarantee optimality for
biconnected graphs. The reason is that SPQR-trees are only defined for biconnected
graphs. One possible approach to overcome this limitation is to work with the block-
cut-tree of biconnected components of the graph. If it can be used to describe the
set of all embeddings of a connected graph as an ILP, our approach can be easily
extended to deal with any planar graph.
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Abstract. This paper deals with approximate (ε-efficient) solutions of vector optimization
problems. We introduce a new ε-efficiency concept which extends and unifies different approximate
solution notions introduced in the literature. We obtain necessary and sufficient conditions via
nonlinear scalarization, which allow us to study this new class of approximate solutions in a general
framework, since any convexity hypothesis is required. Several examples are proposed to show the
concepts introduced and the results attained.
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1. Introduction. Approximate solutions are a usual kind of solution used to
solve optimization problems. There are two reasons for this statement. First, opti-
mization models are simplified representations of real problems. Second, these models
are solved frequently using iterative algorithms or heuristic methods, and these pro-
cedures give approximations to the theoretical solution.

In vector optimization, the notion of approximate solution has been defined in
several ways. The first and most popular concept was introduced by Kutateladze
[12]. This notion has been used to obtain vector variational principles, approximate
Kuhn–Tucker type conditions, approximate duality theorems, solution methods, etc.
(see [2, 5, 6, 7, 10, 11, 14, 15, 17, 18, 19, 23, 26, 30, 32]).

However, the ε-efficiency set obtained according to Kutateladze’s definition is
sometimes too large. Thus, several authors have proposed other ε-efficiency concepts
(see, for example, [8, 21, 28, 29, 31]). In this paper, all these notions are analyzed
through a new concept that allows us to study them simultaneously.

We characterize this new ε-efficiency notion via nonlinear scalarization, i.e., by
means of approximate solutions of related nonlinear scalar optimization problems.
Necessary conditions are obtained via Minkowski-type functionals, and sufficient con-
ditions are deduced using a new class of monotone functionals.

Our results are general because we do not assume any convexity hypothesis. We
consider a nonconvex constrained vector optimization problem and a preference rela-
tion to solve it which is not necessarily a preorder relation. This type of preference is
usual in economics (see, for example, [20] and references therein).
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The work is structured as follows. In section 2, the vector optimization problem
and the preference relation are fixed. Moreover, we describe some notations used in
what follows. In section 3, we propose a new ε-efficiency concept and prove some prop-
erties of this notion when ε tends to zero. In section 4, we recall several well-known
ε-efficiency concepts to show as our concept extends and unifies different notions in-
troduced previously in the literature by Helbig [8], Kutateladze [12], Németh [21],
Tanaka [28], and White [31]. In this sense, Helbig’s concept is seen as a particular
case of a more general notion, which shows the standard nature of our definition. In
section 5, we characterize the ε-efficiency set through approximate solutions of scalar
optimization problems. The scalarization process is based on the postcomposition of
the objective map with a suitable nonlinear scalar functional from the final space. In
section 6, the results attained in the previous section are applied to study the finite
dimensional case. In particular, several types of ε-efficient solutions are character-
ized taking into account this special structure. Finally, in section 7, we present some
conclusions that summarize this work.

2. Preliminaries. In this work, we consider two topological real linear spaces X
and Y . We denote by int(C), cl(C), bd(C), Cc, and conv(C) the interior, the closure,
the boundary, the complement, and the convex hull of a set C ⊂ Y , respectively. The
cone generated by a set C is defined as

cone(C) :=
⋃
α>0

αC,

and it is said that D ⊂ Y is a cone if cone(D) = D. Let us observe that 0 ∈ cone(C)
if and only if 0 ∈ C and thus it is possible that 0 ∈ D or 0 /∈ D when D is a cone.
We say that a set C is solid if int(C) �= ∅, is proper if ∅ �= C �= Y , and is pointed
if C ∩ (−C) ⊂ {0}, i.e., if C ∩ (−C) = {0} when 0 ∈ C and if C ∩ (−C) = ∅ when
0 /∈ C. We denote the nonnegative orthant in Rp by R

p
+.

The topological dual space of Y is denoted by Y ∗. For a cone D ⊂ Y , its positive
polar cone (resp., strict positive polar cone) is denoted by D+ (resp., Ds+).

In this paper, we study the vector optimization problem

Min{f(x) : x ∈ S},(2.1)

where f : X → Y and S ⊂ X, S �= ∅. As usual, to solve (2.1) the preference relation
≤ defined in Y by a nonempty set D ⊂ Y is used, which models the preferences stated
by the decision-maker:

y, z ∈ Y, y ≤ z ⇐⇒ y − z ∈ −D.

We assume that D is a pointed cone. Notice that the relation ≤ is not a preorder,
since D is not necessarily a convex set.

We recall that x0 ∈ S is an efficient solution of (2.1) with respect to D (or an
efficient solution for short) if (f(x0) − D) ∩ f(S) ⊂ {f(x0)}. We denote the set of
efficient solutions of (2.1) with respect to D by E(f,D) and with respect to int(D)
by WE(f,D) (in this case it is assumed that D is solid and these efficient solutions
of (2.1) are called weakly efficient solutions).

3. A new concept of approximate efficiency in vector optimization.
Next, we introduce a new approximate solution concept for vector optimization prob-
lems. This notion is motivated in the following idea: An approximate solution of (2.1)
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is every feasible point x0 ∈ S such that for every feasible point x ∈ S whose image
f(x) is better than f(x0), the improvement f(x0) − f(x) is near zero.

To define this concept, we use a proper pointed co-radiant set C ⊂ Y , i.e., a
proper pointed set C such that αd ∈ C ∀ d ∈ C, ∀α > 1. Moreover, we assume that
C is a solid set and we denote C(ε) := εC ∀ ε > 0 and

C(0) :=
⋃
ε>0

C(ε) .(3.1)

Let us observe that a pointed cone is a pointed co-radiant set. However, the class
of pointed co-radiant sets is wider. For example, given any convex set A ⊂ Y such
that 0 ∈ A, the complement Ac is a co-radiant set, and for each continuous linear
functional g ∈ Y ∗ and α > 0, the set Ac ∩ {y ∈ Y : g(y) ≥ α} is a co-radiant pointed
set, which is not a cone. It is easy to check that if C is a nonempty pointed co-radiant
set such that 0 /∈ cl(C), then C(ε) �= C(0) ∀ ε > 0, and C(0) is proper.

Lemma 3.1.

(i) C(ε) is a solid pointed co-radiant set ∀ ε > 0.
(ii) C(ε2) ⊂ C(ε1) ∀ ε1, ε2 > 0, ε1 < ε2.
(iii) C(0) is a solid pointed cone.
Proof. Part (i). As C(ε) = εC ∀ ε > 0, and C is a solid pointed co-radiant set,

then C(ε) is also a solid pointed co-radiant set ∀ ε > 0.
Part (ii). Let ε1, ε2 > 0, ε1 < ε2, and y ∈ C(ε2). There exists d ∈ C such that

y = ε2d. For

α := 1 + (ε2 − ε1)/ε1

we have that y = α(ε1d) ∈ C(ε1), since α > 1 and C(ε1) is a co-radiant set. Then,
C(ε2) ⊂ C(ε1).

Part (iii). It is clear that C(0) = cone(C), and thus C(0) is a solid cone.
If y ∈ C(0) ∩ (−C(0)), then there exist δ, ν > 0 such that y ∈ C(δ) ∩ (−C(ν)).

Consider β = min{δ, ν} > 0. By parts (i)–(ii) we see that y ∈ C(β)∩ (−C(β)) ⊂ {0},
and therefore, C(0) is a pointed set.

Definition 3.2. Let ε ≥ 0. We say that a feasible point x0 ∈ S is an ε-efficient
solution of (2.1) with respect to C (or an ε-efficient solution for short) if

(f(x0) − C(ε)) ∩ f(S) ⊂ {f(x0)}.

We denote by AE(f, C, ε) the set of ε-efficient solutions of (2.1) with respect to C.
As C is a solid set, it follows that int(C) is a nonempty pointed co-radiant set

and we can also consider the set of all ε-efficient solutions of (2.1) with respect to
int(C) (or weakly ε-efficient solutions for short):

WAE(f, C, ε) := AE(f, int(C) , ε) = {x ∈ S : (f(x) − int(C) (ε)) ∩ f(S) = ∅}.

Notice that

int(C) (0) :=
⋃
ε>0

ε int(C) =
⋃
ε>0

int(C(ε))(3.2)

is an open cone, and as C is a proper co-radiant set, it follows that 0 /∈ int(C) (ε)
∀ ε ≥ 0.

Remark 3.3. Let us observe that when ε = 0 we have AE(f, C, 0) = E(f, C(0))
and WAE(f, C, 0) = E(f, int(C) (0)), since the sets C(0) and int(C) (0) are cones. In
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what follows the notations AE(f, C, 0) and WAE(f, C, 0) are used in order to stress
that efficient solutions with respect to the preference relations induced in Y by C(0)
and int(C) (0) are ε-efficient and weakly ε-efficient solutions of (2.1) with respect to
C and precision ε = 0, respectively.

For each ε > 0 it follows that AE(f, C, ε) ⊂ WAE(f, C, ε). Moreover, as int(C) (0) ⊂
int(C(0)) ⊂ C(0), we have that

AE(f, C, 0) ⊂ WE(f, C(0)) ⊂ WAE(f, C, 0) .

Theorem 3.4 shows several properties of the family {AE(f, C, ε)}ε≥0. As usual,
for a set K ⊂ Y we denote f−1(K) = {x ∈ X : f(x) ∈ K}.

Theorem 3.4.

(i) AE(f, C, 0) ⊂ AE(f, C, ε) ∀ ε > 0.
(ii) AE(f, C, ε1) ⊂ AE(f, C, ε2) ∀ ε1, ε2 > 0, ε1 < ε2.
(iii)

⋂
ε>0 AE(f, C, ε) = AE(f, C, 0).

(iv) Let (xn) ⊂ S, (εn) ⊂ R+, and y ∈ Y such that xn ∈ AE(f, C, εn), εn ↓ 0,
and f(xn) → y. Then f−1(y) ∩ S ⊂ WAE(f, C, 0).

(v) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, C, εn) and εn ↓ 0.
Consider

K :=
⋂
n

(f(xn) − C(εn)).

Then f−1(K) ∩ S ⊂ AE(f, C, 0).
Proof. Part (i). Let ε > 0 and x ∈ AE(f, C, 0). It follows that

(f(x) − C(ε)) ∩ f(S) ⊂
(
f(x) −

⋃
δ>0

C(δ)

)
∩ f(S) = (f(x) − C(0)) ∩ f(S) ⊂ {f(x)}

and thus x ∈ AE(f, C, ε).
Part (ii). Let ε1, ε2 > 0, ε1 < ε2, and x ∈ AE(f, C, ε1). By Lemma 3.1(ii) we

have that C(ε2) ⊂ C(ε1) and we deduce that

(f(x) − C(ε2)) ∩ f(S) ⊂ (f(x) − C(ε1)) ∩ f(S) ⊂ {f(x)}.

Then x ∈ AE(f, C, ε2).
Part (iii). From part (i) it follows that

AE(f, C, 0) ⊂
⋂
ε>0

AE(f, C, ε) .

Conversely, let x ∈
⋂

ε>0 AE(f, C, ε). Then, for each ε > 0 we have

(f(x) − C(ε)) ∩ f(S) ⊂ {f(x)}

and

(f(x) − C(0)) ∩ f(S) =
⋃
ε>0

((f(x) − C(ε)) ∩ f(S)) ⊂ {f(x)}.

Therefore, x ∈ AE(f, C, 0).
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Part (iv). Let x ∈ f−1(y) ∩ S and suppose that there exists z ∈ S such that
f(z) ∈ f(x) − int(C) (0). From (3.2) it follows that there exists ε > 0 verifying
f(z) ∈ f(x) − int(C(ε)). As f(xn) → y we deduce that there exists n0 ∈ N such that

f(z) + y − f(xn) ∈ f(x) − int(C(ε)) ∀n ≥ n0.

As εn ↓ 0, it follows from Lemma 3.1(ii) that there exists n1 ≥ n0 such that

f(z) ∈ f(xn) − int(C(εn)) ∀n ≥ n1,

and this relation contradicts the weak εn-efficiency of xn, taking into account that
AE(f, C, εn) ⊂ WAE(f, C, εn). This finishes the proof of Part (iv).

Part (v). Consider x ∈ f−1(K)∩S. As f(x) ∈ K and xn ∈ AE(f, C, εn), we have
that

f(x) ∈ (f(xn) − C(εn)) ∩ f(S) ⊂ {f(xn)} ∀n

and we deduce that f(x) = f(xn) ∀n. Therefore,

(f(x) − C(εn)) ∩ f(S) = (f(xn) − C(εn)) ∩ f(S) ⊂ {f(xn)} = {f(x)} ∀n.

Thus, by (3.1) we see that

(f(x) − C(0)) ∩ f(S) ⊂ {f(x)}

and we conclude that x ∈ AE(f, C, 0).
Remark 3.5. From Theorem 3.4(iv) it is clear that, if f is a continuous map

at x0 ∈ S and there exist (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, C, εn),
xn → x0, and εn ↓ 0, then x0 ∈ WAE(f, C, 0).

Remark 3.6. As int(C) is also a solid pointed co-radiant set, we see that Theorem
3.4 holds if we change C by int(C) and AE(f, C, ε) by WAE(f, C, ε). In this case,
let us observe that the conclusion in Part (iv) is f−1(y) ∩ S ⊂ WAE(f, int(C) , 0) =
WAE(f, C, 0) since int(int(C)) = int(C).

4. Relations with other ε-efficiency concepts. In this section, we obtain
various well-known ε-efficiency concepts by considering suitable (not necessarily con-
vex) sets C in Definition 3.2. Let us observe that in subsection 4.3 we give a new
ε-efficiency concept in the sense of Helbig.

4.1. ε-efficiency in the senses of Kutateladze and Németh. Let D ⊂ Y
be a solid pointed convex cone. Suppose that 0 ∈ D and consider C := H +D, where
H ⊂ D\{0}. C is a pointed set, since C ⊂ D and D is a pointed cone. For each
q ∈ H it is clear that q + D is a solid co-radiant set, since int(q + D) = q + int(D)
and

α(q + D) = q + ((α− 1)q + αD) ⊂ q + D ∀α > 1.

Then, writing the set C as

C =
⋃
q∈H

(q + D),

we see that C is a solid co-radiant set and

C(ε) =
⋃
q∈H

ε(q + D) =
⋃
q∈H

(εq + D) = εH + D ∀ ε > 0.(4.1)
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Thus, from Definition 3.2 an ε-efficiency notion can be deduced by taking C = H+D.
With this notion, for each ε > 0 the following ε-efficiency set is obtained:

x ∈ AE(f, C, ε) ⇐⇒ x ∈ S, (f(x) − εH −D) ∩ f(S) ⊂ {f(x)}.(4.2)

As 0 /∈ C, for each ε > 0 statement (4.2) becomes

x ∈ AE(f, C, ε) ⇐⇒ x ∈ S, (f(x) − εH −D) ∩ f(S) = ∅.(4.3)

This notion was introduced by Németh [21]. For each ε ≥ 0, the set of all ε-efficient
(resp., weakly ε-efficient) solutions in this sense, i.e., with respect to C = H + D
(resp., C = int(H + D)), is denoted by AE(f, CN , ε) (resp., WAE(f, CN , ε)).

If H = {q}, ε > 0, and q ∈ D\{0}, then from (4.3) we obtain the following
ε-efficiency notion:

x ∈ AE(f, C, ε) ⇐⇒ x ∈ S, (f(x) − εq −D) ∩ f(S) = ∅.

This concept was introduced by Kutateladze [12], and it is the most popular notion
of ε-efficiency (see [31, 25, 9, 35] for more details about it). We denote the set of
ε-efficient (resp., weakly ε-efficient) solutions of (2.1) in this sense by AE(f, CK , ε)
(resp., WAE(f, CK , ε)).

Some properties of Németh’s approximate solutions are collected in Proposition
4.2. The following lemma is necessary.

Lemma 4.1.

(i) H ⊂ int(D) ⇐⇒ C(0) = int(D).
(ii) bd(D) ∩ (D\{0}) ⊂ cone(H) ⇒ C(0) = D\{0}.
(iii) int(C) (0) = int(D).
Proof. Part (i). Suppose that H ⊂ int(D). As D is a solid convex cone, from

(4.1) we have

C(ε) = εH + D ⊂ ε int(D) + D ⊂ int(D) ∀ ε > 0,

and C(0) ⊂ int(D). Reciprocally, let d ∈ int(D) and consider q ∈ H. Then, there
exists ε > 0 such that d− ε q ∈ D. It follows that d ∈ εq + D ⊂ εH + D and

int(D) ⊂
⋃
ε>0

C(ε) = C(0) .

Next, consider C(0) = int(D). Then, taking ε = 1 in (4.1) we deduce that
H ⊂ H + D ⊂ C(0) = int(D).

Part (ii). If bd(D) ∩ (D\{0}) = ∅, then D\{0} is an open set and H ⊂ int(D).
Thus, by part (i), we have that C(0) = int(D) = D\{0}.

Suppose that bd(D)∩ (D\{0}) �= ∅. From (4.1) we see that C(0) =
⋃

ε>0 C(ε) ⊂
D\{0}, since D is a pointed convex cone.

Reciprocally, by the hypothesis,

bd(D) ∩ (D\{0}) ⊂ cone(H) =
⋃
α>0

αH ⊂ C(0) .(4.4)

Let d ∈ int(D) and take a point d1 ∈ bd(D) ∩ (D\{0}). There exist d2 ∈ D and
λ ∈ (0, 1) such that d = λd1 +(1−λ)d2. From (4.4) we deduce that there exist q ∈ H
and α > 0 such that d1 = αq and thus

d = λ(αq) + (1 − λ)d2 ∈ λαH + D ⊂ C(0) .
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Thus, int(D) ⊂ C(0). From this inclusion and (4.4) it follows that D\{0} ⊂ C(0).
Part (iii). As H ⊂ D and D is a solid convex cone,

int(C) (0) =
⋃
ε>0

ε int(H + D) ⊂ int(D) .

Let d ∈ int(D). Taking a point q ∈ H, there exists ε > 0 such that d − εq ∈
int(D). Therefore, d ∈ int(εq + D) ⊂ ε int(H + D), and we conclude that int(D) ⊂
int(C) (0).

Proposition 4.2.

(i) If H ⊂ int(D), then ⋂
ε>0

AE(f, CN , ε) = WE(f,D) ,

and if bd(D) ∩ (D\{0}) ⊂ cone(H), then⋂
ε>0

AE(f, CN , ε) = E(f,D) .

(ii) Let (xn) ⊂ S, (εn) ⊂ R+, and y ∈ Y such that xn ∈ AE(f, CN , εn), εn ↓ 0,
and f(xn) → y. Then f−1(y) ∩ S ⊂ WE(f,D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, CN , εn) and εn ↓ 0.
Consider

K :=
⋂
n

(f(xn) − εnH −D).

If H ⊂ int(D) , then f−1(K) ∩ S ⊂ WE(f,D) and if bd(D) ∩ (D\{0}) ⊂
cone(H), then f−1(K) ∩ S ⊂ E(f,D).

Proof. If H ⊂ int(D), then C(0) = int(D) by Lemma 4.1(i), and so AE(f, CN , 0) =
WE(f,D). Moreover, from Lemma 4.1(iii), it follows that int(C) (0) = int(D), and we
have WAE(f, CN , 0) = WE(f,D). If bd(D) ∩ (D\{0}) ⊂ cone(H), we deduce from
Lemma 4.1(ii) that C(0) = D\{0} and AE(f, CN , 0) = E(f,D). Then properties
(i)–(iii) hold by Theorem 3.4(iii)–(v).

In Proposition 4.2 we have extended several properties proved in the literature for
the ε-efficiency set in the sense of Kutateladze (see, for example, [9, Lemma 3.3 and
Theorem 3.4]) to the approximate solutions in the sense of Németh. We can deduce
these properties by considering H = {q} in Proposition 4.2.

4.2. ε-efficiency in the sense of White. Let D be a proper solid convex cone
such that 0 ∈ D. Assume that cl(D) is a pointed set, consider q ∈ int(D), and define

C := D ∩ (q −D)c.

Lemma 4.3.

(i) C is a solid pointed co-radiant set.
(ii) C(ε) = D ∩ (εq −D)c ∀ ε > 0.
(iii) C(0) = D\{0} and int(C) (0) = int(D).
Proof. Part (i). Suppose that int(C) = ∅. Then int(D)∩int((q −D)c) = ∅; hence,

int(D) ⊂ [int((q −D)c)]c = q− cl(D) and int(D) ⊂ int(q − cl(D)) = q− int(D), since
D is a solid convex cone. Thus, 0 ∈ int(D), and it follows that D = Y , which is a
contradiction.
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C is pointed since C ⊂ cl(D) and cl(D) is a pointed set.
Let d ∈ C and α > 1. It is clear that αd ∈ D. Moreover, if αd ∈ q − D, then

there exists v ∈ D such that αd = q − v and

d = q − (v + (α− 1)d).

As D is a convex cone and α > 1, we have d ∈ q −D, which is a contradiction. Then
αd /∈ q −D and therefore αd ∈ C.

Part (ii). Let ε > 0 and z ∈ D ∩ (εq − D)c. As D is a cone, we have that
(1/ε)z ∈ D. Moreover, (1/ε)z ∈ (q−D)c. Indeed, if (1/ε)z ∈ q−D, then z ∈ εq−D,
which is absurd. Thus, (1/ε)z ∈ D ∩ (q −D)c, and it follows that

D ∩ (εq −D)c ⊂ ε(D ∩ (q −D)c) = εC = C(ε) .

From here we deduce that

ε(D ∩ (q −D)c) = ε(D ∩ ((1/ε)(εq) −D)c) ⊂ D ∩ (εq −D)c,

and we conclude that C(ε) = D ∩ (εq −D)c.
Part (iii). First, let us see that⋂

ε>0

(εq −D) = −cl(D) .(4.5)

As cl(−D) + int(−D) ⊂ int(−D), it follows that cl(−D) − εq ⊂ int(−D) ∀ε > 0.
Hence,

−cl(D) ⊂ εq + int(−D) ⊂ εq −D ∀ ε > 0.

Therefore, −cl(D) ⊂
⋂

ε>0(εq − D). Now, we prove the reciprocal inclusion. If
y ∈

⋂
ε>0(εq −D), then ∀ ε > 0 there exists dε ∈ D such that y = εq − dε. Hence,

lim
ε↓0

(−dε) = lim
ε↓0

(y − εq) = y ∈ −cl(D) ,

and we have (4.5).
As cl(D) is a pointed cone, it follows that D\{0} ⊂ (−cl(D))c and, taking into

account (4.5),

C(0) =
⋃
ε>0

D ∩ (εq −D)c = D ∩
(⋂

ε>0

(εq −D)

)c

= D ∩ (−cl(D))c = D\{0}.

Analogously, we have

int(C) (0) =
⋃
ε>0

int(D ∩ (εq −D)c) = int(D) ∩
(⋃

ε>0

int((εq −D)c)

)

= int(D) ∩
(⋃

ε>0

(εq − cl(D))c

)
= int(D) ∩ (−cl(D))c = int(D) .

By Definition 3.2, for each ε ≥ 0, the following ε-efficiency concept is obtained:

x ∈ AE(f, C, ε) ⇐⇒ x ∈ S, (f(x) − (D ∩ (εq −D)c)) ∩ f(S) = ∅
⇐⇒ x ∈ S, f(z) ∈ f(x) − εq + D ∀ z ∈ S such that f(z) ∈ f(x) −D.
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This notion was introduced by White [31]. We denote the set of all ε-efficient (resp.,
weakly ε-efficient) solutions in this sense by AE(f, CW , ε) (resp., WAE(f, CW , ε)). Its
elements satisfy the following properties.

Proposition 4.4.

(i)
⋂

ε>0 AE(f, CW , ε) = E(f,D).

(ii) Let (xn) ⊂ S, (εn) ⊂ R+, and y ∈ Y such that xn ∈ AE(f, CW , εn), εn ↓ 0,
and f(xn) → y. Then f−1(y) ∩ S ⊂ WE(f,D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, CW , εn), εn ↓ 0, and

K :=
⋂
n

(f(xn) − (D ∩ (εnq −D)c)).

Then f−1(K) ∩ S ⊂ E(f,D).
Proof. By Lemma 4.3(iii) we deduce that WAE(f, CW , 0) = WE(f,D) and

AE(f, CW , 0) = E(f,D). Then, the proposition is a consequence of Theorem 3.4(iii)–
(v).

In [35, Propositions 2.6(2) and 2.8], Yokoyama proved parts (i) and (iii) of Propo-
sition 4.4 by considering approximate elements of a set. In Proposition 4.4, we have
extended these results to vector optimization problems and we have given an addi-
tional property.

4.3. A new ε-efficiency in the sense of Helbig. Suppose that D is a solid
pointed cone not necessarily convex such that 0 ∈ D. Let gi ∈ D+\{0}, i =
1, 2, . . . ,m, and

g(y) := max
1≤i≤m

{gi(y)}.(4.6)

Let Ms+ = {h : Y → R : h(d) > 0 ∀ d ∈ D\{0}}. It is clear that g ∈ Ms+ if gi ∈ Ds+

for some i. However, it is possible that g ∈ Ms+ and gi /∈ Ds+ ∀ i. For example,
if Y = R2, D = R2

+, m = 2, g1(y1, y2) = y1, and g2(y1, y2) = y2, it is obvious that
gi /∈ Ds+, i = 1, 2, and g ∈ Ms+.

For each α ∈ R we denote

[g > α] = {y ∈ Y : g(y) > α}.

Consider the set C := D ∩ [g > 1].
Lemma 4.5.

(i) C is a solid pointed co-radiant set.
(ii) C(ε) = D ∩ [g > ε] ∀ ε ≥ 0.
(iii) int(D) = int(C) (0) ⊂ C(0) ⊂ D\{0}.
(iv) If g ∈ Ms+, then C(0) = D\{0}.
Proof. Part (i). It is obvious that C is a pointed co-radiant set, and we prove

just that C is solid. Indeed, as D is a proper solid cone, there exist d ∈ int(D)
and α := g(d) > 0, since gi ∈ D+\{0}, and thus gi(d) > 0 ∀ i = 1, 2, . . . ,m. Then
(2/α)d ∈ int(D) ∩ [g > 1] = int(C), and C is solid.

Part (ii). For ε > 0 it follows easily since D is a cone and g is a positively
homogeneous functional. For ε = 0 it is clear.

Part (iii). Let d ∈ int(D). As gi ∈ D+\{0}, we see that g(d) > 0. Then, there
exists ε > 0 such that d ∈ [g > ε] and we deduce that d ∈ int(C) (ε). Thus, it follows
that int(D) ⊂ int(C) (0).
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By part (ii) it is obvious that C(0) ⊂ D\{0}. Moreover, we deduce that int(D) =
int(C) (0), since int(C) (0) is open.

Part (iv). If g ∈ Ms+, then g(d) > 0 ∀ d ∈ D\{0} and we see that D\{0} ⊂ C(0).
By part (iii) we have the reciprocal inclusion and, therefore, C(0) = D\{0}.

By Definition 3.2, for each ε ≥ 0 we obtain the following ε-efficiency set:

x ∈ AE(f, C, ε) ⇐⇒ x ∈ S, (f(x) − (D ∩ [g > ε])) ∩ f(S) = ∅
⇐⇒ x ∈ S, (f(x) − f(S)) ∩ (D ∩ [g > ε]) = ∅

⇐⇒ [x ∈ S, z ∈ S, f(z) ∈ f(x) −D ⇒ gi(f(x)) − ε ≤ gi(f(z))∀ i = 1, 2, . . . ,m].

If we consider the particular case m = 1, then we obtain the ε-efficiency no-
tion introduced by Helbig [8]. By using this generalization, the decision-maker can
take several criteria gi into account in order to solve (2.1). We denote the set of
ε-efficient (resp., weakly ε-efficient) solutions in this sense by AE(f, CH , ε) (resp.,
WAE(f, CH , ε)). Its elements satisfy the following properties.

Proposition 4.6.

(i) E(f,D) ⊂
⋂

ε>0AE(f, CH , ε) ⊂ WE(f,D), and if g ∈ Ms+, then⋂
ε>0

AE(f, CH , ε) = E(f,D) .

(ii) Let (xn) ⊂ S, (εn) ⊂ R+, and y ∈ Y such that xn ∈ AE(f, CH , εn), εn ↓ 0,
and f(xn) → y. Then f−1(y) ∩ S ⊂ WE(f,D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, CH , εn) and εn ↓ 0.
Consider

K :=
⋂
n

(f(xn) − (D ∩ [g > εn])).

Then f−1(K)∩ S ⊂ WE(f,D) and if g ∈ Ms+, then f−1(K)∩ S ⊂ E(f,D).
Proof. From Lemma 4.5(iii) we deduce that

E(f,D) ⊂ AE(f, CH , 0) ⊂ WE(f,D) .

Moreover, by Lemma 4.5(iii)–(iv), we have that WAE(f, CH , 0) = WE(f,D) and for
each g ∈ Ms+ we see that AE(f, CH , 0) = E(f,D). Then, parts (i)–(iii) follow easily
from Theorem 3.4(iii)–(v).

4.4. ε-efficiency in the sense of Tanaka. In this subsection we assume that
the final space Y is normed and we consider a solid pointed (not necessarily convex)
cone D such that 0 ∈ D and the following set:

C := D ∩ cl(B)
c
,

where B denotes the open ball of center 0 and radius 1.
Lemma 4.7.

(i) C is a solid pointed co-radiant set.
(ii) C(ε) = D ∩ cl(εB)

c ∀ ε > 0.
(iii) C(0) = D\{0} and int(C) (0) = int(D).
Proof. Part (i). First, we prove that C is a solid set. Indeed, there exists a point

q ∈ int(D), q �= 0, since D is a solid cone. Then, (2/‖q‖)q ∈ int(D)∩ cl(B)
c

= int(C),
and C is a solid set.
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Moreover, C is a pointed set, since C ⊂ D and D is a pointed cone. Let y ∈ C
and α > 1. As D is a cone, we have that αy ∈ D. Moreover, ‖αy‖ = α‖y‖ > 1 since
α > 1 and y /∈ cl(B). Then αy ∈ C, and it follows that C is a co-radiant set.

Part (ii). Let y ∈ C and ε > 0. It is clear that εy ∈ D and ‖εy‖ = ε‖y‖ > ε since
y ∈ cl(B)

c
. It follows that εy ∈ D ∩ cl(εB)

c
and C(ε) ⊂ D ∩ cl(εB)

c
. Similarly, if

y ∈ D∩cl(εB)
c
, then (1/ε)y ∈ D∩cl(B)

c
= C. Thus, y ∈ εC and C(ε) = D∩cl(εB)

c
.

Part (iii). By part (ii) it is clear that

C(0) =
⋃
ε>0

D ∩ cl(εB)
c

= D ∩
(⋂

ε>0

cl(εB)

)c

= D\{0}.

Analogously,

int(C) (0) =
⋃
ε>0

int(D) ∩ cl(εB)
c

= int(D) ∩
(⋂

ε>0

cl(εB)

)c

= int(D) .

We denote by AE(f, CT , ε) (resp., WAE(f, CT , ε)) the ε-efficiency (resp., weak
ε-efficiency) set with respect to this set C. For each ε ≥ 0 it follows that

x ∈ AE(f, CT , ε) ⇐⇒ x ∈S, (f(x) − (D ∩ cl(εB)
c
)) ∩ f(S) = ∅

⇐⇒ x ∈S, (f(x) −D) ∩ f(S) ⊂ f(x) + cl(εB) .

This concept of ε-efficiency was introduced by Tanaka [28]. Next, we give some
properties of this notion, which extend a previous property proved by Tanaka in [28,
Proposition 3.3]. The proof is omitted since it is similar to the proof of Proposition
4.4.

Proposition 4.8.

(i)
⋂

ε>0 AE(f, CT , ε) = E(f,D).
(ii) Let (xn) ⊂ S, (εn) ⊂ R+, and y ∈ Y such that xn ∈ AE(f, CT , εn), εn ↓ 0,

and f(xn) → y. Then f−1(y) ∩ S ⊂ WE(f,D).
(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE(f, CT , εn), εn ↓ 0, and

K :=
⋂
n

(f(xn) − (D ∩ cl(εnB)
c
)).

Then f−1(K) ∩ S ⊂ E(f,D).

5. A general scalarization for ε-efficient solutions. In the literature, ap-
proximate solutions of (2.1) are usually studied in convex problems via Kutateladze’s
definition and using scalarization methods which characterize this kind of solutions
by means of solutions of related scalar optimization problems (see, for example, [1,
Theorem 2.1], [2, Theorem 2.1], [16, Theorems 1 and 2], [17, Lemma 2.1], and [31,
Lemma 3.2]). However, scalarization methods for ε-efficiency in nonconvex vector
optimization problems or using ε-efficiency notions different from Kutateladze’s def-
inition are very limited (see [6, Lemma 3.1], [13], [18, Propositions 3.1 and 3.2], and
[34, Lemmas 4.1 and 4.2]).

In this section we deduce several scalarizations for ε-efficient solutions obtained
by Definition 3.2 and different solid pointed star-shaped co-radiant sets C. We recall
that a set C is star-shaped if there exists q ∈ C such that

αq + (1 − α)y ∈ C ∀ y ∈ C, ∀α ∈ (0, 1).(5.1)



A UNIFIED APPROACH FOR THE APPROXIMATE EFFICIENCY 699

We denote by kern(C) the set of all points q ∈ C such that (5.1) holds. It is easy to
prove that if C is a co-radiant set, then kern(C) is also a co-radiant set.

First, we obtain a necessary condition for ε-efficient solutions through a scalar-
ization process based on the following nonconvex separation theorem due to Göpfert
et al. [4, Theorem 2.3.1]. We denote Rq = {sq : s ∈ R}.

Theorem 5.1. Let G ⊂ Y be a proper closed solid set and q ∈ Y be such that

G + (0,∞)q ⊂ int(G) ,

Y = Rq −G,

∀ y ∈ Y, ∃ s ∈ R such that y + sq /∈ G.

Then, the functional ϕq,G : Y → R defined by

ϕq,G(y) = inf{s ∈ R : y ∈ sq −G}(5.2)

is a continuous functional such that

{y ∈ Y : ϕq,G(y) < c} = cq − int(G) ∀ c ∈ R,

{y ∈ Y : ϕq,G(y) = c} = cq − bd(G) ∀ c ∈ R,

ϕq,G(−G) ≤ 0, ϕq,G(−bd(G)) = 0.

We denote by AMin(g, ε) the set of ε-approximate solutions of the scalar optimization
problem

Min{g(x) : x ∈ F},

i.e.,

AMin(g, ε) = {x ∈ F : g(x) − ε ≤ g(z)∀ z ∈ F},

where g : X → R, F ⊂ X, F �= ∅, and ε ≥ 0.
Lemma 5.2. Let C be a proper star-shaped co-radiant set such that kern(C) is

solid. Then the following hold:
(i) d + λq ∈ C ∀ d ∈ C, ∀ q ∈ kern(C), ∀λ > 0.
(ii) d + λq ∈ C(ε) ∀ ε > 0, ∀ d ∈ C(ε), ∀ q ∈ kern(C), ∀λ > 0.
(iii) cl(C(ε)) + (0,∞)q ⊂ int(C(ε)) ∀ ε > 0, ∀ q ∈ int(kern(C)).
(iv) Y = Rq − C(ε) ∀ q ∈ int(C), ∀ ε > 0.
(v) Y = Rq + εint(kern(C)) ∀ q ∈ int(kern(C)), ∀ ε > 0.
(vi) ∀ q ∈ int(kern(C)), ∀ ε > 0, ∀ y ∈ Y, ∃ s ∈ R such that y + sq /∈ cl(C(ε)).
(vii) int(cl(C(ε))) = int(C(ε)) ∀ ε > 0.
Proof. Part (i). Let d ∈ C, q ∈ kern(C), and λ > 0. As C is a star-shaped

co-radiant set and q ∈ kern(C), it follows that

d + λq = (λ + 1)

(
1

λ + 1
d +

(
1 − 1

λ + 1

)
q

)
∈ C.

Part (ii). Let d ∈ C(ε), q ∈ kern(C), and λ > 0. As (1/ε)d ∈ C, by part (i) it
follows that (1/ε)d + (λ/ε)q ∈ C. Thus, d + λq ∈ εC = C(ε).

Part (iii). Let q ∈ int(kern(C)) and ε > 0. First, we prove that

C(ε) + (0,∞)q ⊂ int(C(ε)) .(5.3)
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Indeed, consider d ∈ C(ε) and λ > 0. There exists a neighborhood U of 0 such that
q + U ⊂ kern(C), and by Part (ii) we deduce that d + λ(q + U) ⊂ C(ε). Thus, it
follows that d + λq ∈ int(C(ε)).

Next, we prove that cl(C(ε)) + (0,∞)q ⊂ int(C(ε)). Let d ∈ cl(C(ε)) and λ > 0.
There exists v ∈ C(ε) such that q + (1/λ)(d − v) ∈ int(kern(C)). Then, by (5.3) we
see that d + λq = v + λ(q + (1/λ)(d− v)) ∈ int(C(ε)) and Part (iii) holds.

Part (iv). Let q ∈ int(C), ε > 0, and y ∈ Y . There exists δ ∈ (0, 1) such that
q− (δ/ε)y ∈ C. As δ < 1 and C(ε) is a co-radiant set by Lemma 3.1(i), it follows that

y ∈ (ε/δ)q − (1/δ)(εC) ⊂ Rq − C(ε) .

Part (v). Let q ∈ int(kern(C)), ε > 0, and y ∈ Y . As in the proof of Part (iv)
we see that there exists δ ∈ (0, 1) such that y ∈ (ε/δ)q − ε((1/δ)int(kern(C))), and it
follows that y ∈ Rq− εint(kern(C)), since int(kern(C)) is a co-radiant set. Therefore,
we have that Y ⊂ Rq − ε int(kern(C)), which implies that Y = Rq + ε int(kern(C)).

Part (vi). Suppose that there exist q ∈ int(kern(C)), ε > 0, and y ∈ Y such that
y + Rq ⊂ cl(C(ε)). Then, by Part (v) we deduce that

Y = (y + Rq) + ε int(kern(C)) − y ⊂ cl(C(ε)) + ε int(kern(C)) − y.

From Part (iii) it follows that cl(C(ε)) + ε int(kern(C)) ⊂ int(C(ε)). Therefore, Y ⊂
εint(C) − y, which is a contradiction, since C is a proper set.

Part (vii). It is clear that int(C(ε)) ⊂ int(cl(C(ε))). Reciprocally, let d ∈
int(cl(C(ε))) and q ∈ int(kern(C)). There exists δ > 0 such that d − δq ∈ cl(C(ε)).
Then, by Part (iii) we deduce that

d ∈ cl(C(ε)) + δq ⊂ int(C(ε)) ,

and therefore int(cl(C(ε))) ⊂ int(C(ε)).
Theorem 5.3. Let C be a proper star-shaped co-radiant set such that kern(C) is

solid, q ∈ int(kern(C)), and ε > 0. Then the following holds:

x0 ∈ WAE(f, C, ε) ⇒ x0 ∈ AMin
(
ϕq,C(ε),f(x0) ◦ f, ε

)
,

where ϕq,C(ε),f(x0)(y) := ϕq,cl(C(ε))(y − f(x0)) ∀ y ∈ Y .
Proof. Let ε > 0 and consider G := cl(C(ε)). By parts (iii), (iv), and (vi) of

Lemma 5.2, we deduce that G satisfies the hypotheses of Theorem 5.1. Then, from
this theorem we deduce that

{y ∈ Y : ϕq,cl(C(ε))(y) < 0} = −int(cl(C(ε))) .(5.4)

For each x0 ∈ WAE(f, C, ε) we have that

(f(S) − f(x0)) ∩ −int(C(ε)) = ∅.

Then, by (5.4) and Lemma 5.2(vii) we see that

(ϕq,C(ε),f(x0) ◦ f)(x) = ϕq,cl(C(ε))(f(x) − f(x0)) ≥ 0 ∀x ∈ S.

Moreover, by (5.2) it is clear that

(ϕq,C(ε),f(x0) ◦ f)(x0) = ϕq,cl(C(ε))(0) = inf{s ∈ R : sq ∈ cl(C(ε))} ≤ ε.
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Thus, (ϕq,C(ε),f(x0) ◦ f)(x0) − ε ≤ (ϕq,C(ε),f(x0) ◦ f)(x) ∀x ∈ S, and we conclude

that x0 ∈ AMin
(
ϕq,C(ε),f(x0) ◦ f, ε

)
.

Gerth and Weidner [3, section 3] and Rubinov and Gasimov [22, Theorem 7.2]
have obtained necessary conditions for weakly efficient solutions using Minkowski-type
functionals similar to ϕq,C(ε),f(x0). In Theorem 5.3 we have extended these necessary
conditions to the weak ε-efficiency set.

Necessary conditions for the ε-efficiency set in the sense of Kutateladze have been
proved via Minkowski-type functionals by Göpfert et al. [4, section 3.1.1] and Tammer
[27, Theorem 1]. In Theorem 5.3 we have extended these results to other ε-efficiency
concepts since, in the theorem, we have obtained necessary conditions for the general
ε-efficiency notion introduced in Definition 3.2 based on the Minkowski-type functional
ϕq,C(ε),f(x0).

Next, we extend Theorem 5.3 for some vectors q ∈ cl(int(kern(C))).
Lemma 5.4. Let G ⊂ Y and let (αn) ⊂ R be such that αn ↓ 0. Consider q ∈ Y

and the sequence (qn), where qn := (1+αn)q ∀n. Then, ϕqn,G(y) → ϕq,G(y) ∀ y ∈ Y ,
where ϕqn,G and ϕq,G are given by (5.2).

Proof. Let y ∈ Y . For each s ∈ R such that y ∈ sq − G, it follows that y ∈
(s/(1 + αn))qn −G. Then, ϕqn,G(y) ≤ s/(1 + αn) and we deduce that

(1 + αn)ϕqn,G(y) ≤ ϕq,G(y).(5.5)

Analogously, for each s ∈ R such that y ∈ sqn − G, it follows that y ∈ s(1 +
αn)q −G, and we have that

ϕq,G(y) ≤ ϕqn,G(y)(1 + αn).(5.6)

Combining (5.5) and (5.6) we see that

ϕq,G(y) ≤ ϕqn,G(y)(1 + αn) ≤ ϕq,G(y)

and taking the limit when n → ∞ we conclude that ϕqn,G(y) → ϕq,G(y) ∀ y ∈ Y .
Proposition 5.5. Let C be a proper star-shaped co-radiant set such that kern(C)

is solid. Consider ε > 0, q ∈ Y , αn ↓ 0, and a sequence (qn), where qn = (1 + αn)q
and qn ∈ int(kern(C)) ∀n. If x0 ∈ WAE(f, C, ε), then x0 ∈ AMin

(
ϕq,C(ε),f(x0) ◦ f, ε

)
.

Proof. Let x0 ∈ WAE(f, C, ε). From Theorem 5.3 we have that

(ϕqn,C(ε),f(x0) ◦ f)(x0) − ε ≤ (ϕqn,C(ε),f(x0) ◦ f)(x) ∀x ∈ S, ∀n

and taking the limit when n → ∞ we deduce from Lemma 5.4 that

(ϕq,C(ε),f(x0) ◦ f)(x0) − ε ≤ (ϕq,C(ε),f(x0) ◦ f)(x) ∀x ∈ S.

Remark 5.6. Let us observe that Theorem 5.3 and Proposition 5.5 give necessary
conditions for ε-efficient solutions since AE(f, C, ε) ⊂ WAE(f, C, ε).

In Proposition 5.7 we use the recession cone 0+C of a star-shaped set C to obtain
a simple sufficient condition to have int(kern(C)) �= ∅.

Proposition 5.7. Let C be a star-shaped set and q ∈ kern(C). Then q+ 0+C ⊂
kern(C), and kern(C) is a solid set when 0+C is a solid cone.

Proof. Consider d ∈ 0+C, y ∈ C, and α ∈ (0, 1). It is clear that

α(q + d) + (1 − α)y = αq + (1 − α)y + αd ∈ C + α0+C ⊂ C
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and q + 0+C ⊂ kern(C). Moreover, kern(C) is a solid set when 0+C is a solid cone
since q + int(0+C) ⊂ int(kern(C)).

Usually, sufficient conditions for efficient solutions are obtained via scalarization
methods based on monotone functionals (see, for example, [33, Theorem 9]). Next,
we obtain sufficient conditions for ε-efficient solutions through a scalarization process
whose functional verifies the following new monotonicity concept. In the rest of this
section we assume that Y is a normed space.

Definition 5.8. Let K ⊂ Y be a cone. We say that a functional g : Y → R is
strictly local K-monotone at y0 ∈ Y if there exist σ > 0 and ρ > 0 such that

z ∈ y0 − (K ∩ ρB), y ∈ z −K ⇒ g(y) ≤ g(z),(5.7)

y ∈ y0 − (K ∩ ρB) ⇒ g(y) + σ‖y − y0‖ ≤ g(y0).(5.8)

We will say that g is strictly local K-monotone at y0 with constants σ and ρ. Condition
(5.7) tells us that g is a monotone functional with respect to the preference relation
defined by the cone K at points near to y0 (we will say that g is local K-monotone
at y0). These functionals are frequently used to obtain sufficient conditions for the
efficient solutions of vector optimization problems. Let us observe that (5.7) is a
“local” condition. For example, consider Y = R, K = R+, and

g(y) =

{
cos y if y ≤ 0,

1 if y > 0.

For each y0 > 0 it is clear that g verifies (5.7) taking 0 < ρ ≤ y0. However, g does
not verify (5.7) at y0 > 0 ∀ ρ > 0.

Property (5.8) says that y0 is a strict (or sharp) local maximum of order 1 for
the scalar optimization problem Max{g(y) : y ∈ y0 −K}. Below simple examples of
strictly local K-monotone functionals are given. Parts (i)–(iii) are obvious, and their
proofs are omitted. In Lemmas 6.2 and 6.3 other examples are provided.

Example 5.9. Let g1, g2 be two functionals from Y into R and assume that 0 ∈ K.
(i) If g1 and g2 are strictly local K-monotone at y0, then max{g1, g2} and

min{g1, g2} are strictly local K-monotone at y0.
(ii) If g1 is strictly local K-monotone at y0 and g2 is local K-monotone at y0,

then g1 + g2 is strictly local K-monotone at y0.
(iii) If g ∈ K+, then for each y0 ∈ Y and ρ > 0, g is local K-monotone at y0.
(iv) If g ∈ Ks+, K is closed, and Y is finite dimensional, then for each y0 ∈ Y and

ρ > 0, g is strictly local K-monotone at y0 with constants σ and ρ, where

σ := min{g(d) : d ∈ K, ‖d‖ = 1}.

Indeed, as the set A := {d ∈ K : ‖d‖ = 1} is compact and g(d) > 0 ∀ d ∈ A,
by the Weierstrass theorem it follows that σ > 0. Then ∀ y ∈ y0 − (K ∩ ρB),
y �= y0, as (y0 − y)/‖y0 − y‖ ∈ A we have that σ ≤ g((y0 − y)/‖y0 − y‖). By
linearity we obtain that statement (5.8) is satisfied. Condition (5.7) holds by
part (iii).

Theorem 5.10. Let C ⊂ Y be a nonempty pointed co-radiant set. Consider
x0 ∈ S and let g : Y → R be a strictly local C(0)-monotone functional at f(x0) with
constants σ and ρ.

(i) If 0 /∈ cl(C), x0 ∈ AMin(g ◦ f, δ), and 0 < δ < σρ, then x0 ∈ AE(f, C, δ/(σβ))
∀β > 0 such that cl(βB) ∩ C = ∅.

(ii) If x0 ∈ AMin(g ◦ f, 0), then x0 ∈ AE(f, C, 0).
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Proof. Part (i). To obtain a contradiction, suppose that there exists β > 0 such
that cl(βB) ∩ C = ∅ and x0 /∈ AE(f, C, δ/(σβ)). Then

(f(x0) − C(δ/(σβ))) ∩ f(S) �⊂ {f(x0)}

and there exist x ∈ S and d ∈ C(δ/(σβ)) such that f(x0)−d = f(x). As cl(βB)∩C = ∅
and C(δ/(σβ)) = (δ/(σβ))C, it follows that ‖(σβ/δ)d‖ > β, and so ‖d‖ > δ/σ. Thus,
there exists ν > 0 such that

δ + ν

σ‖d‖ < 1, δ + ν < σρ.(5.9)

As x0 ∈ AMin(g ◦ f, δ) and x ∈ S, it follows that

g(f(x0)) − δ ≤ g(f(x)).(5.10)

Choosing the point

z := f(x0) +
δ + ν

σ‖d‖ (−d),

we see that z ∈ f(x0) − C(0) and taking into account (5.9),

‖z − f(x0)‖ =
δ + ν

σ
< ρ.

Thus z ∈ f(x0) − (C(0) ∩ ρB). As g satisfies (5.7) with y0 = f(x0) and K = C(0),
and

z = f(x0) +
δ + ν

σ‖d‖ (f(x) − f(x0)) = f(x) +

(
1 − δ + ν

σ‖d‖

)
d ∈ f(x) + C(0) ,

we have that

g(f(x)) ≤ g(z).(5.11)

Then, by (5.10) and (5.11) we deduce that

g(f(x0)) − δ ≤ g(z).(5.12)

As z ∈ f(x0)−(C(0)∩ρB) and g is a strictly local C(0)-monotone functional at f(x0)
we deduce from (5.8) that

g(f(x0)) ≥ g(z) + σ‖z − f(x0)‖ = g(z) + δ + ν > g(z) + δ,

contrary to (5.12).
Part (ii). Suppose that x0 /∈ AE(f, C, 0); then there exist x ∈ S and d ∈ C(0),

d �= 0, such that f(x0) − d = f(x). Let us select ν > 0 such that

ν

σ‖d‖ < 1, ν < σρ.

Now, we proceed exactly as in the proof of Part (i), after equation (5.9), taking into
account that δ = 0.

Remark 5.11. Let us observe that if 0 /∈ cl(C), then parts (i) and (ii) of Theorem
5.10 can be rewritten jointly by the following statement: If x0 ∈ AMin(g ◦ f, δ) and
0 ≤ δ < σρ, then x0 ∈ AE(f, C, δ/(σβ)) ∀β > 0 such that cl(βB) ∩ C = ∅.

In [4, section 3.1.1], [13, section 5], and [27, Theorem 2] the reader can find
sufficient conditions for ε-efficient solutions in the sense of Kutateladze. Theorem
5.10 extends these results to the general ε-efficiency notion introduced in Definition
3.2.
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6. Scalarizations for approximate solutions in Pareto multiobjective
optimization problems. In this section we consider that (2.1) is a nonconvex Pareto
multiobjective optimization problem (Y = Rp and D = R

p
+) and we obtain necessary

and sufficient conditions for the ε-efficient solutions of (2.1) in the senses of Kutate-
ladze, Németh, Helbig, White, and Tanaka via Proposition 5.5 and Theorem 5.10.
For Helbig’s notion we take m = 1, and thus, the functional (4.6) is denoted by 〈g, ·〉
with g ∈ R

p
+\{0}.

We denote f = (f1, f2, . . . , fp) and the components of a vector y ∈ Rp by yi,
i = 1, 2, . . . , p. For each C ⊂ Rp and y ∈ Rp we denote d(y, C) = inf{‖y−z‖ : z ∈ C}.

In what follows, we assume the supremum norm ‖ ‖∞ and the Euclidean norm
‖ ‖2 in Rp when we consider Németh’s and Helbig’s ε-efficiency notions, respectively.
Moreover, for White’s and Tanaka’s definitions, we consider a norm of the family
{‖ ‖μ∞ : μ ∈ int

(
R

p
+

)
}, where ‖y‖μ∞ = ‖(μ1y1, μ2y2, . . . , μpyp)‖∞ ∀ y ∈ Rp (see [24,

section 3.4.2] for more detail).
Theorem 6.1. Let x0 ∈ S, q ∈ int

(
R

p
+

)
, and ε > 0.

(i) Consider

kf(x0)(y) := max
1≤i≤p

{
yi − fi(x0)

qi

}
.

If x0 ∈ WAE(f, CK , ε), then x0 ∈ AMin
(
kf(x0) ◦ f, ε

)
.

(ii) Let L = {e1, e2, . . . , ep} be the standard basis of Rp and let H = conv(L).
Suppose that q ∈ H and consider

nf(x0)(y) := max

{
max
1≤i≤p

{
yi − fi(x0)

qi

}
,

p∑
i=1

(yi − fi(x0)) + ε

}
.

If x0 ∈ WAE(f, CN , ε), then x0 ∈ AMin
(
nf(x0) ◦ f, ε

)
.

(iii) Let g ∈ R
p
+\{0} and suppose that 〈g, q〉 ≥ 1. Consider

hf(x0)(y) := max

{
max
1≤i≤p

{
yi − fi(x0)

qi

}
,
〈g, y〉 − 〈g, f(x0)〉 + ε

〈g, q〉

}
.

If x0 ∈ WAE(f, CH , ε) , then x0 ∈ AMin
(
hf(x0) ◦ f, ε

)
.

(iv) Let

tf(x0)(y) := max

{
max
1≤i≤p

{
yi − fi(x0)

qi

}
, min
1≤i≤p

{
yi − fi(x0)

qi

}
+ ε

}
.

If μ = (1/q1, 1/q2, . . . , 1/qp) and x0 ∈ WAE(f, CT , ε) when the norm ‖ ‖μ∞ is
considered, then it follows that x0 ∈ AMin

(
tf(x0) ◦ f, ε

)
. Moreover, it follows

that AE(f, CT , ε) = AE(f, CW , ε) and WAE(f, CT , ε) = WAE(f, CW , ε).
Proof. Part (i). The elements included in WAE(f, CK , ε) are the weakly ε-

efficient solutions of (2.1) with respect to the set C = q + R
p
+. It is clear that C is a

proper solid convex co-radiant set. As C is a convex set and int(C) = q + int
(
R

p
+

)
,

it follows that int(kern(C)) = q + int
(
R

p
+

)
and qn := (1 + 1/n)q ∈ int(kern(C))

∀n. Therefore, from Proposition 5.5 we deduce that if x0 ∈ WAE(f, CK , ε), then
x0 ∈ AMin

(
ϕq,C(ε),f(x0) ◦ f, ε

)
, where ϕq,C(ε),f(x0)(y) = ϕq,C(ε)(y − f(x0)) ∀ y ∈ Rp

and C(ε) = εq + R
p
+.

From (5.2) we have that

ϕq,C(ε)(y − f(x0)) = inf{s ∈ R : y − f(x0) ∈ sq − εq − R
p
+}.
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Moreover,

y − f(x0) ∈ sq − εq − R
p
+ ⇐⇒ s ≥ yi − fi(x0) + εqi

qi
∀ i = 1, 2, . . . , p

and

ϕq,C(ε),f(x0)(y) = max
1≤i≤p

{
yi − fi(x0)

qi

}
+ ε = kf(x0)(y) + ε.

As x0 ∈ AMin
(
ϕq,C(ε),f(x0) ◦ f, ε

)
, we have that

kf(x0)(f(x0)) ≤ kf(x0)(f(x)) + ε ∀x ∈ S

and x0 ∈ AMin
(
kf(x0) ◦ f, ε

)
.

Part (ii). WAE(f, CN , ε) contains all weakly ε-efficient solutions of (2.1) with
respect to C = H + R

p
+, which is a proper solid convex co-radiant set, and int(C) =

H + int
(
R

p
+

)
. As q ∈ H ∩ int

(
R

p
+

)
, it follows that qn := (1 + 1/n)q ∈ H +

int
(
R

p
+

)
. Then, by Proposition 5.5 we deduce that if x0 ∈ WAE(f, CN , ε), then

x0 ∈ AMin
(
ϕq,C(ε),f(x0) ◦ f, ε

)
, where C(ε) = εH + R

p
+ is closed. From (5.2) we see

that

ϕq,C(ε)(y − f(x0)) = inf{s ∈ R : y − f(x0) ∈ sq − εH − R
p
+}.

As

−εH − R
p
+ =

{
y ∈ −R

p
+ :

p∑
i=1

yi ≤ −ε

}
,

it follows that

y − f(x0) ∈ sq − εH − R
p
+ ⇐⇒

⎧⎪⎨⎪⎩
y − f(x0) − sq ∈ −R

p
+,

p∑
i=1

(yi − fi(x0) − sqi) ≤ −ε

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
s ≥ yi − fi(x0)

qi
∀ i = 1, 2, . . . , p,

s ≥
p∑

i=1

(yi − fi(x0)) + ε

since q ∈ H implies
∑p

i=1 qi = 1. Thus, ϕq,C(ε)(y − f(x0)) = nf(x0)(y) ∀ y ∈ Rp, and

we conclude that x0 ∈ AMin
(
nf(x0) ◦ f, ε

)
.

Part (iii). The elements of WAE(f, CH , ε) are weakly ε-efficient solutions of (2.1)
with respect to the proper solid convex co-radiant set C = R

p
+ ∩ [〈g, ·〉 > 1]. As C

is convex, we have that kern(C) = R
p
+ ∩ [〈g, ·〉 > 1] and (1 + 1/n)q ∈ int(kern(C))

∀n. Thus, by Proposition 5.5 we deduce that if x0 ∈ WAE(f, CH , ε), then x0 ∈
AMin

(
ϕq,C(ε),f(x0) ◦ f, ε

)
. From (5.2) with G = cl(C(ε)) = R

p
+ ∩ [〈g, ·〉 ≥ ε] we see

that

ϕq,cl(C(ε))(y − f(x0)) = inf{s ∈ R : y − f(x0) ∈ sq − (Rp
+ ∩ [〈g, ·〉 ≥ ε])}
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and

y − f(x0) ∈ sq − (Rp
+ ∩ [〈g, ·〉 ≥ ε]) ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
s ≥ yi − fi(x0)

qi
∀ i = 1, 2, . . . , p,

s ≥ 〈g, y〉 − 〈g, f(x0)〉 + ε

〈g, q〉 .

Therefore, ϕq,cl(C(ε))(y − f(x0)) = hf(x0)(y) ∀ y ∈ Rp, and it follows that x0 ∈
AMin

(
hf(x0) ◦ f, ε

)
.

Part (iv). WAE(f, CT , ε) is the weak ε-efficiency set of (2.1) with respect to
C = R

p
+ ∩ cl(B)

c
, where the open unit ball B is defined by the norm ‖ ‖μ∞. It is clear

that C is a proper solid nonconvex co-radiant set. Moreover, C is a star-shaped set
since, for example, (1 + 1/n)q ∈ kern(C) ∀n. Indeed, ∀ y ∈ C it follows that there
exists a component yi > qi and

α(1 + 1/n)q + (1 − α)y ∈ R
p
+ ∩ cl(B)

c ∀α ∈ (0, 1), ∀n,

because C ⊂ R
p
+ and α(1 + 1/n)qi + (1 − α)yi > qi.

We have that R
p
+ ⊂ 0+C, since ∀ y ∈ C, ∀α > 0, and ∀ d ∈ R

p
+ we have that

y + αd ∈ R
p
+ + R

p
+ = R

p
+ and

‖y + αd‖μ∞ = max
1≤i≤p

{
yi + αdi

qi

}
≥ max

1≤i≤p

{
yi
qi

}
= ‖y‖μ∞ > 1.

Therefore, by Proposition 5.7 we deduce that (1 + 1/n)q + R
p
+ ⊂ kern(C) ∀n, and

so (1 + 1/n)q ∈ int(kern(C)) ∀n, and by Proposition 5.5 we have that if x0 ∈
WAE(f, CT , ε), then x0 ∈ AMin

(
ϕq,C(ε),f(x0) ◦ f, ε

)
. From (5.2) we see that

ϕq,cl(C(ε))(y − f(x0)) = inf{s ∈ R : y − f(x0) ∈ sq − (Rp
+ ∩ (εB)c)}

since cl(C(ε)) = R
p
+ ∩ (εB)c. It follows that

y − f(x0) ∈ sq − (Rp
+ ∩ (εB)c) ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
s ≥ yi − fi(x0)

qi
∀ i = 1, 2, . . . , p,

s ≥ min
1≤i≤p

{
yi − fi(x0)

qi

}
+ ε.

Thus, ϕq,cl(C(ε))(y − f(x0)) = tf(x0)(y) ∀ y ∈ Rp and x0 ∈ AMin
(
tf(x0) ◦ f, ε

)
.

Finally, AE(f, CW , ε) is the ε-efficiency set with respect to R
p
+ ∩ (q − R

p
+)c. As

R
p
+ ∩ (q − R

p
+)c = R

p
+ ∩ cl(B)

c
= C, we conclude that

AE(f, CT , ε) = AE(f, CW , ε)(6.1)

and

WAE(f, CT , ε) = WAE(f, CW , ε) .

In [34, Proposition 3.2], Yokoyama proved relation (6.1) for q = (1, 1, . . . , 1). We
extend this result to each q ∈ int

(
R

p
+

)
.

Next, we deduce sufficient conditions for approximate solutions of Pareto multi-
objective optimization problems. The following monotonicity properties of the func-
tions nf(x0), hf(x0), and tf(x0) are necessary, in order to apply Theorem 5.10.
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Lemma 6.2. The functions nf(x0) and tf(x0) are strictly local R
p
+-monotone at

f(x0) by taking ‖ ‖∞, σ = 1, ρ = ε/p and ‖ ‖μ∞, σ = 1, ρ = ε in (5.7)–(5.8),
respectively.

Proof. It is clear that if y, z ∈ Rp and y ∈ z−R
p
+, then nf(x0)(y) ≤ nf(x0)(z) and

tf(x0)(y) ≤ tf(x0)(z). Therefore, the functions nf(x0) and tf(x0) satisfy condition (5.7)
∀ρ > 0 and y0 = f(x0).

Let us consider Rp with the norm ‖ ‖∞ and y ∈ f(x0) − (Rp
+ ∩ (ε/p)B). Then

ε

p
> ‖y − f(x0)‖∞ ≥ |yi − fi(x0)| = fi(x0) − yi ∀ i = 1, 2, . . . , p,

and so

p∑
i=1

(yi − fi(x0)) + ε > 0. As y − f(x0) ∈ −R
p
+, it follows that

nf(x0)(y) =

p∑
i=1

(yi − fi(x0)) + ε

and we see that

nf(x0)(f(x0)) − nf(x0)(y) = ε−
p∑

i=1

(yi − fi(x0)) − ε

= −
p∑

i=1

(yi − fi(x0)) =

p∑
i=1

|yi − fi(x0)| ≥ ‖y − f(x0)‖∞.

Therefore, nf(x0) is a strictly local R
p
+-monotone function at f(x0) by taking the norm

‖ ‖∞ in Rp and constants σ = 1 and ρ = ε/p.
Next, let us consider Rp with the norm ‖ ‖μ∞, μ = (1/q1, 1/q2, . . . , 1/qp), and

y ∈ f(x0) − (Rp
+ ∩ εB). Then

min
1≤i≤p

{
yi − fi(x0)

qi

}
+ ε = − max

1≤i≤p

{
−yi − fi(x0)

qi

}
+ ε = −‖y − f(x0)‖μ∞ + ε > 0,

and we have that

tf(x0)(f(x0)) − tf(x0)(y) = ε + ‖y − f(x0)‖μ∞ − ε = ‖y − f(x0)‖μ∞.

Therefore, tf(x0) is a strictly local R
p
+-monotone function at f(x0) by taking the norm

‖ ‖μ∞ in Rp and constants σ = 1 and ρ = ε.
For each g ∈ int

(
R

p
+

)
we denote

mg = min{〈g, y〉 : y ∈ R
p
+, ‖y‖2 = 1},

where ‖ ‖2 is the Euclidean norm. Let us observe that mg > 0.
Lemma 6.3. Let us consider ε > 0, g ∈ int

(
R

p
+

)
, and the Euclidean norm in Rp.

Then, the function hf(x0) is strictly local R
p
+-monotone at f(x0) satisfying (5.7)–(5.8)

with constants σ = mg/〈g, q〉 and ρ = ε/‖g‖2.
Proof. It is clear that hf(x0) satisfies (5.7) ∀ ρ > 0 and y0 = f(x0). To prove (5.8)

consider the Euclidean norm in Rp, σ = mg/〈g, q〉, ρ = ε/‖g‖2, and y ∈ f(x0)− (Rp
+∩

ρB). We have that

hf(x0)(y) =
〈g, y〉 − 〈g, f(x0)〉 + ε

〈g, q〉 ,
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since yi − fi(x0) ≤ 0 ∀ i = 1, 2, . . . , p and

−〈g, y − f(x0)〉 = |〈g, y − f(x0)〉| ≤ ‖g‖2 ‖y − f(x0)‖2 < ‖g‖2ρ = ε.

Therefore,

hf(x0)(f(x0)) − hf(x0)(y) =
〈g, f(x0) − y〉

〈g, q〉 ≥ mg‖f(x0) − y‖2

〈g, q〉 = σ‖f(x0) − y‖2

and so the lemma holds.
Theorem 6.4. Let L = {e1, e2, . . . , ep} be the standard basis of Rp, H =

conv(L), and 0 ≤ δ < ε/p and suppose that x0 ∈ AMin
(
nf(x0) ◦ f, δ

)
. Then x0 ∈

AE(f, CN , δ/β) ∀β > 0 such that β < 1/p.
Proof. Consider C = H +R

p
+. As H is the unit simplex, we have that cone(H) =

R
p
+\{0}, and it follows that bd

(
R

p
+

)
∩ (Rp

+\{0}) ⊂ cone(H). Then, by Lemma 4.1(ii)
we see that C(0) = R

p
+\{0}.

Moreover, 0 /∈ cl(C) and as B is defined by the norm ‖ ‖∞, we see that cl(βB)∩C =
∅ ∀β < 1/p, since

d(0, C) = d(0, H) = 1/p.

By Lemma 6.2, we have that nf(x0) is a strictly local R
p
+-monotone function at f(x0)

with constants σ = 1 and ρ = ε/p. Therefore, as x0 ∈ AMin
(
nf(x0) ◦ f, δ

)
and

0 ≤ δ < ε/p, by Theorem 5.10 and Remark 5.11 the conclusion follows.
Theorem 6.5. Let g ∈ int

(
R

p
+

)
, ε > 0, and 0 ≤ δ < mgε/(〈g, q〉‖g‖2). If a point

x0 ∈ AMin
(
hf(x0) ◦ f, δ

)
, then x0 ∈ AE(f, CH , δ〈g, q〉‖g‖2/mg).

Proof. From Lemma 6.3 we have that hf(x0) is a strictly local R
p
+-monotone

function at f(x0) with constants σ = mg/〈g, q〉 and ρ = ε/‖g‖2. By Lemma 4.5(i)
and (iv) we see that C = R

p
+ ∩ [〈g, ·〉 > 1] is a pointed co-radiant set such that

C(0) = R
p
+\{0}, since g ∈ int

(
R

p
+

)
. Moreover, 0 /∈ cl(C) and if β = 1/‖g‖2, then

〈g, d〉 ≤ ‖g‖2‖d‖2 ≤ ‖g‖2β = 1 ∀ d ∈ cl(βB)

and cl(βB) ∩ C = ∅. Thus, by Theorem 5.10 and Remark 5.11 it follows that if
x0 ∈ AMin

(
hf(x0) ◦ f, δ

)
and 0 ≤ δ < mgε/(〈g, q〉‖g‖2), then

x0 ∈ AE(f, CH , δ〈g, q〉‖g‖2/mg) ,

which completes the proof.
Theorem 6.6. Consider 0 ≤ δ < ε and suppose that x0 ∈ AMin

(
tf(x0) ◦ f, δ

)
.

Then x0 ∈ AE(f, CT , δ), where μ = (1/q1, 1/q2, . . . , 1/qp).
Proof. Let C = R

p
+∩cl(B)

c
with B defined by the norm ‖ ‖μ∞ and μ = (1/q1, 1/q2,

. . . , 1/qp). It is clear that 0 /∈ cl(C) and cl(βB) ∩ C = ∅ ∀β ∈ (0, 1]. By Lemma
4.7(iii) we have that C(0) = R

p
+\{0}, and from Lemma 6.2 it follows that tf(x0) is

a strictly local R
p
+-monotone function at f(x0) by taking the norm ‖ ‖μ∞ in Rp and

constants σ = 1 and ρ = ε. Then, by Theorem 5.10 and Remark 5.11 we deduce that
x0 ∈ AE(f, CT , δ/β) ∀β ∈ (0, 1]. Therefore x0 ∈ AE(f, CT , δ).

7. Conclusions. In this paper we have introduced a new ε-efficiency concept for
vector optimization problems, which extends and unifies several different ε-efficiency
notions previously defined in the literature.

We prove several properties of this new concept and characterize it via approx-
imate solutions of related scalar optimization problems. These results have been
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obtained in a general framework since we do not assume any convexity hypothesis.
Thus, our results can be applied in nonconvex vector optimization problems and with
preference structures which are not necessarily preorder relations.

As a final conclusion, we think that several results of this work can be useful
in order to develop new methods to solve vector optimization problems. In this
line, to obtain approximate Kuhn–Tucker conditions, approximate duality assertions
and approximate Lagrange multiplier rules for the new ε-efficiency concept could be
interesting.

Acknowledgment. The authors are grateful to the anonymous referees for their
helpful comments and suggestions.
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Abstract. The standard Schur complement equation-based implementation of interior-point
methods for second order cone programming may encounter stability problems in the computation
of search directions, and as a consequence, accurate approximate optimal solutions are sometimes
not attainable. Based on the eigenvalue decomposition of the (1, 1) block of the augmented equation,
a reduced augmented equation approach is proposed to ameliorate the stability problems. Numerical
experiments show that the new approach can achieve more accurate approximate optimal solutions
than the Schur complement equation-based approach.
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1. Introduction. A second order cone programming (SOCP) problem is a linear
optimization problem over a cross product of second order convex cones. A wide range
of problems can be formulated as SOCP problems; they include linear programming
(LP) problems, convex quadratically constrained quadratic programming problems,
filter design problems [5, 20], and problems arising from limit analysis of collapses of
solid bodies [6]. An extensive list of application problems that can be formulated as
SOCP problems can be found in [14]. For a comprehensive introduction to SOCP, we
refer the reader to the paper by Alizadeh and Goldfarb [1].

SOCP itself is a subclass of semidefinite programming (SDP). In theory, SOCP
problems can be solved as SDP problems. However, it is far more efficient compu-
tationally to solve SOCP problems directly. A few interior-point methods (IPMs)
have been developed to solve SOCP problems directly [3, 21, 25]. But these IPMs
sometimes fail to deliver solutions with satisfactory accuracy. The main objective of
this paper is to propose a method that can solve an SOCP to high accuracy but with
comparable or moderately higher cost than the standard IPMs employing the Schur
complement equation (SCE) approach. We note that global polynomial convergence
results for IPMs for SOCP can be found in [15] and the references therein.

Given a column vector xi, we will write it as xi = [x0
i ; x̄i] with x0

i being the
first component and x̄i consisting of the remaining components. Given square ma-
trices P,Q, the notation [P ; Q] means that Q is appended to the last row of P ,
and diag(P,Q) denotes the block diagonal matrix with P,Q as its diagonal blocks.
Throughout this paper, ‖ · ‖ denotes the matrix 2-norm or vector 2-norm, unless
otherwise specified. For a given matrix M , we let λmax(M) and λmin(M) be the
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largest and smallest eigenvalues of M in magnitude, respectively. The condition num-
ber of a matrix M (not necessarily square) is the number κ(M) = σmax(M)/σmin(M),
where σmax(M) and σmin(M) are the largest and smallest singular values of M , re-
spectively. For a matrix Mμ which depends on a positive parameter μ, the notation
‖Mμ‖ = O(μ) (‖Mμ‖ = Ω(μ)) means that there is a positive constant c such that
‖Mμ‖ ≤ cμ (‖Mμ‖ ≥ cμ) as μ ↓ 0, and ‖Mμ‖ = Θ(μ) means that there are positive
constants c1, c2 such that c1μ ≤ ‖Mμ‖ ≤ c2μ as μ ↓ 0. More generally, for a func-
tion Kμ depending on a positive parameter μ, the notation ‖Mμ‖ = Θ(1)Kμ means
that there are positive constants c1, c2 such that c1K

μ ≤ ‖Mμ‖ ≤ c2K
μ for all μ

sufficiently small.
Consider the following standard primal and dual SOCP problems:

(P) min

{
N∑
i=1

cTi xi :

N∑
i=1

Aixi = b, xi � 0, i = 1, . . . , N

}
,

(D) max{bT y : AT
i y + zi = ci, zi � 0, i = 1, . . . , N},

(1)

where Ai ∈ Rm×ni , ci, xi, zi ∈ Rni , i = 1, . . . , N , and y ∈ Rm. The constraint xi � 0
is a second order cone constraint defined by x0

i ≥ ‖x̄i‖. In particular, if the cone
dimension ni is 1, then the constraint is simply the standard nonnegativity constraint
xi ≥ 0, and such a variable is called a linear variable. For convenience, we define

A = [A1 A2 · · · AN ] , c = [c1 ; c2 ; · · · ; cN ] ,

x = [x1 ; x2 ; · · · ; xN ] , z = [z1 ; z2 ; · · · ; zN ] , n =

N∑
i=1

ni.

The notation x � 0 (x � 0) means that each xi is in (the interior of) the ith second
order cone.

In this paper, we will assume that A has full row rank, and that (P) and (D)
in (1) are strictly feasible. Under these assumptions, the solutions to the perturbed
KKT conditions of (1) form a path (known as the central path) in the interior of
the primal-dual feasible region. At each iteration of an IPM, the Newton equation
associated with the perturbed KKT conditions needs to be solved. By performing
block eliminations, one can solve either a system of linear equations of size m + n or
one of size m. These linear systems are known as the augmented equation and the
Schur complement equation (SCE), respectively. The SCE has the obvious advantage
of being smaller in size as well as being symmetric positive definite. Currently, most
implementations of IPMs [3, 21, 24, 25] are based on solving the SCE. However, as
we shall see in section 3, the SCE can be severely ill-conditioned when the barrier
parameter is close to 0. This typically causes numerical difficulties and imposes a
limit on how accurately one can solve an SOCP problem.

In the case of LP, the ill-conditioning of the augmented equation was analyzed by
Wright [28, 29]. Under certain assumptions including nondegeneracy, the computed
search direction from the augmented equation is shown to be sufficiently accurate for
the IPM to converge to high accuracy. The structure of the ill-conditioning of the SCE
arising from LP was analyzed in [13]. A stabilization method based on performing
Gaussian elimination with a certain pivoting order was also proposed to transform
the SCE into a better-conditioned linear system of equations.

In nonlinear conic programming, however, the ill-conditioning of the augmented
equation and the SCE is much more complicated than that in LP. The potential
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numerical difficulties posed by the ill-conditioned SCE in SOCP were recognized by
developers of solvers for SOCP (see, e.g., [3, 4, 23, 25]). It was also recognized by
Goldfarb and Scheinberg [9], and that motivated them to propose and analyze a
product-form Cholesky factorization for the Schur complement matrix. Subsequently,
Sturm [23] implemented the product-form Cholesky factorization [9] in his very popu-
lar code SeDuMi to solve the SCE arising at each iteration of a homogeneous self-dual
(HSD) IPM. SeDuMi also employed sophisticated techniques to minimize numerical
cancellations when computing the SCE and its factorization [23]. These sophisticated
techniques typically greatly improve the stability of the SCE approach. However, for
certain extreme cases, they do not entirely ameliorate the numerical difficulties caused
by the inherently ill-conditioned SCE; see section 4.

The IPM code SeDuMi differs from standard infeasible interior-point methods
in that it solves the HSD embedding model. A natural question to ask is whether
SeDuMi’s unusually good performance arises from the inherent structure of the HSD
model itself or from the sophisticated numerical techniques it uses in solving the SCE
(or both). For a certain class of SOCP problems with no strictly feasible primal/dual
points, we show numerically in section 4 that SeDuMi’s superior performance can be
explained by the structure of the HSD model itself. For some SOCP problems with
strictly feasible points, we shall also see in section 4 that the sophisticated numerical
techniques sometimes may offer only limited improvement in the attainable accuracy
when compared to simpler techniques used to solve the SCE.

Herein we propose a method to compute the search directions based on a reduced
augmented equation (RAE). This RAE is derived by applying block row operations
to the augmented equation, together with appropriate partitioning of the eigenspace
of its (1,1) block. The RAE is generally much smaller in size compared to the original
augmented equation. By their construction, RAE-based IPMs are computationally
more expensive than SCE-based IPMs. Fortunately, numerical experiments show
that if sparsity in the SOCP data is properly preserved when forming the RAE, it can
generally be solved rather efficiently by a judicious choice of a symmetric indefinite
system solver.

The RAE-based IPMs are superior to SCE-based IPMs in that the former can
usually deliver approximate optimal solutions that are much more accurate than the
latter before numerical difficulties are encountered. For example, for the schedxxx

SOCP problems selected from the DIMACS library [17], our RAE-based IPMs are
able to obtain accuracies of 10−9 or better, while the SCE-based IPMs (SDPT3
version 3.1 and SeDuMi) can only obtain accuracies of 10−3 or 10−4 in some
cases.

The paper is organized as follows. In section 2, we introduce the augmented and
Schur complement equations. In section 3, we analyze the conditioning and the growth
in the norm of the Schur complement matrix. We also discuss how the latter affects the
primal infeasibility as the interior-point iterates approach optimality. In section 4, we
present numerical results obtained from two different SCE-based primal-dual IPMs.
In section 5, we derive the RAE. The conditioning of the reduced augmented matrix
is analyzed in section 6. In section 7, we discuss major computational issues for
efficiently solving the RAE. Numerical results for an RAE-based IPM are presented
in section 8. We conclude the paper in section 9.

2. The augmented and Schur complement equations. In this section, we
present the linear systems that need to be solved to compute the search direction at
each IPM iteration.
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For xi in a second order cone, we define

aw(xi) =

[
x0
i x̄T

i

x̄i x0
i I

]
, γ(xi) =

√
(x0

i )
2 − ‖x̄i‖2.(2)

For a given barrier parameter ν, the perturbed KKT conditions of (1) in matrix form
are

Ax = b, AT y + z = c, aw(x)aw(z)e0 = νe0,(3)

where e0 = [e1 ; e2 ; · · · ; eN ], with ei being the first unit vector in Rni . The matrix
aw(x) = diag(aw(x1), . . . ,aw(xN )) is a block diagonal matrix with aw(x1), . . . ,
aw(xN ) as its diagonal blocks. The matrix aw(z) is defined similarly.

For reasons of computational efficiency that we will explain later, in most IPM
implementations for SOCP, a block diagonal scaling matrix is usually applied to the
last equation in (3). Here, we apply the Nesterov–Todd (NT) scaling matrix [25] to
produce the following equation:

aw(Fx)aw(F−1z)e0 = νe0,(4)

where F = diag(F1, . . . , FN ) is chosen such that Fx = F−1z =: v. For details on
the conditions that F must satisfy and on other scaling matrices, we refer the reader
to [15]. Let

fi =

⎡⎣ f0
i

f̄i

⎤⎦ :=
1√

2
(
γ(xi)γ(zi) + xT

i zi

)
⎡⎢⎢⎣

1

ωi
z0
i + ωix

0
i

1

ωi
z̄i − ωix̄i

⎤⎥⎥⎦ ,

where ωi =
√
γ(zi)/γ(xi). (Note that γ(fi) = 1.) The precise form of Fi is given by

Fi = ωi

⎡⎣ f0
i f̄T

i

f̄i I +
f̄if̄

T
i

1+f0
i

⎤⎦ .(5)

Let μ = xT z/N be the normalized complementarity gap. The Newton equation
associated with the perturbed KKT conditions (3) with NT scaling is given by

AΔx = rp, ATΔy + Δz = rd, V FΔx + V F−1Δz = rc,(6)

where V = aw(v), rp = b − Ax, rd = c − z − AT y, rc = σμe0 − V v. Note that we
have chosen ν to be ν = σμ for some parameter σ ∈ (0, 1).

The solution (Δx,Δy,Δz) of the Newton equation (6) is referred to as the search
direction. At each IPM iteration, solving (6) for the search direction is computation-
ally the most expensive step. Observe that by eliminating Δz, the Newton equation
(6) reduces to the so-called augmented equation[

−F 2 AT

A 0

] [
Δx

Δy

]
=

[
rx

rp

]
,(7)

where rx = rd − FV −1rc. The augmented equation can further be reduced in size by
eliminating Δx in (7) to produce the SCE

AF−2AT︸ ︷︷ ︸
M

Δy = ry := rp + AF−2rx = rp + AF−2rd −AF−1V −1rc.(8)
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The coefficient matrix M in (8) is known as the Schur complement matrix. It is
symmetric positive definite if x, z � 0. The search direction corresponding to (6)
always exists as long as x, z � 0. Note that if the scaling matrix F is not applied
to the last equation in (3), the corresponding Schur complement matrix would be
Aaw(z)−1aw(x)AT , which is a nonsymmetric matrix. This nonsymmetric coefficient
matrix is not guaranteed to be nonsingular even when x, z � 0. Moreover, computing
its sparse LU factorization is usually much more expensive than computing the sparse
Cholesky factorization of M .

In their simplest form, most current implementations of IPMs compute the search
direction (Δx,Δy,Δz) based on the SCE (8) via the following procedure.

Simplified SCE approach:
(i) Compute the Schur complement matrix M and the vector ry;
(ii) Compute the Cholesky or sparse Cholesky factor of M ;
(iii) Compute Δy by solving two triangular linear systems involving the Cholesky

factor;
(iv) Compute Δz via Δz = rd −ATΔy, and Δx via Δx = F−2(ATΔy − rx).

We should note that various heuristics to improve the numerical stability of the sim-
plified SCE approach are usually incorporated in the actual implementations. We
will describe in section 4 variants of the above approach implemented in two publicly
available SOCP solvers, SDPT3, version 3.1 [26], and SeDuMi, version 1.05 [22].

The SCE is preferred because it is usually a much smaller system compared to
the augmented or Newton equations. Furthermore, the Schur complement matrix has
the highly desirable property of being symmetric positive definite. (In contrast, the
coefficient matrix in (7) is symmetric indefinite while that of (6) is nonsymmetric.)
Consequently, the SCE can be solved very efficiently via Cholesky or sparse Cholesky
factorization of M . We should mention that there are highly efficient and machine
optimized sparse Cholesky codes readily available in the public domain, the prime
example being the sparse Cholesky codes of Ng and Peyton [16]. Comparatively, the
state-of-the-art LDLT factorization codes (an example being the MA47 codes of Duff
and Reid [18]) for a sparse symmetric indefinite matrix available in the public domain
are less advanced.

3. Conditioning of M and the deterioration of primal infeasibility. De-
spite the advantages of the SCE approach described in the last section, the SCE is,
however, generally severely ill-conditioned when the iterates (x, y, z) approach opti-
mality, and this typically causes numerical difficulties. The most common numerical
difficulty one may encounter in practice is that the Schur complement matrix M is
numerically indefinite, although in exact arithmetic M is positive definite. Further-
more, the computed solution Δy from (8) may also be very inaccurate in that the
residual norm ‖ry−MΔy‖ is much larger than the machine epsilon, and this typically
causes the IPM to stall.

In this section, we will analyze the relationship between the norm ‖M‖, the
residual norm ‖ry −MΔy‖ of the computed solution Δy, and the primal infeasibility
‖rp‖ as the interior-point iterates approach optimality.

3.1. Eigenvalue decomposition of F 2. To analyze the norm ‖M‖ and the
conditioning of M , we need to know the eigenvalue decomposition of F 2. Recall that
F = diag(F1, . . . , FN ). Thus it suffices to find the eigenvalue decomposition of F 2

i ,
where Fi is given in (5). By noting that for cones of dimensions ni ≥ 2, F 2

i can be
written as F 2

i = ω2
i (I + 2(fif

T
i − eie

T
i )), the eigenvalue decomposition of F 2

i can
readily be found. (The case where ni = 1 is easy, and F 2

i = zi/xi.) Without going
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through the algebraic details, the eigenvalue decomposition of F 2
i is given by

F 2
i = QiΛiQ

T
i , Qi =

⎡⎣ − 1√
2

+ 1√
2

0 · · · 0

1√
2
gi

1√
2
gi q3

i · · · qni
i

⎤⎦ ,(9)

with Λi = ω2
i diag

(
(f0

i − ‖f̄i‖)2, (f0
i + ‖f̄i‖)2, 1, . . . , 1

)
, and

gi := [g0
i ; ḡi] = f̄i/‖f̄i‖ ∈ Rni−1.(10)

Notice that since γ(fi) = 1, the first eigenvalue is the smallest, and the second is the
largest. The set {q3

i , . . . , q
ni
i } is an orthonormal basis of the subspace {u ∈ Rni−1 :

uT gi = 0}. To construct such an orthonormal basis, one may first construct the
(ni − 1)× (ni − 1) Householder matrix Hi [10] associated with the vector gi; then the
last ni − 2 columns of Hi is such an orthonormal basis. The precise form of Hi will
be given later in section 6.

3.2. Analysis of ‖M‖ and the conditioning of M . Recall that M is de-
pendent on the normalized complementarity gap μ. Here we analyze how fast the
norm ‖M‖ and the condition number of M will grow when μ ↓ 0, i.e., when the
interior-point iterates approach an optimal solution (x∗, y∗, z∗). To simplify the anal-
ysis, we will assume that strict complementarity holds at the optimal solution. Unless
otherwise stated, we assume that ni ≥ 2 in this subsection.

Strict complementarity [2] implies that for each pair of the optimal primal and
dual solutions, x∗

i and z∗i , we have γ(x∗
i ) + ‖z∗i ‖ and γ(z∗i ) + ‖x∗

i ‖ both positive. In
other words, (a) either γ(x∗

i ) = 0 or z∗i = 0, but not both; and (b) either γ(z∗i ) = 0
or x∗

i = 0, but not both. Under the strict complementarity assumption, we have the
following three types of eigenvalue structures (following the classification in [9]) for
F 2
i when aw(xi)aw(zi)ei = μei and μ is small. Note that xT

i zi = μ.
Type 1 solution: x∗

i � 0, z∗i = 0. In this case, γ(xi) = Θ(1), γ(zi) = Θ(μ), and
ωi = Θ(

√
μ). Also, f0

i , ‖f̄i‖ = Θ(1), implying that all the eigenvalues of F 2
i

are Θ(μ).
Type 2 solution: x∗

i = 0, z∗i � 0. In this case, γ(xi) = Θ(μ), γ(zi) = Θ(1), and
ωi = Θ(1/

√
μ). Also, f0

i , ‖f̄i‖ = Θ(1), implying that all the eigenvalues of
F 2
i are Θ(1/μ).

Type 3 solution: γ(x∗
i ) = 0, γ(z∗i ) = 0, x∗

i , z
∗
i 
= 0. In this case, γ(xi), γ(zi) =

Θ(
√
μ), and ωi = Θ(1). This implies that f0

i , ‖f̄i‖ = Θ(1/
√
μ). Thus the

largest eigenvalue of F 2
i is Θ(1/μ), and by the fact that γ(fi) = 1, the smallest

eigenvalue of F 2
i is Θ(μ). The rest of the eigenvalues are Θ(1).

Let D be the diagonal matrix consisting of the eigenvalues of F 2 sorted in as-
cending order. Then we have F 2 = QDQT , where the columns of Q are the sorted
eigenvectors of F 2. Let D be partitioned into D = diag(D1, D2a, D2b) such that
diag(D1) consists of all the small eigenvalues of F 2 of order Θ(μ), and diag(D2a)
and diag(D2b) consist of the remaining eigenvalues of order Θ(1) and Θ(1/μ), respec-
tively. Note that the three groups of eigenvalues need not all be present. We also
partition the matrix Q as Q = [Q(1) , Q(2a) , Q(2b)]. Then Ã := AQ is partitioned

as Ã = [Ã1 , Ã2a , Ã2b] = [AQ(1) , AQ(2a) , AQ(2b)]. With the above partitions, we
can express M as

M = Ã1D
−1
1 ÃT

1︸ ︷︷ ︸
M1

+ Ã2aD
−1
2a Ã

T
2a︸ ︷︷ ︸

M2a

+ Ã2bD
−1
2b Ã

T
2b︸ ︷︷ ︸

M2b

.(11)
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Lemma 3.1. (a) For the matrices M1, M2a, and M2b in (11), we have

‖M1‖ = Θ(1/μ)‖Ã1‖2, ‖M2a‖ = Θ(‖Ã2a‖2), ‖M2b‖ = Θ(μ)‖Ã2b‖2.

(b) Suppose there are Type 1 or Type 3 solutions so that Ã1 is not a null matrix.

Then the following statements hold: (i) ‖M‖ = Θ(1/μ)‖Ã1‖2. (ii) If Ã1 does not

have full row rank, then ‖M−1‖ = (O(1)‖Ã2a‖2 + O(μ)‖Ã2b‖2)−1 = Ω(1)(‖Ã2a‖2 +

‖Ã2b‖2)−1.
Proof. (a) We shall prove only the first result since the other two can be proved

similarly. By the definition of D1, there are positive constants c1, c2 such that
(c1/μ)I � D−1

1 � (c2/μ)I. Thus (c1/μ)Ã1Ã
T
1 � M1 � (c2/μ)Ã1Ã

T
1 . This implies

that (c1/μ)‖Ã1Ã
T
1 ‖ ≤ ‖M1‖ ≤ (c2/μ)‖Ã1Ã

T
1 ‖, and the required result follows by

noting that ‖Ã1Ã
T
1 ‖ = ‖Ã1‖2.

(b)(i) From (11), it is clear that ‖M‖ = Θ(1/μ)‖Ã1‖2. (b)(ii) If Ã1 does not

have full row rank, then the null space N (ÃT
1 ) is nontrivial. Let U be a matrix

whose columns form an orthonormal basis of N (ÃT
1 ) and W := UT (M2a + M2b)U .

Since ÃT
1 U = 0, we have UTMU = UT (M2a + M2b)U = W . By the Courant–

Fischer theorem, it is clear that λmin(M) ≤ λmin(W ). Thus ‖M−1‖ = 1/λmin(M) ≥
1/λmin(W ) = ‖W−1‖ ≥ 1/‖W‖. Since ‖W‖ ≤ ‖M2a‖ + ‖M2b‖ = O(1)‖Ã2a‖2 +

O(μ)‖Ã2b‖2 = O(1)(‖Ã2a‖2 + ‖Ã2b‖2), the required result follows.
Remark 3.1. (a) Lemma 3.1 implies that the growth in ‖M‖ is caused by F 2

having small eigenvalues of order Θ(μ).

(b) If Ã1 is present and does not have full row rank, then κ(M) = Ω(1/μ)‖Ã1‖2

(‖Ã2a‖2 + ‖Ã2b‖2)−1. On the other hand, if Ã1 has full row rank (which implies that

the number of eigenvalues of F 2 of order Θ(μ) is at least m), then κ(M) = Θ(1)κ(Ã1)
2.

(c) If there are only Type 2 solutions (thus x∗ = 0 and z � 0), then M =
AQDQTAT with D = Θ(μ). In this case, we have κ(M) = Θ(1)κ(A)2.

Based on the results in [2], we have the following theorem concerning the rank

of Ã1 and Ã2a. We refer the reader to [2] for the definitions of primal and dual
degeneracies.

Theorem 3.1. Suppose that (x∗, y∗, z∗) satisfies strict complementarity. If the

primal optimal solution x∗ is primal nondegenerate, then [Ã1 , Ã2a] has full row rank

when μ is small. If the dual optimal solution (y∗, z∗) is dual nondegenerate, then Ã1

has full column rank when μ is small.
Proof. The result follows from Theorems 20 and 21 in [1].

Remark 3.2. We should emphasize that while Theorem 3.1 says that [Ã1, Ã2a]
has full row rank when the optimal solution is strictly complementary and primal and
dual nondegenerate, the matrix Ã1, however, does not necessarily have full row rank
under the same condition. In the event that Ã1 is present and does not have full row
rank, Remark 3.1(b) says that M is ill-conditioned with κ(M) = Ω(1/μ). Thus even
if the optimal solution is strict complementary and primal and dual nondegenerate,
M does not necessarily have bounded condition number when μ ↓ 0. In contrast, for
an LP problem (for which all the cones have dimensions ni = 1 and Ã2a is absent),

primal and dual nondegeneracy ensure that Ã1 has full column and row rank, and as
a result, M has bounded condition number when μ ↓ 0.

3.3. Analysis of the deterioration of primal infeasibility. Although Cho-
lesky factorization is stable for any symmetric positive definite matrix, the conditioning
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of the matrix may still affect the accuracy of the computed solution of the SCE. It is a
common phenomenon that for SOCP, the accuracy of the computed search direction
deteriorates as μ decreases due to an increasingly ill-conditioned M . As a result of
this loss of accuracy in the computed solution, the primal infeasibility ‖rp‖ typically
increases or stagnates when the IPM iterates approach optimality.

With the analysis of ‖M‖ given in the last subsection, we will now analyze why the
primal infeasibility may deteriorate or stagnate as interior-point iterations progress.

Lemma 3.2. Suppose at the kth iteration, the residual vector in solving the SCE
(8) is ξ = ry − MΔy. Assuming that Δx is computed exactly via the equation
Δx = F−2(ATΔy−rx), then the primal infeasibility for the next iterate x+ = x+αΔx,
α ∈ [0, 1], is given by

r+
p := b−Ax+ = (1 − α)rp + αξ.

Proof. We have r+
p = (1−α)rp+α(rp−AΔx). Now AΔx = AF−2(ATΔy−rx) =

MΔy − ry + rp; thus rp −AΔx = ry −MΔy = ξ, and the lemma is proved.
Remark 3.3. (a) In Lemma 3.2, we assume for simplicity that the component

direction Δx is computed exactly. In finite precision arithmetic, errors will be intro-
duced in the computation of Δx and that will also worsen the primal infeasibility r+

p

of the next iterate other than ‖ξ‖.
(b) Observe that if the SCE is solved exactly, i.e., ξ = 0, then ‖r+

p ‖ = (1−α)‖rp‖,
and the primal infeasibility should decrease monotonically.

Lemma 3.2 implies that if the SCE is not solved to sufficient accuracy, then the
inaccurate residual vector ξ may worsen the primal infeasibility of the next iterate.
By standard perturbation error analysis, the worst-case residual norm of ‖ξ‖ can be
shown to be proportional to ‖M‖‖Δy‖ times the machine epsilon u. The precise
statement is given in the next lemma.

Lemma 3.3. Let u be the machine epsilon. Given a symmetric positive definite
matrix B ∈ Rn×n with (n + 1)2u ≤ 1/3, if Cholesky factorization is applied to B to
solve the linear system Bx = b to produce a computed solution x̂, then (B + ΔB)x̂ =
b, for some ΔB with ‖ΔB‖ satisfying the following inequality: ‖ΔBx̂‖ ≤ 3(n +
1)2u‖B‖‖x̂‖. Thus

‖b−Bx̂‖ = ‖ΔBx̂‖ = O(n2)u‖B‖‖x̂‖.

Proof. The lemma follows straightforwardly from Theorems 10.3 and 10.4 and
their extensions in [12].

Remark 3.4. Lemma 3.3 implies that if ‖B‖‖x̂‖ is large, then in the worst-case
scenario, the residual norm ‖b−Bx̂‖ is expected to be proportionately large.

By Lemma 3.2 and the application of Lemma 3.3 to the SCE, we expect in the
worst case the primal infeasibility ‖rp‖ to grow to some extent that is proportional to
‖M‖‖Δy‖u. We end this section by presenting a numerical example to illustrate the
relation between ‖rp‖ and ‖M‖‖Δy‖u in the last few iterations of an SCE-based IPM
when solving the SOCP problems rand200 800 1 and sched 50 50 orig (described
in section 4).

The IPM we use is the primal-dual path-following method with Mehrotra predictor-
corrector implemented in the MATLAB software SDPT3, version 3.1 [26]. But we
should mention that to be consistent with the analysis presented in this section, the
search directions are computed based on the simplified SCE approach presented in
section 2, not the more sophisticated variant implemented in SDPT3.
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Table 1

The norm of the Schur complement matrix and ‖rp‖ associated with the last few IPM iterations
for solving the SOCP problems rand 200 800 1 and sched 50 50 orig.

Iter ‖M‖ ‖M−1‖ μ := xT z/N ‖Δy‖ ‖ry −MΔy‖ ‖rp‖
‖rp‖

‖M‖‖Δy‖u
rand 200 800 1

9 1.8e+13 4.9e+02 9.2e-07 2.0e-02 8.7e-06 7.1e-06 8.9e-02

10 2.9e+14 2.3e+02 1.2e-07 2.7e-03 2.5e-05 1.8e-05 1.0e-01

11 3.8e+15 4.0e+01 1.1e-08 5.1e-04 4.9e-05 6.1e-05 1.4e-01

12 1.9e+17 6.8e+00 1.2e-09 9.4e-05 2.2e-04 1.4e-04 3.5e-02

13 1.2e+18 3.8e+01 1.8e-10 2.5e-03 3.7e-02 9.0e-04 1.4e-03

sched 50 50 orig

25 5.0e+08 1.5e+04 1.5e-01 3.3e+02 7.5e-09 1.1e-06 3.0e-02

26 3.0e+09 2.1e+04 4.3e-02 2.2e+02 2.1e-07 1.4e-05 9.8e-02

27 2.7e+10 1.7e+04 9.9e-03 4.8e+01 1.9e-07 1.5e-05 5.4e-02

28 4.9e+11 1.9e+04 1.4e-03 1.0e+01 1.5e-06 1.0e-05 9.3e-03

29 5.3e+12 2.1e+04 3.3e-04 2.1e+00 1.2e-05 2.9e-04 1.2e-01

Table 1 shows the norms ‖M‖, ‖M−1‖, ‖ry −MΔy‖ when solving the SCE (8).
For this problem, ‖M‖ and (hence κ(M)) grows like Θ(1/μ) because its optimal
solutions x∗

i , z
∗
i are all of Type 3. The fifth and sixth columns in the table show that

the residual norm in solving the SCE and ‖rp‖ deteriorate as ‖M‖ increases. This
is consistent with the conclusions of Lemmas 3.2 and 3.3. The last column further
shows that ‖rp‖ increases proportionately to ‖M‖‖Δy‖u, where the machine epsilon
u is approximately 2.2 × 10−16.

Figure 1 illustrates the phenomenon graphically for the SOCP problems rand200 800 1

and sched 50 50 orig. The curves plotted correspond to the relative duality gap
(relgap), and the relative primal and dual infeasibility (p-inf and d-inf), defined
by

relgap =
|cTx− bT y|

1 + (|cTx| + |bT y|)/2 , p-inf =
‖rp‖

1 + ‖b‖ , d-inf =
‖rd‖

1 + ‖c‖ .(12)

4. Computational results of two SCE-based IPMs on solving some
SOCP problems. Here we present numerical results for the SCE-based IPMs imple-
mented in the public domain solvers, SDPT3, version 3.1 [26], and SeDuMi, version
1.05 [22]. In this paper, all the numerical results are obtained in MATLAB 6.5 from
a Pentium IV 2.4GHz PC with 1G RAM running a Linux operating system.

Before we analyze the performance of the SCE-based IPMs implemented in SDPT3
and SeDuMi, we must describe the methods employed to solve the SCE in both solvers.
The IPM in SDPT3 is an infeasible path-following method that attempts to solve the
central path equation based on (3), even if this path does not exist. It solves the re-
sulting SCE at each IPM iteration as follows. First it computes the Cholesky or sparse
Cholesky factor of the Schur complement matrix M . Then the computed Cholesky
factor is used to construct a preconditioner within a preconditioned symmetric quasi-
minimal residual Krylov subspace iterative solver employed to solve the SCE for Δy.
The computations of Δz and Δx are the same as in the simplified SCE approach
presented in section 2.

SeDuMi is a very well implemented SCE-based public domain solver for both
SOCP and SDP. The IPM in SeDuMi is based not on the central path for the original
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Fig. 1. Convergence history of the SOCP problems rand200 800 1 and sched 50 50 orig when
solved by the SCE-based IPM in SDPT3, version 3.1. Notice that the relative primal infeasibility
p-inf deteriorates as interior-point iterates approach optimality, while relgap may stagnate.

primal and dual problems (1), but on that of the HSD model of Ye, Todd, and Mizuno
[30]. The HSD model has the nice theoretical property that a strictly feasible primal
and dual point always exists even if the original problems do not have one, and as a
result the central path for the HSD model always exists, which is not necessarily true
for the original problems in (1). As a consequence of this nice property, its solution
set is always bounded. The same cannot be said for the original problems. For a
problem that models an unrestricted variable by the difference of two nonnegative
variables, the solution set for the original primal SOCP (P) is unbounded, and the
feasible region of (D) has an empty interior, implying that the primal-dual central
path does not exist. The HSD model, on the other hand, does not suffer from these
defects. Thus the IPM in SeDuMi will not feel the effect of the unbounded solution set
and nonexistence of the central path in the original problems in (1), but the effect of
the unboundedness of the solution set on the infeasible path-following IPM in SDPT3
can be substantial and often causes serious numerical difficulties.

The computation of the search direction in SeDuMi is based on the SCE associated
with the HSD model. But it employs sophisticated numerical techniques to minimize
numerical cancellations in its implementation of the SCE approach [23]. It computes
the Schur complement matrix in the scaled space (called the v-space) framework and
transforms back and forth between quantities in the scaled and original spaces. It
employs the sparse Cholesky codes adapted from Ng and Peyton [16] to compute the
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factorization. It also employs the product-form Cholesky factorization [9] to handle
dense columns. If the computed Cholesky factor is deemed sufficiently stable, SeDuMi
will proceed to compute Δy by solving two triangular linear systems involving the
Cholesky factor; otherwise, it will solve the SCE by using the preconditioned conjugate
gradient iterative method with a preconditioner constructed from the Cholesky factor.
Note that the Cholesky factorization has been shown in [9] to produce stable triangular
factors for the Schur complement matrix if the iterates are sufficiently close to the
central path and strict complementarity holds at optimality. It is important to note,
however, that using a stable method to solve the SCE does not necessarily imply that
the computed direction (Δx,Δy,Δz) based on the SCE approach will produce a small
residual norm with respect to the original linear system (6); see Theorem 3.2 of [11]
for the case of SDP.

We tested the SCE-based IPMs in SDPT3 and SeDuMi on the following set of
SOCP problems. The statistics for the test problems are shown in Table 2.

(a) The first set consists of 18 SOCP problems in the DIMACS library collected
by Pataki and Schmieta [17], available at http://dimacs.rutgers.edu/Challenges/
Seventh/Instances/.

(b) The second set consists of 10 SOCP problems from the FIR Filter Optimiza-
tion Toolbox of Scholnik and Coleman [20], available at http://www.csee.umbc.
edu/∼dschol2/opt.html.

(c) The last set consists of 10 randomly generated SOCP problems. These ran-
dom problems randxxx are generated to be feasible and are dominated by
Type 3 solutions. For each problem, the constraint matrix A has the form
V1ΣV T

2 , where V1, V2 are matrices whose columns are orthonormal, and Σ is
a diagonal matrix with random diagonal elements drawn from the standard
normal distribution, but a few of the diagonal elements are set to 105 to make
A moderately ill-conditioned.

In our experiments, we stop the IPM iteration in SDPT3 when any of the follow-
ing situations are encountered: (1) max(relgap, p-inf, d-inf) ≤ 10−10; (2) incurable
numerical difficulties (such as the Schur complement matrix being numerically indef-
inite) occur; (3) p-inf has deteriorated to the extent that p-inf > relgap. SeDuMi
also has a set of stopping conditions that are similar but based on the variables of the
HSD model. In SeDuMi, the dual conic constraints are not strictly enforced; thus the
measure d-inf for SeDuMi is defined to be d-inf = max(‖rd‖, ‖z−‖), where ‖z−‖
measures how much the dual conic constraints are violated. We define

φ := log10(max{relgap, p-inf, d-inf}).(13)

Table 2 shows the numerical results for SDPT3 and SeDuMi on 36 SOCP problems.
Observe that the accuracy exponents (φ) for many of the problems fall short of the
target of −10. For the sched-xxx problems, the accuracy exponents attained are
especially poor, only −3 or −4 in some cases. We should mention that the results
shown in Table 2 are not isolated to just the IPMs implemented in SDPT3 or SeDuMi;
similar results were also reported in the SCE-based IPM implemented by Andersen,
Roos, and Terlaky [3]. For example, for the problem sched 50 50 orig, the IPM in
[3] reported the values 0.9 and 0.002 for the maximum violation of certain primal
bound constraints and the dual constraints, respectively.

From Table 2, we have thus seen the performance of SCE-based IPMs for two
rather different implementations in SDPT3 and SeDuMi. It is worthwhile to analyze
the performance of these implementations to isolate the factor contributing to the
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good performance in one implementation but not the other. On the first 10 SOCP
problems, nbxxx, nqlxxx, and qsspxxx in the DIMACS library, SeDuMi performs
much better than the IPM in SDPT3 in terms of accuracy. We hypothesize that Se-
DuMi is able to obtain accurate approximate optimal solutions for these test problems
primarily because of nice theoretical properties (existence of a strictly feasible point,
and boundedness of solution set) of the HSD model. These problems contain linear
variables that are the results of modeling unrestricted variables as the difference of
two nonnegative vectors. Consequently, the resulting primal SOCP problems have
unbounded solution sets, and the feasible regions of the dual SOCP problems have
empty interior. It should come as no surprise that the IPM in SDPT3 has trouble
solving such a problem to high accuracy since the ill-conditioning in the Schur com-
plement matrix is made worse by the growing norm of the primal linear variables as
the iterates approach optimality. On the other hand, for the IPM in SeDuMi, the
ill-conditioning of the Schur complement matrix is not amplified since the norm of
the primal variables in the HSD model stays bounded.

To verify the above hypothesis, we solve the nbxxx, nqlxxx, and qsspxxx prob-
lems again in SDPT3, but at each IPM iteration, we trim the growth in the primal
linear variables, xu

+, x
u
−, arising from unrestricted variables xu using the following

heuristic [26]:

xu
+ := xu

+ − 0.8 min(xu
+, x

u
−), xu

− := xu
− − 0.8 min(xu

+, x
u
−).(14)

This modification does not change the original variable xu, but it slows down the
growth of xu

+, x
u
−. After these modified vectors have been obtained, we also modify

the associated dual linear variables zu+, z
u
− as follows if μ ≤ 10−4:

(zu+)i :=
0.5μ

max(1, (xu
+)i)

, (zu−)i :=
0.5μ

max(1, (xu
−)i)

.(15)

Such a modification in zu+, z
u
− ensures that they approach 0 at the same rate as μ,

and thus prevents the dual problem from attaining the equality constraints in (D)
prematurely.

The results shown in Table 3 support our hypothesis. Observe that with the
heuristic in (14) and (15) to control the growth of (xu

+)i/(z
u
+)i and (xu

−)i/(z
u
−)i, the

Table 3

Performance of the SCE-based IPM in SDPT 3 in solving SOCP problems with linear vari-
ables coming from unrestricted variables. The heuristics in (14) and (15) are applied at each IPM
iteration.

SDPT3 SeDuMi

Problem φ Time p-inf d-inf relgap φ Time p-inf d-inf relgap

nb-u -10.2 14.2 6.4-11 1.1-13 5.2-16 -11.1 13.6 6.5-13 8.4-12 0.0-16

nb-L1-u -10.0 28.2 9.9-11 1.1-11 2.2-16 -12.2 15.1 6.1-13 1.0-14 1.0-14

nb-L2-u -10.2 16.9 5.8-11 1.6-11 6.6-16 -9.3 33.8 5.4-10 3.1-12 6.5-12

nb-L2-bessel-u -10.2 12.9 6.7-11 3.3-11 3.3-16 -10.5 20.6 3.3-11 7.9-14 1.7-13

nql30-u -10.1 7.1 8.7-11 2.4-12 8.0-13 -10.2 3.5 6.8-11 3.4-11 2.8-11

nql60-u -10.4 29.9 4.4-11 2.0-11 2.8-13 -10.0 12.0 1.0-10 1.1-11 8.9-12

nql180-u -9.7 455.7 2.1-10 1.2-11 8.4-14 -9.2 263.8 5.8-10 1.9-11 1.1-11

qssp30-u -10.0 4.3 7.4-11 9.2-11 2.7-15 -11.3 4.0 7.1-13 4.8-12 5.2-12

qssp60-u -8.8 21.7 1.4 -9 1.8 -9 4.0-14 -10.8 26.5 3.3-12 1.7-11 1.7-11

qssp180-u -9.0 560.9 1.1 -9 6.7-10 9.5-15 -11.2 694.2 7.0-12 1.2-12 9.9-13
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IPM in SDPT3 can also achieve accurate approximate solutions, just as the IPM
based on the HSD model in SeDuMi is able to achieve. It is surprising that such a
simple heuristic to control the growth can result in such a dramatic improvement on
the achievable accuracy, even though the problems (P) and (D) in (1) do not have a
strictly feasible point and the corresponding central path does not exist.

On other problems such as schedxxx, firxxx, and randxxx, the performances of
SDPT3 and SeDuMi are quite comparable in terms of accuracy attained, although
SeDuMi is generally more accurate on the schedxxx problems, while SDPT3 performs
somewhat better on the randxxx problems. On the firxxx problems, SDPT3 seems
to be more robust, whereas SeDuMi runs into numerical difficulties quite early when
solving firL1Linfalph and firL2L1alph.

The empirical evidence of Table 2 shows that even though sophisticated numerical
techniques used to solve the SCE in SeDuMi can help to achieve better accuracy, some-
times these techniques give limited improvement over simpler techniques employed in
SDPT3. On SOCP problems where the two solvers have vastly different performance
in terms of accuracy, the difference can be attributed to the inherent IPM models used
in the solvers rather than the numerical techniques employed to solve the SCE. The
conclusion we may draw here is that the SCE is generally inherently ill-conditioned,
and if our wish is to compute the search direction of (6) to higher accuracy, a new
approach other than the SCE is necessary.

5. Reduced augmented equation. In this section, we present a new approach
to compute the search direction via a potentially better-conditioned linear system of
equations. Based on the new approach, the accuracy of the computed search direction
is expected to be better than that computed from the SCE when μ is small. In this
new approach, we assume that the iterate (x, y, z) is sufficiently close to the central
path so that the eigenvalues of F 2 separate into three distinct groups as described in
section 3.2.

In this approach, we start with the augmented equation in (7). By using the eigen-
value decomposition F 2 = QDQT presented in section 3.1, where Q = diag(Q1, . . . , QN )
and D = diag(Λ1, . . . ,ΛN ), we can diagonalize the (1,1) block and rewrite the aug-
mented equation (7) as follows:[

−D ÃT

Ã 0

] [
Δx̃

Δy

]
=

[
r̃

rp

]
,(16)

where

Ã = AQ, Δx̃ = QTΔx, r̃ = QT rx.(17)

The augmented equation (16) has dimension m+n, which is usually much larger than
m, the dimension of the SCE. We can try to reduce its size while overcoming some of
the undesirable features of the SCE such as the growth of ‖M‖ when μ ↓ 0.

Let the diagonal matrix D be partitioned into two parts as D = diag(D1, D2)
with diag(D1) consisting of the small eigenvalues of F 2 of order Θ(μ) and diag(D2)
consisting of the remaining eigenvalues of order Θ(1) or Θ(1/μ). We partition the

eigenvector matrix Q accordingly as Q = [Q(1) , Q(2)]. Then Ã is partitioned as Ã =

[Ã1 , Ã2] = [AQ(1) , AQ(2)] and r̃ = [r̃1 ; r̃2] = [(Q(1))T rx ; (Q(2))T rx]. Similarly, Δx̃
is partitioned as Δx̃ = [Δx̃1 ; Δx̃2] = [(Q(1))TΔx ; (Q(2))TΔx].
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By substituting the above partitions into (16), and eliminating Δx̃2, it is easy to
show that solving the system (16) is equivalent to solving the following:[

Ã2D
−1
2 ÃT

2 Ã1

ÃT
1 −D1

] [
Δy

Δx̃1

]
=

[
rp + Ã2D

−1
2 r̃2

r̃1

]
,(18)

Δx̃2 = D−1
2 (ÃT

2 Δy − r̃2) = D−1
2 (Q(2))T (ATΔy − rx).(19)

By its construction, the coefficient matrix in (18) does not have large elements when
μ ↓ 0. But its (1,1) block is generally singular or nearly singular, especially when μ is
close to 0. Since a singular (1,1) block is not conducive for symmetric indefinite
factorization of the matrix or the construction of preconditioners for the matrix,
we will construct an equivalent system with a (1,1) block that is less likely to be
singular. Let E1 be a given positive definite diagonal matrix with the same dimension
as D1. Throughout this paper, we take E1 = I. Let S1 = E1 + D1. By adding
Ã1S

−1
1 times the second block equation in (18) to the first block equation, we get

Ãdiag(S−1, D−1
2 )ÃTΔy + Ã1S

−1
1 E1Δx̃1 = rp + Ãdiag(S−1, D−1

2 )r̃. This, together

with the second block equation in (18) but scaled by S
−1/2
1 , we get the following

equivalent system:[
M̃ Ã1S

−1/2
1

S
−1/2
1 ÃT

1 −D1E
−1
1

]
︸ ︷︷ ︸

B

[
Δy

S
−1/2
1 E1Δx̃1

]
=

[
q

S
−1/2
1 r̃1

]
,(20)

where

M̃ = Ãdiag(S−1
1 , D−1

2 )ÃT , q = rp + Ãdiag(S−1
1 , D−1

2 )r̃.(21)

We call the system in (20) the reduced augmented equation (RAE).

Note that once Δy and Δx̃1 are computed from (20) and Δx̃2 is computed from
(19), Δx can be recovered through the equation Δx = Q[Δx̃1 ; Δx̃2].

Remark 5.1. (a) If the matrix D1 is null, then the RAE (20) is reduced to the
SCE (8).

(b) B is a quasi-definite matrix [8, 27]. Such a matrix has the nice property that
any symmetric reordering ΠBΠT has a “Cholesky factorization” LΛLT , where Λ is
diagonal with both positive and negative diagonal elements.

Observe that the (1, 1) block, M̃ , in (20) has the same structure as the Schur

complement matrix M = Ãdiag(D−1
1 , D−1

2 )ÃT . But for M̃ , ‖diag(S−1
1 , D−1

2 )‖ =
O(1), whereas for M , ‖diag(D−1

1 , D−1
2 )‖ = O(1/μ). Because of this difference, the

reduced augmented matrix B has bounded norm as μ ↓ 0, but ‖M‖ is generally
unbounded. Under certain conditions, B can be shown to have a condition number
that is bounded independent of the normalized complementarity gap μ. The precise
statements are given in the following theorems.

Theorem 5.1. Suppose in (20) we use a partition such that diag(D1) consists of
all the eigenvalues of F 2 of order Θ(μ). If the optimal solution of (1) satisfies strict
complementarity, then ‖B‖ satisfies the inequality ‖B‖ = O(1) ‖A‖2. Thus ‖B‖ is
bounded independent of μ (as μ ↓ 0).
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Proof. It is easy to see that

‖B‖ ≤
√

2 max(‖M̃‖ + ‖Ã1S
−1/2
1 ‖, ‖S−1/2

1 ÃT
1 ‖ + ‖D1E

−1
1 ‖).

Under the assumption that the optimal solution of (1) satisfies strict complementarity,
then as μ ↓ 0, ‖D1‖ ↓ 0, and ‖D−1

2 ‖ = O(1), it is possible to find a constant (inde-

pendent of μ) τ ≥ 1 such that max(‖S−1
1 ‖, ‖D−1

2 ‖, ‖D1E
−1
1 ‖) ≤ τ . Now ‖M̃‖ ≤

‖Ã‖max(‖S−1
1 ‖, ‖D−1

2 ‖)‖Ã‖ ≤ τ‖Ã‖2 and ‖S−1/2
1 ÃT

1 ‖ = ‖Ã1S
−1/2
1 ‖ ≤ τ‖Ã1‖; thus

we have

‖B‖ ≤ τ
√

2 max(‖Ã‖2 + ‖Ã1‖, ‖Ã1‖ + 1) ≤ τ
√

2(‖A‖ + 1)2.

From here, the required result follows.
Lemma 5.1. The reduced augmented matrix B in (20) satisfies the following

inequality:

‖B−1‖ ≤ 2
√

2 max(‖M̃−1‖ , ‖W−1‖),

where W = BT
1 M̃

−1B1 + D1E
−1
1 with B1 = Ã1S

−1/2
1 .

Proof. From [19, p. 389], it can be deduced that

B−1 =

[
M̃−1/2(I − P )M̃−1/2 M̃−1B1W

−1

W−1BT
1 M̃

−1 −W−1

]
,

where P = M̃−1/2B1W
−1BT

1 M̃
−1/2. Note that P satisfies the condition 0 � P � I;

i.e., P and I − P are positive semidefinite. By the definition of W , we have 0 �
W−1/2BT

1 M̃
−1B1W

−1/2 � I, and thus ‖M̃−1/2B1W
−1/2‖ ≤ 1. This implies that

‖M̃−1B1W
−1‖ ≤ ‖M̃−1/2‖ ‖M̃−1/2B1W

−1/2‖ ‖W−1/2‖ ≤ max(‖M̃−1‖ , ‖W−1‖).

It is easy to see that

‖B−1‖ ≤
√

2 max(‖M̃−1/2(I − P )M̃−1/2‖ + ‖M̃−1B1W
−1‖ , ‖W−1BT

1 M̃
−1‖ + ‖W−1‖).

From here, the required result follows.
Theorem 5.2. Suppose in (20) we use a partition such that diag(D1) consists

of all the eigenvalues of F 2 of order Θ(μ). If the optimal solution of (1) satisfies
strict complementarity and the primal and dual nondegeneracy conditions defined in
[2], then the condition number of the coefficient matrix in (20) is bounded independent
of μ (as μ ↓ 0).

Proof. Let D2 be further partitioned into D2 = diag(D2a, D2b), where diag(D2a)
and diag(D2b) consist of eigenvalues of F 2 of order Θ(1) and Θ(1/μ), respectively.

Let Q(2) and Ã2 be partitioned accordingly as Q(2) = [Q(2a), Q(2b)] and Ã2 =

[AQ(2a), AQ(2b)] =: [Ã2a, Ã2b]. By Theorems 20 and 21 in [1], dual nondegener-

acy implies that Ã1 = AQ(1) has full column rank and primal nondegeneracy implies

that [Ã1, Ã2a] has full row rank. Since ‖M̃ − [Ã1, Ã2a]diag(S−1
1 , D−1

2a )[Ã1 , Ã2a]
T ‖ =

O(μ), thus σmin(M̃) is bounded away from 0 even when μ ↓ 0. This, together

with the fact that Ã1S
−1/2
1 has full column rank, implies that the matrix W :=

S
−1/2
1 ÃT

1 M̃
−1Ã1S

−1/2
1 +D1E

−1
1 has σmin(W ) bounded away from 0 even when μ ↓ 0.

By Lemma 5.1, ‖B−1‖ is bounded independent of μ. By Theorem 5.1, ‖B‖ is also
bounded independent of μ, and the required result follows.
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6. Reduced augmented equation and primal infeasibility. Let [ξ ; η] be
the residual vector for the computed solution of (20).

Lemma 6.1. Let u be the machine epsilon and let l be the dimension of Δx̃1.
Suppose (l+m)u ≤ 1/2 and we use Gaussian elimination with partial pivoting (GEPP)
to solve (20) to get the computed solution (Δy ; Δx̃1); then the residual vector [ξ ; η]
for the computed solution satisfies the following inequality:

‖(ξ ; η)‖∞ ≤ 4(l + m)3uρ ‖B‖∞‖(Δy ; Δx̃1)‖∞,

where ρ is the growth factor associated with GEPP.
Proof. This lemma follows from Theorem 9.5 in [12].
Remark 6.1. Theorem 5.1 stated that if strict complementarity holds at the

optimal solution, then ‖B‖∞ will not grow as μ ↓ 0 in contrast to ‖M‖, which usually
grows proportionately to Θ(1/μ). Now because the growth factor ρ for GEPP is
usually O(1), Lemma 6.1 implies that the residual norm ‖(ξ ; η)‖∞ will be maintained
at some level proportional to u‖A‖2 even when μ ↓ 0.

Now we establish the relationship between the residual norm in solving (20) and
the primal infeasibility associated with the search direction computed from the RAE
approach. Suppose that in computing Δx̃2 from (19), a residual vector δ is introduced,
i.e.,

Δx̃2 = D−1
2 (Q(2))T (ATΔy − r) − δ.

Then we have the following lemma for the primal infeasibility of the next iterate.
Lemma 6.2. Suppose Δx is computed from the RAE approach. Then the primal

infeasibility ‖r+
p ‖ for the next iterate x+ = x+αΔx, α ∈ [0, 1], satisfies the following

inequality:

‖r+
p ‖ ≤ (1 − α)‖rp‖ + α‖ξ + Ã2δ − Ã1S

−1/2
1 η‖.

Proof. The proof is quite routine and we omit it.
Remark 6.2. From Lemma 6.2, we see that if the RAE returns a small residual

norm, then the primal infeasibility of the next iterate would not be seriously worsened
by the residual norm. From Theorem 5.1 and Lemma 6.1, we expect the residual norm
‖[ξ; η]‖ to be small since the upper bound on ‖B‖ is independent of μ. Also, since
by its construction, D−1

2 does not have large elements, ‖δ‖ is expected to be small as
well.

Figure 2 shows the convergence behavior of the IPM in SDPT3, but with search di-
rections computed from the RAE (20) for problems ran200 800 1 and sched 50 50 orig.
As can be seen from the relative primal infeasibility curves, the RAE approach is more
stable than the SCE approach. It is worth noting that under the new approach, the
solver is able to deliver 10 digits of accuracy; i.e., φ ≤ −10. This is significantly
better than the accuracy φ ≈ −6 attained by the SCE approach. Note that we use a
partition such that eigenvalues of F 2 that are smaller than 10−3 are put in D1.

In Table 4, we show the norms ‖B‖, ‖B−1‖ and the residual norm in solving the
RAE (20) for the last few IPM iterations when solving the problems rand200 800 1

and sched 50 50 orig. Observe that ‖B‖ and κ(B) do not grow when μ ↓ 0, in
contrast to ‖M‖ and κ(M) in Table 1. The residual norm for the computed solution
of (20) remains small throughout, and in accordance with Lemma 6.1, the residual
norm is approximately equal to u‖B‖ times the norm of the computed solution. By
Lemma 6.2, the small residual norm in solving the RAE explains why the primal
infeasibility computed from the RAE approach does not deteriorate as in the SCE
approach.
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Fig. 2. Same as Figure 1 except for the RAE approach in computing the search directions
for the problems rand200 800 1 and sched 50 50 orig. Notice that the primal infeasibility does not
deteriorate when the iterates approach optimality. Both problems are primal and dual nondegenerate,
and strict complementarity holds at optimality.

Table 4

Condition number of the reduced augmented matrix B associated with the last few IPM iterations
for solving the SOCP problems rand200 800 1 and sched 50 50 orig. The maximum number of

columns in Ã1 for the former problem is 19, and that for the latter is 82.

Iter ‖B‖ ‖B−1‖ xT z/N ‖[Δy; Δx̃1]‖ Residual
norm

‖rp‖
‖rp‖

‖B‖‖[Δy; Δx̃1]‖u
rand200 800 1

12 3.7e+11 2.7e+02 1.3e-09 4.6e-04 6.9e-09 1.8e-08 4.7e-01

13 3.4e+11 2.8e+02 1.9e-10 2.3e-04 4.3e-09 8.1e-09 4.7e-01

14 2.6e+11 3.7e+02 2.5e-11 1.0e-04 1.2e-09 2.9e-09 4.9e-01

15 2.3e+11 4.2e+02 4.0e-12 3.6e-05 3.4e-10 9.4e-10 5.1e-01

16 2.0e+11 5.2e+02 5.6e-13 1.3e-05 1.4e-10 4.8e-10 8.6e-01

sched 50 50 orig

33 1.1e+08 3.9e+04 7.9e-07 1.4e-02 9.3e-13 1.2e-12 3.6e-03

34 6.2e+07 1.4e+04 1.6e-07 2.1e-03 3.9e-14 1.9e-11 6.8e-01

35 6.2e+07 2.7e+04 3.7e-08 1.7e-03 8.4e-15 1.2e-12 5.0e-02

36 6.2e+07 1.5e+04 7.5e-09 3.8e-04 2.8e-15 2.7e-11 5.1e+0

37 6.2e+07 2.2e+04 2.8e-09 2.2e-04 6.5e-16 2.5e-11 8.1e+0
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7. Computational issues. The theoretical analysis in the last section indicates
that the RAE approach is potentially more stable than the standard SCE approach,
but the trade-off is that the former needs to solve a larger indefinite linear system.
Thus, how to efficiently solve (20) is one of our major concerns in the implementation.

In forming the reduced augmented matrix B, those operations involving Q (the
eigenvector matrix of F 2) must be handled carefully by exploiting the structure of Q
to avoid incurring significant storage and computational cost. Also, the sparsity of
AAT must be properly preserved when computing M̃ .

7.1. Computations involving Q. The operations involving Q in assembling
the RAE (20) are as follows:

• Computation of the (1,1) block M̃ = AQdiag(S−1
1 , D−1

2 )QTAT ;

• Computation of the (1,2) block Ã1 = AQ(1) and the right-hand side vector
r̃ = QT rx.

To carry out the above operations efficiently, we need to derive an explicit formula
for Q to facilitate such calculations. Recall the eigenvector matrix Qi (9) associated
with the ith second order cone.

To get an explicit description of Qi, we need to construct the Householder matrix
Hi explicitly. Without going into the algebraic details, the precise form of Hi is given
as follows:

(22)

Hi = I − hih
T
i , hi :=

[
h0
i

h̄i

]
=

1

τi

[
τ2
i sign(g0

i )

ḡi

]
∈ Rni−1, τi :=

√
1 + |g0

i |.

With some algebraic manipulations, the eigenvector Qi can be rewritten in the
form given in the next lemma.

Lemma 7.1. Let βi = −sign(h0
i )/

√
2. We have Qi = diag(Ki, I) − uiv

T
i ,where

Ki =

[ − 1√
2

1√
2

βi βi

]
, ui =

[
0

hi

]
, vi =

⎡⎢⎣ βih
0
i

βih
0
i

h̄i

⎤⎥⎦ .(23)

Proof. Note that by construction, the first column of Hi is given by −sign(g0
i )gi.

Let α = 1√
2

+ sign(g0
i ). From (9), we have

Qi =

⎡⎣ − 1√
2

1√
2

0 · · · 0

1√
2
gi αgi 0 · · · 0

⎤⎦ +

⎡⎣ 0 0

0 I − hih
T
i

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎣
− 1√

2
1√
2

0 . . . 0

− sign(g0
i )√

2
− sign(g0

i )√
2

− 1 0 . . . 0
...

...
...

...
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ +

[
0 0

0 I

]
−

[
0

hi

]⎡⎣ − τi√
2

h0
i − ατi
h̄i

⎤⎦T

.

It is readily shown that h0
i − ατi = −τi/

√
2 = βih

0
i . Now it is easy to see that the

required results hold.
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Observe that each Qi is a rank-one perturbation of a highly sparse block di-
agonal matrix. Based on the above lemma, those operations listed at the begin-
ning of this subsection, except the first one, can be computed straightforwardly.
To compute the matrix M̃ , we have to further analyze the structure of the matrix
Qi diag(S−1

1i , D−1
2i )QT

i .
Let Gi = diag(S−1

1i , D−1
2i ) and Σi = diag(Ki, I); then Qi = Σi − uiv

T
i and

Qi Gi Q
T
i = Σi Gi Σ

T
i − ΣiGiviu

T
i − uiv

T
i GiΣ

T
i + uiv

T
i Gi viu

T
i . By setting ρi =

vTi Givi and ṽi = ΣiGivi/
√
ρi, we have Qi Gi Q

T
i = ΣiGiΣ

T
i + lil

T
i − ṽiṽ

T
i , where

li = ṽi −
√
ρiui. Thus each component matrix M̃i in M̃ =

∑N
i=1 M̃i can be expressed

as

M̃i = AiQiGiQ
T
i A

T
i = Ai (ΣiGiΣ

T
i )AT

i + (Aili)(Aili)
T − (Aiṽi)(Aiṽi)

T .(24)

Since ΣiGiΣ
T
i is a highly sparse block diagonal matrix, M̃i is a symmetric rank-

two perturbation to a sparse matrix if AiA
T
i is sparse. Hence, the computational

complexity of M̃ is only slightly more expensive than that for the Schur complement
matrix M .

7.2. Handling dense columns. Let Σ = diag(Σ1, . . . ,ΣN ), and

Al = [A1l1, . . . , AN lN ] , Av = [A1ṽ1, . . . , AN ṽN ] .

Then it is readily shown that

M̃ = AΣ diag(S−1
1 , D−1

2 )ΣT AT + AlA
T
l −AvA

T
v .(25)

If AAT is sparse, then the first matrix in (25) is sparse as well. For an SOCP prob-
lem where all the cones are low-dimensional, typically the matrices Al and Av are
also sparse. In that case, the RAE (20) may be solved directly. However, if high-
dimensional cones exist, then Al and Av invariably contain dense columns. Moreover,
when A is sparse but has dense columns, AAT will also be dense. In order to preserve
the sparsity in M̃ , it is necessary to handle the dense columns separately when they
exist.

Let P1 be the dense columns in AΣ diag(S
−1/2
1 , D

−1/2
2 ) and Al, and let P2 be the

dense columns in Av. Let M̃s = M̃ − P1P
T
1 + P2P

T
2 be the “sparse part” of M̃ . It is

well known that by introducing the following auxiliary variables, t1 = PT
1 Δy, t2 =

−PT
2 Δy, the dense columns can be removed from M̃ ; see [4]. The precise form of the

RAE (20) with dense column handling is as follows:[
M̃s U

UT −C

] [
Δy ; S

−1/2
1 E1Δx̃1 ; t1 ; t2

]
=

[
q ; S

−1/2
1 r̃1 ; 0 ; 0

]
,(26)

where q is defined in (21) and U =
[
Ã1S

−1/2
1 , P1, P2

]
, C = diag(D1E

−1
1 , I1,−I2).

Here I1, I2 are identity matrices.

7.3. Direct solvers for symmetric indefinite systems. Solving the sparse
symmetric indefinite system (26) is one of the most expensive steps at each IPM
iteration. Thus, it is critical that the solver used must be as efficient as possible.

We consider two methods for solving (26). The first is the Schur complement
method, which is also equivalent to the Sherman–Morrison–Woodbury formula. The
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second is the LDLT factorization implemented in MA47 [18]. Each of these methods
has its own advantages under different circumstances.

Schur complement method. This method is widely used for dense column
handling in IPM implementations; see [4] and the references therein. It uses the

sparse matrix M̃s as the pivoting matrix to perform block eliminations in (26). It is
readily shown that solving (26) is equivalent to solving the following systems:(

UT M̃−1
s U + C

) [
S
−1/2
1 E1Δx̃1 ; t1 ; t2

]
= UT M̃−1

s q −
[
S
−1/2
1 r̃1 ; 0 ; 0

]
,(27)

Δy = M̃−1
s q − M̃−1

s U
[
S
−1/2
1 E1Δx̃1 ; t1 ; t2

]
.

Note that since M̃ is symmetric positive definite, its “sparse part,” M̃s, is typically
also positive definite if the number of dense columns removed from M̃ is small. If M̃s

is indeed positive definite, then (27) can be solved by Cholesky or sparse Cholesky
factorization. As mentioned before, highly efficient and optimized Cholesky solvers are
readily available in the public domain. Another advantage of the Schur complement
method is that the symbolic factorization of M̃s and the pivoting order of the Cholesky
factorization need only be computed once or twice during the initial phase of the IPM
iteration and they can be reused for subsequent IPM iterations even when the partition
in D changes.

But the Schur complement method does have a major disadvantage in that the
matrix UT M̃−1

s U+C is typically dense. This can lead to a huge computational burden
when U has a large number of columns, say, more than a few hundred. Furthermore,
the Schur complement method is numerically less stable than a method that solves
(26) directly.

Roughly speaking, the Schur complement method is best suited for problems
with U having a small number of columns. When U has a large number of columns or
when M̃s is not positive definite, we have to solve (26) directly by the second method
described below.

MA47. MA47 is a direct solver developed by Reid and Duff [18] for sparse
symmetric indefinite systems. This is perhaps the only publicly available state-of-the-
art direct solver for sparse symmetric indefinite systems. It does not appear to be as
efficient as the sparse Cholesky codes of Ng and Peyton [16].

The MA47 solver implements the multifrontal sparse Gaussian elimination de-
scribed in [7]. In the algorithm, the pivots used are not limited to only 1× 1 diagonal
pivots but also include 2 × 2 block diagonal pivots. The solver performs a prefactor-
ization phase (called symbolic factorization) on the coefficient matrix to determine
a pivoting order so as to minimize fill-ins. In the actual factorization process, this
pivoting order may be modified to obtain better numerical stability. Note that in
sparse Cholesky factorization, the pivoting order is not modified after the symbolic
factorization phase. Because significant overhead may be incurred when the pivoting
order is modified in the factorization process, running MA47 is sometimes much more
expensive than the sparse Cholesky routine of Ng and Peyton on matrices with the
same dimensions and sparsity patterns.

The advantage of using MA47 to solve (26) is that it does not introduce a fully
dense matrix in the solution process. Thus it is more suitable for SOCP problems
with U having a relatively large number of columns.

However, the MA47 method does have a disadvantage in that the symbolic fac-
torization of the reduced augmented matrix needs to be recomputed whenever the
partition in D changes.
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7.4. Partitioning strategy. As shown in section 6, the RAE approach for com-
puting the search directions has the potential to overcome certain numerical instabil-
ities encountered in the SCE approach. The RAE was derived from the augmented
equation (7) by modifying the part of the coefficient matrix involving the small eigen-
values of F 2. Here we will describe the partition we use in D = diag(D1, D2).

The choice of D1 is dictated by the need to strike a balance between our desire to
compute more accurate search directions and to minimize the size of the RAE to be
solved. For computational efficiency, it is better to have as few columns in the matrix
U (26) as possible, thus suggesting that the threshold for labelling an eigenvalue as
“small” should be low. But to obtain better accuracy, it is beneficial to partition
eigenvalues that are smaller than, say 10−3, into D1 to improve the conditioning of
the reduced augmented matrix.

With due consideration in balancing the two issues just mentioned, we adopt a
hybrid strategy in computing the search direction at each IPM iteration. If κ(F 2) ≥
106, put the eigenvalues of F 2 that are smaller than 10−3 in D1, and the rest in D2;
otherwise, put all the eigenvalues of F 2 in D2.

Some of our test problems also contain linear blocks (i.e., cones with dimensions
ni = 1). In this case, F 2

i = zi/xi is a scalar, and we put F 2
i in D1 if it is smaller than

10−3; otherwise, we put it in D2.
As noted in Remark 3.1, when Ã1 has full row rank (for which a necessary con-

dition is that the number of small eigenvalues put into D1 is at least m), the Schur
complement matrix M is not highly ill-conditioned, and it is not necessary to use the
RAE approach to compute the search directions. When such a situation occurs, we
use the SCE approach.

8. Numerical experiments. The RAE (20) or (26) is more expensive to solve
than the SCE (8) because it is larger in size. As we have discussed in the last section,
we can try to minimize the additional computational cost by a judicious choice of the
solver used. If the number of columns in U is small, then using the Schur complement
method to solve (26) should not be much more expensive than solving the SCE. We
adopt the following heuristic rule to select the solver used to solve (26). If the number
of columns in U is less than 200, we use the Schur complement method; otherwise,
we use the MA47 method.

The RAE approach is implemented in MATLAB based on the IPM in SDPT3,
version 3.1; see [25]. But the search direction at each iteration is computed based on
the RAE (26). We use the same stopping criteria mentioned in section 4. Again, the
numerical results are obtained from a Pentium IV 2.4GHz PC with 1G RAM.

We consider the same SOCP problems in section 4. But in order to focus on
the comparison between the SCE and RAE approaches without the complication of
unbounded primal solution sets, we exclude the nbxxx, nqlxxx, and qsspxxx problems
from the numerical experiments in this section. Our major concerns in the experiments
are efficiency and accuracy. We measure efficiency by the total CPU time taken, while
accuracy is again measured by the accuracy exponent defined in (13).

The numerical results for the RAE-based IPM are presented in Table 5. In the
table, Titer denotes the average CPU time taken per iteration. For the RAE-based
IPM, the number of IPM iterations taken for each problem is given under the column
“iter.” The number in each bracket gives the number of iterations using the RAE
approach. The total CPU time taken to solve each problem is given under the column
“Time.” The number in each bracket gives the CPU time taken by the iterations using
the RAE approach.
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The numerical results in Table 2 show that the SCE-based IPMs may not deliver
approximate optimal solutions with small primal infeasibilities. In Table 5, we see
that the RAE-based IPM can drive the primal infeasibilities of all the problems to a
level of 10−9 or smaller. For the schedxxx and randxxx problem sets, both the SCE-
based IPMs in SDPT3 and SeDuMi cannot deliver accurate approximate solutions
where the accuracies attained a range from φ = −2.5 to φ = −8.9 for the schedxxx

set and from φ = −4.5 to φ = −7.6 for the randxxx set. The RAE-based IPM,
however, can achieve solutions with accuracy φ ≤ −9.1 for all the problems in these
two sets. The improvement in the attainable accuracy is more than five orders of
magnitude in some cases. For the firxxx problems, the SCE approach can already
produce accurate approximate solutions, and the RAE approach produces comparable
accuracies.

The good performance in terms of accuracy of the RAE-based IPM on the schedxxx
and randxxx problem sets is consistent with the theoretical results established in sec-
tion 6. The SOCP problems in the schedxxx set are primal and dual nondegenerate,
and strict complementarity holds at optimality. For the randxxx set, all the problems
are primal nondegenerate, but four of the problems are dual degenerate. It is inter-
esting to note that dual degeneracy does not seem to affect the performance of RAE
on these degenerate problems. This fact is consistent with the observation we made
in Remark 6.2.

By Theorem 5.2, the condition number of the reduced augmented matrix for the
problems in the schedxxx set is bounded when μ ↓ 0. But as noted in Remark 3.2,
strict complementarity and primal and dual nondegeneracy in an SOCP do not nec-
essarily imply that the associated Schur complement matrix has bounded condition
numbers when μ ↓ 0. The numerical results produced by the schedxxx problems
concretely show the difference in numerical stability between the SCE and RAE ap-
proaches.

From the average CPU time taken per IPM iteration for the RAE and SCE
approaches in Table 5, we see that the RAE approach is reasonably efficient in that
the ratio (compared with SDPT3) is at most 6.0 for all the test problems, and 78%
of them have ratios between 1.0 and 2.0.

The objective values obtained by the RAE-based IPM are given in Table 6.

Table 6

Primal and dual objective values obtained by the IPM using the RAE approach.

Problem
Primal

objective
Dual

objective
Problem

Primal
objective

Dual
objective

sched-50-50-o 2.6673000979 4 2.6673000977 4 firL2Linfalph -7.0591166471 -3 -7.0591167258 -3

sched-100-50-o 1.8188993937 5 1.8188993936 5 firL2Linfeps -1.4892049051 -3 -1.4892049762 -3

sched-100-100-o 7.1736778669 5 7.1736778615 5 firL2 -3.1186645862 -3 -3.1186645914 -3

sched-200-100-o 1.4136044650 5 1.4136044649 5 firLinf -1.0068176528 -2 -1.0068176895 -2

sched-50-50-s 7.8520384401 0 7.8520384399 0 rand200-300-1 -1.5094030119 2 -1.5094030119 2

sched-100-50-s 6.7165031103 1 6.7165031100 1 rand200-300-2 -1.2861024800 2 -1.2861024801 2

sched-100-100-s 2.7330785593 1 2.7330785592 1 rand200-800-1 1.8086048337 0 1.8086048335 0

sched-200-100-s 5.1811961028 1 5.1811961027 1 rand200-800-2 -2.3277765222 1 -2.3277765220 1

firL1Linfalph -3.0673166232 -3 -3.0673166686 -3 rand400-800-1 6.6607764189 0 6.6607764185 0

firL1Linfeps -2.7112896665 -3 -2.7112897249 -3 rand400-800-2 6.3708631137 1 6.3708631135 1

firL1 -2.9257813804 -4 -2.9257816083 -4 rand700-1e3-1 -7.1501954797 1 -7.1501954802 1

firL2a -7.1457742547 -4 -7.1457747536 -4 rand700-1e3-2 -5.5374169002 1 -5.5374169007 1

firL2L1alph -5.7634914619 -5 -5.7634994782 -5 rand1000-2e3 -2.4138366508 4 -2.4138366508 4

firL2L1eps -8.4481294535 -4 -8.4481297976 -4 rand1500-3e3 1.7396653464 4 1.7396653465 4
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Table 7

Primal nondegeneracy (“p.n.d”) and dual nondegeneracy (“d.n.d”) and strict complementarity
(“s.c.”) information of approximate solutions of some SOCP problems. A “1” means true and a
“ 0” means false. A number of the form (34/35) in the second column means that at the computed

approximate optimal solution, the column rank of Ã1 is 34, and the number of columns in Ã1 is 35.

Problem p.n.d d.n.d s.c. Problem p.n.d d.n.d s.c.
sched-50-50-orig 1 1 (79/79) 1 rand200 800 1 1 1 (19/19) 1

sched-50-50-scaled 1 1 (83/83) 1 rand200 800 2 1 1 (19/19) 1

firL2a 1 1 (1/1) 1 rand400 800 1 1 1 (40/40) 1

firL2Linfalph 1 1 (15/15) 1 rand400 800 2 1 1 (40/40) 1

firL2 1 1 (1/1) 1 rand700 1e3 1 1 0 (84/85) 1

rand200 300 1 1 0 (34/35) 1 rand700 1e3 2 1 0 (126/130) 1

rand200 300 2 1 0 (62/65) 1

As we are able to compute rather accurate approximate solutions for (1), it is
worthwhile to gather information such as primal and dual degeneracy and strict com-
plementarity for some of the smaller SOCP problems we have considered in this paper.
Such information is given in Table 7. We note that the degeneracies of the problems
are determined by computing the numerical row and column rank (via the MATLAB
command rank) of the matrices in Theorems 20 and 21 in [1], respectively.

9. Conclusion. We analyzed the accuracy of the search direction computed
from the SCE approach, and how the residual norm in the computed solution affects
the primal infeasibility and hence the achievable accuracy in the approximate optimal
solution.

We also discussed the factors contributing to the good numerical performance of
the very well implemented SCE-based IPM in the software SeDuMi.

A reduced augmented equation is proposed to compute the search direction at
each IPM iteration when the SCE cannot be solved to sufficient accuracy. The pro-
posed RAE approach can improve the robustness of IPM solvers for SOCP. It can
be implemented efficiently by carefully preserving the sparsity structure in the prob-
lem data. Numerical results show that the new approach can produce more accurate
approximate optimal solutions compared to the SCE approach.
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MODELING COMPENSATION FOR OPTICAL FIBER
COMMUNICATION SYSTEMS∗
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Abstract. Today the vast majority of telecommunication and Internet messages are sent along
fiber optic cables buried underground. Binary data (encoded as a sequence of pulses of light) may
travel thousands of kilometers to reach its final destination. The fibers that are used for this data
transfer necessarily contain manufacturing impurities that lead to fast and slow polarization states
for the propagating signal. This imperfection in the fiber results in a random distortion effect known
as polarization-mode dispersion (PMD). As binary data travels along these fibers, the pulses spread,
causing the ones to decrease in value and the zeros to increase. Thus, the received message may
contain errors. To decrease the likelihood of errors in the received signal, a device known as a
compensator can be placed at the receiver. Determining an optimal setting for the compensator
involves rotating the fiber in the compensator to best align its slow axis with the fast axis of the
transmission fiber. Such a rotation should cancel out some of the effects of PMD. Modeling this
system numerically requires that one generate fiber realizations with large amounts of PMD. To
measure rotation angle goodness of fit between compensation and transmission fiber requires that
one choose a feedback signal for the compensator. We compare the eye opening, spectral line, and
degree of polarization ellipsoid feedback signals. While the eye opening feedback mechanism is the
most accurate measure, it is difficult to optimize numerically. The degree of polarization and spectral
line feedback signals act as smooth surrogates for the eye.

Key words. optical fiber communication, photonics, PDE-constrained optimization, polariza-
tion-mode dispersion, Monte Carlo methods
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1. Introduction. The vast majority of long-distance telecommunications and
Internet traffic is carried by optical fiber communication systems [31]. In an optical
communication system binary data is encoded onto a sequence of pulses of light which
are then transmitted over long distances through optical fiber. A material property
of optical fiber called birefringence causes the pulses to spread and distort as they
propagate. This distortion of the optical signal is called polarization-mode disper-
sion (PMD) and is governed by the linear-PMD equation, which is a special case of
the Manakov-PMD equation. The Manakov-PMD equation models the propagation
of light through dispersive, nonlinear, birefringent optical fiber and is derived from
Maxwell’s equations [25], [43]. In the 1980s scientists realized that PMD in optical
fibers would have a significant impact on the performance of high-data rate systems
[18], [30]. By the time the signal reaches its destination it may not be possible to
correctly decode the transmitted binary message; i.e., bit errors may occur. The en-
gineering goal is to ensure that the bit-error ratio, which is the probability that a
bit error occurs, is as small as possible (typically 10−9–10−15). A major difficulty in
achieving this goal is that the birefringence of optical fiber, and hence the bit-error
ratio, varies randomly over time. To reduce the probability of a large bit-error ratio,
engineers have proposed using devices called optical PMD compensators.
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In birefringent fiber, the speed of the light depends on its polarization state. To
first approximation, a given optical fiber has two special principal states of polariza-
tion: fast and slow. The delay in the arrival times between light traveling in these two
states is called the differential group delay (DGD). If the DGD is too large, bit errors
will occur. A PMD compensator is a device that is placed after the transmission fiber
just prior to the receiver. It is designed to reduce the deleterious effect that PMD has
on the performance of a communication system. A simple PMD compensator consists
of a device called a polarization controller that is used to change the polarization state
of the light, followed by a piece of compensating fiber with a fixed DGD. The polar-
ization controller rotates the fast polarization state of the transmission fiber onto the
slow polarization state of the compensation fiber, thereby reducing the total DGD.
In this paper, we study the problem of how best to optimize the performance of a
simple PMD compensator. For each random realization of the birefringence of the
transmission fiber, the goal is to find the rotation of the polarization controller that
will minimize the bit-error ratio.

The physical and statistical properties of PMD, the equations that govern the
propagation of light through birefringent optical fiber, and Monte Carlo-based models
for the random variation in the birefringence of optical fiber have been widely studied
over the last 25 years, and several excellent review articles have recently appeared
[24], [31], [43].

Because the random fiber realizations that produce unacceptably large PMD are
extremely rare, it is very difficult to observe them experimentally. It is also not prac-
tical to simulate them using a standard Monte Carlo search of the state space of all
possible fiber realizations. However, it is precisely these rare, large-PMD fiber re-
alizations that are most important to consider when assessing the effectiveness of a
PMD compensator. Recently, Biondini and Kath [2], [3], [4] developed a multiple im-
portance sampling algorithm that uses biased Monte Carlo simulations to efficiently
generate realizations of the fiber which have large amounts of PMD. This advance
made it possible to perform simulation studies that more accurately assess the per-
formance of PMD compensators [35], [36], [38], [39], [64].

In recent years several different approaches have been proposed for reducing bit
errors due to PMD. Comprehensive reviews of these ideas can be found in [7], [26],
[52]. One approach is to install newly designed low-PMD fiber [45]. However, replacing
fiber is prohibitively expensive for existing systems. Another approach is to design the
shape of the transmitted light pulses to make the signal more resilient to PMD [52].
In addition to these passive methods, active PMD compensation methods have also
been proposed. Active compensation techniques can be applied to the optical signal
either just before it enters the receiver (optical compensation) or after the optical
signal has been converted back into an electrical signal in the receiver (electrical
compensation) [39].

We focus in this paper on optical PMD compensation only. Optical PMD com-
pensation is complicated by the fact that the DGD and principal states depend on the
frequency of the light. If the PMD in the transmission fiber were actually frequency-
independent, then a simple optical PMD compensator like that described above could
completely eliminate the effects of PMD. In the realistic case of frequency-dependent
PMD it is still theoretically possible (but not experimentally viable) to completely
eliminate the effects of PMD via solution of an inverse problem [52]. Compensators
that account for at least some frequency-dependent PMD have a relatively large
number of degrees of freedom; i.e., their objective functions are defined on a high-
dimensional space. However, such devices are costly to build and operate. Since low
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cost is desirable, we chose to study the simple optical PMD compensator described
above, which has only two degrees of freedom.

An obvious choice for the feedback mechanism to use for compensation is the
bit-error ratio. However, it is not actually possible to compute the bit-error ratio in
a real system. Instead, for a simple compensator, the most common feedback signals
are the power in a spectral line [27] and the degree of polarization (DOP) [33]. The
goal is to maximize these feedback signals since small values of the DGD usually
result in large values of the monitored signal. In addition, it has been shown that
the performance of a compensator can be improved by scrambling the polarization
state of the input signal [47]. Therefore, the monitor signals we chose to study for
this paper are the spectral line and polarization-scrambled DOP. We compare these
two feedback mechanisms to a third—the eye opening [8]—which is highly correlated
to the bit-error ratio. Unfortunately, the eye opening monitor is not very practical
since it is difficult to build and operate (requiring complex fast electronic circuitry).

Several simulation studies have compared the performance of different PMD com-
pensators. Sunnerud et al. [52], [53] and Buchali and Bülow [7] compared compen-
sators with a few (2–5) degrees of freedom. Their results show that compensators
with three or more degrees of freedom are somewhat more effective than the sim-
ple compensator. Although they used the spectral line and DOP monitors (without
polarization scrambling) they did not study the properties of these objective func-
tions or compare them to the eye opening monitor. Moreover, because they used
standard Monte Carlo simulations they were not able to access the rare large-PMD
fibers that are of real interest when quantifying the performance of a compensator.
I. Lima et al. [39] used multiple importance sampling to study the performance of
a simple compensator with a fixed DGD. They showed that the optimal value for
the fixed DGD in the compensator is about 2–3 times larger than the mean DGD of
the transmission line, averaged over fiber realizations. However, they only used the
eye opening objective function in their work. In addition, none of the papers just
cited carefully studies how the performance of a compensator depends on the choice
of algorithm used to optimize the objective function.

We compare the spectral line, polarization-scrambled DOP, and eye opening ob-
jective functions, both for a particular fiber realization and statistically over many
fiber realizations. In the special case that the PMD is frequency-independent, we de-
rive analytical formulae for the spectral line and polarization-scrambled DOP objec-
tive functions. Each objective function can be regarded as a doubly periodic function
on a two-dimensional plane that parametrizes a certain set of rotations of three-
dimensional space. Our formulae show that the polarization-scrambled DOP has a
single maximum, while the spectral line can have at least two maxima. However,
there may be more local maxima in the general case of frequency-dependent PMD.

We also systematically study the combined effect that the choice of feedback signal
and optimization algorithm have on the performance of a simple PMD compensator.
By using importance sampling with a large number of fiber realizations, we are able to
assess performance for the very rare large-PMD realizations of the fiber that are most
important to consider when studying PMD compensators. Because the eye opening
is so highly correlated to the bit-error ratio, it is very reasonable to assume that
the best performance is obtained when the rotation of the polarization controller is
given by the global maximum of the eye opening objective function. However, it is
difficult to locate the global maximum of the eye opening. On the other hand, we
will show that it is much easier to locate the global maxima for the spectral line and
polarization-scrambled DOP, which indicates that these two objective functions are
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smoother than the eye opening.
The main conclusion of our study is that the spectral line and polarization-

scrambled DOP act as smooth surrogates for the eye opening (or bit-error ratio)
objective function. This result is obtained by comparing the performance of the com-
pensators with different local and global optimization algorithms, and by statistical
studies that compare the location of local and global maxima of the three different
objective functions. We show that the best trade-off between computational cost
and performance is obtained using the polarization-scrambled DOP objective func-
tion with a multilevel optimization algorithm. This algorithm uses a global genetic
algorithm followed by a local conjugate gradient algorithm. Preliminary work [64]
compared the performance of the simple compensator with the three objective func-
tions but used only local optimization algorithms and did not compare the structure
of the objective functions.

In section 2, we review the basic mathematical models for optical fiber communi-
cations systems with PMD. In section 3, we describe the PMD compensator we study
in this work, and in section 4 we derive formulae for the polarization-scrambled DOP
and spectral line objective functions in the special case of only first-order PMD. In
section 5 we review the importance sampling algorithm and in section 6 we describe
the optimization algorithms we used. Finally, in section 7 we present the results of
our optimization case study.

2. Mathematical models for optical communication systems. In this sec-
tion, we review the linear-PMD equation and the coarse-step algorithm that is used
to generate random realizations of the fiber. We also explain how to calculate and
measure the performance of an optical communication system.

2.1. The governing equations. In this subsection, we review the Manakov-
PMD equation that describes the propagation of an optical signal through birefringent
optical fiber. The birefringence of optical fiber, which is the physical cause of PMD
in the signal, varies randomly along the fiber and over the course of time due to
temperature variations and mechanical vibrations.

Light in an optical fiber propagates in two eigenmodes which are distinguished
from each other by their polarization states. To model the propagation of light in
an optical fiber, we choose coordinates, (x, y, z), so that the positive z-axis is the
propagation direction along the fiber and the (x, y)-plane is orthogonal to the fiber.
The electric field of light propagating at a carrier frequency, ω0, is the real part of the
complex-valued vector field, E, which we express as [43]

E(x, y, z, τ) = κ [U1(z, τ)R1 + U2(z, τ)R2] exp[iβ(ω0, z)z − iω0τ ].(2.1)

Here τ denotes physical time, and the dispersion relation of the fiber is determined
by the frequency-dependence of the wavenumber, β(ω0, z). The vector fields R1 and
R2 are two eigenfunctions that describe the (x, y)-dependence of the electric field, E.
These vector fields are orthogonal to the propagation direction z, and to each other.
The functions U1 and U2 describe the slow variation of the envelope of the electric
field about the rapidly varying carrier wave given by the exponential factor in (2.1).
The column vector U(z, t) = (U1(z, t), U2(z, t))

T , which is called the Jones vector of
the light, models the polarization state of the light at (z, t). Here we have transformed
from physical time, τ , to retarded time, t = τ− ∂β

∂ω (ω0, z)z, which defines a coordinate

system that is moving with the group velocity [ ∂β∂ω (ω0, z)]
−1. The normalization con-

stant κ is chosen so that |U|2 = |U1|2 + |U2|2 corresponds to the optical power of the
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signal. The data is encoded onto the signal by allocating a time slot to each bit and
varying the power of the signal so that the power is large in the time slots allocated
to the ones and small in the time slots allocated to the zeros.

If the refractive index is perfectly axially symmetric, then the two eigenmodes are
equal and the signal is not affected by PMD. However, in real fiber this degeneracy is
broken due to imperfections in the fiber. Consequently, real optical fiber has a small
birefringence: Light propagating in the two different eigenmodes travels at slightly
different group velocities. Therefore, if the power of an optical pulse is split between
the two polarization eigenmodes, R1 and R2, then as it propagates through the fiber,
the power will spread in the time domain and can become severely distorted. This
phenomenon is called polarization-mode dispersion (PMD). As a result, optical power
will be transferred between the time slots allocated to the different bits, potentially
resulting in bit errors at the receiver. PMD is particularly difficult to combat because
it is inherently stochastic in nature. As the distance, z, along the fiber increases,
the eigenfunctions R1 and R2 rotate rapidly and randomly in the (x, y)-plane but
are otherwise unchanged. At each fixed distance, they also rotate randomly over
time on a scale of minutes to hours due to temperature variations and mechanical
vibrations. Consequently, a PMD compensator must be continually optimized to
correct for PMD-induced distortions in the received optical signal.

The equation governing the z-evolution of U is the coupled nonlinear Schrödinger
equation (CNLS). The CNLS is derived from Maxwell’s equations by averaging over
the rapid variations of the carrier wave, exp[iβ(ω0, z)z − iω0τ ], and over the eigen-
functions, R1 and R2 [43]. The CNLS states that

∂U

∂z
= gU + iΔBU − ΔB′ ∂U

∂t
− i

2
β′′ ∂

2U

∂t2
+ iγ

[
|U|2U − 1

3
(U†σ2U)σ2U

]
.(2.2)

Here, the scalar coefficient g is the loss coefficient of the fiber. The factor ΔB =
ΔB(ω0, z) is the birefringence matrix, which is a 2× 2 Hermitian matrix that models
the anisotropy and asymmetry of the linear dielectric response tensor of the fiber,
averaged with respect to the eigenfunctions R1 and R2. The matrix ΔB′ is defined

by ΔB′ = ∂ΔB
∂ω (ω0, z), and the scalar β′′ = ∂2β

∂ω2 (ω0, z) is the chromatic (frequency-
dependent) dispersion. The scalar coefficient γ measures the strength of the Kerr
nonlinearity in the fiber. The Kerr nonlinearity arises from the fact that the refractive
index of optical fiber has a small dependence on the optical power |U|2 of the light.
Finally, † denotes conjugate transpose, and σ2 is the second of the three Pauli spin
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(2.3)

Because of the polarization properties of glass [48], optical fiber is linearly bire-
fringent, which means that

ΔB = Δβ(cos θσ3 + sin θσ1),(2.4)

where Δβ is the magnitude of birefringence and θ is an orientation angle whose
significance will be explained later. Since θ is a very weak function of frequency, we
assume that ΔB′ = Δβ′(cos θσ3 + sin θσ1). Wai and Menyuk [58] proposed a model
for the random variation of the birefringence along the fiber in which Δβ′ cos θ and
Δβ′ sin θ are independent Gaussian random processes with mean zero and the same



MODELING COMPENSATORS 743

standard deviation [58]. Recently, Galtarossa et al. [19], [20] experimentally validated
this model.

The random variations in the fiber birefringence occur on a length scale of 1–100 m
and result in very rapid changes in the polarization state of the light as it propagates.
However, since optical communication systems are at least several hundred kilometers
long, it is not computationally feasible to simulate propagation through birefringent
fiber by using a numerical method that takes small enough steps along the fiber to
track these rapid changes in the polarization state of the light. This problem can be
overcome by transforming the rapid changes in the polarization state of the light at
the carrier frequency out of the CNLS to obtain the Manakov-PMD equation [42],
[43]:

∂W

∂z
= gW − Δβ′σ̄3

∂W

∂t
− i

2
β′′ ∂

2W

∂t2
+ iγ|W|2W.(2.5)

Here W(z, t) = Q(z)U(z, t), where Q(z) is a unitary transformation and σ̄3 =
T(z)−1σ3T(z) for a matrix T(z) that is determined by the birefringence parameters
Δβ and θ. To explain the rationale for making a transformation of the form Q(z), we
first note that the Fourier conjugate of the retarded time, t, is frequency, ω, measured
relative to the carrier frequency, ω0, of the optical signal. Even though the Fourier
transform, Û(z, ω), of U(z, t) varies rapidly with the propagation distance z, it only
has a very weak dependence on frequency, ω. Therefore, it makes sense to transform
U so that the new coordinates exactly follow the rapid changes of the polarization
state of the signal at the center frequency, ω0, i.e., so that Ŵ(z, 0) is constant in z.

In this new coordinate system, the Fourier transform, Ŵ(z, ω), of the solution of the
Manakov-PMD equation measures the slow variation of the polarization state of the
light at each frequency, ω, with respect to the polarization state of the light at the
carrier frequency, ω0.

2.2. The linear PMD equation. In this subsection we review the linear PMD
equation which is a special case of the Manakov-PMD equation. The linear PMD
equation is appropriate for studying the statistical behavior of PMD and PMD com-
pensators. We will use this equation to explain how PMD results in the spreading
and distortion of optical pulses.

The linear PMD equation is obtained by omitting all but the second term on the
right-hand side of (2.5). Another widely studied special case of the Manakov-PMD
equation is the scalar nonlinear Schrödinger equation, which is the equation obtained
when there is no birefringence (Δβ′ = 0) and the optical signal at the transmitter
is polarized [25], [43]. In many systems, the primary source of bit errors is not the
nonlinear effects that are modeled by the scalar nonlinear Schrödinger equation but
rather the effects of PMD that are modeled by the linear PMD equation. Moreover,
because PMD is a stochastic effect, and because bit errors are so rare, PMD must
be studied statistically using a large number of randomly chosen realizations of the
birefringence of the optical fiber. Simulations that do not include the Kerr nonlinearity
are computationally several orders of magnitude faster than those that do.

We now explain how PMD gives rise to the spreading and distortion of optical
pulses, and introduce the concept of differential group delay. The linear PMD equation
is most readily analyzed in the frequency domain, where

∂Ŵ

∂z
= iΔβ′ σ̄3(z)ω Ŵ.(2.6)
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The solution to this equation can be expressed in the form Ŵ(z, ω) = f̂(ω) Â(z, ω),

where f̂ is a real scalar-valued function, and |Â(z, ω)|2 = 1. As a function of time, the
power of the optical signal is given by |f |2, where f is the inverse Fourier transform

of f̂ . The vector Â is the polarization state of the signal. Suppose that F = F(z, ω)
is a matrix such that

∂Â

∂ω
= iFÂ.(2.7)

It can be shown that F is a Hermitian matrix that is determined by the quantities
Δβ′ and σ̄3 that characterize the birefringence of the optical fiber [43]. The absolute
difference of the two real eigenvalues of F is called the differential group delay (DGD),
and the eigenvectors of F are called the principal states of polarization. The DGD
and the principal states of polarization depend on both the propagation distance, z,
and the frequency, ω.

To see how the DGD is related to pulse spreading, suppose for simplicity that
the matrix F is ω-independent, at least over the frequency bandwidth of the signal,
Ŵ. In this case, we say that the fiber birefringence generates only first-order PMD.
Diagonalizing F, we see that

Â(z, ω) = PeiωD(z)P†Â(z, 0),(2.8)

where P = (v1,v2) is unitary, and D(z) = diag
(
− τ(z)

2 , τ(z)
2

)
. Here τ(z) is the DGD.

(By ignoring a common phase, we can assume that trace(F) = 0.) Therefore, the
optical signal is given by

W(z, t) = c1f
(
t + τ(z)

2

)
v1 + c2f

(
t− τ(z)

2

)
v2,(2.9)

where c1 and c2 are complex constants with |c1|2 + |c2|2 = 1. The DGD is therefore
the time delay between light that is launched in the two different principal states of
polarization. If the power of an optical pulse is split between the two principal states
(i.e., ck �= 0 for k = 1, 2) and the DGD is large, then the power of the pulse is spread
out and distorted as a function of time and bit errors are more likely to occur at the
receiver.

2.3. The Stokes representation. In our discussion so far, we have modeled
the polarization state of light using the Jones representation. In this subsection, we
review an alternate approach based on the Stokes representation [5], [24], [43], [44].
Using the Stokes representation, we can regard the propagation of the polarization
state of light through birefringent optical fiber as a random walk on a two-dimensional
sphere.

With the Jones representation, polarization states are represented as unit vectors
U ∈ C2, i.e., as points on the sphere S3 ⊂ C2, while with the Stokes representation
they are represented using unit Stokes vectors, S = (S1, S2, S3) ∈ S2 ⊂ R3. The
sphere of unit Stokes vectors is called the Poincaré sphere. The mapping ψ : S3 → S2

from Jones space to Stokes space is defined by S = ψ(U) = U†−→σ U, where −→σ =
(σ3, σ1,−σ2) is the Pauli spin vector. For each S, the inverse image ψ−1(S) is the
circle in S3 that consists of all Jones vectors of the form Uϕ = eiϕU, where ϕ ∈ S1

and ψ(U) = S. The angle ϕ is an overall phase that plays no role in the theory
of PMD. Since the matrix acting on the right-hand side of (2.6) is an element of
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the Lie algebra su(2) of trace-free skew-Hermitian matrices, the solution of the linear-

PMD equation is of the form Ŵ(z, ω) = T(z, ω)Ŵ(0, ω), where the PMD-transmission
matrix, T, is an element of the Lie group SU(2) of unitary matrices with determinant 1.
The action of an element T of SU(2) on S3 ⊂ C2 is equivalent to the action of an
element R of the special orthogonal group, SO(3), on S3, where T is mapped to R

by the 2-1 and onto map Ψ : SU(2) → SO(3) that is determined by R−→σ = T†−→σ T.
In particular, if R is a rotation by an angle θ about an axis r̂ ∈ S2 ⊂ R3, then
T = ±[cos(θ/2)I − i sin(θ/2)r̂ · −→σ ]. The Lie algebra so(3) of SO(3) consists of all
antisymmetric matrices. The induced map between Lie algebras, Ψ∗ : su(2) → so(3),

is defined by Ψ∗(i
−→
β · −→σ ) = β×. Here

−→
β = (β1, β2, β3) ∈ R3 and

β× =

⎛⎝ 0 −β3 β2

β3 0 −β1

−β2 −β1 0

⎞⎠(2.10)

determines an isomorphism between so(3) and R3. Therefore, if Ŝ is the Stokes vector

that is equivalent to the Jones vector Â defined below (2.6), then in Stokes space, the
linear PMD (2.6) is given by

∂Ŝ

∂z
=

−→
β × Ŝ,(2.11)

where
−→
β =

−→
β (ω, z) is the local birefringence vector of the fiber. If the local bire-

fringence vector is constant, then the polarization state Ŝ at a single frequency traces
a circle on the Poincaré sphere centered at

−→
β . However, in real linearly birefrin-

gent fibers, the local birefringence vector,
−→
β , moves randomly on the equator of the

sphere.1 Therefore, the polarization state of the light, Ŝ, moves randomly over the
entire sphere. More specifically, given a length of birefringent fiber and an optical
signal with a given input polarization state, consider the probability distribution of
output polarization states, Ŝ, on the Poincaré sphere, where the samples are gener-
ated from different realizations of the fiber birefringence. The length scale required
for the probability distribution of Ŝ to become uniform on the sphere is on the order
of a kilometer, which is short compared to the total length of a communication sys-
tem. These observations provide the primary motivation for the coarse-step method
for modeling PMD, which we will discuss in section 2.4 below.

To explain how the DGD evolves as a function of distance along the fiber, we
introduce the polarization dispersion vector,

−→
Ω =

−→
Ω (ω, z) = (Ω1,Ω2,Ω3), which is

defined in terms of the Hermitian matrix F in (2.7) by F = trace(F)I+ 1
2

−→
Ω ·−→σ . Then

the Stokes formulation of (2.7) is

∂Ŝ

∂ω
=

−→
Ω × Ŝ.(2.12)

Consequently, the unit vectors ±−→
Ω /|−→Ω | represent the two principal states of polar-

ization of the fiber on the Poincaré sphere, and the magnitude, |−→Ω |, is the DGD.
Finally, the dynamical PMD equation, which describes the evolution of the polariza-
tion dispersion vector, is given by [46]

∂
−→
Ω

∂z
=

∂
−→
β

∂ω
+

−→
β ×−→

Ω .(2.13)

1The angle θ in (2.4) is half the angle between
−→
β and the positive X-axis.
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This equation can be derived by differentiating (2.11) with respect to ω and (2.12)
with respect to z.

2.4. The probability space of fiber realizations. Each choice of a set of
random local birefringence vectors along the fiber is called a fiber realization. In this
subsection, we describe the coarse-step method that is used to generate different fiber
realizations.

When a PMD compensator is used, each time the fiber realization changes, the
compensator needs to be reset via optimization. In reality, the fiber realization can
both drift gradually over time due to temperature fluctuations and change abruptly
to an unrelated realization in response to large disturbances such as a truck passing
overhead [6], [32], [52], [57]. We assume that when the fiber realization changes,
there is no correlation between the old and new realizations. Statistically we model
PMD by defining an appropriate space of fiber realizations, imposing a probability
distribution on this space, and devising a method for randomly sampling the space of
fiber realizations. To do so, it is commonly assumed that optical fiber is homogeneous.

In other words, the statistical properties of the local birefringence vector
−→
β do not

depend on distance, z, along the fiber. We will consider a space of fiber realizations
consisting of fibers of a given length with a prescribed average DGD. In reality, such
a space of fiber realizations could correspond either to fibers that are fabricated using
the same manufacturing process, or to realizations of a single fiber whose birefringence
is randomly varying over time.

The most commonly used method for generating fiber realizations with a given
average DGD is the coarse-step method [13], [59] which we now describe using the
Stokes representation [44]. The coarse-step method can be regarded as a computa-
tionally efficient, statistically correct, numerical method for solving the linear-PMD
(or Manakov-PMD) equation. In the coarse-step method, the action of a birefringent

fiber on the Stokes vector, Ŝ, of the light is modeled as the concatenation of the ac-
tion of N segments of fixed-birefringence fiber, each of which is preceded by a random

rotation of Ŝ on the Poincaré sphere. If Ŝ
(n)

(ω) denotes the Stokes vector of light at
frequency ω after the nth fiber segment, then

Ŝ
(n)

(ω) = R(ω) QnŜ
(n−1)

(ω).(2.14)

Here, the matrix R(ω) is the element of SO(3) that is the rotation about the X-axis
through an angle Δβ′ωΔz. This rotation models the propagation of light through
each of the fixed-birefringence fiber segments. The quantity Δβ′ is the magnitude
of the frequency derivative of the local birefringence vector of each of the N fiber
segments, and is related to the average DGD by Δβ′ = (3πN/8)1/2 DGD/L, where
L is the length of the fiber [42]. The matrix Qn is a frequency-independent, random
rotation that is chosen using the canonical uniform probability distribution on SO(3).
Specifically, Qn can be expressed as an Euler-angle rotation matrix [23] of the form
Qn = RX(ψn) RY (θn) RX(φn). Here, RX(ψ) is a rotation about the X-axis through
an angle ψ. The angles ψn and φn are uniformly distributed in [0, 2π], and cos θn
is uniformly distributed in [−1, 1]. In the special case that N = 1, the coarse-step
method generates only first-order PMD. For a large enough number of fiber segments,
the coarse-step method produces the same statistical properties as are obtained using
Wai and Menyuk’s model for the randomly varying birefringence [42]. Moreover, the
coarse-step method is much more computationally efficient, since it takes steps on
the order of a kilometer rather than the meter-long steps required to track the rapid
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variations in the birefringence.
The dynamical PMD equation (2.13) can also be solved using a coarse-step ap-

proach. If
−→
Ω (n) =

−→
Ω (n)(z, ω) is the polarization dispersion vector after the nth fiber

segment, then

−→
Ω (n) = R(ω)

[
Qn

−→
Ω (n−1) + Δ

−→
Ω n

]
,(2.15)

where Δ
−→
Ω n = Δβ′Δz−→e X is the polarization dispersion vector of the nth segment.

Here −→e X = (1, 0, 0)T , and we regard
−→
Ω as a column vector. In section 3 below, we

will use (2.15) to explain the basic idea behind PMD compensation.
There is a large literature on the statistical properties of PMD. The most im-

portant result is that in the limit as N → ∞, the DGD is Maxwellian distributed

with distribution fDGD(x) = 2πx2

α3 exp(−x2/2α2), where α = (π/8)1/2 DGD [46]. In
particular, there is an extremely small probability that the DGD of a fiber realization
is significantly larger than the average DGD.

2.5. The receiver and performance evaluation metrics. To evaluate the
degree to which a PMD compensator reduces the probability of errors due to PMD,
we also need a model of the receiver. The purpose of the receiver is to convert the
transmitted optical signal into an electrical current, to determine a clock time that is
used to set the beginning and ending points of the time intervals for each of the bits
being transmitted [55], and finally to make a decision as to whether the voltage of
the received electrical current in each of these bit slots is to be received as a one or a
zero. This decision is based on a choice of decision voltage. If the received voltage is
larger than the decision voltage, the bit is declared to be a one. Otherwise a zero is
received.

A receiver model should include an algorithm to evaluate the performance of the
communication system. There are several ways to measure performance—the most
fundamental means is via the bit-error ratio, which is given by BER = 1

2 (p1|0 + p0|1).
Here p1|0 is the probability of receiving a one given that a zero was transmitted,
and p0|1 is the probability of receiving a zero given that a one was transmitted. In
a real system bit errors occur due to the combined effect of PMD and noise from
optical amplifiers. Since we did not include noise in our simulations, we measured the
performance using a quantity called the eye opening [62] rather than the BER. The
eye opening of a noise-free signal at the receiver is defined to be the difference between
the smallest electrical voltage of a one and the largest electrical voltage of a zero at
the clock time.2 There is a strong correlation between the BER and the eye opening
[41], [49], [63]. To study the degree to which PMD degrades the performance of the
system, we define the eye opening penalty for a particular fiber realization to be the
ratio between the eye opening for a version of the system that has just a transmitter
and receiver (i.e., no fiber and hence no PMD) and the eye opening for the system
with a transmitter, PMD due to the given fiber realization, and a receiver. The more
the PMD reduces the eye opening, the larger the eye opening penalty for that fiber
realization. System designers typically specify that a system outage occurs if the eye
opening penalty exceeds a specified threshold, such as 2 dB [52].3 They require that

2The term “eye opening” is used here because in Figure 3.2 the image of each signal under the
mapping t �→ t mod T looks like an eye, where T is the bit period.

3A linear factor of x corresponds to 10 log10 x decibels (dB). So, if the eye opening penalty for
a particular fiber realization is 2 dB, then the eye opening is 63% of the value one would see in a
system without PMD.
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the outage probability, which is the probability that such an outage occurs, be on the
order of 10−3 to 10−6, corresponding to a few minutes to hours of outage per year. A
major goal of this paper is to present a numerical model that can be used to assess
the degree to which a PMD compensator can reduce the outage probability due to
PMD.

3. Polarization-mode dispersion compensation. In this section, we discuss
the optical PMD compensator whose performance we study in this paper. As discussed
in section 2, imperfections in optical fibers result in two principal states of polarization
for the light. Light traveling in the fast principal state arrives at the receiver ahead
of the light traveling in the slow state. In practice the power in the optical signal is
split between these two principal states, so that the optical pulses used to encode the
binary data become spread out and distorted. Consequently, over long distances, the
message being transmitted will be corrupted by errors. To compensate for this spread
of information, physical devices called optical PMD compensators can be used.

A variety of designs have been proposed for optical PMD compensators [52],
[53]. We chose to study a simple compensator that is easy to build and operate. To
motivate the design of this compensator, we consider the important special case that
the transmission fiber has only first-order PMD, i.e., that the polarization dispersion
vector,

−→
Ω T , of the transmission line is frequency independent. Recall from (2.9) that

if the polarization state of the signal is not closely aligned with either of the principal
states of the transmission fiber, then the larger the DGD, |−→Ω T |, the more the signal
will be distorted due to PMD, and the greater the probability of a bit error. The
simple PMD compensator we study is a device that can at least partially cancel out
the DGD of the transmission fiber. The idea is to insert a segment of compensation
fiber between the transmission fiber and the receiver, and to rotate the polarization
state of the signal between the transmission and compensation fibers so as to align the
fast principal state

−→
Ω T of the transmission fiber with the slow principal state −−→

Ω C

of the compensation fiber. Then by (2.15), the total polarization dispersion vector,
−→
Ω R, at the receiver is given by

−→
Ω R = Q

−→
Ω T +

−→
Ω C ,(3.1)

where Q is the rotation between the transmission and compensation fibers. Conse-
quently, if the DGD of the compensation fiber were equal to that of the transmission
fiber, then the total DGD at the receiver would be zero; i.e., |−→Ω R| = 0.

Simple compensators based on this principle have been built, and a diagram of
one is shown in Figure 3.1. The optical signal generated in the transmitter propagates
through the transmission fiber. The compensator itself is located immediately prior
to the receiver and consists of a polarization controller that can be adjusted to trans-
form the polarization state of the fiber by any desired rotation, followed by a short
segment of compensation fiber. The compensation fiber is designed to be polarization
maintaining in that its principal states of polarization and its DGD are fixed. Notice
that since the transmission DGD, |−→Ω T |, of a fiber realization may not equal the fixed

DGD, |−→Ω C |, of the compensator, the total DGD, |−→Ω R|, in (3.1) may not be zero. In
addition, since this compensator consists of only one polarization controller and one
segment of polarization maintaining fiber, it can compensate only for the DGD at the
carrier frequency, and not for PMD distortions at all frequencies in the signal.

After passing through the compensation fiber, the optical signal is monitored and
a feedback loop is used to adjust the rotation performed by the polarization controller.
Given a realization of the birefringence in the transmission fiber, the feedback loop
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Fig. 3.1. An optical communication system with a simple PMD compensator.
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Fig. 3.2. Compensated versus uncompensated signals.

can be modeled by optimizing the function from the state space SO(3) of all possible
rotations of the polarization controller to R, which is given by the monitor.

In Figure 3.2, we show the effect that PMD can have on a signal and how a
PMD compensator can decrease the signal distortion due to PMD. The results we
show are for a particular fiber realization. Different fiber realizations could have quite
different effects on the signal. We plot the received electrical current as a function of
time in three cases. The thin solid curve shows the case where there is no PMD in
the transmission line and hence no pulse distortion. (This signal is called the back-
to-back signal as the transmitter and receiver abut each other.) The data pattern
1001101011110000 can be easily recognized in the signal. Notice that the voltage in
the signal does not return to zero between two consecutive ones. Signals like this are
called non–return-to-zero and are commonly used in communication systems. The
thick solid curve shows the same signal after it has traveled through the transmission
fiber with PMD. The DGD was 75 ps at the carrier frequency, and there was a strong
frequency-dependence to the polarization dispersion vector. The signal has clearly
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been distorted due to PMD. The circle at 1100 ps shows the minimum-voltage one,
and the cross at 700 ps shows the maximum-voltage zero. The eye opening, which is
the difference between the height of the circle and the cross, is 0.02 mV. Therefore the
eye opening after the transmission fiber is very small compared to the back-to-back
eye opening, which is 0.98 mV. Finally, the thick dashed curve shows this same signal
after compensation. The circle at 600 ps shows the minimum-voltage one, and the
cross at 500 ps shows the maximum-voltage zero. The compensator has increased the
eye opening to 0.81 mV, which is a marked improvement over the uncompensated
case.

In this paper, we study the performance of this PMD compensator for three
choices of monitor. Different monitors and different random realizations of the bi-
refringence in the transmission fiber correspond to different choices of the objective
function to be optimized. Since our ultimate goal is to minimize the bit-error ratio,
the monitor should be chosen so that the monitored value is strongly correlated (or
anticorrelated) to the bit-error ratio, i.e., to the eye opening. The most obvious choice
of monitor is the bit-error ratio itself, or the eye opening. However, it is not possible
to measure the bit-error ratio in a real system, and it is often not feasible to measure
the eye opening in real time.

We will now briefly describe each of the monitors used in our numerical exper-
iments—the eye opening, spectral line, and the DOP ellipsoid. The eye opening
monitor measures the eye opening of the signal after propagation through the system,
relative to the eye opening of the back-to-back signal. Optical signals typically have
carrier frequencies of about 200 THz (or about 2×1012 Hz) and a bandwidth of about
20 GHz (or 2×1010 Hz). The optical signal is sent through a photodetector to convert
it from an optical to an electrical signal. The electric signal has a shifted frequency
spectrum (shifted relative to the optical signal) in the range [0, 10] GHz. The spectral
line monitoring technique requires that an electric filter be used to monitor the power
in a particular frequency (or tone). In our work we have used a filter to monitor
the power in the 5 GHz tone using a window of width 0.5 GHz. The spectral line
feedback mechanism attempts to maximize the power in this tone relative to the
reference back-to-back signal, which has gone straight from transmitter to receiver
without encountering the optical fiber (hence without being affected by PMD).

In the case of only first-order PMD, we will show in (4.17) that the power in
the 5 GHz spectral line decreases monotonically with increasing DGD between DGD
values of 0 and 100 ps (the width of each bit slot; see also Figure 1 in [51]). Thus
it would be hoped that for moderate amounts of DGD, an optimization algorithm
which maximizes the power in this spectral line (or frequency) will compensate for
the DGD present in the fiber. As has been discussed earlier, the eye opening is
correlated to the DGD, and we see now that for first-order PMD, the amount of DGD
is correlated to the power in the spectral line. Thus this feedback measure achieves
our aim of providing a real-valued function correlated to the eye opening. In the case
of higher-order PMD, this correlation becomes more complicated.

We now explain why the functions to be optimized can be regarded as being
defined on the 2-sphere, S2, rather than on the three-dimensional manifold, SO(3).
As in our discussion of the coarse-step method in section 2.4, the rotation Q in (3.1)
can be expressed in the form Q = RX(ψ) RY (θ) RX(φ), where ψ, θ, φ ∈ [0, 2π], and
RX(φ) is a rotation by an angle φ about the X-axis. We assume that the polarization

dispersion vector,
−→
Ω C , of the compensator is parallel to the X-axis. Consequently,

−→
Ω R = RX(ψ)

[
RY (θ) RX(φ)

−→
Ω T+

−→
Ω C

]
. Since the final rotation, RX(ψ), does not affect

the values of any of the objective functions, we can ignore it and regard Q = Q(φ, θ)
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as a function of (φ, θ) alone; i.e.,
−→
Ω R(φ, θ) = RY (θ) RX(φ)

−→
Ω T +

−→
Ω C .(3.2)

Since RX(π) = diag(1,−1,−1), RY (−θ)RX(π) = RX(π)RY (θ). Therefore, the rotation
Q(φ+π,−θ) has the same effect as the rotation Q(φ, θ). Consequently, we can regard
the objective functions as being defined on the rectangle R = {(φ, θ) ∈ [−π, π]×[0, π]}.
Moreover, ignoring a final rotation about the X-axis, Q(φ, 0) = I and Q(φ, π) = RY (π)
are constants, independent of φ. Therefore, the space of rotations performed by
the polarization controller is actually diffeomorphic to the sphere, S2: The rotation
Q(φ, θ) corresponds to the point on the sphere with spherical coordinates (φ, θ), where
φ = φ0 is a circle of longitude and θ = θ0 is a circle of latitude. Consequently, the
objective functions are actually defined on S2.

Next, we examine the structure of the objective function for the eye opening and
spectral line monitors. In Figure 3.3, we show a contour plot of the eye opening ob-
jective function for a particular fiber realization. In this figure, we have parametrized
the sphere in the space of rotations using spherical coordinates (φ, θ) so that the
horizontal lines θ = −π and θ = π map to the south and north poles, respectively,
and the vertical lines φ = ±π both map to the same great semicircle of longitude.
The eye opening objective function in Figure 3.3 has two local maxima located close
to (φ, θ) = (−π, π/2) and (φ, θ) = (0, π/2). The spectral line objective function in
Figure 3.4 has a similar structure, although it is smoother than the eye opening ob-
jective function. In particular we note that the steep ridge located between φ = 0 and
φ = −π/2 for the eye objective function has been considerably smoothed out in the
spectral line objective function diagram. Thus local optimization techniques would
be more effective at finding optima for the spectral line than for the eye in this case.

To motivate the degree of polarization ellipsoid monitor, we observe that when a
signal propagates through fiber with PMD there are two basic reasons why the eye
opening at the receiver can be large: Either the total DGD is small or the input state
of polarization of the signal is aligned with one of the principal states of the fiber [47].
In Figure 3.3, the eye opening is large near (−π, π/2) because the total DGD is small
there, and it is large near (0, π/2) because the rotation of the polarization controller

is such that the principal state of the entire length of fiber,
−→
Ω R, is parallel to the

input state of polarization of the signal. In a real system, the input polarization state
can drift over time. Consequently, it is better to operate a PMD compensator near
where the DGD is minimized rather than near where the input polarization state of
the signal is aligned with a principal state of the fiber [52]. The DOP ellipsoid is one
such monitor.

The DOP ellipsoid monitor is obtained by polarization scrambling the DOP of the
signal. The DOP is used to monitor PMD because polarized signals become depolar-
ized when they propagate through fiber with PMD. The degree to which the signal is
depolarized depends on the DGD and on the input state of polarization. Any optical
signal can be decomposed as the sum of polarized and unpolarized components [5].
The DOP is the ratio of the power in the polarized component to the total power. If
U(t) = f(t)U0 denotes the Jones vector of an input polarized signal, then the total

power is S0 =
∫∞
−∞ |f̂(ω)|2 dω, where f̂ is the Fourier transform of f . The power in

the polarized component of the signal is given by the length of the average Stokes
vector,

S =

∫ ∞

−∞
Ŝ(ω) |f̂(ω)|2 dω,(3.3)
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Fig. 3.3. Eye opening objective function for a typical fiber realization.
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Fig. 3.4. Spectral line objective function for a typical fiber realization. (Same fiber as is shown
in Figure 3.3.)

where Ŝ(ω) is the Stokes vector at frequency ω defined in section 2.3. The DOP is
given by DOP = |S|/S0.

To explain why a large DGD results in a low DOP, consider a fiber with only
first-order PMD for which the polarization dispersion vector is fixed at the north
pole. Then, as a function of frequency, ω, the Stokes vector Ŝ(ω) traces out an arc of

a circle of latitude on the sphere. By (2.12), the larger the DGD, |−→Ω |, the longer the
arc. Suppose, for example, that the input polarization state is such that the circle of
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Fig. 3.5. DOP ellipsoid objective function for a typical fiber realization. (Same fiber as is
shown in Figure 3.3.)

latitude is the equator, and the DGD is large enough so that Ŝ(ω) traces out the entire
equatorial circle as ω varies over the bandwidth of the signal. Then, by symmetry,
the integral in (3.3) is close to zero and so the DOP is small. More generally, since
(3.3) is a weighted average of vectors, the larger the DGD, the smaller the DOP.

The DOP ellipsoid is defined [9], [14], [15], [50], [54] so that for each unit vector
Sin, polarized light with Stokes vector Sin is sent in to a fiber with PMD, and the
average output Stokes vector, Sout, is measured. The set of all such vectors Sout forms
the DOP ellipsoid. The length of the shortest principal axis of the DOP ellipsoid is
approximately given by [14]

λmin ≈ 1 − 1
2 Δω2 |−→Ω |2.(3.4)

Here Δω2 = (1/S0)
∫∞
−∞ ω2|f̂(ω)|2 dω is a measure of the square of the bandwidth of

the signal, and |−→Ω | is the DGD at the carrier frequency. Therefore, with the DOP
ellipsoid feedback mechanism, we aim to maximize λmin and therefore to minimize
the DGD. To fit the ellipsoid we used a Euclidean invariant linear least-squares algo-
rithm that minimized the algebraic distance to 36 output Stokes vectors Sout [21]. In
Figure 3.5, we show a plot of the DOP ellipsoid objective function for the same fiber
realization as in Figures 3.3 and 3.4. This objective function has a single maximum
that is located near the maximum of the eye opening objective function (and which
corresponds to minimizing the DGD). However, unlike the case of the eye opening and
spectral line objective functions, it does not have a second local maximum correspond-
ing to the case that the input state of polarization is aligned with one of the principal
states of the fiber. The shortest axis of the ellipsoid corresponds to the worst possible
choice of input polarization state. The worst state is the one for which the power in
the signal is evenly split between the two principal states of polarization of the fiber,
rather than being aligned with one of them. Therefore the DOP ellipsoid objective
function depends on the DGD but not on the input polarization state of the signal.
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4. Analysis of the objective functions for first-order PMD. In section 3
we saw that for a particular fiber realization the eye opening and spectral line objective
functions had two local maxima, whereas the DOP ellipsoid objective function had
only one local maximum which corresponded to minimizing the DGD. In this section
we show that this behavior is typical by deriving formulae for the DOP ellipsoid and
spectral line objective functions in the special case of first-order PMD, i.e., in the
case that the PMD vector

−→
Ω T of the transmission fiber is frequency independent.

In section 7 we will use numerical simulation to quantify the performance of a PMD
compensator, and we will use the analysis in this section to help explain those results.
In section 7 we also provide statistical evidence that for an arbitrary fiber realization,
we can regard the objective function as being a perturbation of an objective function
for a fiber with only first-order PMD. This statistical result is to be expected since
for many fiber realizations

−→
Ω T has only a weak dependence on frequency across the

bandwidth of the signal.
As we explained in section 3, the domain for the two-dimensional optimization

problem we wish to solve is the unit sphere, S2 ⊂ R3. In other words, we want to
solve the problem

max
p∈S2

J(p),(4.1)

where J : S2 → R is an objective function defined by one of the three feedback
mechanisms discussed earlier. In section 7, we will in fact solve an unconstrained
optimization problem of the form

max
(φ,θ)∈R2

J(φ, θ),(4.2)

where (φ, θ) are spherical coordinates and J is now regarded as a doubly periodic
function on R2. This unconstrained form of the problem is easier to solve computa-
tionally.

For our analysis of the DOP ellipsoid, we assume that the polarization dispersion
vector

−→
Ω R of the entire system from transmitter to receiver, including the compensa-

tion fiber, is frequency independent. Let τT and τC be the DGD of the transmission
and compensation fibers, respectively. We can assume that

−→
Ω C = τC−→e X . If we

let Ψ be the angle between
−→
Ω T and

−→
Ω C , then in spherical coordinates,

−→
Ω T =

τT (cos Ψ, cosβ sin Ψ, sinβ sin Ψ)T for some angle β. Substituting (3.2) into (3.4), we
find that the DOP ellipsoid objective function is given by

J(φ, θ) = 1 − 1
2 Δω2

[
τ2
C + τ2

T + 2τCτTH(φ, θ)
]
,(4.3)

where

H(φ, θ) = cos Ψ cos θ + sin Ψ sin θ sin(φ− β).(4.4)

If Ψ �= 0, π, then the optimization problem (4.2) has six critical points (φ, θ) in
[−π, π] × [0, π]. The global maximum of H has value 1 and is located at (φ, θ) =
(β + π/2,Ψ), and the global minimum is −1 at (φ, θ) = (β − π/2, π − Ψ). There
are saddle points at (β, 0), (β + π, 0), (β, π), and (β + π, π). These saddle points
lie on the singularity set {θ = 0} ∪ {θ = π} of the spherical coordinate mapping
from [−π, π] × [0, π] to S2, and are mapped to (0, 0,±1) ∈ S2. However, they do not
correspond to critical points for the optimization problem (4.1) on S2, since (0, 0,±1)
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Fig. 4.1. DOP ellipsoid objective function obtained using (4.3) for the first-order PMD approx-
imation of the fiber in Figure 3.5.

are not critical points of

max
(x,y,z)∈R3

H(x, y, z) = cos(Ψ)z + sin(Ψ)y subject to x2 + y2 + z2 = 1.(4.5)

If Ψ = 0 or π, then H(φ, θ) = ± cos θ has global optima at θ = 0, π, and these critical
points are also global optima for the problem (4.1) on the sphere. To summarize, in
the case of only first-order PMD, the DOP ellipsoid objective function on S2 has one
maximum and one minimum which is antipodal to the maximum.

Our analysis agrees well with the numerically computed objective function in
Figure 3.5. Given a fiber realization, we can obtain an associated fiber realization
with only first-order PMD by computing the polarization dispersion vector,

−→
Ω T ,

at the carrier frequency of the signal. For the fiber realization in Figure 3.5, the
parameters in the formula for

−→
Ω T are τC = 30 ps, τT = 2.68 τC , Ψ = 105◦, and

β = −65◦. We chose
√

Δω2 = 8.75 × 109 Hz, so as to fit the result in Figure 3.5,
as was done in [14]. In Figure 4.1, we show the DOP ellipsoid objective function
given by (4.3) with these parameters. The close agreement between the analytical
and numerical results is noteworthy since the PMD of the fiber realization used for
Figure 3.5 depends strongly on frequency. (In fact, the second-order PMD, |−→Ω ω|,
which is the length of the frequency derivative of the polarization dispersion vector,
is 3.1 times its mean value.)

For the analysis of the spectral line objective function, we work in Jones space with
matrices in SU(2) acting on C2, rather than in Stokes space. Suppose that the input
optical signal at the transmitter is of the form f(t)u0, where f is a real-valued scalar
function, and u0 ∈ C2 is constant. Let R be the element of SU(2) that corresponds to
the product

∏
n Qn of the random rotations used in the coarse-step method to model

a realization of the transmission fiber. If we approximate the transmission fiber by a
fiber with only first-order PMD, then by (2.8) the output optical signal v after the
PMD compensator is the C2-valued function whose Fourier transform is given by
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v̂(ω;φ, θ) = f̂(ω)BC(ω)Q(φ, θ)PeiωDP†Ru0,(4.6)

where P = (v1,v2) ∈ SU(2) is the matrix of principal states of the transmission fiber
and D = diag(−τT /2, τT /2). In addition,

Q(φ, θ) =

(
e−iφ/2 cos θ/2 −ieiφ/2 sin θ/2

−ie−iφ/2 sin θ/2 eiφ/2 cos θ/2

)
(4.7)

is the element of SU(2) that models the action of the polarization controller, and

BC(ω) =

(
e−iωτC/2 0

0 eiωτC/2

)
(4.8)

models the DGD in the compensation fiber. Let σ = τT +τC
2 and η = τT−τC

2 . Then

v(t;φ, θ) =

(
A11f(t + σ) + A12f(t− η)
A21f(t + η) + A22f(t− σ)

)
,(4.9)

where A = Q(φ, θ)(c1v1, c2v2). Here ck = v∗
kRu0 ∈ C is the projection onto the

principal state vk of the Jones vector of the signal at the central frequency after the
transmission fiber.

If we ignore the optical filter and model the electrical filter as a Dirac function
centered at frequency ωSL, then the spectral line objective function is given by

J(φ, θ) =
∣∣∣P̂ (ωSL;φ, θ)

∣∣∣2 , where P (t;φ, θ) = |v(t;φ, ω)|2(4.10)

is the received optical power.
To calculate an explicit formula for J we first express quadratic functions of A in

terms of the generalized Stokes vectors

Sjk = v†
j
−→σ vk, j, k ∈ {1, 2},(4.11)

where −→σ is the Pauli spin 3-vector defined in section 2.3 whose components are
elements of SU(2). Notice that S11 and S22 = −S11 ∈ R3 are the standard Stokes
vectors of v1 and v2, and that S21 = −S12 ∈ C3. If Qk denotes the kth row of Q(φ, θ),

then Q†
kQk = 1

2 (I + (−1)k−1r(φ, θ) · −→σ ) in SU(2), where

r(φ, θ) = (cos θ, sinφ sin θ,− cosφ sin θ)(4.12)

parametrizes a sphere. Then,

|A22|2 = 1
2 |c22|

2(1 − r · S22) and 	(A22A21) = − 1
2r · 	(c1c2S21),(4.13)

where 	 denotes the real part, with similar formulae for other quadratic functions of
A. Finally, let

ga,b(t) := f(t + a)f(t + b) and Ga,b := ĝa,b(ωSL) ∈ C.(4.14)

Combining (4.6)–(4.14), the objective function for the optimization problem (4.2)
on the plane is of the form

J(φ, θ) = 1
4 |α + r(φ, θ) · s|2,(4.15)
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Fig. 4.2. Spectral line objective function obtained using (4.15) for the first-order PMD approx-
imation of the fiber in Figure 3.4.

where α ∈ C and s ∈ C3 are defined by

α = |c1|2(Gσ,σ + Gη,η) + |c2|2(G−σ,−σ + G−η,−η),(4.16)

s =
{
|c1|2(Gσ,σ −Gη,η) + |c2|2(G−σ,−σ −G−η,−η)

}
S11

+ 2(Gσ,−η −G−σ,η)	(c1c2S21).

In the special case that there is no compensation (τC = 0, (φ, θ) = (0, 0)), we
obtain the well-known formula for the electrical power PSL in frequency ωSL as a
function of the DGD τ [28]:

PSL(τ) =
[
1 − 4γ(1 − γ) sin2(ωSLτ

2 )
]
PSL(0),(4.17)

where γ = |c1|2 is the power splitting factor and

PSL(0) =

∣∣∣∣∫ |f(t)|2eiωSLtdt

∣∣∣∣2 .(4.18)

Notice the correlation between the power PSL and the DGD τ : For the 5 GHz spectral
line with γ = 1

2 , PSL(τ)/PSL(0) decreases from 1 to 0 as τ increases from 0 to 100 ps.
If we reformulate the optimization problem to be of the form (4.1) and make an

orthogonal change of coordinates, we obtain

max
x∈R3

J(x) = (x − x0)
TΛ(x − x0) subject to ||x|| = 1,(4.19)

where x0 ∈ R3 and Λ is a real diagonal matrix. Using the method of Lagrange
multipliers, we find that in the nondegenerate case there are no more than six critical
points on S2, including a global maximum and global minimum. However, it is not
possible to obtain explicit formulae for the critical points since they are the zeros of
a degree six polynomial.

In Figure 4.2 we plot the analytical objective function given by formula (4.15).
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This plot corresponds to an approximation of the fiber when only first-order PMD is
present, and it should be compared to the objective function shown in Figure 3.4. The
difference between the two objective functions is due to the large amount of second-
order PMD present in the fiber realization used for Figure 3.4. Note, however, that
the global maximum is in approximately the same location in both figures. There are
four critical points of the objective function on S2: two maxima, one minimum, and
a saddle point. As in the case of the DOP ellipsoid, the saddle points on {θ = 0} ∪
{θ = π} are not critical points of (4.19). Notice that the eye opening objective
function in Figure 3.3 has five critical points on S2.

5. Importance sampling for PMD. In this subsection, we review the impor-
tance sampling algorithm we used to accurately compute outage probabilities due to
PMD. Importance sampling increases the computational efficiency of Monte Carlo
sampling from the space of fiber realizations.

The problem of evaluating the performance of a PMD compensator is quite chal-
lenging because system designers require compensators to maintain a high degree of
integrity: The system should lose accuracy for no more than a few minutes per year.
It is too time consuming to gather enough samples to accurately measure such low
probabilities in a laboratory experiment. It is also not feasible to accurately eval-
uate the performance of a PMD compensator using numerical simulations based on
standard Monte Carlo sampling.

PMD-induced outages occur when the eye opening is small. In a system without
a PMD compensator, small eye openings are correlated to large DGD values, which
occur very rarely since large DGD values correspond to sampling from the tail of a
Maxwellian distribution. As we discussed in section 3, in systems with PMD compen-
sators, the DGD in the transmission line can be at least partially canceled out by the
DGD of the compensator at the carrier frequency. Therefore, after the compensator,
large DGD values at that frequency are exceedingly rare. In general, however, the po-
larization dispersion vector, and hence the DGD, depends on frequency. It is useful to
quantify the strength of this dependence using second-order PMD (SOPMD), which is

defined to be the length, |−→Ω ω|, of the partial derivative of the polarization dispersion
vector with respect to frequency. After the signal has traversed the compensation
fiber, the DGD may be small at the carrier frequency, but the SOPMD may still be
large enough that the eye opening will be small. To summarize, outages tend to occur
only in the very rare case that either the DGD or the SOPMD is large relative to its
average value. Recently, variance reduction techniques have been developed to greatly
increase the computational efficiency of Monte Carlo simulations of PMD. Variance
reduction techniques, which have been successfully applied in many contexts [16], [29],
[34], simulate low probability events of interest by concentrating Monte Carlo simula-
tions in those regions of the probability state space that are most likely to give rise to
these events. More specifically, in the context of PMD [4], let θ denote a particular
fiber realization in the space Θ of all possible fiber realizations, and let pθ be the
probability density function (pdf) on Θ. Let X : Θ → RK be a random variable

on Θ, such as the eye opening or the two-dimensional quantity, (|−→Ω |, |−→Ω ω|). Let
I : RK → {0, 1} be the indicator function for a prescribed range of values R ⊂ RK ,
i.e., I(x) = 1 if x ∈ R and I(x) = 0 otherwise. In practice, R could be a bin in the
histogram of X. Our goal is compute the probability, P , that X(θ) lies in R,

P =

∫
Θ

I(X(θ)) pθ(θ) dθ.(5.1)
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Using a standard Monte Carlo simulation, an estimator, P̂ , for P is given by

P̂ =
1

M

M∑
m=1

I(X(θm)),(5.2)

where we have drawn M samples θm according to pθ. If the events that lie in the
region R are very rare, i.e., P 
 1, then the relative variance of the Monte Carlo
estimator P̂ is σP̂ /P̂ ∼ (MP )−1/2. So, for example, if P = 10−6, as is typically the
case for an outage probability, then about M = 108 samples are required to ensure
that the relative variance of P̂ is on the order of 10%.

If a variance reduction technique is used, instead of drawing samples according
to pθ, we draw them according to a biasing distribution, p∗θ, chosen so that p∗θ(θ) is
relatively large when X(θ) ∈ R. Then the probability P can be expressed in the form

P =

∫
Θ

I(X(θ))L(θ) p∗θ(θ) dθ,(5.3)

where L = pθ/p
∗
θ is called the likelihood ratio. If we now use a Monte Carlo simulation

to draw samples θ∗
m from Θ according to the biasing distribution p∗θ, then an estimator

P̂ ∗ for P is given by

P̂ ∗ =
1

M

M∑
m=1

I(X(θ∗
m))L(θ∗

m).(5.4)

If the biasing distribution p∗θ is chosen appropriately, many more of the samples θm

will fall into the region R and contribute to the sum in (5.4). To ensure that P̂ ∗ is
computed correctly, each sample is weighted by its likelihood ratio, which is small
where p∗θ is large relative to pθ. If the biasing distribution is chosen appropriately,
then the relative variance of P can be much smaller than for an unbiased Monte Carlo
simulation.

One important question to address is how the biasing distribution should be
determined. When using importance sampling, the researcher must use a combina-
tion of physical intuition and mathematical analysis to determine appropriate biasing
distributions. Recently, two different variance reduction techniques—an importance
sampling algorithm and a multicanonical Monte Carlo method—have been developed
for simulations of PMD. These two methods take different approaches to solving the
problem of finding an appropriate biasing distribution. The multicanonical Monte
Carlo method of Berg and Neuhaus [1] is an iterative method that was adapted for
simulations of PMD by Yevick [60], [61] and later by A. Lima [37]. At the nth it-
eration of the method, samples are drawn from a biasing distribution p∗,nθ , and at
the end of each iteration, p∗,nθ is updated in such a way that as n increases there is
approximately an equal number of hits in each bin of the histogram of the eye open-
ing for that iteration. Consequently, after sufficiently many iterations, the relative
variance between the bins of the eye opening histogram will be small (even for the
low-probability, small eye opening bins).

The second technique (importance sampling) was developed by Biondini and Kath
[2], [3], [4], [17] to generate large values of first- and second-order PMD. Building on
the work of I. Lima [38], [39] and A. Lima [35], we used this algorithm to generate
the results in this paper. To accurately compute outage probabilities for a PMD
compensator, it is necessary to sample a large region in the (|−→Ω |, |−→Ω ω|)-plane. Since
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this cannot be done efficiently using a single choice of biasing distribution [39], several
biasing distributions, p∗j , are used, each of which targets a different region of the

(|−→Ω |, |−→Ω ω|)-plane. To compute the probability P in (5.3), we associate a weight
function wj : Θ → R to the distribution p∗j and define a multiple importance sampling

Monte Carlo estimator, P̂ , for P by

P̂ =

J∑
j=1

1

Mj

Mj∑
m=1

wj(θj,m) I(X(θj,m))L(θj,m),(5.5)

where Mj samples are drawn using the jth distribution, and θj,m is the mth such

sample. A formula for the relative variance of P̂ which was used for the results in this
paper is given in [4].

The choices of the biasing distributions and the weights can have a large effect on
the relative variance of the estimator P̂ in (5.5). For this paper, we used the simple
and efficient choice of weights that is given by the balance heuristic [56]. With this
heuristic,

wj(θ) =
Mjp

∗
j (θ)

J∑
j′=1

Mj′p∗j′(θ)

;(5.6)

i.e., the weight wj(θ) is the probability of realizing the sample θ using p∗j , relative to
the probability of realizing this sample using all J biasing distributions. Therefore,
the distribution p∗j is weighted most heavily in those regions of the sample space Θ
where it is largest.

To define a biasing distribution that targets a region of the (|−→Ω |, |−→Ω ω|)-plane,
Fogal, Biondini, and Kath [17] first determined fiber realizations that maximize a

specified linear combination of |−→Ω | and |−→Ω ω|. Consider, for example, the simplest case
of maximizing the DGD. From (2.15) we see that to maximize the DGD, the rotation

matrices Qn should be chosen so that the vector Qn
−→
Ω (n−1) is aligned with Δ

−→
Ω n.

This set of rotations, {Qn}Nn=1, defines a particular fiber realization. Once this fiber
realization has been determined, a biasing distribution is chosen that preferentially
selects nearby fiber realizations. In this way, a family of biasing distributions can

be chosen, each of which targets a different region of the (|−→Ω |, |−→Ω ω|)-plane. For the
results in this paper, we used the ten biasing distributions described in [39]. This
multiple importance sampling algorithm has been successfully used to simulate low-

probability regions in the (|−→Ω |, |−→Ω ω|)-plane. For example, the joint pdf of (|−→Ω |, |−→Ω ω|)
has been calculated down to probability levels of 10−8 or less with a relative variance
of less than 10% using a total of only 6 × 105 samples [39].

To evaluate the performance of a PMD compensator, we actually need to gener-
ate fiber realizations that produce low-probability, small values of the eye opening.
Although the importance sampling algorithm is not explicitly designed to generate
small eye opening values, A. Lima [36] demonstrated that there is a strong correlation

between small eye openings and large values of (|−→Ω |, |−→Ω ω|). She reached this conclu-
sion in a study of PMD compensators by comparing results obtained using importance
sampling with those obtained using the multicanonical Monte Carlo algorithm. The
multiple importance sampling algorithm has several advantages over the multicanon-
ical Monte Carlo algorithm, at least for simulations of PMD: The relative variance
is easier to calculate, the algorithm is more computationally efficient, and it can be
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easily parallelized by using different processors to draw samples from the different
biasing distributions.

6. Optimization. The original optimization studies we performed were carried
out using an object-oriented package that performed local optimization only. The
Hilbert Class Library (HCL) code was developed at Rice University [22], and pre-
liminary results obtained using this optimization software are discussed in [64]. As
described in that paper, we used HCL’s limited-memory BFGS (LMBFGS) [40] algo-
rithm with line search [10] to determine an appropriate rotation for the polarization
controller. While these early results were intriguing and allowed us to compare the
performance of the optimization algorithm with the spectral line and DOP ellip-
soid feedback mechanisms, the engineering problem is to find the “best” rotation for
the polarization controller, i.e., to find the global optimum. While LMBFGS is a
fast (Newton-based) technique that has been “globalized” to accommodate arbitrary
initial guesses via the line search feature of HCL, the technique is not guaranteed
to find the global optimum. Therefore, after completing the previous study, we de-
cided to incorporate into our optics simulator an object-oriented optimization package
that contains a variety of optimization tools (including some global techniques). The
Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) is the
optimization package we used to obtain the results presented in this paper. The pack-
age was developed at Sandia National Labs to allow users to optimize their (generally
PDE-based) simulation models for purposes of engineering design.

Our optimization problem is an unconstrained problem of the form (4.2) (although
simple bound constraints may be placed on the rotation angles from periodicity), and
our goal is to find the global optimum given reasonable computer time limitations.
The design variables are continuous, and no analytic gradient information is available.

The experiments described in this paper fall into three categories of optimiza-
tion jobs—local optimization, multistart jobs which use local optimization repeatedly
on the same problem, and global hybrid optimization runs. The local optimization
was performed using DAKOTA’s OPT++ library [11]. The OPT++ library contains
mostly gradient-based nonlinear programming algorithms for constrained or uncon-
strained optimization. In this paper we chose OPT++’s conjugate gradient (CG)
method, which is appropriate for unconstrained optimization. The optimization in all
these experiments is performed over two rotation angles (φ and θ). Numerical (finite
difference) gradients are used in the CG algorithm with a relative finite difference step
size of 0.0001. The gradient stopping tolerance is also set to the default value of 10−4.

The second set of numerical experiments invokes DAKOTA’s multistart capabil-
ities. In each multistart job, a series of local optimization runs are completed, each
using a different starting point. The multistart jobs also use OPT++’s CG routine.
Numerical finite difference gradients are used with the same tolerances as in the single
starting point local optimization experiments. These multistart jobs were run using
either two, four, or nine equally spaced starting points. Since the φ values range over
the interval [−π, π], and θ takes values over the interval from [0, π], the nine start-
ing points were chosen to be the equally spaced points (φ, θ) = {(−π, 0), (−π/3, 0),
(π/3, 0), (−π, π/3), (−π/3, π/3), (π/3, π/3), (−π, 2π/3), (−π/3, 2π/3), (π/3, 2π/3)}.
Note that periodicity implies that these equally spaced points cover the (φ, θ)-domain
uniformly. (The edges of the domain wrap.) For the four-point runs, the initial
guesses are (φ, θ) = {(−π, 0), (−π, π/2), (0, 0), (0, π/2)}. Finally, the two-point runs
use {(−π, 0), (0, π/2)} as starting guesses.

The third type of optimization jobs are hybrid multilevel optimization schemes
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which use a global optimization method initially and then switch to a local Newton-
based scheme once the optimization is close enough to the solution to ensure fast
convergence to the optimum. In our case we chose a genetic algorithm (GA) for
the global method. GAs are based on Darwin’s theory of survival of the fittest [12].
The GA starts with a random selection of points called a “population.” The values
of the parameters being optimized over form a string of mathematical “DNA” (a
conglomeration of values for the parameters being optimized) which then is adapted
to a best fit (or optimal configuration) by a process of natural selection, breeding,
and mutation [12]. GAs are convenient when there are multiple local optima or when
gradients cannot be computed easily. In those cases, GAs can be used to determine
regions of the solution space where the global optimum may be located [12]. Global
methods such as GAs, however, are slow to complete convergence to a minimizer and
are best used in conjunction with a fast local method. Typical GA behavior shows a
rapid decrease in the objective function initially, but then a steady slowing of progress
towards the minimum. Often only a few initial GA iterations suffice to move the focus
of the optimization to the region of interest.

In our GA runs, we chose a population size of five points (representing five (φ, θ)
pairs) and ran the GA for a maximum of 25 function evaluations. The stopping
tolerance for convergence was chosen to be (a loose) 5 × 10−2. Once the GA run
is finished, control is passed to a local method (in our case we chose the Fletcher–
Reeves conjugate gradient algorithm from the CONMIN package in DAKOTA). The
CONMIN package contains both constrained and unconstrained minimization algo-
rithms similar to OPT++. The same default stopping tolerances were used for the
local optimization part of the multilevel jobs as for the purely local OPT++ jobs.

7. Numerical results. We now describe a suite of numerical experiments that
we ran to investigate the relative performance of the three compensation feedback
mechanisms (DOP ellipsoid, spectral line, and eye opening). The experiments used
the local and global optimization routines from DAKOTA discussed in section 6.
Specifically, for each of the three feedback mechanisms we ran five optimization jobs
involving 200,000 fiber realizations (or Monte Carlo simulations) each. For each feed-
back mechanism we optimized the compensator using local optimization (conjugate
gradients), multilevel global optimization, and a multistart global routine involving
varying numbers of starting guesses. The aim in all cases was to compensate for the
transmission fiber DGD. As discussed in section 6, the multilevel strategy starts with
a small number of GA iterations. After narrowing the optimization search area via the
GA, the algorithm passes control to a fast local gradient-based optimization routine
(CG in our case) to find the (hopefully) global optima. For the multistart runs, local
optimization is “globalized” by running the local optimization to completion from a
few different starting points. We ran three sets of multistart jobs for each feedback
mechanism. In the first multistart job we used two initial points. In the second we
used four starting guesses, and in the last simulation we used nine points. The multi-
start algorithm is an ad hoc globalization of local methods but suffers from the fact
that the starting points are chosen at random. No prior (or current) knowledge of the
objective function surface is used.

The goal is to drive the outage probability down to a small acceptable level.
System designers typically require a probability of no more than 10−3–10−6 that the
eye is 40% closed relative to its original back-to-back value (i.e., 2 dB down from the
ideal case of no PMD). Note that an eye corresponding to a 1 dB decrease from the
back-to-back signal is 79% open. An eye that is 2 dB down is 63% open, and 3 dB
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down corresponds to an eye that is only 50% open. Values of 1–2 dB reduction are of
greatest interest. A value of 3 dB down corresponds to an eye that is so closed as to
indicate system failure.

Parameters in the optical communications simulator which were fixed in these
simulations include specifications about the transmitted signal, transmission fiber,
and receiver. We modeled the transmitted signal by allocating a time interval of
duration 100 ps to each binary digit (corresponding to a data rate of 10 Gb/s). We
used the 16-bit data pattern 1001101011110000, and we encoded the binary data onto
the amplitude of the signal by setting U(0, t) = (χ1(t), 0)T . Here χ1(t) = 1 when
t is in the time interval of a one, and χ1(t) = 0 when t is in the time interval of a
zero. The signal was polarized since U2(0, t) = 0. We then applied a Gaussian filter
to U to produce a smooth signal. The width of the filter was chosen so that the
time required for the signal power to increase from 10% to 90% of its maximum value
of 1 milliWatt was 30 ps. The transmission fiber was modeled using the coarse-step
method (described in section 2.4) with 80 fiber segments. The average DGD of the
transmission fiber was set at 30 ps, and the DGD of the compensation fiber was fixed
at 30 ps. We modeled the receiver using a 60 GHz Gaussian-shaped optical filter, a
photodetector that converts the optical power to electrical voltage, and a fifth-order
electrical Bessel filter with half-width of 8 GHz.

Our first conclusion from these numerical experiments is that the shape of the
objective function depends strongly on the feedback mechanism. The eye opening
feedback signal is highly correlated to the bit-error ratio, which ultimately is the
quantity to optimize. Unfortunately the eye feedback mechanism results in a fairly
rough objective function. On the other hand, both the spectral line and DOP feedback
mechanisms are smoother than the eye and so are easier to optimize. Figures 3.3, 3.4,
and 3.5 are plots of the objective functions for the eye, spectral line, and DOP feedback
mechanisms for a typical fiber realization. We see that for this example, the eye
objective function has a steep ridge. Features such as this can hinder the progress of
local methods towards the maximum. The DOP and spectral line objective functions
are considerably smoother.

In Figure 7.1 we show results for the eye opening feedback mechanism. We plot
outage probability as a function of the eye opening penalty (in dB down from the
back-to-back signal) for six cases: (1) uncompensated signal, (2) compensated case
using local optimization, (3) compensated using the global multilevel strategy, and
(4–6) compensated using the global multistart strategy with varying numbers of ini-
tial guesses. We note that for the majority of fiber realizations, the eye diagram is
mostly open and so the eye opening penalty is small. In other words, there is a large
probability of a small eye opening penalty. In Figure 7.1, the outage probability is
the probability that the eye opening penalty exceeds the value on the horizontal axis.
The eye opening penalty will exceed 0 dB, whenever the eye is more closed with PMD
than without it, which occurs almost all the time. Consequently, in Figure 7.1 the
outage probability is approximately 1.0 when the eye opening penalty is 0 dB. It is
only for the very rare fiber realizations with large DGD that the eye opening penalty
is large, i.e., that the eye is mostly closed. Therefore, there is a very small outage
probability that the eye opening penalty exceeds 2 dB. Clearly, if the typical case
resulted in a partially or fully closed eye, the state of optical communications would
be considerably more dire. The need for importance sampling to bias the Monte Carlo
simulations towards the “bad cases” reflects that in most cases, the DGD of the fiber
is small. As expected, the local CG method does compensate for the DGD by reduc-
ing the outage probability from 10−2 to about 5 × 10−4 at an eye opening penalty
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Fig. 7.1. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the eye opening feedback mechanism. The curves shown include the no com-
pensation case (thick solid line), local (CG) optimization (dot-dash line), the multilevel hybrid opti-
mization scheme (thick dashed line), and three curves for the multistart method (thin dotted line for
multistart with two starting guesses; thin line with circles for multistart with four initial guesses;
and thin line with crosses for multistart with nine starting points for the local optimization runs).
Note that there is no difference in optimization results for the multistart scheme using four and nine
starting points in the case of the eye opening feedback mechanism.

Table 7.1

Average number of function evaluations per optimization routine and specified feedback mech-
anism. The average is taken over 200,000 MC simulations.

Average number of function evaluations
CG Multilevel Multistart 2 pts Multistart 4 pts Multistart 9 pts

SL 53 64 95 191 454
DOP 52 65 99 199 458
Eye 52 68 99 194 459

of 2 dB. However, the best global method in this case (multistart with four points)
further decreases the outage probability to about 10−5. We believe that multistart
with four points is finding the global optimum for the eye feedback signal since the
multistart algorithm with nine points is unable to reduce the outage probability fur-
ther. Consequently, this result represents the best possible performance for this fixed
DGD compensator.

As Table 7.1 indicates, the cost of the multistart jobs is high. Multistart four- and
nine-point schemes require 3–7 times as many function evaluations as the multilevel
technique (200 or 450 iterations, respectively, versus about 65). In the case of the
eye feedback mechanism, multilevel optimization reduces the outage probability to
about 4 × 10−5 at 2 dB. In general the number of function evaluations required (for
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Fig. 7.2. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the DOP feedback mechanism. The curves shown include the no compensation
case (thick solid line), local (CG) optimization (also a thick solid line) starting from the initial
guess (φ, θ) = (0, π/2), and local optimization (CG) (dot-dashed line) starting from the initial
guess (φ, θ) = (0, 0). The curves for the multilevel hybrid optimization scheme (thick dashed line),
multistart method with two starting guesses (thin dotted line), multistart with four initial guesses
(thin line with circles), and multistart with nine initial guesses (thin line with crosses) lie on top of
each other.

all feedback mechanisms and all levels of DGD) increases from least expensive to
most costly in the following order: local conjugate gradient method, the multilevel
technique, and, finally, multistart. The multistart job cost increases approximately
linearly with the number of starting points used. Table 7.1 shows the number of
function evaluations for all the algorithms and feedback mechanisms at a fixed eye
opening penalty (2 dB).

In Figures 7.2 and 7.3 we show the outage probability versus eye opening penalty
for the local and global optimization methods and the DOP and spectral line feed-
back mechanisms, respectively. These figures include curves for two different CG
simulations. The first run (CG IC1) used a starting point of (φ, θ) = (0, π

2 ), and the
second (CG IC2) started from (0, 0). For the DOP ellipsoid, the local CG algorithm
(CG IC1) took an average of 50 function evaluations and resulted in an outage prob-
ability of 7 × 10−5 at 2 dB. The multilevel scheme took 65 function evaluations to
arrive at an outage probability of 3× 10−5. Multistart takes considerably more func-
tion evaluations to arrive at the same outage probability value (see Table 7.1). The
lack of model-based knowledge built into the multistart scheme is clearly to blame for
this dramatic increase in the number of function evaluations without a corresponding
outage probability reduction.

In sections 3 and 4 we saw that the DOP ellipsoid is very smooth and usually has
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Fig. 7.3. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the spectral line feedback mechanism. The curves shown include the no com-
pensation case (thick solid line), local (CG) optimization (also a thick solid line) starting from the
initial guess (φ, θ) = (0, π/2), and local optimization (CG) (dot-dashed line) starting from the ini-
tial guess (φ, θ) = (0, 0). The curve for the multilevel hybrid optimization scheme is denoted by a
thick dashed line, and the multistart method with two starting guesses is indicated by a thin dotted
line. The multistart method with four initial guesses (thin line with circles) and multistart with nine
initial guesses (thin line with crosses) coincide for this feedback mechanism.

only one maximum whereas the spectral line can have at least two maxima. Starting
from the south pole (IC2), there is a small probability that the CG algorithm will stall
near a saddle point since the objective function can be very flat due to distortions
inherent in the spherical coordinate mapping. For the DOP ellipsoid, starting from
the equator (IC1), the CG algorithm will usually head straight to the top of the only
hill. Since this maximum is between the equator and the saddle points at the south
pole, there is very little chance that the algorithm will go via these saddle points and
hence very little chance that it will get stuck there. Therefore, the outage probability
is lower with IC1 than with IC2. Different initial conditions lead to outage probability
curves which lie between the curves for IC1 and IC2.

Figure 7.4 compares the best local and best global schemes for the three feed-
back mechanisms. For each of the pdfs used to determine the curves in this figure,
importance sampling produces a relative variation in each bin of the histogram of less
than 10%. One can surmise the relative smoothness of the objective functions for
the three feedback mechanisms by noting the distance between the local and global
curves in the figure. For the eye feedback signal, the local method is least effective at
reducing outage probability. Yet the global scheme is more effective for this objective
function than it is for either DOP or spectral line. In other words, for the eye feedback
mechanism, the outage probability for the best global optimization algorithm is over
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Fig. 7.4. A comparison of the local and best global optimization results for the three feedback
mechanisms. For local optimization of the spectral line and DOP ellipsoid we show the results for
the starting point IC1 (φ, θ) = (0, π/2).

an order of magnitude smaller than for local optimization. A much smaller decrease
occurs for the spectral line feedback signal. (All these comparisons were made at the
2 dB point in the plots.)

The DOP and spectral line feedback signals act as smooth surrogate approxi-
mations to the more realistic but bumpier eye signal. The DAKOTA reference man-
ual [11] describes surrogate-based optimization as an iterative process that periodically
recalibrates an approximate model via data from a true model. The DOP and spectral
line functions are not true surrogates, as in this work we fix the objective functions
used throughout a particular optimization run. No updates to the shape of objective
function occur during the course of the optimization. Finally, we note (Table 7.1) that
for the spectral line, the multilevel scheme does a better job of reducing the objective
function than the two-point multistart scheme, but at 50% less cost. Our conclusions
are that the simpler smooth DOP and spectral line feedback mechanisms do a good
job of approximating the realistic (but bumpy) eye. Moreover, multilevel appears to
do the best job of minimizing the number of function evaluations while still reducing
the outage probability.

In Figure 7.5 we assess the statistical effect that higher-order PMD has on the
performance of the spectral line and DOP ellipsoid feedback mechanisms. For each
fiber realization we chose the setting of the polarization controller by optimizing the
analytical objective functions given by (4.3) and (4.15) that we obtained using the
first-order PMD approximation of the fiber. Given the solution to this surrogate
optimization problem, we then computed the performance of the compensator using
the original all-order PMD fiber realization. For the DOP ellipsoid we calculated
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Fig. 7.5. A comparison of outage probability for the first-order PMD approximation of the
objective functions coming from the DOP ellipsoid (thin line with pluses) and the spectral line (thin
line) versus the all-order PMD objective functions for the DOP ellipsoid (thick dashed line) and
the spectral line (thin line with circles). These results were obtained using global optimization. The
result without compensation is shown as a thick line.

the global maximum analytically using the formula given above (4.5), while for the
spectral line we optimized the analytical objective function numerically using the
multistart strategy with four starting points. In Figure 7.5, for the DOP ellipsoid, we
compare the “analytical” outage probability curve (thin line with pluses) to the one
we obtained numerically using the all-order PMD objective functions (thick dashed
line). We also compare the analytic and numerical outage probability curves for the
spectral line, which we show with a thin line and a thin line with circles, respectively.
For both the DOP ellipsoid and the spectral line, the fairly close agreement between
the analytic and numerical curves confirms that we can regard the all-order PMD
objective functions as being perturbations of objective functions for fibers with only
first-order PMD.

Next, we explain the relative performance of the different methods in Figure 7.4
by comparing the relative location of the local and global maxima of the different
objective functions. This discussion will also quantify the degree to which the spec-
tral line and DOP ellipsoid objective functions act as smooth surrogates of the eye
opening. We begin by discussing the three feedback mechanisms optimized via global
methods. First, we observe that across the entire range of eye opening penalty values
in Figure 7.4, the outage probability is always larger for the DOP ellipsoid than for
the spectral line, and that the eye opening feedback mechanism has the lowest outage
probability. The primary reason for the poorer performance with the DOP ellipsoid is
that the distance between the global maxima of the DOP ellipsoid and eye objective
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Fig. 7.6. The pdf of the angle between the global maximum of the eye objective function and
the maximum obtained for the spectral line using multistart with four starting points (thick dashed
curve) and for the DOP ellipsoid using the multilevel algorithm (thick solid curve).

functions tends to be larger than between the global maxima of the spectral line and
eye objective functions.

To verify this observation, we gathered statistics of the distances between the
global maxima for the different feedback mechanisms. To define a physically mean-
ingful notion of distance between two rotations of the polarization controller in a
compensator, we begin by recalling that any rotation of S2 can be expressed as a
rotation R−→r (Ψ) by an angle Ψ ∈ [0, π] about an axis −→r ∈ S2. Given two rotations
R1 and R2, consider the rotation E0 such that R2 = E0R1, and let Ψ0 be the angle
such that E0 = R−→r 0(Ψ0). In our compensator model the rotations R1 and RX(π)R1

have the same effect on the signal. Therefore, we also consider the rotation Eπ defined
by R2 = EπRX(π)R1 and let Ψπ be the angle such that Eπ = E0RX(π) = R−→r π (Ψπ).
Finally, we define an angle Ψ ∈ [0, π] by Ψ = min{Ψ0,Ψπ}. The angle Ψ is our
measure of distance between two rotations R1 and R2 performed by the polarization
controller. (Note though that the distance function given by Ψ does not satisfy the
triangle inequality.) In the case of only first-order PMD, the angle between global
maximum and global minimum of the DOP ellipsoid objective function given by (4.3)
is 180◦.

In Figure 7.6 we plot the pdf of the angle between the numerically computed global
maxima of the spectral line and the eye opening (thick dashed curve) and between the
global maxima of the DOP ellipsoid and eye opening (thick solid curve). The most
likely angle is 7◦ for the spectral line and 14◦ for the DOP ellipsoid. We observe that
the probability that the angle is between 30◦ and 90◦ degrees is significantly greater
for the DOP ellipsoid than for the spectral line. Therefore the global maximum
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of the spectral line objective function is usually closer to that of the eye opening
than is the global maximum of the DOP ellipsoid. Consequently, the eye opening
tends to be somewhat larger for the spectral line than for the DOP ellipsoid. This
observation explains why the outage probability is smaller for the spectral line than
for the DOP ellipsoid when global optimization is used. One of the physical reasons
for this performance difference is that the DOP ellipsoid objective function is defined
by minimizing the output DOP over all possible input polarization states. However,
when we computed the eye opening penalties for the outage probability curves, we
chose the input polarization state to be (S1, S2, S3) = (1, 0, 0) rather than choosing
it to be the state which resulted in the smallest DOP at the receiver. If we maximize
the DOP for the input polarization state with the smallest output DOP, we do not
obtain the same global maximum as we would if we maximized the DOP (or spectral
line) when the input polarization state is (1, 0, 0).

We also observe in Figure 7.6 that the probability that the angle is between
130◦ and 170◦ is much larger for the spectral line than for the DOP ellipsoid. The
physical reason for this feature can be explained using the formulae for the objective
functions we derived in section 4: In the case of only first-order PMD the DOP
ellipsoid has only one maximum, whereas the spectral line objective function can have
at least two maxima. Therefore, in a small proportion of cases the global maximum
of the spectral line can be far from that of the eye opening. For example, suppose as
in Figures 3.3 and 3.4 that the eye opening has local maxima at (φ1, θ1) and (φ2, θ2),
and that the spectral line also has local maxima located near these two points. It
could happen that the global maximum for the eye opening is at (φ1, θ1) whereas the
global maximum for the spectral line is located near (φ2, θ2).

We also found that if we gather statistics over only those fiber realizations for
which the second-order PMD is large relative to the DGD, then the most likely an-
gle between the global maxima of the DOP ellipsoid and the eye opening feedback
increases markedly. In contrast, the most likely angle between the global maxima of
the spectral line and the eye opening is unchanged. (We do not show these results.)
These results suggest that when higher-order PMD is introduced, the global maxima
of the DOP ellipsoid and the eye opening tend to move apart from each other, whereas
the global maximum of the spectral line remains closer to that of the eye opening.
This difference in behavior with higher-order PMD provides a second explanation for
why the outage probability is smaller for the spectral line than for the DOP ellipsoid
when global optimization is used.

To summarize, when global optimization is used, it is important to choose an
objective function with the property that the global maximum is close to that of
the eye opening. Therefore, with global optimization, the spectral line is a better
surrogate for the eye opening than is the DOP ellipsoid.

Finally, we explain the relative performance with the three feedback signals when
local optimization is used. Looking again at Figure 7.4, when the eye opening penalty
is larger than 2 dB, the eye opening feedback does not perform as well as the spectral
line with local optimization. The performance with the DOP ellipsoid is comparable
to that with the spectral line, but as we saw in Figure 7.2, it can depend significantly
on the choice of starting point for the local optimization. To explain the poorer
performance with the eye opening feedback, for each feedback mechanism we plot
the pdf of the angle, Ψ, between the local maxima reached with conjugate gradients
and the global maximum (see Figure 7.7). First, we observe that the DOP ellipsoid
and the spectral line have slightly higher probabilities of a very small angle (Ψ ≈ 0)
between the local and global maxima than is the case for the eye opening feedback
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Fig. 7.7. The pdf of the angle between the local and global maxima for the eye opening (thin
solid curve), spectral line (dashed curve), and DOP ellipsoid (thick solid curve). The local and global
optimization algorithms are the ones shown in Figure 7.4.

mechanism. However, there is a significantly higher probability that the angle is
between 10◦ and 50◦ for the eye opening. This high probability is not seen for the
DOP or spectral line objective functions. These observations provide further evidence
of the roughness of the eye opening objective function and help to explain why the eye
objective function is the worst feedback mechanism for local optimization when the
eye opening penalties are large. The other significant feature in Figure 7.7 is that the
probability that the angle exceeds 100◦ is extremely small for the DOP ellipsoid, but
it is relatively large for the other two objective functions. This feature is also present
in the pdfs if we gather statistics over only those rare fiber realizations for which the
eye opening penalty for the DOP ellipsoid (or spectral line) is larger than 1 dB.

We found that the curves in Figure 7.7 have approximately the same shape when
we gather statistics over fibers with large second-order PMD. Consequently, even with
higher-order PMD, the DOP ellipsoid objective function tends to be very smooth and
to have only one maximum, just as the analysis in section 4 showed for fibers with only
first-order PMD. Why then for the DOP ellipsoid is the outage probability at 3 dB
smaller with global than with local optimization in Figure 7.4? One possible reason is
that for some fiber realizations we observed that the DOP ellipsoid objective function
has suboptimal, wide flat regions. Also, when second-order PMD is large enough,
there can be small bumps in the bottom of the valleys which may present a problem
for a local algorithm.

8. Conclusions. In an optical fiber communication system, binary data is trans-
mitted through optical fiber using a sequence of pulses of light. The birefringence of
the fiber causes the pulses to spread and distort as they propagate and increases the
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probability that bit errors will occur. A simple optical PMD compensator can be
used to reduce these distortions and errors. Since the birefringence varies randomly
over time, the compensator must be continually optimized with the aid of a feed-
back signal. To evaluate the performance of a compensator, an optimization problem
must be solved for a large number of random realizations of the birefringence. In
each case, the goal is to locate the operating point at which the bit-error ratio is
smallest. Since it is not possible to measure the bit-error ratio in a real system, we
studied three commonly used feedback signals: the eye opening, spectral line, and
DOP ellipsoid. To adequately sample the very rare fiber realizations that result in
a large uncompensated bit-error ratio, we performed Monte Carlo simulations with
multiple importance sampling. We quantified the degree to which the performance of
a compensator depends on the choice of feedback signal and optimization algorithm
by computing the probability that the eye opening penalty exceeds a given threshold,
i.e., that the bit-error ratio is large.

Although the eye opening is highly correlated to the bit-error ratio, its objective
function is quite rough and is therefore hard to optimize. Our results show that the
spectral line and DOP objective functions act as smooth surrogate approximations to
the rougher eye opening. In the special case of first-order PMD, we proved that the
spectral line objective function can have as many as six critical points on the sphere,
whereas the DOP ellipsoid has only one maximum and one minimum. We verified
that these conclusions also hold statistically over a wide range of fiber realizations
with higher order PMD. Since the spectral line objective function is similar to the
eye opening, the performance is somewhat better with the spectral line than with the
DOP ellipsoid when global optimization is used. However, the DOP ellipsoid objective
function is smoother and easier to optimize than the spectral line. In conclusion, since
it is most desirable to have a low outage probability for large eye opening penalties,
we suggest that multilevel optimization with the DOP ellipsoid feedback gives a good
trade-off between the requirements of high performance, computational cost, and
complexity of the feedback mechanism.
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1. Introduction. In this paper we consider the optimal control problem to min-
imize

F (y, u) =

∫
Ω

f(x, y(x)) dx +

∫
Γ

g(x, y(x), u(x)) ds(x)(1.1)

subject to the state equations

Ay + y = 0 in Ω,

∂nA
y = b(x, y, u) on Γ,(1.2)

the control constraints

0 ≤ u(x) for x ∈ Γ,(1.3)

and to the mixed control-state constraints

c(x) ≤ u(x) + γ(x)y(x) for x ∈ Γ.(1.4)

The main task of our paper is to establish second-order sufficient optimality con-
ditions that are close to the associated necessary ones. For control-constrained prob-
lems, this issue was discussed quite completely in literature for semilinear elliptic
and parabolic equations. Specifically, we mention Bonnans [4], Casas, Tröltzsch, and
Unger [9], Goldberg and Tröltzsch [12], and Heinkenschloss and Tröltzsch [13].

The main difficulty in our problem is the presence of the pointwise control-state
constraint c(x) ≤ u(x) + γ(x)y(x) in (1.4). If pointwise state constraints are given,
then the theory of sufficient second-order conditions is faced with specific difficulties
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that are still far from being solved. In particular, these problems arise for pointwise
state constraints of the type c(x) ≤ y(x). Here, the Lagrange multipliers associated
with the state constraints are Borel measures so that the associated adjoint state
exhibits low regularity; cf. Casas [5], [6] or Alibert and Raymond [1]. This fact causes
specific difficulties in the discussion for second-order sufficient optimality conditions.
We refer to Casas, Tröltzsch, and Unger [10] and Raymond and Tröltzsch [15] or to
Casas and Mateos [7], who consider the case of finitely many state constraints.

In our problem (1.1)–(1.4), the situation is slightly simpler, since the constraint
(1.4) is a mixed control-state constraint of bottleneck type. In the associated parabolic
case, the Lagrange multipliers are more regular. They can be assumed to be bounded
and measurable functions; see Bergounioux and Tröltzsch [3] and Arada and Ray-
mond [2]. The existence of bounded and measurable Lagrange multipliers for linear-
quadratic elliptic optimal control problems is proved in Tröltzsch [21]. The semilinear
elliptic case is investigated in Rösch and Tröltzsch [16].

Higher regularity of the multipliers is the main advantage enabling us to estab-
lish second-order conditions. The second-order conditions should require minimal
assumptions, i.e., they should be as close as possible to associated necessary condi-
tions. Usually, this task is accomplished by considering strongly active sets (see [11]
for control-constrained optimal control of ordinary differential equations). Here, we
apply this technique to our case of mixed constraints. The analysis shows that this
is not an easy task. It indicates that pointwise state constraints of more general type
will give rise to even more difficult techniques.

Our paper extends the results of [17], [18], where second-order conditions are
derived for a weakly singular integral state equation and for parabolic equations, re-
spectively. Let us shortly sketch the main difference between these papers and our
new discussion: In [17], [18] the proof of sufficiency is based on the nonnegativity of
some inverse operators related to the Fréchet derivative of the control-to-state map-
ping. It is this nonnegativity that cannot, in general, be expected for elliptic problems.
Therefore, here we abstain from such an assumption. We only require a solvability
property of an auxiliary elliptic problem. Based on similarly weak assumptions, also
the regularity of Lagrange multipliers has been shown in [16], [21].

Moreover, in our paper the definition of strongly active sets associated with the
mixed constraints is a more natural way than the one in [17], [18].

Let us remark that the inequality constraints in our problem differ from the
inequality constraints considered in [17], [18], where u ≤ c+γy is investigated instead
of (1.4). It would be easy to adapt our theory to the inequality constraints in [17],
[18]. However, even for parabolic problems, the methods in [17], [18] cannot be
applied to the inequality constraints (1.3) and (1.4) since certain inverse operators do
not preserve the nonnegativity.

The paper is organized as follows: In section 2 we formulate first- and second-
order optimality conditions and state the main result. Section 3 contains auxiliary
results. The proof that our second-order conditions are sufficient for local optimality
is presented in section 4.

In the paper, we use the following notations: By b′(x, y, u) and b′′(x, y, u) we
denote the gradient and the Hessian matrix of b with respect to (y, u):

b′(x, y, u) =

(
by(x, y, u)
bu(x, y, u)

)
, b′′(x, y, u) =

(
byy(x, y, u) byu(x, y, u)
byy(x, y, u) buu(x, y, u)

)
.

Here, the notations by(x, y, u) = Dyb(x, y, u), byy(x, y, u) = Dyyb(x, y, u), etc. are
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used for the partial derivatives. The norms |b′|, |b′′| are defined by adding the abso-
lute values of all entries of b′ and b′′, respectively. By ∂nA

we denote the conormal
derivative.

We adapt the following assumptions from [9]:
(A1) For each x ∈ Ω or Γ, respectively, the functions f = f(x, y), g = g(x, y, u),

and b = b(x, y, u) are of class C2 with respect to (y, u). For fixed (y, u) they
are Lebesgue measurable with respect to x ∈ Ω or x ∈ Γ, respectively.

(A2) In this assumption, p > N − 1, s, and r denote fixed parameters that depend
on the dimension N of the domain Ω. The constants s and r express the
regularities y|Γ ∈ Ls(Γ) and y ∈ Lr(Ω) in the linearized system associated to
(1.2). As usual, r′ and s′ denote mutually conjugate numbers. For instance,
s′ is defined by 1/s′ + 1/s = 1.
For all M > 0, there are constants CM > 0, functions ψM

f ∈ L(r/2)′(Ω),

ψM,1
f ∈ L(s/2)′(Γ), ψM,2

f ∈ L(s/2)′(Γ), ψM,3
f ∈ L∞(Γ), and a continuous,

monotone increasing function η ∈ C(R+ ∪ {0}) with η(0) = 0 such that
(i) b(., 0, 0) ∈ Lp(Γ), for some p > N − 1,

by(x, y, u) ≤ 0 for a.e. x ∈ Γ and ∀(y, u) ∈ R2,(1.5)

|b′(x, y, u)| + |b′′(x, y, u)| ≤ CM ,
|b′′(x, y1, u1) − b′′(x, y2, u2)| ≤ CMη(|y1 − y2| + |u1 − u2|)
for almost all x ∈ Γ and all |y|, |u|, |yi|, |ui| ≤ M , i = 1, 2.

(ii) f(., 0) ∈ L1(Ω), fy(., 0) ∈ Lr′(Ω), fyy(., 0) ∈ L(r/2)′(Ω), and

|fyy(x, y1) − fyy(x, y2)| ≤ ψM
f (x)η(|y1 − y2|)

for almost all x ∈ Ω and all |yi| ≤ M , i = 1, 2.
(iii) g(., 0, 0) ∈ L1(Γ), gy(., 0, 0) ∈ Ls′(Γ), gu ∈ L2(Γ), gyy(., 0, 0)

∈ L(s/2)′(Γ), gyu(., 0, 0) ∈ L2(s/2)′(Γ), guu(., 0, 0) ∈ L∞(Γ), and

|gyy(x, u1, y1) − gyy(x, u2, y2)| ≤ ψM,1
f (x)η(|y1 − y2| + |u1 − u2|)

|gyu(x, u1, y1) − gyu(x, u2, y2)| ≤ ψM,2
f (x)η(|y1 − y2| + |u1 − u2|)

|gyu(x, u1, y1) − gyu(x, u2, y2)| ≤ ψM,3
f (x)η(|y1 − y2| + |u1 − u2|)

for almost all x ∈ Ω and all |yi| ≤ M , |ui| ≤ M , i = 1, 2.
Other estimates of b, f, g and their first derivatives can be derived from (A1),
(A2) by the mean value theorem.

(A3) We assume that c, γ ∈ C(Γ), and γ(x) ≥ 0 ∀x ∈ Γ.
(A4) The domain Ω ⊂ RN is bounded and has a Lipschitz boundary Γ. The

Lebesgue surface measure induced on Γ is denoted by ds(x). The elliptic
operator A is defined by

Ay(x) = −
m∑

i,j=1

Di(aij(x)Djy(x)),

where aij ∈ L∞(Ω) satisfy, for some positive m0, the condition of uniform
ellipticity

m∑
i,j=1

aij(x)ξiξj ≥ m0|ξ|2.
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2. First- and second-order optimality conditions. We are looking for a
control in the space U = L∞(Γ), while the state is defined as a weak solution of (1.2)
in the state space Y = C(Ω̄) ∩H1(Ω) by∫

Ω

( m∑
i,j=1

aijDjyDiv + yv
)
dx =

∫
Γ

b(., y, u)v ds(x) ∀v ∈ H1(Ω).(2.1)

We endow Y with the norm ‖y‖Y = ‖y‖C(Ω̄)+‖y‖H1(Ω). It can be shown that, for each
u ∈ L∞(Γ), the elliptic equation (1.2) admits a unique weak solution y = y(u) ∈ Y ,
see [8]. Moreover, Casas and Tröltzsch [8] have proved that the solution mapping
G : u 
→ y from L∞(Γ) into Y is of class C2.

In this paper, we discuss sufficient conditions for a local minimum. Therefore, we
investigate a candidate ū for the local optimum and an ε-neighborhood of ū:

Bε(ū) = {u ∈ L∞(Γ) : ‖u− ū‖L∞(Γ) < ε}.

For any fixed ε > 0 and arbitrary ū ∈ U , there exists a constant M = M(ε) such that

‖y(u)‖Y ≤ M ∀y ∈ Bε(ū).

The boundary values of y are of particular importance for us. Thus we define the
mapping S : L∞(Γ) → C(Γ̄) with S = τG that assigns to u the boundary values of
y. Here, τ denotes the trace operator. Clearly, the Fréchet differentiability of the
operator G implies the differentiability of S. The application of S′(ū) to an element
h ∈ U is given by the boundary values of the solution z of the elliptic problem

Az + z = 0 in Ω,

∂nA
z − b̄yz = b̄uh on Γ,(2.2)

i.e., S′(ū)h = z|Γ. Here we have used the abbreviations b̄y = by(x, ȳ(x), ū(x)) and
b̄u = bu(x, ȳ(x), ū(x)). The operator S′(ū) is extended to a linear continuous operator
in L(L2(Γ)). From now on, S′(ū) will be understood in this way. For the remainder
term in the first-order Taylor expansion of y(ū + h), we obtain the property

‖y(ū + h) − y(ū) − z(ū, h)‖L2(Γ)

‖h‖L2(Γ)
→ 0 as ‖h‖L∞(Γ) → 0

using a known result of Maurer [14].
Next, we introduce the L2-adjoint operator S′(ū)∗ ∈ L(L2(Γ)). This operator is

given by S′(ū)∗μ = ϕ|Γ, where ϕ is the solution of the elliptic problem

A∗ϕ + ϕ = 0 in Ω,

∂nA∗ϕ− b̄y ϕ = b̄u μ on Γ,(2.3)

and A∗ is the formal adjoint operator to A. In all that follows, let (ȳ, ū) be a candidate
for a local solution of (1.1)–(1.4). Let us set up the associated first-order necessary
optimality conditions in form of a Karush–Kuhn–Tucker type theorem. To this aim,
we introduce the Lagrange functional L : Y × L∞(Γ) × Y × L∞(Γ)2 → R,

L(y, u, p, μ1, μ2) = F (y, u) +

∫
Ω

( m∑
i,j=1

aijDjyDip + yp
)
dx−

∫
Γ

b p ds(x)

−
∫

Γ

μ1u ds(x) −
∫

Γ

(u + γy − c)μ2 ds(x).
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Let us comment on this choice for L. The elliptic equation (1.2) is considered
in Y , while the inequality constraints (1.3) are posed in L∞(Γ). Knowing the gen-
eral Karush–Kuhn–Tucker theory in Banach spaces, one expects associated Lagrange
multipliers p ∈ Y ∗ and μi ∈ (L∞(Γ))∗, together with a related quite complicated
Lagrange functional. However, special techniques for optimal control problems of
bottleneck type allow to show that, under natural assumptions, the Lagrange multi-
pliers can be expressed by regular functions, i.e., p ∈ Y and μi ∈ L∞(Γ); we refer to
Tröltzsch [21] and Rösch and Tröltzsch [16]. This well-known advantage of bottleneck
type problems is our key idea to establish special second-order sufficient optimality
conditions, which can hardly be expected for μi ∈ (L∞(Γ))∗. The existence of such
regular multipliers can be shown under a Slater type condition and the assumption
γ(x) ≥ 0. Here, the nonnegativity of γ plays a crucial role.

Therefore, we are justified to assume that an adjoint state p̄ ∈ Y and Lagrange
multipliers μ̄i ∈ L∞(Γ) exist such that (ȳ, ū, p̄, μ̄1, μ̄2) satisfies the following first-order
necessary optimality system (FON):

(FON)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DyL(ȳ, ū, p̄, μ̄1, μ̄2) = 0

DuL(ȳ, ū, p̄, μ̄1, μ̄2) = 0

and for almost all x ∈ Γ

μ̄1(x) ≥ 0

μ̄2(x) ≥ 0

ū(x)μ̄1(x) = 0

(ū(x) + γ(x)ȳ(x) − c(x))μ̄2(x) = 0.

Note that the Lagrange multipliers may not be unique. The last two conditions of
(FON) are the well-known complementary slackness conditions. They imply μ̄1(x) >
0 ⇒ ū(x) = 0 and μ̄2(x) > 0 ⇒ c(x) = ū(x) + γ(x)ȳ(x). Let us express these
optimality conditions also in terms of the partial differential equation. As it is well
known, the first equation of (FON) is equivalent to the adjoint equation

A∗p̄ + p̄ = fy(x, ȳ) in Ω,

∂nA∗ p̄− by(x, ȳ, ū)p̄ = gy(x, ȳ, ū) − γμ̄2 on Γ.(2.4)

The second equation of (FON) is equivalent to

gu(x, ȳ, ū) + bu(x, ȳ, ū)p̄− μ̄1 − μ̄2 = 0.(2.5)

Next, we discuss a sufficient second-order optimality condition (SSC). For this
purpose, following Dontchev et al. [11], we define strongly active sets and the associ-
ated critical subspace. Assume that (ȳ, ū, p̄, μ̄1, μ̄2) fulfils (FON).

Definition 2.1. Let δ1, δ2 > 0 be real numbers and μ̄1, μ̄2 ∈ L∞(Γ) be Lagrange
multipliers introduced in (FON). The sets

A1(δ1) := {x ∈ Γ : μ̄1(x) ≥ δ1},(2.6)

A2(δ2) := {x ∈ Γ \A1(δ1) : μ̄2(x) ≥ δ2}(2.7)

are called strongly active sets.
All further arguments hold true for an arbitrary choice of δ1 and δ2. Later, these

numbers will be chosen such that a second-order sufficient optimality condition is
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satisfied. To shorten the notation, we will drop the dependence of the active sets on
these parameters in the proofs, but we will use the detailed notation for the statements
of the main results.

Definition 2.2. We say that (y, u) ∈ C(Ω̄) × L∞(Γ) belongs to the critical
subspace, if

u = 0 on A1(δ1),(2.8)

u + γy|Γ = 0 on A2(δ2),(2.9)

and

Ay + y = 0 in Ω,

∂nA
y − b̄y y = b̄u u on Γ.(2.10)

Notice that (2.10) implies y|Γ = S′(ū)u. This critical subspace is larger than really
needed. A smaller critical convex cone is discussed at the end of the paper.

Before we formulate the second-order sufficient optimality condition, let us find
the explicit expression of L′′

(u,y)(ȳ, ū, p̄, μ̄1, μ̄2)[hy, hu]2:

L′′
(u,y)(ȳ, ū, p̄, μ̄1, μ̄2)[hy, hu]2 =

∫
Ω

fyyh
2
y dx +

∫
Γ

(gyyh
2
y + 2gyuhyhu + guuh

2
u) ds(x)

+

∫
Γ

(b̄yyh
2
y + 2b̄yuhyhu + b̄uuh

2
u)p̄ ds(x).(2.11)

Here, hy ∈ C(Ω̄), hu ∈ L∞(Γ) denote arbitrary increments of y and u, respectively.
Now we state the second-order sufficient optimality condition.

(SSC): There exist positive numbers δ, δ1, δ2 such that the definiteness condition

L′′
(u,y)(ȳ, ū, p̄, μ̄1, μ̄2)[hy, hu]2 ≥ δ‖hu‖2

L2(Γ)(2.12)

holds true for all (hy, hu) belonging to the critical subspace defined upon δ1, δ2.
In our further analysis, the boundary value problem

Av + v = 0 in Ω,

∂nA
v + (−b̄y + χA2(δ2)b̄uγ)v = φ on Γ(2.13)

plays a basic role. We require the following regularity assumption:
(R) For φ = 0, the problem (2.13) has only the trivial solution v = 0.
For instance, this assumption is fulfilled if

−b̄y + γχA2(δ2)b̄u ≥ 0 a.e. on Γ.(2.14)

Here χA2
denotes the characteristic function of the set A2(δ2). Thanks to (1.5) and

(A3), this condition is fulfilled if b̄u ≥ 0 holds. Now, we state the main result of the
paper.

Theorem 2.3 (second-order sufficiency). Assume that (ȳ, ū, p̄, μ̄1, μ̄2) fulfils the
first-order optimality system (FON) and the regularity condition (R) holds. If the
second-order condition (SSC) is satisfied, then there exist δs > 0 and ε > 0 such that
the quadratic growth condition

F (y, u) − F (ȳ, ū) ≥ δs‖u− ū‖2
L2(Γ)(2.15)

holds for all admissible pairs (y, u) with ‖u − ū‖L∞(Γ) < ε. Therefore, ū is a locally
optimal control in the norm of L∞(Γ).

The proof is carried out in section 4.
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3. Auxiliary results.
Lemma 3.1. Let β ∈ L∞(Γ) be a fixed function that is almost everywhere non-

negative. Then for all φ ∈ Lp(Γ) with p > N − 1, the weak solution v ∈ H1(Ω)
of

Av + v = 0 in Ω,
∂nA

v + β(·) v = φ on Γ
(3.1)

belongs to C(Ω̄) and satisfies the estimate

‖v‖C(Ω̄) ≤ cp ‖φ‖Lp(Γ)(3.2)

with a positive constant cp that does not depend on φ.
For this classical result, we refer to [6] and the arguments in [1] concerning the

case of Lipschitz domains.
For N = 2 the trace of v ∈ H1(Ω) belongs to Lr(Γ), with any r < ∞. For

N > 2, v|Γ belongs to L
2(N−1)
N−2 (Γ). It implies that v|Γ ∈ L2+s(Γ) with s = 2/(N −

2) > 0 (arbitrary s > 0 for N = 2) so that the mapping φ 
→ v|Γ is continuous
from L2(Γ) to L2+s(Γ) and from Lp(Γ) to L∞(Γ), in particular also to Lp+s(Γ). By
classical interpolation, cf. Triebel [20, 1.18.7, Thm. 1], there exists a positive constant
δ (independent of s), such that the mapping φ 
→ v|Γ satisfies

‖v‖Ls+δ(Γ) ≤ cs ‖φ‖Ls(Γ) ∀ s ≥ 2.(3.3)

provided that β(·) ≥ 0. Here and in what follows, we write ‖v‖L2(Γ) rather than
‖v|Γ‖L2(Γ). We can dispense with this sign condition on β, if a regularity condition
is fulfilled. To show that, we consider (3.1) for an arbitrary β ∈ L∞(Γ) and assume
that the associated homogeneous equation (3.1) has only the trivial solution. Then
the mapping Sβ : L2(Γ) → L2(Γ) that assigns to φ the trace of the solution v of (3.1)
is well defined and continuous.

To verify this, we consider also the shifted equation

Av + v = 0 in Ω,
∂nA

v + (‖β‖L∞(Γ) + β(·)) v = φ on Γ.
(3.4)

Clearly, the associated mapping S̃β : L2(Γ) → L2(Γ), S̃β : φ 
→ v|Γ, is well defined
and compact. By the Fredholm theory, it has only countably many eigenvalues. A
number λ ∈ R is an eigenvalue of S̃β , if S̃βv = λv holds with a nontrivial v. This
means that λv solves (3.4) with boundary data φ = v, i.e., after dividing by λ, if the
boundary condition

∂nA
v + (‖β‖L∞(Γ) + β(·)) v = λ−1v(3.5)

is satisfied with some nontrivial v. Obviously, we have a one-to-one correspondence
between the eigenvalues of S̃β and those of Sβ . The boundary condition (3.5) holds
for nontrivial v iff the condition ∂nA

v+β(·) v = (λ−1 −‖β‖L∞(Γ)) v is fulfilled so that
1/(λ−1 − ‖β‖L∞(Γ)) is an eigenvalue of Sβ .

In view of this, the assumption on the homogeneous equation (3.1) implies that
(3.1) is uniquely solvable for all φ ∈ L2(Γ) and that Sβ is continuous in L2(Γ).

Lemma 3.2. Assume that the homogeneous equation (3.1) has only the trivial
solution and that φ ∈ L∞(Γ) is given arbitrarily. Let v ∈ H1(Ω) be the solution of
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(3.1). Then there exists a constant cβ not depending on φ such that the following
estimates hold true:

‖v‖L2(Γ) ≤ cβ‖φ‖L2(Γ),
‖v‖C(Γ) ≤ cβ‖φ‖Lp(Γ) ∀ p > N − 1,
‖v‖L1(Γ) ≤ cβ‖φ‖L1(Γ).

(3.6)

Proof. (i) The first estimate is a simple consequence of the continuity of Sβ in
L2(Γ). It is only stated for convenience.

(ii) The second inequality follows by bootstrapping: The solution v solves Av+v =
0 subject to the boundary condition

∂nA
v = φ− β(·) v.

By (3.3) and the first estimate, we find with some s > 0 and some generic constant c
that

‖v‖L2+s(Γ) ≤ c (‖φ‖L2(Γ) + ‖β‖L∞(Γ)‖v‖L2(Γ))
≤ c ‖φ‖L2(Γ) ≤ c ‖φ‖L2+s(Γ).

Repeating this estimate, we get from the one in L2+s(Γ) that

‖v‖L2+2 s(Γ) ≤ c (‖φ‖L2+s(Γ) + ‖β‖L∞(Γ)‖v‖L2+s(Γ))
≤ c ‖φ‖L2+ s(Γ) ≤ c ‖φ‖L2+2 s(Γ).

After finitely many steps, the estimate

‖v‖Lp(Γ) ≤ c ‖φ‖Lp(Γ)(3.7)

can be derived for some p > N − 1. In view of (3.2), boundary data from Lp(Γ) are
transformed to continuous solutions for p > N −1. Therefore, by (3.3), it follows that

‖v‖C(Γ) ≤ cp (‖φ‖Lp(Γ) + ‖β‖L∞(Γ)‖v‖Lp(Γ))
≤ cp (‖φ‖Lp(Γ) + ‖β‖L∞(Γ)cp ‖φ‖Lp(Γ)) ≤ c ‖φ‖Lp(Γ).

(iii) To show the last estimate, we proceed by duality. The operator Sβ is self-
adjoint. Moreover, roughly speaking, we have by (ii) that its restriction Sβ,p to Lp(Γ)
is continuous from Lp(Γ) to C(Γ). We can assume p ≥ 2. The adjoint operator S∗

β,p

is continuous from C(Γ)∗ to Lp′
(Γ), where p′ is conjugate to p. Therefore, it is in

particular continuous in L1(Γ). Finally, it can be shown that S∗
β,p φ = S∗

β φ = Sβ φ for

all φ ∈ L2(Γ). This shows that Sβ is continuous in L1(Γ) so that the third estimate is
true. These facts are explained more precise and slightly more detailed in [16].

We should remark that the third estimate is not surprising. If β ≥ 0, the estimate
follows from the results by Casas [5] and Alibert and Raymond [1]. They have shown
in this case that the boundary value problem (3.1) with given regular Borel measure
φ admits a unique solution v ∈ W 1,σ(Ω) for all σ < N/(N − 1). Clearly, this implies
the L1-estimate. More or less, the result for arbitrary β is a natural extension. We
have presented these details for the convenience of the reader.

As a corollary of the preceding lemma, we obtain for β := −b̄y + γχA2 b̄u the
following result.

Lemma 3.3. Suppose that the regularity condition (R) is satisfied. Then, for all
φ ∈ L2(Γ), the boundary value problem

Av + v = 0 in Ω,

∂nA
v + (−b̄y + χA2 b̄uγ)v = φ in Γ(3.8)
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has a unique solution v ∈ H1(Ω). Moreover, the estimate

‖v‖L1(Γ) ≤ c1 ‖φ‖L1(Γ)(3.9)

is fulfilled with some constant c1 that does not depend on φ.

To perform our analysis, we repeatedly need controls u defined as follows:

u(x) =

{
φ(x) on Γ \A2,
φ(x) − γ(x)(S′(ū)u)(x) on A2.

(3.10)

The next lemma shows that this setting is correct.

Lemma 3.4. Assume that the regularity condition (R) is fulfilled. Then, there
is exactly one function u ∈ L∞(Γ) that satisfies condition (3.10). Moreover, the
estimates

‖u‖L1(Γ) ≤ c1‖φ‖L1(Γ),(3.11)

‖u‖L2(Γ) ≤ c2‖φ‖L2(Γ),(3.12)

‖u‖L∞(Γ) ≤ c∞‖φ‖L∞(Γ)(3.13)

hold with certain constants c1, c2, c∞ that do not depend on φ.

Proof. Suppose that u ∈ L∞(Γ) satisfies (3.10). Put v := G′(ū)u. Then v satisfies
the elliptic problem with the boundary condition

∂nA
v − b̄yv =

{
b̄uφ on Γ \A2,
b̄u(φ− γv) on A2,

(3.14)

that is

∂nA
v + (−b̄y + χA2 b̄uγ)v = b̄uφ on Γ.(3.15)

This is exactly the boundary condition of (3.8). Consequently, the solution v is unique.
Therefore, if u satisfies (3.10), then v = G′(ū)u is unique, hence u is unique, because
of

u =

{
φ on Γ \A2,
φ− γv|Γ on A2.

(3.16)

On the other hand, starting from φ, the solution v of the elliptic equation with the
boundary condition (3.15) is well defined, and the function u given by (3.16) satisfies
(3.10), since, by definition of v, u = S′(ū)v|Γ.

The estimate (3.11) is obtained by Lemma 3.3. Estimate (3.12) follows by stan-
dard arguments. The Stampacchia method [19] delivers estimate (3.13).

To prove the main result, we later have to compare the reference pair (ȳ, ū) with
another admissible pair (y,u), where y = G(u). In this case, we estimate the difference

y|Γ − ȳ|Γ = S(u) − S(ū) = S′(ū)(u− ū) + r1(ū, u− ū),(3.17)

where r1 stands for the associated first-order remainder term of S. In the following, if
there is no risk of notational confusion, we denote for short the remainder r1(ū, u− ū)
and the derivative S′(ū) by r1 and S′, respectively.
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Before continuing our analysis of second-order sufficiency, let us discuss the main
difficulties and our main ideas to resolve them. We start without the pointwise control-
state constraints. On A1, we have ū(x) ≡ 0, hence u− ū ≥ 0 on A1. The associated
term in the Lagrange functional can be estimated as∫

A1

μ̄1(u− ū) ds(x) ≥
∫
A1

δ1(u− ū) ds(x) = δ1‖u− ū‖L1(A1).(3.18)

In the proof of the sufficiency theorem, the L1-norms on the right-hand side will
compensate for the lack of coercivity, since (2.12) does not contribute to definiteness
on A1 ∪A2.

However, we cannot expect such a property for the mixed control-state con-
straints. It can happen that

∫
A2

μ̄2(u+y−ū−ȳ) ds(x) = 0 although ‖u−ū‖L1(A2) > 0
holds simultaneously.

To overcome this difficulty, we represent u in the form u = u1 + u2, where the
component u1 is chosen in such a way that an estimate similar to (3.18) holds. The
u2-part stands for the additional margin of freedom that is caused by subtracting the
values of u and ū outside of A2. This splitting is performed by

u1 = ū, u2 = u− ū on Γ \A2,
u2 = −γ(S′u2 + r1), u1 = u− u2 on A2.

(3.19)

The functions u1 and u2 are well defined. To see this, we write u2 in the form

u2 =

{
φ on Γ \A2,
φ− γS′u2 on A2,

where φ = u − ū on Γ \ A2, φ = γr1 on A2. Then u2 is well defined by Lemma 3.4.
Note that S′(ū)u2 = S′(ū)(χΓ\A2

(u− ū) + χA2u2). From (3.13) and (3.19) we easily
get

‖u2‖L∞(Γ) ≤ c3(‖u− ū‖L∞(Γ) + ‖r1‖L∞(Γ)).

The Fréchet differentiability of S in L∞(Γ) implies

‖r1‖L∞(Γ) ≤ ‖u− ū‖L∞(Γ)

for sufficiently small ‖u− ū‖L∞(Γ).
Therefore, it holds by u1 = u− u2 that

‖u1 − ū‖L∞(A2) ≤ ‖u− ū‖L∞(A2) + ‖u2‖L∞(A2)

≤ c4‖u− ū‖L∞(Γ).(3.20)

Lemma 3.5. Assume that (ȳ, ū, p̄, μ̄1, μ̄2) fulfills the first-order optimality system
(FON) and the regularity condition (R) holds. Then there exists a positive constant
cA such that, for all ε > 0 the estimates∫

Γ

(u− ū)μ̄1 ds(x) ≥ δ1
ε
‖u− ū‖2

L2(A1(δ1))
,(3.21) ∫

Γ

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥ cA · δ2
ε
‖u1 − ū‖2

L2(A2(δ2))
(3.22)

are valid for all admissible pairs (u, y) satisfying ‖u− ū‖L∞(Γ) < ε.



786 A. RÖSCH AND F. TRÖLTZSCH

Proof. (i) Because of (FON), μ̄1(x) > 0 can only hold where ū(x) = 0. If
ū(x) > 0, then μ̄1(x) = 0. Moreover, u is admissible, hence u ≥ 0 and we have almost
everywhere

(u− ū)μ̄1 ≥ 0.

Therefore we get by (2.6)∫
Γ

(u− ū)μ̄1 ds(x) ≥
∫
A1

(u− ū)μ̄1 ds(x) ≥ δ1‖u− ū‖L1(A1).

By our assumption, we have ‖u− ū‖L∞(Γ) < ε. In particular, this inequality implies
‖u− ū‖L∞(A1) < ε. Consequently,∫

Γ

(u− ū)μ̄1 ds(x) ≥ δ1‖u− ū‖L1(A1)

‖u− ū‖L∞(A1)

ε
≥ δ1

ε
‖u− ū‖2

L2(A1)
,

and (3.21) is proven.
(ii) Next, we discuss the integral in (3.22). Because of (FON), μ̄2(x) > 0 can hold

only if ū(x) + γ(x)ȳ(x) = c(x). In addition, (y, u) is admissible, hence in particular
c(x) ≤ u(x) + γ(x)y(x). Therefore, we obtain almost everywhere

(u− ū + γ(y − ȳ))μ̄2 ≥ 0

and ∫
Γ

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥
∫
A2

(u− ū + γ(y − ȳ))μ̄2 ds(x)

≥ δ2‖u− ū + γ(y − ȳ)‖L1(A2)(3.23)

by definition (2.7). Let us discuss this integral more detailed. Expressing y − ȳ in
terms of the controls by (3.17),

u− ū + γ(y − ȳ) = u− ū + γ(S′(ū)(u− ū) + r1)(3.24)

is found. Since u = u1 +u2 and u2 +γS′u2 +γr1 = 0 on A2 hold by Definition (3.19),
we find

u + γ(S′u + r1) = u1 + u2 + γS′u1 + γS′u2 + γr1 = u1 + γS′u1 on A2.(3.25)

Consequently, (3.23) and (3.24) yield∫
Γ

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥ δ2‖u1 − ū + γS′(ū)(u1 − ū)‖L1(A2)

= δ2‖w + γS′w‖L1(A2)(3.26)

with w := u1 − ū. Notice, that w = 0 on Γ \A2. Moreover, we set v = G′w and

z =

{
0 on Γ \A2,
w + γv|Γ on A2.

By this definition, we have

‖w + γS′w‖L1(A2) = ‖z‖L1(A2)
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and therefore ∫
Γ

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥ δ2‖z‖L1(A2).(3.27)

Then we find

Av + v = 0 in Ω,

∂nA
v − b̄yv = b̄uw on Γ.(3.28)

On A2 we have

b̄uw = b̄u(z − γv|Γ) = b̄uz − χA2 b̄uγv|Γ.

Because of z = w = 0 on Γ\A2, this equation is also correct on Γ\A2 and consequently
it holds that

Av + v = 0 in Ω,

∂nA
v + (−b̄y + χA2 b̄uγ)v = b̄uz on Γ.(3.29)

Applying Lemma 3.3, we obtain

‖v‖L1(Γ) ≤ c‖z‖L1(Γ) = c‖z‖L1(A2).(3.30)

Setting γ̄ = ‖γ‖C(Γ), we get

‖w‖L1(A2) = ‖z − γv‖L1(A2)

≤ ‖z‖L1(A2) + γ̄‖v‖L1(A2)

≤ ‖z‖L1(A2) + γ̄c‖z‖L1(A2)

or

‖z‖L1(A2) ≥
1

1 + γ̄c
‖w‖L1(A2).(3.31)

Combining (3.27) and (3.31), we find∫
Γ

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥ δ2
1 + γ̄c

‖w‖L1(A2) =
δ2

1 + γ̄c
‖u1 − ū‖L1(A2).(3.32)

Invoking again ‖u− ū‖L∞(Γ) < ε and (3.32), we obtain∫
A2

(u− ū + γ(y − ȳ))μ̄2 ds(x) ≥ δ2
1 + γ̄c

‖u1 − ū‖L1(A2) ·
‖u− ū‖L∞(A2)

ε

≥ δ2
c4ε(1 + γ̄c)

‖u1 − ū‖2
L2(A2)

,

implying inequality (3.22) with cA = 1
c4(1+γ̄c) .

If A1∪A2 = Γ, then the critical subspace contains only the function (y, u) = (0, 0).
Then the assumptions of Theorem 2.3 are trivially fulfilled. In this case, (3.21) and
(3.22) imply the so-called first-order sufficient optimality conditions.
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4. Second-order sufficient optimality condition. Here, we outline the proof
of the sufficiency Theorem 2.3. This part is very similar to the discussion in [18].
Nevertheless, for the convenience of the reader, we present the main steps of the
proof.

We select an arbitrary admissible control u in a sufficiently small L∞-neighbor-
hood of ū and have to show that F (y, u) ≥ F (ȳ, ū). Let us introduce the increments
δu := u− ū and δy := G′(ū)δu. We split δu = u0 + u+, where

u0 = 0, u+ = δu on A1,
u0 = δu, u+ = 0 on Γ \ (A1 ∪A2),
u0 = −γS′(ū)u0, u+ = δu− u0 on A2.

(4.1)

Notice that u0 + γS′(ū)u0 = 0 on A2. This setting is justified again by Lemma 3.4:
It holds

u0 =

{
φ on Γ \A2,
φ− γS′u0 on A2,

where φ is defined by

φ =

{
0 on A1 ∪A2,
δu on Γ \ (A2 ∪A1).

The part u0 belongs to the critical subspace, while u+ is the part of δu that accounts
for the effects of first-order sufficiency. Furthermore, we define y0 := G′u0 and y+ :=
G′u+. By the linearity of G′, we have δy = y0 + y+.

Below, we estimate the difference L(y, u, p̄, μ̄1, μ̄2) − L(ȳ, ū, p̄, μ̄1, μ̄2). Let us
write for short L(y, u) − L(ȳ, ū), since (p̄, μ̄1, μ̄2) remains fixed in all the following
considerations. We also do not explicitly indicate the point (ȳ, ū, p̄, μ̄1, μ̄2), where all
derivatives are taken, i.e., we write Luu instead of DuL(ȳ, ū, p̄, μ̄1, μ̄2)u.

Lemma 4.1. Under the assumptions of Theorem 2.3,

L(y, u) − L(ȳ, ū) ≥ δ

4
‖u0‖2

L2(Γ) −
cs
2
‖u+‖2

L2(Γ) + r2 + r̃2(4.2)

holds, where r2, r̃2 are second-order remainder terms with

|ri|
‖u− ū‖2

L2(Γ)

→ 0 as ‖u− ū‖L∞(Γ) → 0.

Proof. Using Taylor’s expansion, in view of (FON) we get

L(y, u) − L(ȳ, ū) = Lu[u− ū] + Ly[y − ȳ] +
1

2
(Luu[u− ū]2

+2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2) + r2

=
1

2
(Luu[u− ū]2 + 2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2) + r2.(4.3)

The following property of the remainder is known:

|r2(ū, h)|
‖h‖2

L2(Γ)

→ 0 as ‖h‖L∞(Γ) → 0.
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For the proof we refer to [22]. According to the notation of Lemma 3.4, we get
y− ȳ = δy + r1. Replacing y− ȳ by δy in (4.3), another second-order remainder term
is needed

r̃2 :=
1

2
(Luu[u− ū]2 + 2Luy[u− ū, y − ȳ] + Lyy[y − ȳ]2)

−1

2
(Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]

2).

It is easy to show that

|r̃2|
‖u− ū‖2

L2(Γ)

→ 0 as ‖u− ū‖L∞(Γ) → 0.

With these notations, (4.3) admits the form

L(y, u) − L(ȳ, ū) =
1

2
(Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]

2) + r2 + r̃2.(4.4)

We continue by splitting the Lagrange functional in terms of u0 and u+,

Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]
2 = Luu[u0]

2 + 2Luy[u0, y0] + Lyy[y0]
2

+Luu[u+]2 + 2Luy[u+, y+] + Lyy[y+]2

+2Luu[u0, u+] + 2Luy[u0, y+]

+2Luy[u+, y0] + 2Lyy[y0, y+].

As u0 belongs to the critical subspace, the SSC yields

L′′[u0, y0]
2 = Luu[u0]

2 + 2Luy[u0, y0] + Lyy[y0]
2 ≥ δ‖u0‖2

L2(Γ).

The other terms are easily estimated by ‖y0‖2
L2(Γ) ≤ ‖S′‖2‖u0‖2

L2(Γ), ‖y+‖2
L2(Γ) ≤

‖S′‖2‖u+‖2
L2(Γ), and by means of Young’s inequality,

|Luu[u+]2 + 2Luy[u+, y+] + Lyy[y+]2

+2Luu[u0, u+] + 2Luy[u0, y+]

+2Luy[u+, y0] + 2Lyy[y0, y+]| ≤ δ

2
‖u0‖2

L2(Γ) + cs‖u+‖2
L2(Γ).

In this setting, cs is a certain (large) constant. Combining the last two results, we
arrive at

Luu[δu]2 + 2Luy[δu, δy] + Lyy[δy]
2 ≥ δ

2
‖u0‖2

L2(Γ) − cs‖u+‖2
L2(Γ).

Returning to (4.4), we end up with

L(y, u) − L(ȳ, ū) ≥ δ

4
‖u0‖2

L2(Γ) −
cs
2
‖u+‖2

L2(Γ) + r2 + r̃2,

which is exactly the assertion.
In the next lemma, the term ‖u+‖2

L2(Γ) in (4.2) is estimated.
Lemma 4.2. Under the assumptions of Theorem 2.3,(

cs
2

+
δ

4

)
‖u+‖2

L2(Γ) ≤ c5‖u1 − ū‖2
L2(A2)

+ c6‖r1‖2
L2(Γ) + c7‖u− ū‖2

L2(A1)
(4.5)
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holds with certain positive constants c5, c6, and c7.
Proof. First, we get on A1

‖u+‖L2(A1) = ‖δu‖L2(A1) = ‖u− ū‖L2(A1).

On the whole set Γ we have

u+ + u0 = δu = u− ū.

We apply the operator I + γS′ to this equation and consider the image only on the
set A2. Using u0 = −γS′u0 on A2, we find

u+ + γS′u+ = u + γS′u− (ū + γS′ū) on A2.(4.6)

Now, u is again replaced by u1 + u2; see (3.19) to obtain on A2,

u+ + γS′u+ = u1 + γS′u1 + u2 + γS′u2 − (ū− γS′ū).

By definition (3.19), the equation u2 + γS′u2 = −r1 is satisfied on A2. Therefore,
here we are able to continue by

u+ + γS′u+ = u1 − ū + (γS′(ū)(u1 − ū)) − r1 on A2.(4.7)

Due to (4.1), u+ = δu = u− ū holds on A1. In addition, u+ vanishes on Γ\ (A1∪A2).
Therefore, we find by (4.1) and (4.7),

u+ =

⎧⎨⎩
u1 − ū− γS′(ū)(u+ − u1 + ū) − r1 on A2,
u− ū on A1,
0 on Γ \ (A1 ∪A2).

Again we have a construction that was investigated in Lemma 3.4. Applying (3.12),
we get the inequality

‖u+‖L2(Γ) ≤ c2‖φ‖L2(Γ),

where φ is defined by

φ =

⎧⎨⎩
−r1 + (u1 − ū) + γS′(ū)(u1 − ū) on A2,
u− ū on A1,
0 on Γ \ (A1 ∪A2).

Therefore, we obtain

‖u+‖L2(Γ) ≤ c2(‖u− ū‖L2(A1) + c8‖u1 − ū‖L2(Γ) + ‖r1‖L2(A2)),

where the positive constant c8 depends on ‖S′‖. In view of (3.19), it holds that
‖u1 − ū‖L2(Γ) = ‖u1 − ū‖L2(A2), and hence we get

‖u+‖L2(Γ) ≤ c9‖u1 − ū‖L2(A2) + c2‖r1‖L2(A2) + c2‖u− ū‖L2(A1).

Young’s inequality yields

‖u+‖2
L2(Γ) ≤ 3c9‖u1 − ū‖2

L2(A2)
+ 3c2‖r1‖2

L2(Γ) + 3c2‖u− ū‖2
L2(A1)

.
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A multiplication by ( cs2 + δ
4 ),(

cs
2

+
δ

4

)
‖u+‖2

L2(Γ) ≤ c5‖u1 − ū‖2
L2(A2)

+ c6‖r1‖2
L2(Γ) + c7‖u− ū‖2

L2(A1)
,

concludes the proof of the lemma.
Now we are able to prove our main result Theorem 2.3.
Proof of Theorem 2.3. Inserting (4.5) in (4.2),

L(y, u) − L(ȳ, ū) ≥ δ

4
(‖u0‖2

L2(Γ) + ‖u+‖2
L2(Γ)) + r2 + r̃2

−c7‖u− ū‖2
L2(A1)

− c5‖u1 − ū‖2
L2(A2)

− c6‖r1‖2
L2(Γ)

is obtained. Next, we return to the objective F ,

L(y, u) − L(ȳ, ū) = F (y, u) − F (ȳ, ū) −
∫

Γ

μ̄1(u− ū) ds(x) −
∫

Γ

(u− ū

+ γ(y − ȳ))μ̄2 ds(x).

Using Lemma 3.5 we find

F (y, u) − F (ȳ, ū) ≥ δ

4
(‖u0‖2

L2(Γ) + ‖u+‖2
L2(Γ)) + r2 + r̃2

+

(
δ1
ε

− c7

)
‖u− ū‖2

L2(A1)
+

(
cA

δ2
ε

− c5

)
‖u1 − ū‖2

L2(A2)

−c6‖r1‖2
L2(Γ).(4.8)

Next, ‖δu‖L2(Γ) = ‖u0 + u+‖2
L2(Γ) ≤ 2‖u0‖2

L2(Γ) + 2‖u+‖2
L2(Γ) is applied to continue

by

F (y, u) − F (ȳ, ū) ≥ δ

8
‖δu‖2

L2(Γ) + r2 + r̃2

+

(
δ1
ε

− c7

)
‖u− ū‖2

L2(A1)
+

(
cA

δ2
ε

− c5

)
‖u1 − ū‖2

L2(A2)

−c6‖r1‖2
L2(Γ).(4.9)

Now take ε sufficiently small, such that

δ1
ε

− c7 ≥ 0 and cA
δ2
ε

− c5 ≥ 0.

Then we can omit the associated terms in (4.9),

F (y, u) − F (ȳ, ū) ≥ δ

8
‖δu‖2

L2(Γ) + r2 + r̃2 − c6‖r1‖2
L2(Γ).(4.10)

Due to the discussions during the proof, all terms on the right-hand side (except the
first one) are small with respect to ‖u− ū‖2

L2(Γ). Therefore

F (y, u) − F (ȳ, ū) ≥ δ

16
‖u− ū‖2

L2(Γ)(4.11)

holds if ‖u− ū‖L∞(Γ) < ε and ε is sufficiently small. The quadratic growth condition
is proven. We can now choose δs = δ/16.
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5. Generalizations. In this section, we discuss weaker assumptions and possible
generalizations. The second-order sufficient optimality condition can be weakened.
Let us define the weakly active control constraints

Aweak
1 := {x ∈ Γ \ (A1 ∪A2) : μ̄1(x) > 0}.

On Aweak
1 we have almost everywhere ū(x) = 0. The control constraints imply u(x)−

ū(x) ≥ 0 a.e. on Aweak
1 for all admissible controls u. Therefore, it is enough to

consider only those elements of the critical subspace, which satisfy the condition

u(x) ≥ 0 ∀x ∈ Aweak
1 .

Corollary 5.1. Suppose that the following weakened second-order sufficient
optimality condition is satisfied: The condition (SSC) is required to be fulfilled only
for those elements (y, u) belonging to the critical subspace (defined in Definition 2.2)
which satisfy the condition

u ≥ 0 on Aweak
1 .

This weaker assumption ensures the result of Theorem 2.3, too.

The presented techniques can be extended to derive sufficient second-order opti-
mality conditions for other types of optimal control problems. For instance, it applies
to distributed elliptic control problems with mixed control constraints considered in
Ω. Moreover, it works for two-sided constraints on the control, where we minimize
(1.1) subject to (1.2),

ua ≤ u(x) ≤ ub for x ∈ Γ,(5.1)

together mixed control-state constraints

c(x) ≤ u(x) + γ(x)y(x) for x ∈ Γ.(5.2)

In this case, the Lagrange functional is

L(y, u, p, μ1, μ2, μ3) = F (y, u) +

∫
Ω

( m∑
i,j=1

aijDjyDip + yp
)
dx−

∫
Γ

b p ds(x)

−
∫

Γ

μ1(u− ua) ds(x) +

∫
Γ

μ3(u− ub) ds(x)

−
∫

Γ

(u + γy − c)μ2 ds(x).

In this definition, we tacitly assume that the Lagrange multiplier μ2 for the constraint
(5.2) is a bounded and measurable function. In contrast to the former sections, we
have not been able to show this. Then, the necessary first-order optimality conditions
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are

(FONBOX)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DyL(ȳ, ū, p̄, μ̄1, μ̄2, μ̄3) = 0

DuL(ȳ, ū, p̄, μ̄1, μ̄2, μ̄3) = 0

and for almost all x ∈ Γ

μ̄1(x) ≥ 0

μ̄3(x) ≥ 0

μ̄2(x) ≥ 0

(ū(x) − ua)μ̄1(x) = 0

(ū(x) − ub)μ̄3(x) = 0

(ū(x) + γ(x)ȳ(x) − c(x))μ̄2(x) = 0.

Definition 5.2. The strongly active sets for problem (1.1), (1.2), (5.1), (5.2)
are

A1(δ1) := {x ∈ Γ : μ̄1(x) ≥ δ1},(5.3)

A3(δ3) := {x ∈ Γ : μ̄3(x) ≥ δ3},(5.4)

A2(δ2) := {x ∈ Γ \ (A1(δ1) ∪A3(δ3)) : μ̄2(x) ≥ δ2}.(5.5)

A pair (y, u) ∈ C(Ω̄) × L∞(Γ) belongs to the critical subspace, if

u = 0 on A1(δ1) ∪A3(δ3),(5.6)

u + γy|Γ = 0 on A2(δ2),(5.7)

and

Ay + y = 0 in Ω,

∂nA
y − b̄y y = b̄u u in Γ.(5.8)

Again, (5.8) implies y|Γ = S′(ū)u.
(SSCBOX): There exist positive numbers δ, δ1, δ2, δ3 such that the definiteness

condition

L′′
(u,y)(ȳ, ū, p̄, μ̄1, μ̄2)[hy, hu]2 ≥ δ‖hu‖2

L2(Γ)(5.9)

holds true for all (hy, hu) belonging to the critical subspace defined upon δ1, δ2, δ3.
Theorem 5.3 (second-order sufficiency for box constraints and mixed constraints).

Assume that (ȳ, ū, p̄, μ̄1, μ̄2, μ̄3) fulfills the first-order optimality system (FONBOX)
and the regularity condition (R) is satisfied. If the second-order condition (SSCBOX)
is satisfied, then there exist δs > 0 and ε > 0 such that the quadratic growth condition

F (y, u) − F (ȳ, ū) ≥ δs‖u− ū‖2
L2(Γ)(5.10)

holds for all admissible pairs (y, u) with ‖u − ū‖L∞(Γ) < ε. Therefore, ū is a locally
optimal control in the norm of L∞(Γ).

This result can be shown along the lines of the sections 3 and 4—with minor
modifications. For the upper control constraint, we find another estimate of the type
(3.21). In section 4, A1 has to be replaced by A1 ∪A3 and δ1 by min(δ1, δ3).
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FOR ERROR BOUNDS IN BANACH SPACES∗
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Abstract. Recently, Huang and Ng presented second-order sufficient conditions for error bounds
of continuous and Gâteaux differentiable functions in Banach spaces. Wu and Ye dropped the
assumption of Huang and Ng on Gâteaux differentiability but required the space to be a Hilbert
space. We carry on this research in two directions. First we extend Wu and Ye’s result to some
non-Hilbert spaces; second, same as Huang and Ng, we work on Banach spaces but provide different
second-order sufficient conditions that may allow the function to be non-Gâteaux differentiable.
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1. Introduction. We consider error bounds for lower semicontinuous functions
in Banach spaces. Let f be a proper lower semicontinuous function on a Banach space
X. Our goal is to study conditions that guarantee the existence of positive constants
γ and m such that

distm(x, S) ≤ γf(x)+ for all x ∈ X,(1.1)

where S := f−1(−∞, 0] and f(x)+ := max{f(x), 0}. We call (1.1) an error bound of
order m. If (1.1) holds for m = 1, then the error bound is of Lipschitz type, which
has been much discussed in the literature; see [7, 10, 11, 12, 13, 14, 15] and the book
[5]. If the function f is convex, then there exist many equivalent characterizations
for error bounds in terms of the first-order directional derivative or first-order sub-
differential of function f . However, if the function is not convex, one usually gives
only sufficient conditions in terms of various first-order generalized subdifferentials or
first-order generalized directional derivatives [7, 8, 12, 14].

The first-order conditions used in the nonconvex case require that the generalized
subdifferentials of f for all x �∈ S are bounded away from zero. Specifically, let ∂ be
a certain generalized subdifferential of f and let

P (α) := {x ∈ X : x �∈ S, ∂f(x) ∩B(0, α) �= ∅},

where B(x, α) denotes a closed ball centered at x with radius α. In order to establish
error bounds for nonconvex functions, it is usually assumed that P (α) is empty for
some α > 0; in other words, there exists a positive scalar α such that ‖ξ‖ ≥ α for
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all ξ ∈ ∂f(X \ S). This assumption is quite restrictive. One naturally asks whether
there are certain conditions for error bound to hold, provided that

P (α) �= ∅ for every α > 0.(1.2)

If f is sufficiently smooth such that ∂f(x) is a singleton and equals the derivative
f ′(x) of f for every x �∈ S, then (1.2) is equivalent to the existence of a sequence {xn}
in X \ S satisfying that limn→∞ f ′(xn) = 0.

Recently, some researchers have considered second-order sufficient conditions for
error bounds of lower semicontinuous functions. Huang and Ng [7] proved that if f is
Gâteaux differentiable and continuous in a Banach space, then an error bound of Lip-
schitz type holds under an assumption on certain second-order directional derivatives.
Wu and Ye [15] removed this assumption and established a similar result. However,
their result requires the space to be a Hilbert space. In this paper we present results
that extend Wu and Ye’s result to non-Hilbert spaces and results that extend Huang
and Ng’s work to possibly non-Gâteaux differentiable functions in Banach spaces.

2. Smoothness and subdifferentials. Let X be a Banach space. B(x, r) and
Br(x) denote the closed and the open ball centered at x with radius r > 0, respectively.

Definition 2.1 (see [9]). The modulus of smoothness ρX(τ), τ > 0, of X is
defined as

ρX(τ) := sup{(‖x + y‖ + ‖x− y‖)/2 − 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.

X is said to be uniformly smooth if limτ→0+ ρX(τ)/τ = 0. A uniformly smooth
Banach space is said to have modulus of smoothness of power p if for some s > 0,

ρX(τ) ≤ sτp for all τ ≥ 0.(2.1)

Consider the example of X = Lp (p > 1). For τ ≥ 0,

ρLp
(τ) ≤

{
τp/p, p ∈ (1, 2),

(p− 1)τ2/2, p ∈ [2,∞).

Thus, Lp is uniformly smooth for p > 1 and has modulus of smoothness of power p
for p ∈ (1, 2) and of power 2 for p ≥ 2. Let

Jp(x) := {ξ ∈ X∗ : 〈ξ, x〉 = ‖ξ‖ ‖x‖ , ‖ξ‖ = ‖x‖p−1}.

It is known that every uniformly smooth Banach space is reflexive, and if X is a
reflexive Banach space, then Jp(x) is the subdifferential of the convex function x �→
‖x‖p /p. That is, ξ ∈ Jp(x) if and only if

‖y‖p /p− ‖x‖p /p ≥ 〈ξ, y − x〉 for all y ∈ X.

In general, Jp(x) is not necessarily a singleton; however, X is uniformly smooth if and
only if Jp(x) is single valued and uniformly continuous on bounded sets [4].

Lemma 2.2. Let X be a uniformly smooth Banach space, x, y ∈ X, and m > 1.
Then

‖y‖m − ‖x‖m ≥ m 〈Jm(x), y − x〉 .

Proof. This is obvious from the definition of subdifferential inequality of convex
functions.
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Lemma 2.3. Let X be a uniformly smooth Banach space and x, y ∈ X. If X
has modulus of smoothness of power m for some m > 1, then there exists a constant
L > 0 such that

〈Jm(x) − Jm(y), x− y〉 ≤ L ‖x− y‖m for all x, y ∈ X.(2.2)

Proof. See Theorem 2 and Remarks 4 and 5 in [16].
Let f : X → R ∪ {∞} be a proper lower semicontinuous function with

dom f := {x ∈ X : f(x) < ∞} �= ∅.

Let us recall several well-known subdifferentials. Let x ∈ dom f .
• The Hölder-smooth subdifferential of order p > 1 of f at x is defined as (see

[2])

∂HS
p f(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖p > −∞

}
.

When p = 2, ∂HS
p f(x) is just the Lipschitz-smooth subdifferential ∂LSf(x) of

f at x [1]:

∂LSf(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖2 > −∞

}
.(2.3)

When X is a Hilbert space and p = 2, ∂HS
p f(x) coincides with the proximal

subdifferential ∂P f(x) [3]. Note that ξ ∈ ∂P f(x) if and only if there exist
η > 0 and σ > 0 such that

f(x + v) − f(x) ≥ 〈ξ, v〉 − σ ‖v‖2
for all v ∈ B(0, η).

• The Fréchet subdifferential of f at x is the set

∂F f(x) :=

{
ξ ∈ X∗ : lim inf

‖v‖→0

f(x + v) − f(x) − 〈ξ, v〉
‖v‖ ≥ 0

}
.

• The Clarke–Rockafellar subdifferential of f at x is the set

∂CRf(x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ sup

ε>0
lim sup
y→fx t↓0

inf
u∈Bε(v)

f(y + tu) − f(y)

t
, ∀v ∈ X

}
,

where y →f x means y → x and f(y) → f(x); when f is locally Lipschitz
at x, the Clarke–Rockafellar subdifferential coincides with the Clarke sub-
differential

∂Cf(x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim sup

(y,t)→(x,0+)

f(y + tv) − f(y)

t
,∀v ∈ X

}
.

• The Hadamard subdifferential of f at x is the set

∂Hf (x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim inf

(u,t)→(v,0+)

f (x + tu) − f (x)

t
, ∀v ∈ X

}
.

When f is locally Lipschitz at x, the Hadamard subdifferential coincides with
the Gâteaux subdifferential

∂Gf (x) :=

{
ξ ∈ X∗ : 〈ξ, v〉 ≤ lim inf

t→0+

f (x + tv) − f (x)

t
,∀v ∈ X

}
.
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It is straightforward to verify that for p > 1,

∂HS
p f(x) ⊂ ∂F f(x) ⊂ ∂Hf(x) ⊂ ∂CRf(x).(2.4)

Proposition 2.4. Let g be a continuous function on a Banach space X. Sup-
pose that ∂HS

p g(x) and ∂HS
p (−g)(x) are both nonempty. Then ∂HS

p g(x) is equal to

−∂HS
p (−g)(x) and ∂HS

p g(x) is a singleton.

Proof. Let ξ ∈ ∂HS
p g(x) and x∗ ∈ ∂HS

p (−g)(x). From the definition of the Hölder-
smooth subdifferential, there exist σ > 0 and η > 0 such that for all v ∈ B(0, η),

g(x + v) − g(x) ≥ 〈ξ, v〉 − (σ/2) ‖v‖p ,
−g(x + v) + g(x) ≥ 〈x∗, v〉 − (σ/2) ‖v‖p .

Adding these two expressions together, we have

〈ξ + x∗, v〉 ≤ σ ‖v‖p for all v ∈ B(0, η),

which implies that ξ + x∗ = 0 as p > 1. Since ξ ∈ ∂HS
p g(x) and x∗ ∈ ∂HS

p (−g)(x) are

arbitrary, ∂HS
p g(x) is equal to −∂HS

p (−g)(x) and is a singleton.

Proposition 2.5. The subdifferential ∂HS
p has the following properties:

(P1) ∂HS
p f(x) coincides with the subdifferential in the sense of convex analysis

whenever f is convex;
(P2) 0 ∈ ∂HS

p f(x) whenever x ∈ dom f is a local minimum of f ;

(P3) ∂HS
p (f + g)(x) ⊂ ∂HS

p f(x) + ∂HS
p g(x) whenever g is a continuous function

with the property that ∂HS
p g(x) and ∂HS

p (−g)(x) are both nonempty.
Proof. (P1) Let g be a convex function and x ∈ dom g. Just observe that for a

convex function the Clarke–Rockafellar subdifferential and the usual (Fenchel) sub-
differential in convex analysis coincide for lower semicontinuous functions and that
the Fenchel subdifferential is obviously contained in ∂HS

p g(x). The conclusion follows
immediately from (2.4).

(P2) It is obvious from the definition of ∂HS
p .

(P3) Note that

∂HS
p f(x) = ∂HS

p (f + g − g)(x) ⊃ ∂HS
p (f + g)(x) + ∂HS

p (−g)(x),(2.5)

where the inclusion relation is from the definition of the Hölder-smooth subdifferential.
Since g is continuous and ∂HS

p g(x) and ∂HS
p (−g)(x) are both nonempty, by virtue

of Proposition 2.4, ∂HS
p (−g)(x) is a singleton and ∂HS

p (−g)(x) = −∂HS
p g(x). This

together with (2.5) yield the conclusion.
Proposition 2.6. If X is a uniformly smooth Banach space which has mod-

ulus of smoothness of power p for some p > 1 and x �= 0, then the Hölder-smooth
subdifferential of order p of the functions ‖x‖p /p and −‖x‖p /p are nonempty and
∂HS
p (−‖·‖p /p)(x) = −Jp(x).

Proof. Since X is uniformly smooth, the function ‖·‖ and hence the convex
function ‖·‖p /p are Fréchet differentiable at x. Therefore ∂HS

p (‖·‖)(x) is nonempty

by Proposition 2.5. Now we prove that ∂HS
p (−‖·‖p /p)(x) is nonempty. Since Jp(x)

is the subdifferential of ‖x‖p /p in the sense of convex analysis, for v �= 0,

−‖x + v‖p /p + ‖x‖p /p− 〈−Jp(x), v〉
‖v‖p ≥ 〈Jp(x) − Jp(x + v), v〉

‖v‖p ≥ −L,

where the last inequality follows from Lemma 2.3 and L is the constant that appeared
in Lemma 2.3. This proves that −Jp(x) belongs to ∂HS

p (−‖·‖p /p)(x) by the definition
of the Hölder-smooth subdifferential.
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3. Error bounds in smooth Banach spaces. The following result generalizes
the second-order sufficient condition for error bounds established in [15] from the
Hilbert space to smooth Banach spaces.

Theorem 3.1. Let X be a uniformly smooth Banach space which has modulus
of smoothness of power m for some m > 1, and let f : X → R ∪ {∞} be a proper
lower semicontinuous function. Suppose that there exists δ > 0 such that for all
x ∈ f−1(0,∞),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ for each ξ ∈ ∂HS
m f(x).(3.1)

Then

distm(x, S) ≤ (mL/δ) f(x)+ for all x ∈ X,(3.2)

where L is the constant that appeared in (2.2).
Proof. Write γ for mL/δ. Suppose that the conclusion does not hold: there exists

some u with f(u) > 0 such that

distm(u, S) > γ f(u).

Then we can find t > 1 such that distm(u, S) > tγ f(u), and hence

f(u) = f(u)+ < inf
x∈X

f(x)+ + γ−1c,(3.3)

where c := tγ f(u). Applying the Borwein–Preiss smooth variational principle [2], we
obtain the existence of some v ∈ X such that

‖u− v‖ < m
√
c and(3.4)

f(v)+ + γ−1Δm(v) ≤ f(x)+ + γ−1Δm(x) for all x ∈ X,(3.5)

where Δm(x) :=
∑∞

k=1 μk ‖x− vk‖m for some sequence {vk} converging to v and
some sequence {μk} satisfying μk > 0 and

∑∞
k=1 μk = 1.

It follows from (3.4) and the choice of u that v �∈ S. Hence v is a global mini-
mizer of the function f(x) + γ−1Δm(x) and hence a global minimizer of the function
γm−1f(x) +m−1Δm(x) over the open set X \ S. In view of the definition of Hölder-
smooth subdifferential ∂HS

m , it follows that

0 ∈ ∂HS
m (γm−1f + m−1Δm)(v).(3.6)

Clearly m−1Δm(x) is a real valued continuous convex function. Hence ∂HS
m (m−1Δm)(v)

coincides with the subdifferential in the sense of convex analysis by Proposition 2.5
and so is nonempty. Since the space X is uniformly smooth, it follows that for
every x, Jm(x − vk) is a singleton for each k and the sequence {Jm(x − vk)}∞k=1

is bounded. Thus, m−1Δm(x) is Fréchet differentiable with its Fréchet derivative
(m−1Δm)′(x) =

∑∞
k=1 μkJm(x− vk). Since ∂HS

m (m−1Δm)(v) is nonempty, it follows
that

∂HS
m (m−1Δm)(v) =

{
(m−1Δm)′(v)

}
.(3.7)

We claim that ∂HS
m (−m−1Δm)(v) contains −(m−1Δm)′(v) and hence is nonempty.

This together with (3.6), Propositions 2.4 and 2.5, and (3.7) yields that

ξ := −mγ−1
∞∑
k=1

μkJm(v − vk) ∈ ∂HS
m f(v).(3.8)



800 YIRAN HE AND JIE SUN

Indeed,

lim inf
h→0

(−m−1Δm)(v + h) − (−m−1Δm)(v) −
〈
(−m−1Δm)′(v), h

〉
‖h‖m

= lim inf
h→0

〈
(−m−1Δm)′(v + θ(h)h), h

〉
−
〈
(−m−1Δm)′(v), h

〉
‖h‖m (0 < θ(h) < 1)

= lim inf
h→0

∑∞
k=1 μk 〈Jm(v − vk) − Jm(v + θ(h)h− vk), h〉

‖h‖m

≥ lim inf
h→0

−Lθ(h)m−1 ≥ −L > −∞,

where the first equality is from the mean value theorem and the first inequality fol-
lows from Lemma 2.3 and the facts of μk > 0 and

∑∞
k=1 μk = 1. In view of the

definition of Hölder-smooth subdifferential ∂HS
m , it follows that −(m−1Δm)′(v) ∈

∂HS
m (−m−1Δm)(v).

By (3.8) and the assumption (3.1), there exist sequences tn → 0+ and ‖un‖ → 1
such that

lim
n→∞

f(v + tnun) − f(v) − tn 〈ξ, un〉
tmn

< −δ = −mLγ−1.(3.9)

Since X \ S is an open set as f is lower semicontinuous, we have f(v + tnun) > 0 for
sufficiently large n. It follows from (3.5) that

f(v + tnun) − f(v) − tn 〈ξ, un〉
tmn

=
f(v + tnun) − f(v) + mγ−1tn

∑∞
k=1 μk 〈Jm(v − vk), un〉

tmn

≥
∑∞

k=1 μk {‖v − vk‖m − ‖v + tnun − vk‖m} + m
∑∞

k=1 μk 〈Jm(v − vk), tnun〉
γtmn

≥ mγ−1t−m
n

∞∑
k=1

μk 〈Jm(v − vk) − Jm(v + tnun − vk), tnun〉

≥ −mLγ−1 ‖un‖m → −mLγ−1 = −δ ( as n → ∞),

where the second inequality follows from Lemma 2.2 and the third inequality follows
from Lemma 2.3. This contradicts (3.9).

In view of the assumption (3.1), it is straightforward to see that if the ∂HS
p f(x)

is replaced by a larger set such as ∂F f(x), ∂Hf(x), or ∂CRf(x) (see (2.4)), then
the condition becomes more stringent. In other words, our requirement on the sub-
differential is fairly weak.

Corollary 3.2. Let X be a uniformly smooth Banach space which has modulus
of smoothness of power 2, and let f : X → R∪{∞} be a proper lower semicontinuous
function. If there exists δ > 0 such that for all x ∈ f−1(0,∞) and all ξ ∈ ∂LSf(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
t2

< −δ,

then

dist2(x, S) ≤ (2L/δ) f(x)+ for all x ∈ X.
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Proof. Since p = 2, the Hölder subdifferential ∂HS
p coincides with the Lipschitz-

smooth subdifferential ∂LS . The conclusion thus follows immediately from Theo-
rem 3.1.

Remark 3.1. Since all Hilbert spaces are uniformly smooth with modulus of
smoothness of power 2 (see [9]) and since when X is a Hilbert space ∂LSf(x) coincides
with the proximal subdifferential ∂P f(x), Corollary 3.2 generalizes Theorem 3.1 in
[15] for its ε = ∞. Moreover, there exist Banach spaces, say Lp(μ) for p ≥ 2, which
are uniformly smooth with modulus of smoothness of power 2 but are not Hilbert
spaces [9]. Therefore Corollary 3.2 is applicable to a broader class of spaces than [15,
Theorem 3.1]. The same as what was done in [15], our results can also be verified for
general ε > 0. We omit the details for brevity.

From the argument of Theorem 3.1, it can be seen that one can replace the Hölder
smooth subdifferential ∂HS

m of f by some other classes of subdifferentials. Let us define
an abstract subdifferential in the following.

Definition 3.3 (see [1]). An abstract subdifferential, denoted by ∂, is any
operator that associates a subset ∂f(x) ⊂ X∗ to a lower semicontinuous function
f : X → R ∪ {∞} and a point x ∈ X, satisfying the following properties:

(P1) ∂f(x) coincides with the subdifferential in the sense of convex analysis when-
ever f is convex;

(P2) 0 ∈ ∂f(x) whenever x ∈ dom f is a local minimum of f ;
(P3) ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x) whenever g is a real valued convex continuous

function which satisfies ∂g(x) and ∂(−g)(x) are both nonempty.
Paper [1] provides various classes of subdifferentials satisfying the above properties

(P1)–(P3)—for example, the Hadamard subdifferential, the Gâteaux subdifferential,
the Fréchet subdifferential, and the Clarke–Rockafellar subdifferential.

For p > 1, we denote by Γp all the functions of the form

Γ(x) :=
1

p

∞∑
k=1

μk ‖x− uk‖p for all x ∈ X,(3.10)

where {uk} is any convergent sequence in X and {μk} is any sequence of nonnegative
scalars satisfying

∑∞
k=1 μk = 1. Clearly, each function in Γp is a real valued continuous

convex function.
Theorem 3.4. Let X be a uniformly smooth Banach space which has modulus

of smoothness of power m > 1 and let f : X → R ∪ {∞} be a proper lower semi-
continuous function. Let ∂ be an abstract subdifferential satisfying properties (P1)–
(P3) in Definition 3.3 and an additional property:

(P4) ∂(−Γ)(x) is nonempty for each Γ ∈ Γm.
If there exists δ > 0 such that for all x ∈ f−1(0,∞) and all ξ ∈ ∂f(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ,

then

distm(x, S) ≤ (mL/δ) f(x)+ for all x ∈ X.

Proof. After checking the proof of Theorem 3.1, we know the key role played by
the subdifferential is the part from (3.6) to (3.8). Since each Γ(x) is a continuous real
valued convex function, ∂Γ(x) is nonempty. In view of the property (P4) and (P3),
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one can establish (3.8) in a similar way. The remaining proof is similar to the proof
of Theorem 3.1.

The above theorems establish m-order error bounds for lower semicontinuous
functions in certain classes of Banach spaces. As a corollary of Theorem 3.1, we give
an error bound of order one whose proof is similar to that of Theorem 3.3 in [15].
Recall that S is the set f−1(−∞, 0], and define

P (α) := {x ∈ X \ S : ∂HS
m f(x) ∩B(0, α) �= ∅} for α > 0.(3.11)

Theorem 3.5. Let X be a uniformly smooth Banach space which has modulus of
smoothness of power m for some m > 1 and let f : X → R ∪ {∞} be a proper lower
semicontinuous function. Suppose that the following two conditions hold.

(i) P (α) ⊂ f−1(β,∞) for some α > 0 and some β > 0.
(ii) There exists δ > 0 such that for all x ∈ f−1(β,∞) and all ξ ∈ ∂HS

m f(x),

lim inf
‖u‖→1,t↓0

f(x + tu) − f(x) − t 〈ξ, u〉
tm

< −δ.

Then there exists c > 0 such that

dist(x, S) ≤ c f(x)+ for all x ∈ X.

4. Error bounds in general Banach spaces. In the last section, we have
established second-order sufficient conditions for error bounds of lower semicontinuous
functions in smooth Banach spaces. In what follows we will provide different second-
order sufficient conditions for error bounds in general Banach spaces. The result
of this section generalizes that in [7], which gives second-order sufficient conditions
for error bounds in general Banach spaces but requires the function to be Gâteaux
differentiable. Our results show that the assumption of Gâteaux differentiability can
be removed. Before that, we need to define second-order directional derivative. Let
X be a Banach space and f : X → R ∪ {∞} be a proper lower semicontinuous
function. For x, u, v ∈ X, we define respectively Hadamard directional derivative and
a second-order directional derivative:

f ′
−(x;u) := lim inf

v→u, t↓0

f(x + tv) − f(x)

t
;

d2
−f(x;u, v) := lim inf

t→0+

f(x + tu + t2v) − f(x) − tf ′(x)u

t2

whenever f is Gâteaux differentiable.

It can be seen that if f is Gâteaux differentiable at x with f ′(x) being the Gâteaux
derivative, then f ′

−(x;u) ≤ f ′(x)u for every u; the equality holds if in addition f is
locally Lipschitz at x. If f is twice continuously differentiable, then

d2
−f(x;u, 0) = (1/2)∇2f(x)(u, u),

where ∇2f(x) denotes the second-order derivative of f at x.
For ε > 0, we define a set

D(ε) :=
{
x ∈ X : x �∈ S and inf‖u‖=1 f

′
−(x;u) ≥ −ε

}
.

If f is Gâteaux differentiable on X, then

D(ε) ⊂ {x ∈ X : x �∈ S and ‖f ′(x)‖ ≤ ε} =: D(ε),
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where the set D(ε) is introduced and used in [7] for studying second-order sufficient
conditions for continuous and Gâteaux differentiable functions to have error bounds.

The following lemma [12, Lemma 2.3] is a straightforward consequence of Theorem
2(ii) in [6].

Lemma 4.1. Let X be a Banach space and f : X → R ∪ {∞} be a proper lower
semicontinuous function. If there exists γ > 0 such that for every x ∈ f−1(0,∞) there
is y ∈ f−1[0,∞) such that

f(x) − f(y) ≥ γ ‖x− y‖ > 0,

then dist(x, S) ≤ γ−1f(x)+ for all x ∈ X.
Theorem 4.2. Let f : X → R be a continuous function. Suppose that there exist

positive scalars r, ρ, and δ such that the following conditions hold:
(i) D(ρ) ⊂ f−1(r,∞);

(ii) lim supt→0+ supx∈D(ρ) inf‖u‖=1
f(x+tu)−f(x)+tf ′

−(x;−u)

t2 < −δ.

Then there exists γ > 0 such that dist(x, S) ≤ γ−1f(x)+ for all x ∈ X.
Proof. We need to consider only those points x not in S. In view of the assumption

(ii), there exists β ∈ (0, 1/2] such that for every t ∈ (0, β) and every x ∈ D(ρ), a unit
vector u (dependent on t and x) exists and satisfies that

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.1)

Take ε = min{ρ, βδ/4} and γ = min{r, ε/2}.
Let x ∈ D(ε) be such that dist(x, S) ≥ 1. Put λ = β/2. It follows that x+λu �∈ S

for any unit vector u. Since ε ≤ ρ, x ∈ D(ε) ⊂ D(ρ), it follows from (4.1) that there
exists a unit vector uλ such that

f(x + λuλ) − f(x) + λf ′
−(x;−uλ) < −λ2δ.

In view of the definition of D(ε), x ∈ D(ε) implies that f ′
−(x;−uλ) ≥ −ε. Therefore,

f(x) − f(x + λuλ) ≥ λ2δ − λε ≥ γλ = γ ‖x− (x + λuλ)‖ .

For x ∈ D(ε) and dist(x, S) < 1, there exists y ∈ S such that ‖x− y‖ < 1.
Since f is continuous, y can be chosen to satisfy f(y) = 0. Since x ∈ D(ε) and
D(ε) ⊂ f−1(r,∞), one has f(x) > r. It follows that

f(x) − f(y) ≥ r > r ‖x− y‖ ≥ γ ‖x− y‖ > 0.

For x �∈ D(ε), we have f ′
−(x;u) < −ε for some unit vector u. It follows that

there exist a sequence of positive scalars {tn} converging to zero and a sequence {un}
converging to u such that for sufficiently large n,

f(x + tnun) − f(x) < −εtn.

Since γ < ε and ‖un‖ → 1, γ ‖un‖ < ε for large enough n. This implies that

f(x) − f(x + tnun) > εtn ≥ γtn ‖un‖ = γ ‖x− (x + tnun)‖

for sufficiently large n.
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Thus, we have shown that for each x �∈ S, there exists y ∈ f−1[0,∞) such
that f(x) − f(y) ≥ γ ‖x− y‖. Then, by applying Lemma 4.1, we obtain the desired
conclusion.

Huang and Ng [7] considered error bounds in general Banach spaces for a func-
tion which is Gâteaux differentiable and continuous. Besides the assumption (i) of
Theorem 4.2, [7] requires another condition: There exist β > 0 and δ > 0 such that
for all x ∈ D(ρ),

inf
‖u‖=1

sup
t∈[0,β)

d2
−f(x + tu;u, 0) < −δ.(4.2)

Because f is Gâteaux differentiable and continuous, f ′
−(x;−u) ≤ −f ′(x)u. It follows

from [7, Theorem 3.1] that the condition (4.2) implies the existence of β > 0 and
δ > 0 such that for all x ∈ D(ρ),

inf
‖u‖=1

sup
t∈(0,β)

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.3)

Note that our assumption (ii) in Theorem 4.2 is that there exist β > 0 and δ > 0 such
that for all x ∈ D(ρ),

sup
t∈(0,β)

inf
‖u‖=1

f(x + tu) − f(x) + tf ′
−(x;−u)

t2
< −δ.(4.4)

Since D(ρ) ⊂ D(ρ), it is straightforward that (4.3) and hence (4.2) imply (4.4).
The latter is a restatement of our assumption (ii), which is therefore less restrictive
than the assumption (4.2) as our assumption (ii) also allows f to be non-Gâteaux
differentiable.
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ALL LINEAR AND INTEGER PROGRAMS ARE SLIM 3-WAY
TRANSPORTATION PROGRAMS∗

JESÚS A. DE LOERA† AND SHMUEL ONN‡

Abstract. We show that any rational convex polytope is polynomial-time representable as a
3-way line-sum transportation polytope of “slim” (r, c, 3) format. This universality theorem has
important consequences for linear and integer programming and for confidential statistical data dis-
closure. We provide a polynomial-time embedding of arbitrary linear programs and integer programs
in such slim transportation programs and in bitransportation programs. Our construction resolves
several standing problems on 3-way transportation polytopes. For example, it demonstrates that,
unlike the case of 2-way contingency tables, the range of values an entry can attain in any slim 3-way
contingency table with specified 2-margins can contain arbitrary gaps. Our smallest such example
has format (6, 4, 3). Our construction provides a powerful automatic tool for studying concrete ques-
tions about transportation polytopes and contingency tables. For example, it automatically provides
new proofs for some classical results, including a well-known “real-feasible but integer-infeasible”
(6, 4, 3)-transportation polytope of M. Vlach, and bitransportation programs where any feasible bi-
transportation must have an arbitrarily large prescribed denominator.

Key words. integer programming, linear programming, combinatorial optimization, convex
polytopes, transportation problems, multicommodity flows, strongly polynomial time, contingency
tables, multiway table, statistical table, data security, privacy, approximation algorithms, Markov
basis, toric ideal, cofinetiality, disclosure

AMS subject classifications. 90C11, 52B55, 90B06, 68R05, 15A39, 62H17
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1. Introduction. Transportation polytopes, their integer points (called con-
tingency tables by statisticians), and their projections have been used and studied
extensively in the operations research and mathematical programming literature (see,
e.g., [1, 2, 5, 17, 20, 23, 24, 29, 30] and references therein) and in the context of secure
statistical data management by agencies such as the U.S. Census Bureau [28] (see,
e.g., [3, 4, 9, 10, 13, 18, 22] and references therein).

We start right away with the statement of the main theorem of this article. Its
proof will be the subject of section 3. Some of the many implications of the main
theorem for linear and integer programming, combinatorial optimization, and confi-
dential statistical data disclosure will be discussed in section 2. The consequences
include the solution of several long-standing open questions stated by Vlach in 1986
[29]. Following a common convention we denote by R≥0 the nonnegative reals. In
what follows, a 3-way transportation polytope is slim if one of its dimensions has
depth three.
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Theorem 1.1. Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time

representable as a slim 3-way transportation polytope:

T =

⎧⎨⎩x ∈ Rr×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬⎭ .

By saying that a polytope P ⊂ Rp is representable as a polytope Q ⊂ Rq we mean
in the strong sense that there is an injection σ : {1, . . . , p} −→ {1, . . . , q} such that
the coordinate-erasing projection

π : Rq −→ Rp : x = (x1, . . . , xq) �→ π(x) = (xσ(1), . . . , xσ(p))

provides a bijection between Q and P and between the sets of integer points Q∩Zq and
P ∩Zp. In particular, if P is representable as Q, then P and Q are isomorphic in any
reasonable sense: They are linearly equivalent, and hence all linear programming re-
lated problems over the two are polynomial-time equivalent; they are combinatorially
equivalent and hence have the same facial structure; and they are integer equivalent,
and therefore all integer programming and integer counting related problems over the
two are polynomial-time equivalent as well. The polytope T in the theorem is a 3-way
transportation polytope with specified line-sums (ui,j), (vi,k), (wj,k) (2-margins in the
statistical context to be elaborated upon below). The arrays in T are of size (r, c, 3);
that is, they have r rows, c columns, and “slim” depth 3, which is the best possi-
ble: 3-way line-sum transportation polytopes of depth ≤ 2 are equivalent to ordinary
2-way transportation polytopes which are not universal.

An appealing feature of Theorem 1.1 is that the defining system of T has only
{0, 1}-valued coefficients and depends only on r and c. Thus, every rational polytope
has a representation by one such system, where all information enters through the
right-hand side (ui,j), (vi,k), (wj,k).

We have also proved a second universality theorem about the following bitrans-
portation problems: Given supply vectors s1, s2 ∈ Rr

≥0, demand vectors d1, d2 ∈ Rc
≥0,

and capacity matrix u ∈ Rr×c
≥0 , find a pair of nonnegative “transportations” x1, x2 ∈

Rr×c
≥0 satisfying supply and demand requirements

∑
j x

k
i,j = ski ,

∑
i x

k
i,j = dkj , k = 1, 2,

and capacity constraints x1
i,j + x2

i,j ≤ ui,j . In other words, find x1, x2 ≥ 0 such that

xk has row-sum sk and column-sum dk for k = 1, 2, and x1 + x2 ≤ u.
Theorem 1.2. Any rational polytope P = {y ∈ Rn

≥0 : Ay = b} is polynomial-time
representable as a bitransportation polytope

F =

⎧⎨⎩(x1, x2) ∈ Rr×c
≥0 ⊕ Rr×c

≥0 : x1
i,j + x2

i,j ≤ ui,j ,

∑
j

xk
i,j = ski ,

∑
i

xk
i,j = dkj , k = 1, 2

⎫⎬⎭ .

The proof is an easy adjustment of part of the proof of Theorem 1.1 (i.e., Theorem
3.3) and is presented in section 3.5. The theorem remains valid if we take all supplies
to have the same value ski = U , i = 1, . . . , r, k = 1, 2; further, all capacities ui,j can
be taken to be {0, U}-valued, giving a stronger statement.

The bitransportation problem gives at once a very simple two-commodity flow
network as follows: start with the directed bipartite graph with vertex set I 
 J ,
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|I| = r, |J | = c, and arc set I × J with capacities ui,j , and augment it with two
sources a1, a2 and two sinks b1, b2 and with arcs (ak, i), i ∈ I, (j, bk), j ∈ J , k = 1, 2
with capacities u(ak, i) := ski , u(j, bk) := dkj . The feasible bitransportations are then
precisely the two-commodity flows of maximal total value. This implies a result first
obtained by A. Itai [19]: every linear program is polynomially equivalent to a two-
commodity flow problem. It is worth noting that our transformation is in fact much
simpler than Itai’s. In particular, the above network is exceedingly special: every
dipath has length three and is of the form (ak, i, j, bk) for some k ∈ {1, 2}, i ∈ I, and
j ∈ J and involves only one “interesting” arc ij. Further, each such arc ij carries flow
of each commodity on precisely one path.

To demonstrate the concrete nature of our transformations, the procedures that
convert any given data A, b to data to the representations of Theorems 1.1 and 1.2
have been implemented in a computer program which is available on-line (see [27]).

2. The consequences of the main results. We now discuss some conse-
quences of Theorems 1.1 and 1.2. A few of them were first presented in [7].

2.1. Universality of transportation polytopes: Solution of Vlach’s prob-
lems. As mentioned above, there is a large body of literature on the structure of
various transportation polytopes. In particular, in the comprehensive paper [29], M.
Vlach surveys some ten families of necessary conditions published over the years by
several authors (including Schell, Haley, Smith, Morávek, and Vlach) on the line-sums
(ui,j), (vi,j), (wi,j) for a transportation polytope to be nonempty, and raises several
concrete problems regarding these polytopes. Specifically, [29, Problems 4, 7, 9, 10]
ask about the sufficiency of some of these conditions. Our results say that transporta-
tion polytopes (in fact already of slim, (r, c, 3), arrays) are universal and include all
polytopes. This indicated that the answer to each of Problems 4, 7, 9, and 10 has to
be negative. Indeed we have already verified this.

Example 2.1 (Smith II conditions are not sufficient). Using our encoding, in
particular, applying the algorithm of Theorem 3.2 to the infeasible polyhedron P =
{(x, y) : x+ y = 1, x+ y = 2, x, y ≥ 0}, with 2 as an upper bound on its entry values,
we obtained concrete 2-margins (below). These 2-margins satisfy conditions (8.1)–
(8.3) on page 72 of [29] while giving an infeasible system; thus the example solves
open problem 7 in [29]. Note for reference that for the given matrices the top-left
corners are the margin values u1,1, v1,1, w1,1.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 0 0 2 0 0 0
0 0 0 0 2 0 0 0 2 0 0
0 0 2 0 2 0 0 0 0 2 0
0 0 0 0 2 0 0 0 0 0 2
0 0 0 0 0 2 0 2 0 0 0
0 2 0 0 0 2 0 0 2 0 0
0 0 0 0 0 2 0 0 0 2 0
0 0 0 2 0 2 0 0 0 0 2
0 2 0 0 0 0 2 2 0 0 0
2 0 0 0 0 0 2 0 2 0 0
0 0 0 2 0 0 2 0 0 2 0
0 0 2 0 0 0 2 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2
2 0 2
2 2 2
2 0 2
2 0 2
2 2 2
2 0 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 0
2 2 0
2 2 0
2 2 0
7 0 1
6 0 2
3 0 5
0 2 4
0 2 4
0 2 4
0 2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, Problem 12 on page 76 of [29] asks whether all dimensions can occur as that
of a suitable transportation polytope: the affirmative answer, given very recently in
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[15], follows also at once from our universality result. Our construction also provides
a powerful tool for studying concrete questions about transportation polytopes and
their integer points, by allowing us to write down simple systems of equations that
encode desired situations and lifting them up. Here is an example to this effect.

Example 2.2 (Vlach’s rational-nonempty integer-empty transportation). Using
our construction, we automatically recover the smallest known example, first discov-
ered by Vlach [29], of a rational-nonempty integer-empty transportation polytope, as
follows. We start with the polytope P = {y ≥ 0 : 2y = 1} in one variable, containing
a (single) rational point but no integer point. Our construction represents it as a
transportation polytope T of (6, 4, 3)-arrays with line-sums given by the three matri-
ces below; by Theorem 1.1, T is integer equivalent to P and hence also contains a
(single) rational point but no integer point.⎛⎜⎝

1 0 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
1 0 0 1 0 1

⎞⎟⎠ ,

⎛⎝ 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1

⎞⎠ ,

⎛⎜⎝
1 1 1
1 1 1
1 1 1
1 1 1

⎞⎟⎠ .

Returning to the Vlach problems, [29, Problem 13] asks for a characterization of
those line-sums margins that guarantee an integer point in a 3-way transportation
polytope T . In [18], Irving and Jerrum showed that deciding whether T ∩ Zr×c×h �=
∅ is NP-complete, and hence an efficient such characterization cannot exist unless
NP = coNP . An immediate corollary of Theorem 1.1 strengthens this result to hold
for slim arrays:

Corollary 2.3. Deciding if a slim, (r, c, 3), transportation polytope has an
integer point is NP-complete.

A comprehensive complexity classification of this decision problem under various
assumptions on the array size and on the input, as well as of the related lattice point
counting problem and other variants, appeared in [6].

The last Vlach problem [29, Problem 14] asks whether there is a strongly polynomial-
time algorithm for deciding the (real) feasibility T �= ∅ of a transportation polytope.
Since the system defining T is {0, 1}-valued, the results of Tardos [26] provide an
affirmative answer. However, the existence of a strongly polynomial-time algorithm
for linear programming in general is open and of central importance; our construction
embeds any linear program in an (r, c, 3) transportation program in polynomial-time,
but unfortunately this process is not strongly polynomial. Nonetheless, our construc-
tion may shed some light on the problem and may turn out useful in sharpening
the boundary (if any) between strongly and weakly polynomial-time solvable linear
programs.

2.2. Universality for approximations. The representation manifested by The-
orem 1.1 allows us to represent an arbitrary integer programming problem min{cy :
y ∈ Nn, Ay = b} as a problem of finding minimum cost integer transportation,

min

⎧⎨⎩∑
i,j,k

pi,j,kxi,j,k : x ∈ Nr×c×3 ,
∑
i

xi,j,k = wj,k ,

∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬⎭ ,



810 JESÚS DE LOERA AND SHMUEL ONN

by simply extending the cost vector c by zeros to a cost array p. In particular, the
feasible (integer) solutions y to the original problem are in cost-preserving bijection
with the feasible (integer) transportations x (that is, cy = px for any corresponding
pair). This shows that the representation preserves approximations, and that mini-
mum cost transportation problems of slim format (r, c, 3) are universal for approxi-
mation as well. In particular, any nonapproximability result—say, for the maximum
clique problem [14]—lifts at once to the slim minimum cost transportation problem:
just start with an integer programming formulation of the maximum clique prob-
lem with {0, 1}-valued right-hand-side vector b, and lift it up. We get the following
hardness-of-approximation result.

Corollary 2.4. Under the assumption P �= NP , there is an ε > 0 such that
there is no polynomial-time (rc)ε-approximation algorithm for the minimum cost slim
(r, c, 3) line-sum transportation problem.

We do not attempt here to provide the largest possible ε. Note, of course, that
in particular, unless P = NP , there is no constant ratio approximation for the 3-way
transportation problem (the problem is not in the class Apx).

2.3. Confidential statistical data disclosure: Entry-range. Next, we briefly
discuss some of the applications to statistical model theory: a comprehensive treat-
ment can be found in [8]. A central goal of statistical data management by agencies
such as the U.S. Census Bureau is to allow public access to information on their data
base while protecting confidentiality of individuals whose data is in the base. A com-
mon practice [10], taken in particular by the Bureau [28], is to allow the release of
some margins of tables in the base but not the individual entries themselves. The
security of an entry is closely related to the range of values it can attain in any table
with the fixed released collection of margins: if the range is “simple,” then the entry
may be exposed, whereas if it is “complex” the entry may be assumed secure.

In this subsection only, we use the following notation, which is common in sta-
tistical applications. A d-table of size n = (n1, . . . , nd) is an array of nonnega-
tive integers x = (xi1,...,id), 1 ≤ ij ≤ nj . For any 0 ≤ k ≤ d and any k-subset
J ⊆ {1, . . . , d}, the k-margin of x corresponding to J is the k-table xJ := (xJ

ij :j∈J) :=

(
∑

ij :j /∈J xi1,...,id) obtained by summing the entries over all indices not in J . For in-

stance, the 2-margins of a 3-table x = (xi1,i2,i3) are its line-sums x12, x13, x23 such as
x13 = (x13

i1,i3
) = (

∑
i2
xi1,i2,i3), and its 1-margins are its plane-sums x1, x2, x3 such as

x2 = (x2
i2

) = (
∑

i1,i3
xi1,i2,i3).

A statistical model is a triple M = (d,J , n), where J is a set of subsets of
{1, . . . , d} none containing the other and n = (n1, . . . , nd) is a tuple of positive integers.
The model dictates the collection of margins for d-tables of size n to be specified. Our
results concern the models (3, {12, 13, 23}, (r, c, 3)), that is, slim, (r, c, 3)-tables, with
all three of their 2-margins specified.

For any model M = (d,J , n) and any specified collection of margins u = (uJ : J ∈
J ) under the model M, the corresponding set of contingency tables with collection
of margins u is

C(M;u) := {x ∈ Nn1×···×nd : xJ = uJ , J ∈ J } .

Clearly, this set is precisely the set of integer points in the corresponding transporta-
tion polyhedron.

Finally, we define entry-ranges. Permuting coordinates, we may always consider
the first entry x1, where 1 := (1, . . . , 1). The entry-range of a collection of margins
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u under a model M is the set R(M;u) := {x1 : x ∈ C(M;u)} ⊂ N of values x1 can
attain in any table with these margins.

Often, the entry-range is an interval and hence “simple” and vulnerable, that is,
for some a, b ∈ N, R(M;u) = {r ∈ N : a ≤ r ≤ b}. For instance, as shown in [8], this
indeed is the case for any 1-margin model M = (d, {1, 2, . . . , d}, (n1, . . . , nd)) and any
collection of margins u = (u1, . . . , ud) under M.

In striking contrast with this situation and with recent attempts by statisticians
to better understand entry behavior of slim 3-tables (cf. [3, 4, 10]), we have the
following surprising consequence of Theorem 1.1, implying that entry-ranges of 2-
margined slim 3-table models consist of all finite sets of nonnegative integers and
hence are “complex” and presumably secure. For the proof, see [8].

Corollary 2.5 (universality of entry-range). For any finite set D ⊂ N of
nonnegative integers, there are r, c, and 2-margins for (r, c, 3)-tables such that the
set of values occurring in a fixed entry in all possible tables with these margins is
precisely D.

Example 2.6 (Gap in entry-range of 2-margined 3-tables). Applying our auto-
matic universal generator [27] to the polytope P = {y ≥ 0 : y0−2y1 = 0, y1 +y2 = 1}
in three variables, we obtain the following 2-margins for (16, 11, 3)-tables giving entry-
range D = {0, 2},⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0
0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎝ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 0 0 0 0 2 2 0 0 2 2 0 0 0 0 4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

⎞⎠ ,

⎛⎝ 4 1 3 6 6 6 6 0 0 0 0
2 3 3 0 0 0 0 2 2 2 2
0 0 0 2 2 2 2 6 6 6 6

⎞⎠ ;

with a suitable “human” short cut it is possible to get it down to the following
(possibly smallest) collection of margins for (6, 4, 3)-tables, giving again the entry-
range D = {0, 2} with a gap,⎛⎜⎝

2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

⎞⎟⎠ ,

⎛⎝ 2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

⎞⎠ ,

⎛⎜⎝
2 3 2
2 1 2
2 1 2
2 1 2

⎞⎟⎠ .
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Further applications of Theorem 1.1 to statistical model theory are discussed in
[8]; these include important consequences for Markov bases of 2-margined slim 3-way
models. (Recall that a Markov basis is a set of moves that connects any pair of tables
in the model that have the same set of margins, and is needed for the design of a
random walk on the space of tables with fixed margins to address the problems of
sampling and estimating various statistics on this space; see [8] for more details.)

2.4. Universality of the bitransportation problem. Our construction for
Theorem 1.2 allows automatic generation of bitransportation programs with inte-
ger supplies, demands and capacities, where any feasible bitransportation must have
an arbitrarily large prescribed denominator, in contrast with Hu’s celebrated half-
integrality theorem for the undirected case [16].

Example 2.7 (Bitransportations with arbitrarily large denominator). Fix any
positive integer q. Start with the polytope P = {y ≥ 0 : qy = 1} in one variable
containing the single point y = 1

q . Our construction represents it as a bitransportation
polytope F with integer supplies, demands and capacities, where y is embedded as the
transportation x1

1,1 of the first commodity from supply vertex 1 ∈ I to demand vertex

j ∈ J . By Theorem 1.2, F contains a single bitransportation with x1
1,1 = y = 1

q . For
instance, for q = 3 we get the bitransportation problem with the data

u =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 1 0 0 1 0
0 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0
0 0 1 0 1 0 0 1
0 0 1 0 0 1 1 0
1 0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎠ , s1 =

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ , s2 =

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ ,

d1 = ( 1 1 1 1 1 1 0 0 ) , d2 = ( 0 0 0 1 1 1 2 1 ) ,

which has the following unique, {0, 1
3 ,

2
3}-valued, bitransportation solution:

x1 =
1

3

⎛⎜⎜⎜⎜⎜⎝
1 0 0 2 0 0 0 0
0 2 0 1 0 0 0 0
0 1 0 0 2 0 0 0
0 0 2 0 1 0 0 0
0 0 1 0 0 2 0 0
2 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ , x2 =
1

3

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1 0 0 2 0
0 0 0 2 0 0 0 1
0 0 0 0 1 0 2 0
0 0 0 0 2 0 0 1
0 0 0 0 0 1 2 0
0 0 0 0 0 2 0 1

⎞⎟⎟⎟⎟⎟⎠ .

By Theorem 1.2, any (say, feasibility) linear programming problem can be encoded
as such a bitransportation problem (unbounded programs can also be treated by
adding to the original system a single equality

∑n
j=0 yj = U with y0 a new “slack”

variable and U derived from the Cramer’s rule bound of Theorem 10.3 [25]). Thus,
any (hopefully combinatorial) algorithm for the bitransportation problem will give
an algorithm for general linear programming. There has been much interest lately
(A. Levin [21]) in combinatorial approximation algorithms for (fractional) multiflows,
e.g., [11, 12]; these yield, via Theorem 1.2, approximation algorithms for general
linear programming, which might prove a useful and fast solution strategy in practice.
Details of this will appear elsewhere.

3. The three-stage construction. Our construction consists of three stages
which are independent of each other as reflected in Lemma 3.1 and Theorems 3.2
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and 3.3 below. Stage one, in section 3.1, is a simple preprocessing based on standard
scaling ideas, in which a given polytope is represented as another whose defining sys-
tem involves only small, {−1, 0, 1, 2}-valued coefficients, at the expense of increasing
the number of variables. This enables us to make the entire construction run in time
polynomial in the size of the input. However, for systems with small coefficients, such
as in the examples above, this may result in unnecessary blow-up and can be skipped.
Stage two, in section 3.2, represents any rational polytope as a 3-way transportation
polytope with specified plane-sums and forbidden-entries. In the last stage, in sec-
tion 3.3, any plane-sum transportation polytope with upper-bounds on the entries is
represented as a slim 3-way line-sum transportation polytope. In section 3.4 these
three stages are integrated to give Theorem 1.1, and a complexity estimate is provided
to close the presentation. Theorem 1.2 is a result of an easy modification of Theorem
3.2, and it is the content of section 3.5.

3.1. Preprocessing: Coefficient reduction. Let P = {y ≥ 0 : Ay = b}
where A = (ai,j) is an integer matrix and b is an integer vector. We represent it
as a polytope Q = {x ≥ 0 : Cx = d}, in polynomial-time, with a {−1, 0, 1, 2}-
valued matrix C = (ci,j) of coefficients, as follows. Consider any variable yj and let
kj := max{�log2 |ai,j |� : i = 1, . . . ,m} be the maximum number of bits in the binary
representation of the absolute value of any ai,j . We introduce variables xj,0, . . . , xj,kj

,
and relate them by the equations 2xj,s − xj,s+1 = 0. The representing injection σ
is defined by σ(j) := (j, 0), embedding yj as xj,0. Consider any term ai,j yj of the

original system. Using the binary expansion |ai,j | =
∑kj

s=0 ts2
s with all ts ∈ {0, 1},

we rewrite this term as ±
∑kj

s=0 tsxj,s. To illustrate, consider a system consisting of
the single equation 3y1 − 5y2 + 2y3 = 7. Then the new system is

2x1,0 −x1,1 = 0,

2x2,0 −x2,1 = 0,

2x2,1 −x2,2 = 0,

2x3,0 −x3,1 = 0,

x1,0 +x1,1 −x2,0 −x2,2 +x3,1 = 7.

It is easy to see that this procedure provides the sought representation, and we
get the following.

Lemma 3.1. Any rational polytope P = {y ≥ 0 : Ay = b} is polynomial-time
representable as a polytope Q = {x ≥ 0 : Cx = d} with {−1, 0, 1, 2}-valued defining
matrix C.

3.2. Representing polytopes as plane-sum entry-forbidden transporta-
tion polytopes. The next stage of construction we are about to explain will normally
be applied to the output Q = {x ≥ 0 : Cx = d} of stage one, but we present the
construction for a general polyhedron P since the construction holds in that gener-
ality. Let P = {y ≥ 0 : Ay = b}, where A = (ai,j) is an m × n integer matrix and
b is an integer vector: we assume that P is bounded and hence a (possibly empty)
polytope, with an integer upper bound U on the value of any coordinate yj of any
y ∈ P (U can be derived efficiently from Cramer’s rule as explained in Theorem 10.3
of [25]).
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For each variable yj , let rj be the maximum of the sum of the positive coefficients
of yj over all equations and the sum of absolute values of the negative coefficients of
yj over all equations:

rj := max

(∑
k

{ak,j : ak,j > 0} ,
∑
k

{|ak,j | : ak,j < 0}
)

.

Let r :=
∑n

j=1 rj , R := {1, . . . , r}, h := m+1, and H := {1, . . . , h}. We now describe

how to construct vectors u, v ∈ Zr, w ∈ Zh, and a set E ⊂ R×R×H of triples—the
“enabled,” non-“forbidden” entries—such that the polytope P is represented as the
corresponding transportation polytope of r×r×h arrays with plane-sums u, v, w and
only entries indexed by E enabled:

T =

⎧⎨⎩x ∈ Rr×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and

∑
i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui

⎫⎬⎭ .

We also indicate the injection σ : {1, . . . , n} −→ R × R × H giving the desired
embedding of the coordinates yj as the coordinates xi,j,k and the representation of P
as T (see paragraph following Theorem 1.1).

Basically, each equation k = 1, . . . ,m will be encoded in a “horizontal plane”
R × R × {k} (the last plane R × R × {h} is included for consistency and its entries
can be regarded as “slacks”); and each variable yj , j = 1, . . . , n, will be encoded in a
“vertical box” Rj × Rj × H, where R =

⊎n
j=1 Rj is the natural partition of R with

|Rj | = rj , namely with Rj := {1 +
∑

l<j rl, . . . ,
∑

l≤j rl}.
Now, all “vertical” plane-sums are set to the same value U , that is, uj := vj := U

for j = 1, . . . , r. All entries not in the union
⊎n

j=1 Rj ×Rj ×H of the variable boxes
will be forbidden. We now describe the enabled entries in the boxes; for simplicity we
discuss the box R1×R1×H, the others being similar. We distinguish between the two
cases r1 = 1 and r1 ≥ 2. In the first case, R1 = {1}; the box, which is just the single
line {1}×{1}×H, will have exactly two enabled entries (1, 1, k+), (1, 1, k−) for suitable
k+, k− to be defined later. We set σ(1) := (1, 1, k+), namely embed y1 = x1,1,k+ . We
define the complement of the variable y1 to be ȳ1 := U−y1 (and likewise for the other
variables). The vertical sums u, v then force ȳ1 = U − y1 = U − x1,1,k+ = x1,1,k− ,
so the complement of y1 is also embedded. Next, consider the case r1 ≥ 2. For each
s = 1, . . . , r1, the line {s} × {s} ×H (respectively, {s} × {1 + (smod r1)} ×H) will
contain one enabled entry (s, s, k+(s)) (respectively, (s, 1 + (smod r1), k

−(s)). All
other entries of R1 × R1 ×H will be forbidden. Again, we set σ(1) := (1, 1, k+(1)),
namely embed y1 = x1,1,k+(1); it is then not hard to see that, again, the vertical sums
u, v force xs,s,k+(s) = x1,1,k+(1) = y1 and x

s,1+(smod r1),k−(s)
= U − x1,1,k+(1) = ȳ1

for each s = 1, . . . , r1. Therefore, both y1 and ȳ1 are each embedded in r1 distinct
entries.

To clarify the above description it is helpful to visualize the R×R matrix (xi,j,+)

whose entries are the vertical line-sums xi,j,+ :=
∑h

k=1 xi,j,k. For instance, if we have
three variables with r1 = 3, r2 = 1, r3 = 2 then R1 = {1, 2, 3}, R2 = {4}, R3 = {5, 6},
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and the line-sums matrix x = (xi,j,+) is⎛⎜⎜⎜⎜⎜⎝
x1,1,+ x1,2,+ 0 0 0 0

0 x2,2,+ x2,3+ 0 0 0
x3,1,+ 0 x3,3,+ 0 0 0

0 0 0 x4,4,+ 0 0
0 0 0 0 x5,5,+ x5,6,+

0 0 0 0 x6,5,+ x6,6,+

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
y1 ȳ1 0 0 0 0
0 y1 ȳ1 0 0 0
ȳ1 0 y1 0 0 0
0 0 0 U 0 0
0 0 0 0 y3 ȳ3

0 0 0 0 ȳ3 y3

⎞⎟⎟⎟⎟⎟⎠ .

We now encode the equations by defining the horizontal plane-sums w and the
indices k+(s), k−(s) mentioned above as follows. For k = 1, . . . ,m, consider the
kth equation

∑
j ak,jyj = bk. Define the index sets J+ := {j : ak,j > 0} and

J− := {j : ak,j < 0}, and set wk := bk + U ·
∑

j∈J− |ak,j |. The last coordinate of

w is set for consistency with u, v to be wh = wm+1 := r · U −
∑m

k=1 wk. Now, with
ȳj := U−yj the complement of variable yj as above, the kth equation can be rewritten
as

∑
j∈J+

ak,jyj +
∑
j∈J−

|ak,j |ȳj =

n∑
j=1

ak,jyj + U ·
∑
j∈J−

|ak,j | = bk + U ·
∑
j∈J−

|ak,j | = wk.

We encode this equation by setting, for each j ∈ J+, k+(s) = k for |ak,j | many
different values of s (respectively, for each j ∈ J− we set k−(s) = k for enough values
of s). By suitably setting k+(s) := k or k−(s) := k, this has the effect of pulling
enough copies of the variables yj or ȳj to the corresponding kth horizontal plane.
Of course, once a variable is used at a certain horizontal level it cannot be used
in others. By the choice of rj there are sufficiently many copies of variables yj ȳj ,
possibly with a few redundant copies which are absorbed in the last hyperplane by
setting k+(s) := m + 1 or k−(s) := m + 1. For instance, if m = 8, the first variable
y1 has r1 = 3 as above, its coefficient a4,1 = 3 in the fourth equation is positive, its
coefficient a7,1 = −2 in the seventh equation is negative, and ak,1 = 0 for k �= 4, 7,
then we set k+(1) = k+(2) = k+(3) := 4 (so σ(1) := (1, 1, 4) embedding y1 as x1,1,4),
k−(1) = k−(2) := 7, and k−(3) := h = 9. This way, all equations are suitably
encoded, and we obtain the following theorem.

Theorem 3.2. Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time

representable as a plane-sum entry-forbidden 3-way transportation polytope

T =

⎧⎨⎩x ∈ Rr×r×h
≥0 : xi,j,k = 0 for all (i, j, k) /∈ E , and

∑
i,j

xi,j,k = wk ,
∑
i,k

xi,j,k = vj ,
∑
j,k

xi,j,k = ui

⎫⎬⎭ .

Here E denotes the set of enabled, nonforbidden entries.
Proof. The proof follows from the construction outlined above and Lemma

3.1.

3.3. Representing plane-sum entry-bounded as slim line-sum entry-
free. Here we start with a transportation polytope of plane-sums and upper-bounds



816 JESÚS DE LOERA AND SHMUEL ONN

ei,j,k on the entries,

P =

⎧⎨⎩y ∈ Rl×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k

⎫⎬⎭ .

Clearly, this is a more general form than that of T appearing in Theorem 3.2 above;
the forbidden entries can be encoded by setting a “forbidding” upper-bound ei,j,k := 0
on all forbidden entries (i, j, k) /∈ E and an “enabling” upper-bound ei,j,k := U on
all enabled entries (i, j, k) ∈ E. Thus, by Theorem 3.2, any rational polytope is
representable also as such a plane-sum entry-bounded transportation polytope P .
We now describe how to represent, in turn, such a P as a slim line-sum (unrestricted-
entry) transportation polytope of the form of Theorem 1.1,

T =

{
x ∈ Rr×c×3

≥0 :
∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J

}
.

This stage of our construction was first presented in [6] while studying the complexity
of deciding if T has an integer point; we include the details for completeness of the
presentation. We give explicit formulas for uI,J , vI,K , wJ,K in terms of ai, bj , ck, and
ei,j,k as follows. Put r := l · m and c := n + l + m. The first index I of each entry
xI,J,K will be a pair I = (i, j) in the r-set

{(1, 1), . . . , (1,m), (2, 1), . . . , (2,m), . . . , (l, 1), . . . , (l,m)} .

The second index J of each entry xI,J,K will be a pair J = (s, t) in the c-set

{(1, 1), . . . , (1, n), (2, 1), . . . , (2, l), (3, 1), . . . , (3,m)} .

The last index K will simply range in the 3-set {1, 2, 3}. We represent P as T via the
injection σ given explicitly by σ(i, j, k) := ((i, j), (1, k), 1), embedding each variable
yi,j,k as the entry x(i,j),(1,k),1. Let U now denote the minimum between the two values
max{a1, . . . , al} and max{b1, . . . , bm}. The 2-margins entries will be

u(i,j),(1,t) = ei,j,t, u(i,j),(2,t) =

{
U if t = i,
0 otherwise,

u(i,j),(3,t) =

{
U if t = j,
0 otherwise,

v(i,j),t =

⎧⎨⎩
U if t = 1,
ei,j,+ if t = 2,
U if t = 3,

w(i,j),1 =

⎧⎨⎩
cj if i = 1,
m · U − aj if i = 2,
0 if i = 3.

w(i,j),2 =

⎧⎨⎩
e+,+,j − cj if i = 1,
0 if i = 2,
bj if i = 3.

w(i,j),3 =

⎧⎨⎩
0 if i = 1,
aj if i = 2,
l · U − bj if i = 3.
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Theorem 3.3. Any rational plane-sum entry-bounded 3-way transportation poly-
tope

P =

⎧⎨⎩y ∈ Rl×m×n
≥0 :

∑
i,j

yi,j,k = ck ,
∑
i,k

yi,j,k = bj ,
∑
j,k

yi,j,k = ai , yi,j,k ≤ ei,j,k

⎫⎬⎭
is strongly-polynomial-time representable as a line-sum slim transportation polytope

T =

{
x ∈ Rr×c×3

≥0 :
∑
I

xI,J,K = wJ,K ,
∑
J

xI,J,K = vI,K ,
∑
K

xI,J,K = uI,J

}
.

Proof. We outline the proof; complete details appeared in [6]. First, consider any
y = (yi,j,k) ∈ P ; we claim the embedding via σ of yi,j,k in x(i,j),(1,k),1 can be extended
uniquely to x = (xI,J,K) ∈ T . First, the entries xI,(3,t),1, xI,(2,t),2 and xI,(1,t),3 for all
I = (i, j) and t are zero since so are the line-sums w(3,t),1, w(2,t),2 and w(1,t),3. Next,
consider the entries xI,(2,t),1: since all entries xI,(3,t),1 are zero, examining the line-
sums uI,(2,t) and vI,1 = U , we find x(i,j),(2,i),1 = U−

∑n
t=1 x(i,j),(1,t),1 = U−yi,j,+ ≥ 0

whereas for t �= i we get x(i,j),(2,t),1 = 0. This also gives the entries xI,(2,t),3: we have
x(i,j),(2,i),3 = U − x(i,j),(2,i),1 = yi,j,+ ≥ 0 whereas for t �= i we have x(i,j),(2,t),3 = 0.
Next, consider the entries xI,(1,t),2: since all entries xI,(1,t),3 are zero, examining the
line-sums u(i,j),(1,k) = ei,j,k we find x(i,j),(1,k),2 = ei,j,k − yi,j,k ≥ 0 for all i, j, k. Next
consider the entries xI,(3,t),2: since all entries xI,(2,t),2 are zero, examining the line-

sums u(i,j),(3,t) and v(i,j),2 = ei,j,+, we find x(i,j),(3,j),2 = ei,j,+ −
∑l

k=1 x(i,j),(1,k),2 =
yi,j,+ ≥ 0 whereas for t �= j we get x(i,j),(3,t),2 = 0. This also gives the entries
xI,(3,t),3: we have x(i,j),(3,j),3 = U − x(i,j),(3,j),2 = U − yi,j,+ ≥ 0 whereas for t �= j we
get x(i,j),(3,t),3 = 0. Using the relations established above, one can easily check that
all line-sums are correct.

Conversely, given any x = (xI,J,K) ∈ T , let y = (yi,j,k) with yi,j,k := x(i,j),(1,k),1.
Since x is nonnegative, so is y. Further, ei,j,k−yi,j,k = x(i,j),(1,k),2 ≥ 0 for all i, j, k and
hence y obeys the entry upper-bounds. Finally, using the relations established above
x(i,j),(3,t),2 = 0 for t �= j, x(i,j),(2,t),3 = 0 for t �= i, and x(i,j),(3,j),2 = x(i,j),(2,i),3 =
yi,j,+, we obtain∑

i,j

yi,j,k =
∑
i,j

x(i,j),(1,k),1 = w(1,k),1 = ck , 1 ≤ k ≤ n ;

∑
i,k

yi,j,k =
∑
i

x(i,j),(3,j),2 = w(3,j),2 = bj , 1 ≤ j ≤ m ;

∑
j,k

yi,j,k =
∑
j

x(i,j),(2,i),3 = w(2,i),3 = ai , 1 ≤ i ≤ l .

This shows that y satisfies the plane-sums as well and hence is in P . Since integrality
is also preserved in both directions, this completes the proof.

3.4. The main theorem and a complexity estimate. Call a class P of ratio-
nal polytopes polynomial-time representable in a class Q if there is a polynomial-time
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algorithm that represents any given P ∈ P as some Q ∈ Q. The resulting binary
relation on classes of rational polytopes is clearly transitive. Thus, the composition of
Theorem 3.2 (which incorporates Lemma 3.1) and Theorem 3.3 gives at once Theorem
1.1 stated in the introduction. Working out the details of our three-stage construc-
tion, we can give the following estimate on the number of rows r and columns c in
the resulting representing transportation polytope, in terms of the input. The com-
putational complexity of the construction is also determined by this bound, but we
do not dwell on the details here.

Theorem 1.1 (with complexity estimate). Any polytope P ={y ∈ Rn
≥0 :Ay = b}

with integer m × n matrix A = (ai,j) and integer b is polynomial-time representable
as a slim transportation polytope

T =

⎧⎨⎩x ∈ Rr×c×3
≥0 :

∑
i

xi,j,k = wj,k ,
∑
j

xi,j,k = vi,k ,
∑
k

xi,j,k = ui,j

⎫⎬⎭ ,

with r = O(m2(n + L)2) rows and c = O(m(n + L)) columns, where

L :=

n∑
j=1

m
max
i=1

�log2 |ai,j |�.

3.5. Proof of the universality of the bitransportation problem. We con-
clude with the modification of the proof of Theorem 3.3 that establishes Theorem 1.2.

Theorem 1.2. Any rational polytope P = {y ∈ Rn
≥0 : Ay = b} is polynomial-time

representable as a bipartite bitransportation polytope

F =

⎧⎨⎩(x1, x2) ∈ Rr×c
≥0 ⊕ Rr×c

≥0 : x1
i,j + x2

i,j ≤ ui,j ,

∑
j

xk
i,j = ski ,

∑
i

xk
i,j = dkj , k = 1, 2

⎫⎬⎭ .

Here r, c are the same values as presented in Theorem 1.1 above. Moreover, the
statement remains valid with all supplies ski having the same value U and all capacities
ui,j being 0 or U for some suitable nonnegative integer U .

Proof. We do an easy adjustment of the proof of Theorem 3.3 above: We essen-
tially need to describe the capacities, demands and supplies (for each of two com-
modities) for a bipartite network with l · m nodes for the first part and n + l + m
nodes in the second part, with l · m · (n + l + m) arcs. Take the capacities of the
arcs to be ui,j as defined in section 3.3; take the supplies to be s1

i := vi,1 = U and
s2
i := vi,3 = U for all i, and take the demands to be d1

j := wj,1 and d2
j := wj,3 for all

j. Note that by taking s2
i and d2

j to be vi,3 and wj,3 instead of vi,2 and wj,2 we can
guarantee that all supplies have the same value U . Moreover, since the proof follows
by the composition of Theorem 3.2 and Theorem 3.3, and the former makes use of
forbidden entries only, rather than upper bounds, it is easy to see that we can take all
upper bounds ei,j,k in the latter (and hence all ui,j) to be either 0 or U , proving the
stronger statement. More visually, the data can also be described in matrix form as
follows:
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u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1,1,1 e1,1,2 · · · e1,1,n U 0 · · · 0 U 0 · · · 0
e1,2,1 e1,2,2 · · · e1,2,n U 0 · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e1,m,1 e1,m,2 · · · e1,m,n U 0 · · · 0 0 0 · · · U

e2,1,1 e2,1,2 · · · e2,1,n 0 U · · · 0 U 0 · · · 0
e2,2,1 e2,2,2 · · · e2,2,n 0 U · · · 0 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

e2,m,1 e2,m,2 · · · e2,m,n 0 U · · · 0 0 0 · · · U

...
...

...
...

...
...

...
...

...
...

...
...

el,1,1 el,1,2 · · · el,1,n 0 0 · · · U U 0 · · · 0
el,2,1 el,2,2 · · · el,2,n 0 0 · · · U 0 U · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

el,m,1 el,m,2 · · · el,m,n 0 0 · · · U 0 0 · · · U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

s1 = s2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
U
...
U

U
U
...
U

...

U
U
...
U

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d1 = ( c1, c2, . . . , cn, m · U − a1, m · U − a2, . . . , m · U − al, 0, 0, . . . , 0 ) ,

d2 = ( 0, 0, . . . , 0, a1, a2, . . . , al, l · U − b1, l·, U − b2, . . . , l · U − bm ) .
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820 JESÚS DE LOERA AND SHMUEL ONN

[3] L. H. Cox, Bounds on entries in 3-dimensional contingency tables, in Inference Control in
Statistical Databases: From Theory to Practice, J. Domingo-Ferrer, ed., Lecture Notes in
Comput. Sci. 2316, Springer, New York, 2002, pp. 21–33.

[4] L. H. Cox, On properties of multi-dimensional statistical tables, J. Stat. Plann. Inference, 117
(2003), pp. 251–273.

[5] M. Cryan, M. Dyer, H. Müller, and L. Stougie, Random walks on the vertices of trans-
portation polytopes with constant number of sources, in Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD), ACM, New York, 2003,
pp. 330–339.

[6] J. De Loera and S. Onn, The complexity of three-way statistical tables, SIAM J. Comput., 33
(2004), pp. 819–836.

[7] J. De Loera and S. Onn, All rational polytopes are transportation polytopes and all polytopal
integer sets are contingency tables, in Integer Programming and Combinatorial Optimiza-
tion, Proceedings of the 10th International IPCO Conference, Lecture Notes in Comput.
Sci. 3064, Springer, New York, 2004, pp. 338–351.

[8] J. De Loera and S. Onn, Markov bases of three-way tables are arbitrarily complicated, J.
Symbolic Comput., 41 (2006), pp. 173–181.

[9] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins in Discrete Probability
and Algorithms (Minneapolis, MN, 1993), D. Aldous, P. Diaconis, J. Spencer, and J. M.
Steele, eds., IMA Vol. Math. Appl. 72, Springer, New York, 1995, pp. 15–41.

[10] G. T. Duncan, S. E. Fienberg, R. Krishnan, R. Padman, and S. F. Roehrig, Disclosure
limitation methods and information loss for tabular data, in Confidentiality, Disclosure
and Data Access: Theory and Practical Applications for Statistical Agencies, P. Doyle,
J. I. Land, J. M. Theeuwes, and L. V. Zayatz, eds., North-Holland, Amsterdam, 2001,
pp. 135–166.

[11] L. K. Fleischer, Approximating fractional multicommodity flow independent of the number of
commodities, SIAM J. Discrete Math., 13 (2000), pp. 505–520.

[12] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and
other fractional packing problems, in Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science (New York), IEEE, New York, 1998, pp. 300–309.

[13] D. Gusfield, A graph theoretic approach to statistical data security, SIAM J. Comput., 17
(1988), pp. 552–571.
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Abstract. We consider a polynomial programming problem P on a compact basic semialgebraic
set K ⊂ Rn, described by m polynomial inequalities gj(X) ≥ 0, and with criterion f ∈ R[X].
We propose a hierarchy of semidefinite relaxations in the spirit of those of Waki et al. [SIAM J.
Optim., 17 (2006), pp. 218–242]. In particular, the SDP-relaxation of order r has the following two
features: (a) The number of variables is O(κ2r), where κ = max[κ1, κ2] with κ1 (resp., κ2) being the
maximum number of variables appearing in the monomials of f (resp., appearing in a single constraint
gj(X) ≥ 0). (b) The largest size of the linear matrix inequalities (LMIs) is O(κr). This is to compare
with the respective number of variables O(n2r) and LMI size O(nr) in the original SDP-relaxations
defined in [J. B. Lasserre, SIAM J. Optim., 11 (2001), pp. 796–817]. Therefore, great computational
savings are expected in case of sparsity in the data {gj , f}, i.e., when κ is small, a frequent case in
practical applications of interest. The novelty with respect to [H. Waki, S. Kim, M. Kojima, and M.
Maramatsu, SIAM J. Optim., 17 (2006), pp. 218–242] is that we prove convergence to the global
optimum of P when the sparsity pattern satisfies a condition often encountered in large size problems
of practical applications, and known as the running intersection property in graph theory. In such
cases, and as a by-product, we also obtain a new representation result for polynomials positive on a
compact basic semialgebraic set, a sparse version of Putinar’s Positivstellensatz [M. Putinar, Indiana
Univ. Math. J., 42 (1993), pp. 969–984].
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1. Introduction. In this paper we consider the polynomial programming prob-
lem

P : inf
x∈Rn

{ f(x) | x ∈ K},(1.1)

where f ∈ R[X], and K ⊂ Rn is the basic closed semialgebraic set defined by

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m },(1.2)

for some polynomials {gj}mj=1 ⊂ R[X].
The hierarchy of semidefinite programming (SDP) relaxations introduced in [11]

provides a sequence of SDPs of increasing size, whose associated sequence of optimal
values converges to the global minimum of P. Moreover, as proved by Schweighofer in
[17], convergence to a global minimizer of P (if unique) also holds. For more details,
the reader is referred to [5, 11, 17] and the many references therein. In addition,
practice reveals that convergence is usually fast, and often finite (up to machine
precision); see, e.g., Henrion and Lasserre [5].

However, despite these nice features, the size of the SDP-relaxations grows rapidly
with the size of the original problem. Typically, the kth SDP-relaxation has to handle
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at least one linear matrix inequality (LMI) of size
(
n+k
n

)
and

(
n+2k

n

)
variables, which

clearly limits the applicability of the methodology to problems with small to medium
size only. Therefore, validation of the above methodology for larger size problems
(and even more, for large scale problems) is a real challenge of practical importance.

One way to extend the applicability of the methodology to problems of larger
size is to take into account sparsity in the original data, frequently encountered in
practical cases. Indeed, as is typical in many applications of interest, f as well as
the polynomials {gj} that describe K are sparse, i.e., each monomial of f and each
polynomial gj are only concerned with a small subset of variables. This is the approach
taken in Waki et al. [9] (extending Kim, Kojima, and Waki [7] and Kojima, Kim,
and Waki [8]), where the authors have built up a hierarchy of SDP-relaxations in the
spirit of those in [11], but where sparsity is taken into account. Sometimes, a sparsity
pattern can be “read” from the data of P but not always, and in [9] the authors have
proposed a systematic procedure to detect and structure sparsity in P, via the so-
called chordal extension of the correlation sparsity pattern graph (csp graph); the csp
graph has as many nodes as variables, and a link between two nodes (i.e., variables)
means that these two variables both appear in a monomial of the objective function or
in some inequality constraint gj ≥ 0 of P. Once a sparsity pattern has been detected,
they define a simplified “sparse” version of the SDP-relaxations of [11]; briefly, in
the dual, the sum of squares (s.o.s.) multiplier associated with a constraint is now
a polynomial in only those variables appearing in that constraint. In doing so, they
have obtained impressive gains in the size of the resulting SDP-relaxations, as well
as in the computational time needed for obtaining an optimal solution. As a matter
of fact, they were even able to solve problems that could not be handled with the
original SDP-relaxations. However, and despite good approximations are obtained in
most problems in their sample of experiments, convergence to the global minimum is
not guaranteed.

Contribution. Our contribution is twofold: We first propose a hierarchy of
SDP-relaxations {Qr} in the spirit of the original SDP-relaxations [11] and close to
those defined in [9]. They are valid for arbitrary polynomial programming problems,
and have the following three appealing features:

(a) In the SDP-relaxation Qr of order r, the number of variables is O(κ2r), where
κ = max[κ1, κ2] with κ1 (resp., κ2) being the maximum number of variables appearing
in each monomial of f (resp., in a single constraint gj(X) ≥ 0).

(b) The largest size of the LMIs is O(κr).

This is to compare with the respective number of variables O(n2r) and LMI size
O(nr) in the original SDP-relaxations defined in [11].

(c) Under a certain condition on the sparsity pattern, the resulting sequence of
their optimal value converges to the global minimum of P.

So in view of (a) and (b), and when κ is small (κ � n), i.e., when sparsity is
present, dramatic computational savings can be expected. In other words, these new
SDP-relaxations are inherently exploiting sparsity in the data {f, gj} when present.
Moreover, the size of the SDP-relaxation Qr is in a sense minimal, at least when con-
sidering such types of SDP-relaxations, because one should at least handle moments
involving κ variables, whenever some monomial of κ variables appears in the data
{f, gj}.

The condition under which such SDP-relaxations converge to the global minimum
of P is easy to describe, and reflects a sparsity pattern frequently encountered in large
scale problems. Namely, let {1, . . . , n} be the union

⋃p
k=1 Ik of subsets Ik ⊂ {1, . . . , n}.
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Every polynomial gj in the definition (1.2) of K is only concerned with variables
{Xi | i ∈ Ik} for some k. Next, f ∈ R[X] can be written f = f1 + · · ·+ fp, where each
fk uses only variables {Xi | i ∈ Ik}. In cases where the subsets {Ik} are not so easy
to detect, one may use the procedure of Waki et al. [9] via the chordal extension of
the csp graph.

Finally, the collection {I1, . . . , Ip} should obey the following condition: For every
k = 1, . . . , p− 1,

Ik+1 ∩
k⋃

j=1

Ij ⊆ Is for some s ≤ k.(1.3)

Notice that (1.3) is always satisfied when p = 2. Property (1.3) depends on the
ordering and so can be satisfied possibly after some relabelling of the Ik’s. Moreover,
if not satisfied, one may enforce (1.3) but at the price of enlarging some of the sets
Ik. If I1, . . . , Ip are the maximal cliques of a chordal graph, then (1.3) is satisfied
possibly after some reordering of the cliques, and is known as the running intersection
property; for more details on chordal graphs, the reader is referred to Fukuda et al. [4]
and Nakata et al. [15].

In particular, (1.3) is naturally satisfied in a number of applications, in particular,
in what we call strong and weak coupling. In the former, we have Ik ∩ Ik+j = ∅
whenever j > 1, so that (1.3) holds. In the latter, there is a set of coupling variables
with index set I ′0 ⊂ {1, . . . , n}, and a partition of {1, . . . , n}\I ′0 into p disjoint subsets
of independent variables I ′k, k = 1, . . . , p. In this case one has Ik := I ′0 ∪ I ′k, k =
1, . . . , p, and so Ik ∩ Ij = I ′0 for all j �= k, which in turn implies that (1.3) holds.

At last, and as a by-product of the property (1.3) of the sparsity pattern, we
also obtain a new sparse representation result for polynomials, nonnegative on a basic
closed semialgebraic set, a sparse version of Putinar’s Positivstellensatz [16].

Link with related literature. As already mentioned, our work is closely related
to the recent work of Kojima, Kim, and Waki [8] and Waki et al. [9], in which they
were the first to exploit sparsity of data and modify (or simplify) in an appropriate way
the original SDP-relaxations defined in [11]. Our SDP-relaxations are very close to
those defined in [9], but handle p additional quadratic constraints. These p additional
constraints, together with condition (1.3), are crucial to prove our convergence result.
To summarize, our result implies that by a slight modification of the SDP-relaxations
defined in [9], convergence is now guaranteed when the sparsity pattern satisfies (1.3).

The paper is organized as follows. After introducing notation and definitions, our
main result is presented in section 3, and for clarity of exposition, some proofs are
postponed to section 4, whereas auxiliary results needed in some proofs are postponed
to an appendix section.

2. Notation and definitions. As common in algebra, variables of polynomials
are denoted with capitals (e.g., X) whereas points in Rn are denoted with small letters
(e.g., x). For a real symmetric matrix A ∈ Rn×n, the notation A � 0 (resp., A  0)
stands for A is positive definite (resp., semidefinite), and for a vector x, let x′ denote
its transpose.

Let R[X] denote the ring of real polynomials in the variables X1, . . . , Xn. In the
usual canonical basis v∞(X) = {Xα |α ∈ Nn} of monomials, a polynomial g ∈ R[X]
is written

g(X) =
∑
α∈Nn

gαX
α,(2.1)
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for some real vector g = {gα} with finitely many nonzero coefficients.
With α ∈ Nn, let |α| :=

∑
i αi, and let Rr[X] ⊂ R[X] be the R-vector space of

polynomials of degree at most r, with usual canonical basis of monomials vr(X) =
{Xα |α ∈ Nn; |α| ≤ r}.

Let I0 := {1, . . . , n} be the union ∪p
k=1Ik of p subsets Ik, k = 1, . . . , p, with

cardinal denoted nk. Let R[X(Ik)] denote the ring of polynomials in the nk variables
X(Ik) = {Xi | i ∈ Ik}, and so R[X(I0)] = R[X].

For each k = 0, 1, . . . , p, let Ik be the set of all subsets of Ik. Next, for every
α ∈ Nn, let supp (α) ∈ I0 be the support of α, i.e.,

supp (α) := { i ∈ {1, . . . , n} : αi �= 0 }, α ∈ Nn.

For instance, with n = 6 and α := (004020), supp (α) = {3, 5}. Next, define

Sk := { α ∈ Nn : supp (α) ∈ Ik }, k = 1, . . . , p.(2.2)

A polynomial h ∈ R[X(Ik)] can be viewed as a member of R[X], and is written

h(X) = h(X(Ik)) =
∑
α∈Sk

hα Xα(2.3)

for some real vector h = {hα} with finitely many nonzero coefficients.

2.1. Moment matrix. Let y = (yα)α∈Nn (i.e., a sequence indexed in the canon-
ical basis v∞(X)), and define the linear functional Ly : R[X] → R to be

g �→ Ly(g) :=
∑
α∈Nn

gα yα,(2.4)

whenever g is as in (2.1).
As already presented in [11], given a sequence y = (yα)α∈Nn , the moment matrix

Mr(y) associated with y, is the matrix with rows and columns indexed in vr(X), and
such that

Mr(y)(α, β) := Ly(X
αXβ) = yα+β ∀α, β ∈ Nn with |α|, |β| ≤ r.

A sequence y is said to have a representing measure μ on Rn if

yα =

∫
Rn

Xα μ(dX) ∀α ∈ Nn.

Let s(r) :=
(
n+r
r

)
be the dimension of vector space Rr[X]. For a vector u ∈ Rs(r), let

u ∈ R[X] be the polynomial u(X) = 〈u, vr(X)〉. Then, one has

〈u,Mr(y)u〉 = Ly(u
2) ∀u ∈ Rs(r).

Therefore, if y has a representing measure μ, then

〈u,Mr(y)u〉 = Ly(u
2) =

∫
Rn

u(X)2 μ(dX) ≥ 0,

which implies Mr(y) � 0 (as u ∈ Rs(r) was arbitrary).
Of course, in general, not every sequence y such that Mr(y) � 0 for all r ∈ N has

a representing measure. The K-moment problem is precisely concerned with finding
conditions on the sequence y, to ensure it is the moment sequence of some measure
μ, with support contained in K ⊂ Rn.
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2.2. Localizing matrix. Let h ∈ R[X] be a given polynomial

h(X) =
∑
γ∈Nn

hγ X
γ ,

and let y = (yα)α∈Nn be given. The localizing matrix Mr(h y) associated with h and
y is the matrix with rows and columns indexed in vr(X), obtained from the moment
matrix Mr(y) by

Mr(h y)(α, β) := Ly(h(X)XαXβ) =
∑
γ∈Nn

hγ yγ+α+β

for all α, β ∈ Nn, with |α|, |β| ≤ r.
As before, let u ∈ Rs(r), and let u := 〈u, vr(X)〉 ∈ Rr[X]. Then

〈u,Mr(h y)u〉 = Ly(hu
2) ∀u ∈ Rs(r),

and if y has a representing measure μ with support contained in the set {x ∈ Rn :
h(x) ≥ 0}, then

〈u,Mr(h y)u〉 = Ly(hu
2) =

∫
Rn

h(X)u(X)2 μ(dX) ≥ 0,

which implies Mr(h y) � 0 (as u ∈ Rs(r) was arbitrary).
Next, with k ∈ {1, . . . , p} fixed, and h ∈ R[X(Ik)], let Mr(y, Ik) (resp., Mr(h y, Ik))

be the moment (resp., localizing) submatrix obtained from Mr(y) (resp., Mr(h y)) by
retaining only those rows (and columns) α ∈ Nn of Mr(y) (resp., Mr(h y)) with
supp (α) ∈ Ik.

In doing so, Mr(y, Ik) and Mr(h y, Ik) can be viewed as moment and localiz-
ing matrices with rows and columns indexed in the canonical basis vr(X(Ik)) of
Rr[X(Ik)]. Indeed, Mr(y, Ik) contain only variables yα with supp (α) ∈ Ik, and
so does Mr(h y, Ik) because h ∈ R[X(Ik)]. And for every polynomial u ∈ Rr[X(Ik)],
with coefficient vector u in the basis vr(X(Ik)), we also have

〈u,Mr(y, Ik)u〉 = Ly(u
2) ∀u ∈ Rr[X(Ik)],

〈u,Mr(h y, Ik)u〉 = Ly(hu
2) ∀u ∈ Rr[X(Ik)],

and therefore,

Mr(y, Ik) � 0 ⇔ Ly(u
2) ≥ 0 ∀u ∈ Rr[X(Ik)],(2.5)

Mr(h y, Ik) � 0 ⇔ Ly(hu
2) ≥ 0 ∀u ∈ Rr[X(Ik)].(2.6)

3. Main result. Consider problem P as defined in (1.1), and recall that I0 =
{1, . . . , n} =

⋃p
k=1 Ik for some subsets Ik ⊂ {1, . . . , n}, k = 1, . . . , p. The subsets {Ik}

may be read directly from the data or may have been obtained by some procedure,
e.g., the one described in Waki et al. [9].

With ‖x‖∞ (resp., ‖x‖) denoting the usual sup-norm (resp., Euclidean norm) of
a vector x ∈ Rn, we make the following assumption.

Assumption 1. Let K ⊂ Rn be as in (1.2). Then, there is M > 0 such that
‖x‖∞ < M for all x ∈ K.
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In view of Assumption 1, one has ‖X(Ik)‖2 ≤ nkM
2, k = 1, . . . , p, and therefore,

in the definition (1.2) of K, we add the p redundant quadratic constraints

gm+k(X) := nkM
2 − ‖X(Ik)‖2 ≥ 0, k = 1, . . . , p,(3.1)

and set m′ = m + p, so that K is now defined by

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m′ }.(3.2)

Notice that gm+k ∈ R[X(Ik)], for every all k = 1, . . . , p.

Assumption 2. Let K ⊂ Rn be as in (3.2). The index set J = {1, . . . ,m′} is
partitioned into p disjoint sets Jk, k = 1, . . . , p, and the collections {Ik} and {Jk}
satisfy the following:

(i) For every j ∈ Jk, gj ∈ R[X(Ik)], that is, for every j ∈ Jk, the constraint
gj(X) ≥ 0 is only concerned with the variables X(Ik) = {Xi | i ∈ Ik}. Equivalently,
viewing gj as a polynomial in R[X], gjα �= 0 ⇒ supp (α) ∈ Ik.

(ii) The objective function f ∈ R[X] can be written

f =

p∑
k=1

fk, with fk ∈ R[X(Ik)], k = 1, . . . , p.(3.3)

Equivalently, fα �= 0 ⇒ supp (α) ∈ ∪p
k=1Ik.

(iii) Property (1.3) holds.

As already mentioned, (1.3) always holds when p ≤ 2.

Example 3.1. When n = 6 and m = 6, let

g1(X) = X1X2 − 1; g2(X) = X2
1 + X2X3 − 1; g3(X) = X2 + X2

3X4,

and

g4(X) = X3 + X5; g5(X) = X3X6; g6(X) = X2X3.

Then one may choose p = 4 with

I1 = {1, 2, 3}; I2 = {2, 3, 4}; I3 = {3, 5}; I4 = {3, 6},

and J1 = {1, 2, 6}, J2 = {3}, J3 = {4}, J4 = {4}. So in Example 3.1, the objective
function f ∈ R[X] should be a sum of polynomials in R[X1, X2, X3], R[X2, X3, X4],
R[X3, X5], and R[X3, X6] (also considered as polynomials in R[X1, . . . , X6]).

Remark 3.1. For every k = 1, . . . , p, let

Kk := {x ∈ Rnk : gj(x) ≥ 0 ∀ j ∈ Jk}.(3.4)

For every k = 1, . . . , p, the set Kk ⊂ Rnk satisfies Putinar’s condition, that is, there
exists u ∈ R[X(Ik)] which can be written u = u0 +

∑
l∈Jk

ul gl for some s.o.s. poly-
nomials {u0, ul} ⊂ R[X(Ik)], and such that the level set {x ∈ Rnk : u ≥ 0} is
compact. (Take u = gm+k.) When satisfied, Putinar’s condition has the important
consequences stated in Theorem 4.1.
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3.1. Convergent SDP-relaxations. For each j = 1, . . . ,m′, and depending on
its parity, write deg gj = 2rj − 1 or 2rj . Next, with 2r ≥ 2r0 := max[deg f,maxj 2rj ],
consider the following SDP:

Qr :

⎧⎪⎪⎨⎪⎪⎩
inf
y

Ly(f)

s.t. Mr(y, Ik) � 0, k = 1, . . . , p
Mr−rj (gj y, Ik) � 0, j ∈ Jk; k = 1, . . . , p

y0 = 1,

(3.5)

where the moment and localizing matrices Mr(y, Ik), Mr(gj y, Ik) have been defined
at the end of section 2.2. Denote the optimal value of Qr by inf Qr, and minQr if
the infimum is attained.

Notice that Qr is well defined under Assumption 2(i)–(ii). Assumption 2(iii) is
only useful to show convergence in Theorem 3.1 below.

The SDP Qr is a relaxation of P. Indeed, with x ∈ Rn being a feasible solution
of P, the moment vector y = {yα} of the Dirac measure μ = δx at x is feasible for
Qr, with value Ly(f) =

∫
fdμ = f(x).

Under Assumption 2, and from the definition of Mr(y, k) and Mr(gj y, k) in sec-
tion 2.2, the SDP-relaxation Qr contains only variables yα with α in the set

Γr :=

{
α ∈ Nn : supp (α) ∈

p⋃
k=1

Ik ; |α| ≤ 2r

}
.(3.6)

Remark 3.2. (i) Maximality of the I ′k’s is not required, i.e., one may have Ij ⊂ Ik
for some pair (j, k). In this case, the LMI constraint Mr(y, Ij) � 0 is redundant.
However, if nondesirable in theory, in practice it may be more convenient to allow for
nonmaximality.

(ii) Comparing with the SDP-relaxations of Waki et al. [9]. When the sets {Ik}
are just the cliques {Ck} obtained from the chordal extension of the csp graph as
defined in [9], then the SDP-relaxations (3.5) are basically the same as those defined
in (32) in [9]. The only difference is in the definition of the feasible set K of P,
where we have now included the p redundant quadratic constraints (3.1). In this
case, the SDP-relaxations (3.5) are thus stronger than (32) in [9], because they are
more constrained.

In view of the definition of the moment matrix Mr(y, Ik), write

Mr(y, Ik) =
∑
α∈Nn

yαB
k
α, k = 1, . . . , p,

for appropriate symmetric matrices {Bk
α}, and notice that for every k = 1, . . . , p, one

has Bk
α = 0 whenever supp (α) �∈ Ik. Similarly, for every k = 1, . . . , p, and j ∈ Jk,

write

Mr−rj (gj y, Ik) =
∑
α∈Nn

yαC
jk
α ,

for appropriate symmetric matrices {Cjk
α }, and notice that Cjk

α = 0 whenever supp (α) �∈
Ik.
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The dual SDP Q∗
r of Qr, reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
Ωk,Zjk,λ

λ

s.t.
∑

k: supp (α)∈Ik

⎡⎣ 〈Ωk, B
k
α〉 +

∑
j∈Jk

〈Zjk, C
jk
α 〉

⎤⎦+ λ δα0 = fα

∀α ∈ Γr

Ωk, Zjk � 0, j ∈ Jk, k = 1, . . . , p,

(3.7)

where Γr is defined in (3.6) and δα0 is the usual Kronecker symbol. From an arbitrary
feasible solution (λ,Ωk, Zjk) of Q∗

r , multiplying each side of the constraint in (3.7)
with Xα for all α ∈ Γr, and summing up yields

∑
α∈Γr

⎡⎣ ∑
k: supp (α)∈Ik

⎛⎝ 〈Ωk, B
k
αX

α〉 +
∑
j∈Jk

〈Zjk, C
jk
α Xα〉

⎞⎠⎤⎦ = f(X) − λ,

which, denoting Γkr := {α ∈ Nn : supp (α) ∈ Ik; |α| ≤ 2r}, can be rewritten

p∑
k=1

⎡⎣〈Ωk,
∑

α∈Γkr

Bk
αX

α

〉
+
∑
j∈Jk

〈
Zjk,

∑
α∈Γkr

Cjk
α Xα

〉⎤⎦ = f(X) − λ.(3.8)

Proceeding as in Lasserre [11], and using the spectral decomposition of matrices
Ωk, Zjk � 0, write

Ωk =
∑
l

qklq
′
kl, Zjk =

∑
t

qjktq
′
jkt, j ∈ Jk, k = 1, . . . , p,

for some vectors {qkl,qjkt}. Next, notice that∑
α∈Γkr

Bk
αX

α = vr(X(Ik)) vr(X(Ik))
′, k = 1, . . . , p(3.9)

(recall that vr(X(Ik)) is the canonical basis of Rr[X(Ik)]). Similarly, for every k =
1, . . . , p, and j ∈ Jk,∑

α∈Γkr

Cjk
α Xα = gj(X) vr−rj (X(Ik)) vr−rj (X(Ik))

′.(3.10)

In view of the dimension of the matrix Ωk (resp., Zjk), one may identify qkl (resp.,
qjkt) with the vector of coefficients of a polynomial qkl ∈ Rr[X(Ik)] (resp., qjkt ∈
Rr−rj [X(Ik)]), and so for every l, t

〈vr(X(Ik)),qkl〉 = qkl(X), k = 1, . . . , p,

〈vr−rj (X(Ik)),qjkt〉 = qjkt(X), j ∈ Jk, k = 1, . . . , p.

Combining the latter with (3.8)–(3.10), one may rewrite (3.8) as

p∑
k=1

⎡⎣∑
l

qkl(X)2 +
∑
j∈Jk

gj(X)
∑
t

qjkt(X)2

⎤⎦ = f(X) − λ.
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In other words,

f − λ =

p∑
k=1

⎛⎝ qk +
∑
j∈Jk

qjk gj

⎞⎠ ,(3.11)

for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p, a sparse version of Puti-
nar’s representation [16] for the polynomial f − λ, nonnegative on K.

Finally, in view of what precedes, the dual Q∗
r also reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
qk,qjk,λ

λ

s.t. f − λ =

p∑
k=1

⎛⎝qk +
∑
j∈Jk

qjk gj

⎞⎠
qk, qjk ∈ R[X(Ik)] and s.o.s., j ∈ Jk, k = 1, . . . , p

deg qk, deg qjkgj ≤ 2r, j ∈ Jk, k = 1, . . . , p.

(3.12)

Theorem 3.1. Let P be as defined in (1.1), with global minimum denoted minP,
and let Assumptions 1 and 2 hold. Let {Qr} be the hierarchy of SDP-relaxations
defined in (3.5). Then the following hold:

(a) inf Qr ↑ minP as r → ∞.
(b) If K has a nonempty interior, then there is no duality gap between Qr and

its dual Q∗
r, and Q∗

r is solvable for sufficiently large r, i.e., inf Qr = maxQ∗
r.

(c) Let yr be a nearly optimal solution of Qr, with, e.g.,

Lyr (f) ≤ inf Qr +
1

r
∀ r ≥ r0,

and let ŷr := {yrα : |α| = 1}. If P has a unique global minimizer x∗ ∈ K, then

ŷr → x∗ as r → ∞.(3.13)

For a proof, see section 4.1. Theorem 3.1 establishes convergence of the hierarchy
of SDP-relaxations to the global minimum minP, as well as convergence to a global
minimizer x∗ ∈ K (if unique).

3.2. Computational complexity. The number of variables for the SDP-relaxa-
tion Qr defined in (3.5) is bounded by

∑p
k=1

(
nk+2r

2r

)
, and so, if all nk’s are close to

each other, say nk ≈ n/p for all k, then one has at most O(p(np )2r) variables, a big

saving when compared with O(n2r) in the original SDP-relaxations defined in [11]
and implemented in [5].

In addition, one also has p LMI constraints of size O((np )r) and m + p LMI

constraints of size O((np )r−r′) (where 2r′ is the largest degree of the polynomials gj ’s),

to be compared with a single LMI constraint of size O(nr) and m LMI constraints of
size O(nr−r′) in [5, 11]. So, for instance, when using an interior point method, it is
definitely better to handle p LMIs, each of size (n/p)r, rather than a single LMI of
size nr.
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For illustration purposes, consider the following elementary example. Let n = 4,
and consider the optimization problem

P :

⎧⎪⎪⎨⎪⎪⎩
inf
x

x1x2 + x1x3 + x1x4

s.t. x2
1 + x2

2 ≤ a12

x2
1 + x2

3 ≤ a13

x2
1 + x2

4 ≤ a14.

Hence, I1 = {1, 2}, I2 = {1, 3}, I3 = {1, 4}. The first SDP-relaxation Q1 in the
hierarchy is obtained with r = 1 and reads

inf
y

y1100 + y1010 + y1001

⎡⎣ 1 y1000 y0100

y1000 y2000 y1100

y0100 y1100 y0200

⎤⎦ ,
⎡⎣ 1 y1000 y0010

y1000 y2000 y1010

y0010 y1010 y0020

⎤⎦ ,
⎡⎣ 1 y1000 y0001

y1000 y2000 y1001

y0001 y1001 y0002

⎤⎦ � 0

a12 − y2000 − y0200 ≥ 0; a13 − y2000 − y0020 ≥ 0; a14 − y2000 − y0002 ≥ 0.

3.3. Extraction of solutions. As for the standard SDP-relaxations of [11], one
may also detect global optimality, i.e., when minQs0 = minP for some s0, in which
case finite convergence occurs, and the SDP-relaxation Qs0 is said to be exact. Recall
that for the standard SDP-relaxations [11], one has defined a rank-test to detect finite
convergence (see, e.g., Lasserre [12]), as well as an extraction procedure (applied to the
moment matrix of an exact SDP-relaxation) to obtain one or several global minimizers
x∗ ∈ Rn of P; for more details, see Henrion and Lasserre [5, 6].

For all j, k with Ijk := Ij ∩ Ik �= ∅, denote by Ijk the set of subsets of Ijk. Let
Mr(y, Ijk) be the submatrix obtained from Mr(y, Ij) or Mr(y, Ik), by selecting only
those rows and columns α ∈ Nn, with supp (α) ∈ Ijk and |α| ≤ r.

Theorem 3.2. Let Assumption 2(i)–(ii) hold, and let {Qr} be the hierarchy of
SDP-relaxations defined in (3.5). Let ak := maxj∈Jk

[rj ], for all k = 1, . . . , p, and
assume that y is an optimal solution of Qs0 for some s0.

The SDP-relaxation Qs0 is exact, i.e., minQs0 = minP, if

rankMs0(y, Ik) = rankMs0−ak
(y, Ik), k = 1, . . . , p,(3.14)

and if rankMs0(y, Ijk) = 1 for all pairs (j, k) with Ij ∩ Ik �= ∅.
Moreover, let Δk := {x∗(k)} ⊂ Rnk be a set of solutions obtained from the extrac-

tion procedure applied to each moment matrix Ms0(y, Ik), k = 1, . . . , p. Then every
x∗ ∈ Rn obtained by (x∗

i )i∈Ik = x∗(k) for some x∗(k) ∈ Δk is an optimal solution of
P.

For a proof, see section 4.2.
Remark 3.3. In Theorem 3.2, Assumption 2(iii) is not needed. In addition, it

also holds even if the SDP-relaxations are defined with the original set K defined in
(1.2) instead of (3.2), i.e., without the additional quadratic constraints (3.1). And so,
Theorem 3.2 is also valid for noncompact sets K, provided Assumption 2(i)–(ii) holds
true.

3.4. A sparse representation result. As a by-product of Theorem 3.1, we
obtain the following representation result.1

1In a recent note [10], Kojima and Maramatsu have improved Corollary 3.3 and show the same
result without assuming that K has a nonempty interior.
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Corollary 3.3. Let K be as in (3.2) with the additional quadratic constraints
(3.1), and with nonempty interior. Let Assumption 2 hold. If f ∈ R[X] is strictly
positive on K, then

f =

p∑
k=1

⎛⎝ qk +
∑
j∈Jk

qjk gj

⎞⎠ ,(3.15)

for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p.
Proof. Let f ∈ R[X] be strictly positive on K, and let f∗ > 0 be its global

minimum on K. From Theorem 3.1(a)–(b), we have inf Qr = maxQ∗
r ↑ f∗, as

r → ∞. Therefore, let r ∈ N be such that maxQ∗
r ≥ f∗/2 > 0, and as Q∗

r is solvable,
let (qk, qjk, λ) be an arbitrary optimal solution, so that maxQ∗

r = λ > 0. From that
solution, one obtains (3.11), i.e.,

f − λ =

p∑
k=1

⎛⎝ qk +
∑
j∈Jk

qjk gj

⎞⎠ ,

for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p (associated with the
optimal solution (qk, qjk, λ) of Q∗

r . But then,

f = λ +

p∑
k=1

⎛⎝ qk +
∑
j∈Jk

qjk gj

⎞⎠
becomes the desired result (by adding λ > 0 to one of the s.o.s. polynomials qk).

Observe that (3.15) is a sparse version of Putinar’s representation for polynomials
strictly positive on K; see Theorem 4.1. Indeed, (3.15) is a certificate of nonnegativity
of f on K. Finally, Corollary 3.3 also holds if K is such that for every k = 1, . . . , p,
Kk satisfies Putinar’s condition (so that there is no need of the quadratic constraints
(3.1)).

3.5. Examples. We provide here some examples considered in Waki et al. [9].
Example 3.2. The chained singular function. With n a multiple of 4,

Ik = {k, k + 1, k + 2, k + 3}, k = 1, . . . , n− 3,

and the sparsity pattern satisfies (1.3). One has κ = 4.
Example 3.3. The Broyden banded function. In this case,

Ik = {k, k + 1, . . . ,min[k + 6, n]}, k = 1, . . . , n,

and the sparsity pattern also satisfies (1.3). One has κ = 7.
Example 3.4. The Broyden tridiagonal function. In this case

Ik = {k, k + 1,min[n, k + 2]}, k = 1, . . . , n,

and the sparsity pattern also satisfies (1.3). One has κ = 3.
Example 3.5. The chained Wood function. In this case, with n a multiple of 4,

Ik = {k, k + 1, k + 2, k + 3}, k = 1, . . . , n− 3,

and the sparsity pattern also satisfies (1.3). One has κ = 4.
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Example 3.6. The generalized Rosenbrock function. In this case,

Ik = {k, k − 1}, k = 2, . . . , n,

and the sparsity pattern also satisfies (1.3).
Example 3.7. The optimal control problem (38) considered in [9]. In this case,

Ik = {{yk,j}ny

j=1, {xk,l}nx

l=1}, k = 1, . . . ,M − 1,

IM = {{yM,j}ny

j=1}, and the sparsity pattern also satisfies (1.3). One has κ = nx×ny.
Example 3.7 is typical of what we call strong coupling, always the case in discrete-time
optimal control problems. Indeed, the control variables at each period are independent,
whereas the coupling of periods is done through the state equations (i.e., the dynamics)
and via the state variables.

In view of Remark 3.2, the SDP-relaxations (3.5) are stronger than (32) in [9],
when the sets {Ik} are the same as the cliques {Ck} in [9], which is the case in all
the previous examples, for which Waki et al. [9] report excellent numerical results; in
particular, problems of large size that could not be handled via the standard SDP-
relaxations of [11] have been solved relatively easily.

Indeed, for instance, in Examples 3.4, 3.5, and 3.6, they have solved problems
with up to n = 500 variables, a remarkable result! For the interested reader, more
details and numerical results can be found in [9].

4. Proofs. We first restate Putinar’s theorem, which is crucial in the proof of
Theorem 3.1 below.

Theorem 4.1 (see Putinar [16]). Let K ⊂ Rn be a compact basic semialgebraic
set as defined in (1.2), and let y = (yα)α∈Nn be given. Let Mr(y) and Mr(gj y) be
the moment and localizing matrices defined in section 2. Assume that there exists
u ∈ R[X] such that u = u0 +

∑m
j=1 uj gj for some s.o.s. polynomials {uj}mj=0 ⊂ Σ2,

and such that the level set {x : u(x) ≥ 0} is compact.
(a) If h ∈ R[X] is strictly positive on K, then h = h0 +

∑m
j=1 hj gj for some s.o.s.

polynomials {hj}mj=0 ⊂ Σ2.
(b) If Mr(y) � 0 and Mr(gj y) � 0 for all j = 1, . . . ,m, and all r = 0, 1, . . . , then

y has a representing measure μ with support contained in K.

4.1. Proof of Theorem 3.1. (a) We first prove that Qr has a feasible solution.
Recall the definitions

Γkr := { α ∈ Nn : supp (α) ∈ Ik; |α| ≤ 2r }, k = 1, . . . , p,

Γr :=

p⋃
k=1

Γkr =

{
α ∈ Nn : supp (α) ∈

p⋃
k=1

Ik; |α| ≤ 2r

}
,

Γ :=
⋃
r∈N

Γr =

{
α ∈ Nn : supp (α) ∈

p⋃
k=1

Ik

}
.

Let ν := δx be the Dirac measure at a feasible solution x ∈ K of P, and let

yα =

∫
Xα dν ∀α ∈ Γr.

Recalling the definition of Mr(y, Ik) and Mr−rj (gj y, Ik) in section 2.2, one has Mr(y, Ik) �
0 and Mr−rj (gj y, Ik) � 0; therefore, y is an obvious feasible solution of Qr. Next we
prove that inf Qr > −∞ for all sufficiently large r.
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Recall that 2r0 ≥ max[deg f,maxj deg rj ]. In view of Assumption 1 and from the
definition of the set Kk in (3.4), there exists N such that N ±Xα > 0 on Kk for all
α ∈ Γkr0 , and all k = 1, . . . , p. Therefore, for every k = 1, . . . , p and α ∈ Γkr0 , the
polynomial N ± Xα belongs to the quadratic module Qk ⊂ R[X(Ik)] generated by
{gj}j∈Jk

⊂ R[X(Ik)], i.e.,

Qk :=

⎧⎨⎩σ0 +
∑
j∈Jk

σj gj : σj s.o.s. in ∈ R[X(Ik)] ∀ j ∈ {0} ∪ Jk

⎫⎬⎭ .

But there is even some l(r0) such that N ±Xα ∈ Qk(l(r0)) for all α ∈ Γkr0 and k =
1, . . . , p, where Qk(t) ⊂ Qk is the set of elements of Qk which have a representation
σ0 +

∑
j∈Jk

σj gj for some s.o.s. {σj} ⊂ R[X(Ik)] with deg σ0 ≤ 2t and deg σjgj ≤ 2t
for all j ∈ Jk. Of course we also have N ± Xα ∈ Qk(l) for all α ∈ Γkr0 , whenever
l ≥ l(r0). Therefore, let us take l(r0) ≥ r0.

For every feasible solution y of Ql(r0) one has

| Ly(X
α) | ≤ N, α ∈ Γkr0 ; k = 1, . . . , p.

This follows from y0 = 1, Ml(r0)(y, Ik) � 0 and Ml(r0)−rj (gj y, Ik) � 0, which implies

Ly(N ±Xα) = Ly(σ0) +
∑
j∈Jk

Ly(σj gj) ≥ 0

because the σj ’s are s.o.s. (see (2.5) and (2.6)).
As 2r0 ≥ degf , it follows that Ly(f) ≥ −N

∑
α |fα|. This is because by Assump-

tion 2(ii), fα �= 0 ⇒ α ∈ Γr0 . Hence inf Ql(r0) > −∞.
So from what precedes, and with s ∈ N arbitrary, let l(s) ≥ s be such that

Ns ±Xα ∈ Qk(l(s)) ∀α ∈ Γks; k = 1, . . . , p,(4.1)

for some Ns. Next, let r ≥ l(r0) (so that inf Qr > −∞), and let yr be a nearly
optimal solution of Qr with value

inf Qr ≤ Lyr (f) ≤ inf Qr +
1

r

(
≤ minP +

1

r

)
.(4.2)

Fix s ∈ N. Notice that from (4.1), for all r ≥ l(s), one has

|Lyr (Xα) | ≤ Ns ∀α ∈ Γs.

Therefore, for all r ≥ r0,

|yrα| = |Lyr (Xα) | ≤ N ′
s ∀α ∈ Γs,(4.3)

where N ′
s = max[Ns, Vs], with

Vs := max {|yrα| : α ∈ Γs; r0 ≤ r < l(s)}.

Complete each yr with zeros to make it an infinite vector in l∞, indexed in the
canonical basis v∞(X) of R[X]. Notice that yrα �= 0 only if α ∈ Γ.

In view of (4.3), one has

|yrα| ≤ N ′
s ∀α ∈ Γ; 2s− 1 ≤ |α| ≤ 2s(4.4)
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for all s = 1, 2, . . . .
Hence, define the new sequence ŷr ∈ l∞ defined by ŷ0 := 1, and

ŷrα :=
yrα
N ′

s

∀α ∈ Γ, 2s− 1 ≤ |α| ≤ 2s

for all s = 1, 2, . . . , and in l∞, consider the sequence {ŷr} as r → ∞.
Obviously, the sequence {ŷr} is in the unit ball B1 of l∞, and so, by the Banach–

Alaoglu theorem (see, e.g., Ash [1, Thm. 3.5.16]), there exists ŷ ∈ B1 and a subse-
quence {ri}, such that ŷri → ŷ as i → ∞ for the weak 	 topology σ(l∞, l1) of l∞. In
particular, pointwise convergence holds, that is,

lim
i→∞

ŷriα → ŷα, α ∈ Nn.

Notice that ŷα �= 0 only if α ∈ Γ. Next, define y0 := 1 and

yα := ŷα ×N ′
s, 2s− 1 ≤ |α| ≤ 2s, s = 1, 2, . . . .

The pointwise convergence ŷri → ŷ implies the pointwise convergence yri → y, i.e.,

lim
i→∞

yriα → yα ∀α ∈ Γ.(4.5)

Let s ∈ N be fixed. From the pointwise convergence (4.5), we deduce that

lim
i→∞

Ms(y
ri , Ik) = Ms(y, Ik) � 0, k = 1, . . . , p.

Similarly

lim
i→∞

Ms(gj y
ri , Ik) = Ms(gj y, Ik) � 0, j ∈ Jk, k = 1, . . . , p.

As s was arbitrary, we obtain that for all k = 1, . . . , p,

Mr(y, Ik) � 0; Mr(gj y, Ik) � 0, j ∈ Jk; r = 0, 1, 2, . . . .(4.6)

Introduce the subsequence yk obtained from y by

yk := { yα : supp (α) ∈ Ik } ∀ k = 1, . . . , p.(4.7)

Recall that Mr(y, Ik) (resp., Mr(gj y, Ik)) is also the moment matrix Mr(y
k) (resp.,

the localizing matrix Mr(gj y
k)) for the sequence yk indexed in the canonical basis

v∞(X(Ik)) of R[X(Ik)]; see section 2.2.
Therefore, by Remark 3.1, (4.6) implies that yk has a representing measure νk

with support contained in Kk, k = 1, . . . , p; see Theorem 4.1. As yk0 = 1, νk is a
probability measure on Kk for all k = 1, . . . , p.

Next, let j, k be such that Ijk := Ij ∩ Ik �= ∅, and recall that Ijk is the set of
all subsets of Ijk. Let mjk := card (Ij ∪ Ik) and let njk := card (Ij ∩ Ik). Define
πj : Rmjk → Rnj , πk : Rmjk → Rnk , and πjk : Rmjk → Rnjk , the natural projections
with respect to the variables {Xi | i ∈ Ij}, {Xi | i ∈ Ik}, and {Xi | i ∈ Ij ∩ Ik},
respectively. Let Kj∨k ⊂ Rmjk and Kj∧k ⊂ Kj∨k be the compact sets

Kj∨k := {x ∈ Rmjk : πj(x) ∈ Kj ; πk(x) ∈ Kk }; Kj∧k := πjk(Kj∨k).
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The probability measures νj and νk can be understood as probability measures on
Kj∨k, supported on Kj = πj(Kj∨k) and Kk = πk(Kj∨k), respectively.

Observe that from the definition (4.7) of yj and yk, one has

yjα = ykα ∀α with supp (α) ∈ Ijk,

and as measures on compact sets are moment determinate, it follows that the marginal
probability measures of νj and νk on Kj∧k (i.e., with respect to the variables X =
{Xi | i ∈ Ijk}) are the same probability measure, denoted νjk. That is,

ykα = yjα =

∫
Xα dνjk ∀α with supp (α) ∈ Ijk.

From Lemma 6.4, there exists a probability measure μ on K, constructed from
the νk’s, and with marginal νk on Kk for all k = 1, . . . , p. In particular, this implies

yα =

∫
Xα dμ ∀α ∈ Γ.(4.8)

Recall that by Assumption 2, fα �= 0 ⇒ α ∈ Γ, and so Ly(f) =
∫
f dμ. On the other

hand, from (4.2) and the pointwise convergence (4.5),

minP ≥ lim
i→∞

inf Qri = lim
i→∞

Lyri (f) = Ly(f) =

∫
f dμ.

But as μ is supported on K, we necessarily have
∫
f dμ ≥ f∗ = minP, and so

minP =
∫
f dμ. Therefore, we have proved that limi→∞ inf Qri = minP, and so

inf Qr ↑ minP follows because the sequence {inf Qr} is monotone nondecreasing.
This completes the proof of (a).

(b) In the feasible solution ν that we have constructed at the beginning of the
proof of (a), choose now ν to be uniform on K, and let y = {yα}α∈Nn be the vector of
all its moments, well defined because K is compact. As K has a nonempty interior,
the probability measure ν satisfies Mr(y)  0 and Mr(gjy)  0, for all j = 1, . . . ,m,
and all r = 0, 1, . . . .

Then, obviously, Mr(y, Ik)  0 (resp., Mr(gj y, Ik)  0, j ∈ Jk) as a submatrix
of Mr(y)  0 (resp., Mr(gj y)  0), for all k = 1, . . . , p.

Hence, the feasible solution y is now strictly feasible, i.e., Slater’s condition holds
for Qr. This implies the absence of a duality gap between Qr and its dual Q∗

r , and as
inf Qr > −∞ for sufficiently large r, Q∗

r is solvable, i.e., inf Qr = supQ∗
r = maxQ∗

r .
This completes the proof of (b).

(c) Finally, let x∗ ∈ K be the unique global minimizer of P, and let yr be as
in Theorem 3.1(c). From (a) there exists a subsequence yri for which we have the
pointwise convergence yri → y (see (4.5)), where y is the moment sequence of a
probability measure μ on K. In particular, (4.8) holds and minP =

∫
f dμ. From

uniqueness of the global minimizer x∗ ∈ K, it follows that μ = δx∗ (the Dirac measure
at x∗ ∈ K). But then (4.8) yields

lim
i→∞

yriα = yα =

∫
Xα dμ = (x∗)α ∀α ∈ Γ.

Taking α ∈ Γ with |α| = 1 yields ŷri → x∗, and as the converging subsequence was
arbitrary, it follows that the whole sequence ŷr converges to x∗ ∈ K, the desired
result.
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4.2. Proof of Theorem 3.2. Let γk := rankMs0(y, Ik), k = 1, . . . , p. From
(3.14) the vector yk = {ykα} defined in (4.7) (with |α| ≤ 2s0) is the vector of moments
(up to order 2s0) of a γk-atomic probability measure νk supported on Kk ⊂ Rnk ,
with Kk being defined in (3.4), k = 1, . . . , p. This follows from a result of Curto
and Fialkow [3, Thm. 1.6] already used in Lasserre [12] to prove finite convergence
of SDP-relaxations for 0-1 programs; see also Laurent [14] for a shorter proof of [3,
Thm. 1.6], and related comments.

Therefore, when applying the extraction procedure defined in [6] to the mo-
ment matrix Ms0(y

k) = Ms0(y, Ik), k = 1, . . . , p, one obtains sets of vectors Δk :=
{xl(k)}γk

l=1 ⊂ Kk for all k = 1, . . . , p.
With δ• denoting the Dirac measure at •, one may thus write

νk =

γk∑
l=1

pkl δxl(k), for some pkl > 0 ∀ l;
γk∑
l=1

pkl = 1

for all k = 1, . . . , p.
But then, pick any solution xlk(k) ∈ Δk, for some lk, k = 1, . . . , p, and define

x∗ ∈ Rn to be the vector such that

x∗(k) := {x∗
i }i∈Ik = xlk(k); k = 1, . . . , p.(4.9)

There is no ambiguity for x∗
i when i ∈ Ij ∩ Ik �= ∅ for some j, k ∈ {1, . . . , p}, because

in this case, from rankMs0(y, Ijk) = 1, we deduce that yjk = {yα} with supp (α) ∈
Ij ∩ Ik, is the vector of moments (up to order 2s0) of some Dirac measure νjk. As
in the proof of (a), νjk is the marginal of νk and νj on Kj∧k (i.e., with respect to
the variables {Xi : i ∈ Ij ∩ Ik}), and so the Dirac measure at some point denoted
x(j ∧ k) ∈ Kj∧k.

Hence, for any two choices xlj (j) ∈ Δj and xlk(k) ∈ Δk, the point x∗ ∈ Rn

defined in (4.9) is in K. We can thus construct s :=
∏p

k=1 γk solutions {xω}sω=1 ⊂ K,
each associated with the probability pω :=

∏p
k=1 pklk if xω(k) = xlk(k) ∈ Δk, for some

lk ∈ {1, . . . , γk}, k = 1, . . . , p. But then, by construction, the probability measure μ
on Rn, defined by

μ :=

s∑
ω=1

pωδxω ,

is supported on K, and its marginal probability measure on Kk is νk for all k =
1, . . . , p. Therefore,

minP ≥ minQs0 = Ly(f) =

∫
f dμ =

s∑
ω=1

pωf(xω),

which implies that f(xω) = minP for all ω = 1, . . . , s, because xω ∈ K for all
ω = 1, . . . , s. Therefore, we have proved that minP = minQs0 . In addition, each
xω ∈ K is an optimal solution of P.

5. Conclusion. We have provided a hierarchy of SDP-relaxations when the
polynomial optimization problem P has some structured sparsity (which can be de-
tected as in Waki et al. [9]). This hierarchy is of the same flavor (in fact a minor
modification) as that in Waki et al. [9], for which excellent numerical results have
been reported. Our contribution was to prove convergence of the optimal values to
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the global minimum of P when the sparsity pattern satisfies the condition (1.3), called
the running intersection property in graph theory, and frequently encountered in prac-
tice. Therefore, this result together with [9] opens the door for the applicability of
the general approach of SDP-relaxations to medium (and even large) scale polynomial
optimization problems, at least when a certain sparsity pattern is present.

6. Appendix. We state some auxiliary results needed in the proof of Theorem
3.1 in section 4.1.

For a topological space Y let B(Y ) denote the usual Borel σ-algebra associated
with Y , and let P (Y ) denote the space of probability measures on Y . A Borel space
is a Borel subset of a complete separable metric space. Let Y,Z be two Borel spaces.
A stochastic kernel q(dy | z) on Y given Z is defined by

• q(dy | z) ∈ P (Y ) for all z ∈ Z,

• the function z �→ q(B | z) is B(Z)-measurable for all B ∈ B(Y ).

6.1. Disintegration of a Borel probability measure. The following result
states that one may decompose or disintegrate a probability measure on a product of
Borel spaces into a marginal and a stochastic kernel (also called conditional probability
when dealing with distributions of random variables).

Proposition 6.1. Let Y,Z be two Borel spaces, and let μ be a probability measure
on Y × Z. Then there exists a probability measure ν ∈ P (Z) and a stochastic kernel
q(dy | z) on Y given Z, such that

μ(A×B) =

∫
B

q(A | z) ν(dz) ∀A ∈ B(Y ), B ∈ B(Z).(6.1)

(Proposition 6.1 can be extended to the Cartesian product of an arbitrary number
of Borel spaces.) The probability measure ν is called the marginal of μ on Z. One
also has the converse.

Proposition 6.2. Let Y,Z be two Borel spaces, and let ν be a probability measure
on Z, and q(dy | z) a stochastic kernel on Y given Z. Then there exists a unique
probability measure μ on Y × Z such that

μ(A×B) =

∫
B

q(A | z) ν(dz) ∀A ∈ B(Y ), B ∈ B(Z).(6.2)

(See, e.g., Ash [1, sect. 6] and Bertsekas and Schreve [2, pp. 139–141].)

Let μ (resp., ν) be a finite Borel probability measure on Rn×Rm (resp., Rm×Rp)
with all moments y = (yαβ)α∈Nn,β∈Nm (resp., z = (zβγ)β∈Nm,γ∈Np) finite. Let μ1 and
ν1 be the respective marginals of μ and ν on Rm, hence with moments∫

Xβ dμ1(X) =

∫
Y 0Xβ dμ(Y,X) = y0β ∀β ∈ Nm,

∫
Xβ dν1(X) =

∫
XβZ0 dμ(X,Z) = zβ0 ∀β ∈ Nm.

If both μ and ν have compact support and y0β = zβ0 for all β ∈ Nm, then μ1 = ν1.
This is because measures with compact support are moment determinate, i.e., if two
measures on a compact subset of Rm have all same moments, they must coincide.
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6.2. Probability measures with given marginals. Case p = 2. Let I0 :=
{1, . . . , n}, and let I0 = I1 ∪ I2 with I1 ∩ I2 �= ∅. Let nk = card Ik, for k = 1, 2, and
n12 = card I1 ∩ I2. For k = 1, 2, let πk : Rn → Rnk be the natural projection with
respect to Ik, that is,

x �→ πk(x) = {xi : i ∈ Ik}, x ∈ Rn,

and let π12 : Rn1 → Rn12 , π21 : Rn2 → Rn12 be the projections with respect to I1 ∩ I2,
that is,

x �→ π12(x) = {xi : i ∈ I1 ∩ I2}, x ∈ Rn1 ,

x �→ π21(x) = {xi : i ∈ I1 ∩ I2}, x ∈ Rn2 ,

and one also extends π12 and π21 to Rn in the obvious way.
Next, for k = 1, 2, let Kk ∈ B(Rnk) be given, and let νk ∈ P (Kk). Denote by

ν12 and ν21 the respective marginals of ν1 and ν2 on Rn12 (i.e., with respect to the
variables {Xi, i ∈ I1 ∩ I2}). That is, letting Z := Rn12 ,

ν12(B) = ν1(π
−1
12 (B) ∩ K1) ∀B ∈ B(Z),

ν21(B) = ν2(π
−1
21 (B) ∩ K2) ∀B ∈ B(Z),

and we have

ν12(π12(K1)) = ν21(π21(K2)) = 1.(6.3)

Let K ⊂ Rn be the set

K := {x ∈ Rn : πk(x) ∈ Kk, k = 1, 2},(6.4)

and view the sets Kk, k = 1, 2 as naturally embedded in Rn, with Kk = πk(K), for
every k = 1, 2.

Lemma 6.3. For k = 1, 2, let Kk ∈ B(Rnk) be given, and let νk ∈ P (Kk) be such
that ν12 = ν21 =: ν. Then there exists a probability measure μ on K with marginals
νk on Kk = πk(K), k = 1, 2, and marginal ν on π12(K).

Proof. For k = 1, 2, let π′
k be the natural projection with respect to Ik \ I1 ∩ I2,

i.e.,

x �→ π′
k(x) = {xi : i ∈ Ik \ I1 ∩ I2 }, x ∈ Rnk , k = 1, 2,

and define Yk ∈ B(Rnk−n12) to be the Borel set {π′
k(x) : x ∈ Kk}, k = 1, 2.

Then, for k = 1, 2, one may view νk as a probability measure on the Cartesian
product Yk × Z. By Proposition 6.1, and from ν12 = ν21 =: ν, for k = 1, 2, one may
disintegrate νk as

νk(A×B) =

∫
B

qk(A | z) ν(dz) ∀A ∈ B(Yk), B ∈ B(Z),

for some stochastic kernels qk, k = 1, 2. Next, let μ be the measure on Y1 × Z × Y2,
defined by

μ(A×B × C) =

∫
B

q1(A | z) q2(C | z) ν(dz),
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for every Borel rectangle

A×B × C ∈ B(Y1) × B(Z) × B(Y2).

Taking A = Y1 yields q1(A | z) = 1, ν-a.e. and so

μ(Y1 ×B × C) =

∫
B

q2(C | z) ν12(dz) = ν2(B × C).

Therefore, ν2 is the marginal of μ on Z ×Y2 (and so on K2). With similar argument,
ν1 is the marginal of μ on Y1 × Z (and so on K1). Finally, taking A = Y1, C = Y2

and using qk(Yk | z) = 1, ν-a.e., yields

μ(Y1 ×B × Y2) =

∫
B

ν(dz) = ν(B),

which shows that ν is the marginal of μ on Z, i.e., with respect to the variables Xi,
i ∈ I1 ∩ I2. It remains to prove that μ(K) = 1. But notice that from the definitions
of K1,K2, and ν,

q1({ y : (y, z) ∈ K1} | z) = q2({ y′ : (z, y′) ∈ K2} | z) = 1, ν-a.e.

So, writing (6.4) as

K = {(y, z, y′) ∈ Rn : (y, z) ∈ K1 ; (z, y′) ∈ K2 }

yields

μ(K) =

∫
Z

q1({y : (y, z) ∈ K1} | z) q2({y′ : (z, y′) ∈ K2} | z) ν(dz) = 1.

Therefore, νk is the marginal of μ on Kk = πk(K) for k = 1, 2, and ν is the marginal
of μ on π12(K).

6.3. Probability measures with given marginals. General case. Let
Ik, Jk, k = 1, . . . , p, be as in section 2, and let K ⊂ Rn be as defined in (1.2),
with Kk ⊂ Rnk as in (3.4), k = 1, . . . , p. Let νk be a given probability measure on
Kk, k = 1, . . . , p.

Given a set I ⊂ Ik denote by X(I) the vector of variables {Xi}i∈I ∈ R|I|, and
denote by νkI the marginal of νk on R|I| (i.e., with respect to the variables Xi, i ∈ I),
so that νk can be disintegrated into qk(. | z)dνkI(dz) for a stochastic kernel q on Rnk−|I|

given R|I| (see Proposition 6.1).
We say that the family of probability measures {νk}pk=1 is consistent with respect

to marginals, if whenever l, k ∈ {1, . . . , p} and Ik ∩ Il �= ∅,

I ⊆ Ik ∩ Il ⇒ νkI = νlI .

Equivalently, when νk and νl have compact support,∫
Xα dνk =

∫
Xα dνl ∀α : sup (α) ⊆ Ik ∩ Il.

For every k = 1, . . . , p, let Wk :=
⋃k

l=1 Il, sk := |Wk|, and

Ωk :=

{
x ∈ Rsk | gj(x) ≥ 0, j ∈

k⋃
l=1

Jl

}
.(6.5)
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Notice that Ωn ≡ K ⊂ Rn.
Lemma 6.4. Let νk be a probability measure on Kk ⊂ Rnk , k = 1, . . . , p, and

assume that the family {νk}pk=1 is consistent with respect to marginals. If (1.3) holds,
then there is the following:

(a) There exists a probability measure μ on Rn such that νk is the marginal of μ
with respect to Ik for all k = 1, . . . , p.

(b) μ is supported on K ⊂ Rn.
Proof. The proof is by induction on p. With p = 1 it is trivial. Let p = 2. Observe

that the condition (1.3) is automatically satisfied. If I1 ∩ I2 = ∅, just let μ := ν1 ⊗ ν2,
the product measure on K1 × K2, i.e.,

μ(A×B) =: ν1(A) ν2(B) ∀ (A,B) ∈ B(K1) × B(K1).

If I1 ∩ I2 �= ∅, then the result follows from Lemma 6.3.
Next, suppose that the results holds for 1 ≤ m < p. That is, let Ωm be as in

(6.5), and let νk be given probability measures on Kk, k = 1, . . . ,m, consistent with
marginals, i.e., whenever l, k ∈ {1, . . . ,m}, and Il ∩ Ik �= ∅,

I ⊆ Ik ∩ Il ⇒ νlI = νkI .

Then there exists a probability measure μm on Ωm, such that νk is the marginal of
μm on Kk (i.e., with respect to the variables Xi, i ∈ Ik), for every k = 1, . . . ,m. We
next show that it holds true for m + 1.

Set Δ := Im+1 ∩Wm. If Δ = ∅, then just take μm+1 := μm ⊗ νm+1, the product
measure on Ωm×Km+1, and the induction is trivially satisfied for m+1. (As Δ = ∅,
one has Ωm+1 = Ωm × Km+1.)

Consider the case Δ �= ∅, and let δ := |Δ|, sm+1 := |Wm+1|. Let πΔ : Ωm → Rδ,
and π′

Δ : Km+1 → Rδ be the natural projection with respect to the variables Xi,
i ∈ Δ. Similarly, let πΔc : Ωm → Rsm−δ, and π′

Δc : Km+1 → Rnm+1−δ be the natural
projections with respect to the variables Xi, i ∈ Wm \ Δ, and Xi, i ∈ Im+1 \ Δ,
respectively. So consider μm and νm+1 as probability measures on the Borel spaces

Y × Z := πΔc(Ωm) × πΔ(Ωm), and Z ′ × Y ′ := π′
Δ(Km+1) × π′

Δc(Km+1),

respectively. Next, consider the marginals μmΔ and ν(m+1)Δ of μm and νm+1 on Z
and Z ′, respectively, and the corresponding disintegrations,

μm = qm(. | z)μmΔ(dz) ; νm+1 = q′m(. | z) ν(m+1)Δ(dz).

From (1.3), Δ ⊆ Is for some s ∈ {1, . . . ,m}. Therefore, ν(m+1)Δ = νsΔ because

{νk}m+1
k=1 are consistent with marginals, and μmΔ = νsΔ =: ν by the induction hy-

pothesis. Hence, one may take Z = Z ′, and notice that

qm(Y | z) = q′m(Y ′ | z) = 1, ν-a.e.(6.6)

Then define the probability measure μm+1 on Y × Z × Y ′ ⊂ Rsm+1 by

μm+1(A×B × C) :=

∫
B

qm(A |z) q′m(C |z) ν(dz),(6.7)

for all Borel rectangles A×B × C ∈ B(Y ) × B(Z) × B(Y ′).
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We claim that μm+1 has the required properties of the induction hypothesis. First
consider the marginal μ(m+1)Im+1

of μm+1 on Z × Y ′. It is obtained from (6.7) with
A = Y . But from (6.6),

μ(m+1)Im+1
(B × C) = μm+1(Y ×B × C) =

∫
B

q′m(C |z) ν(dz)

=

∫
B

q′m(C |z) ν(m+1)Δ(dz)

= νm+1(B × C)

for all B × C in B(Z) × B(Y ′), which proves that μ(m+1)Im+1
= νm+1, the desired

result. Next, consider the marginal μ(m+1)Wm
of μm+1 with respect to the variables

Xi, i ∈ Wm. It is obtained from (6.7) with C = Y ′. So, using (6.6) again,

μ(m+1)Wm
(A×B) = μm+1(A×B × Y ′) =

∫
B

qm(A |z) ν(dz)

=

∫
B

qm(A |z)μmΔ(dz)

= μm(A×B)

for all A×B in B(Y )×B(Z), which proves that μ(m+1)Wm
= μm. But then, μ(m+1)Ik =

μmIk for all k ≤ m, and so, by the induction hypothesis, μ(m+1)Ik = μmIk = νk for
all k ≤ m.

Hence, we have constructed a probability measure μm+1 on Y ×Z×Y ′, such that
for all k = 1, . . . ,m + 1, νk is the marginal of μ(m+1)Ik with respect to the variables
Xi, i ∈ Ik. It remains to show that μm+1(Ωm+1) = 1.

But from the definition of Km+1, Y
′, ν, and νm+1(Km+1) = 1,

q′m(B(z) | z) = 1 ν-a.e. with B(z) := {y : gj(z, y) ≥ 0 ∀ j ∈ Jm+1}.

Similarly, from the definitions of Ωm, Y , ν, and μm(Ωm) = 1,

qm(A(z) | z) = 1 ν-a.e. with A(z) := {y : gj(y, z) ≥ 0 ∀ j ∈ ∪m
k=1Jk}.

Therefore, (6.7), together with the definition (6.5) of Ωm+1, yields

μm+1(Ωm+1) =

∫
Z

qm(A(z) | z) q′m(B(z) | z) × ν(dz) = 1.

Therefore, the induction hypothesis is also true for m + 1.

(b) From μ(Ωn) = 1, and Ωn = K, we obtain μ(K) = 1, the desired result.

Acknowledgments. The author is indebted to Professor M. Kojima for very
interesting and helpful discussions on the topic of sparse SDP-relaxations. He also
wishes to thank T. Netzer and M. Schweighofer from Konstanz University (Germany),
who indicated a way to simplify the original SDP-relations of the author in an earlier
version, so as to yield the SDP-relaxations of this paper. Finally, the author wishes to
thank anonymous referees for helpful remarks and suggestions to improve the initial
version of the paper.



SPARSE CONVERGENT SDP-RELAXATIONS 843

REFERENCES

[1] R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.
[2] D. P. Bertsekas and S. .E. Schreve, Stochastic Optimal Control: The Discrete Time Case,

Academic Press, New York, 1978.
[3] R. E. Curto and L. A. Fialkow, The truncated complex K-moment problem, Trans. Amer.

Math. Soc., 352 (2000), pp. 2825–2855.
[4] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, Exploiting sparsity in semidefinite

programming via matrix completion I: General framework, SIAM J. Optim., 11 (2001),
pp. 647–674.

[5] D. Henrion and J. B. Lasserre, GloptiPoly: Global optimization over polynomials with Mat-
lab and SeDuMi, ACM Trans. Math. Software, 29 (2003), pp. 165–194.

[6] D. Henrion and J. B. Lasserre, Detecting global optimality and extracting solutions in Glop-
tiPoly, in Positive Polynomials in Control, Lecture Notes in Control and Inform. Sci. 312,
D. Henrion and A. Garulli, eds., Springer-Verlag, Berlin, 2005, pp. 293–310.

[7] S. Kim, M. Kojima, and H. Waki, Generalized Lagrangian duals and sums of squares re-
laxations of sparse polynomial optimization problems, SIAM J. Optim., 15 (2005), pp.
697–719.

[8] M. Kojima, S. Kim, and H. Waki, Sparsity in sums of squares of polynomials, Math. Program.,
103 (2005), pp. 45–62.

[9] H. Waki, S. Kim, M. Kojima, and M. Maramatsu, Sums of squares and semidefinite pro-
gramming relaxations for polynomial optimization problems with structured sparsity, SIAM
J. Optim., 17 (2006), pp. 218–242.

[10] M. Kojima and M. Maramatsu, A Note on Sparse SOS and SDP-relaxations for Polynomial
Optimization Problems over Symmetric Cones, Technical report, Department of Mathe-
matical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan, 2006.

[11] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J.
Optim., 11 (2001), pp. 796–817.

[12] J. B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear 0-1 pro-
grams, SIAM J. Optim., 12 (2002), pp. 756–769.

[13] J. B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM J. Optim.,
16 (2006), pp. 751–765.

[14] M. Laurent, Revisiting two theorems of Curto and Fialkow on moment matrices, Proc. Amer.
Math. Soc., 133 (2005), pp. 2965–2976.

[15] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, Exploiting sparsity in
semidefinite programming via matrix completion II: Implementation and numerical results,
Math. Program., 95 (2003), pp. 303–327.

[16] M. Putinar, Positive polynomials on compact semialgebraic sets, Indiana Univ. Math. J., 42
(1993), pp. 969–984.

[17] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM J. Op-
tim., 15 (2005), pp. 805–825.



SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 17, No. 3, pp. 844–860

STRONG DUALITY IN NONCONVEX QUADRATIC
OPTIMIZATION WITH TWO QUADRATIC CONSTRAINTS∗

AMIR BECK† AND YONINA C. ELDAR‡
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1. Introduction. In this paper we consider quadratic minimization problems
with two quadratic constraints both in the real and the complex domain:

(QPC) min
z∈Cn

{f0(z) : f1(z) ≥ 0, f2(z) ≥ 0},(1)

(QPR) min
x∈Rn

{f0(x) : f1(x) ≥ 0, f2(x) ≥ 0}.(2)

In the real case each function fj : Rn → R is defined by fj(x) = xTAjx + 2bTj x +

cj with Aj = AT
j ∈ Rn×n, bj ∈ Rn, and cj ∈ R. In the complex setting, fj :

Cn → R is given by fj(z) = z∗Ajz + 2�(b∗jz) + cj , where Aj = A∗
j are Hermitian

matrices, bj ∈ Cn, and cj ∈ R. The problem (QPR) appears as a subproblem in some
trust region algorithms for constrained optimization [6, 10, 26] where the original
problem is to minimize a general nonlinear function subject to equality constraints.
The subproblem, often referred to as the two trust region problem [1] or the extended
trust region problem [35], has the form

(TTRS) min
x∈Rn

{
xTBx + 2gTx : ‖x‖ ≤ Δ, ‖ATx + c‖ ≤ ξ

}
.(3)

More details on trust region algorithms can be found in [8, 23, 36, 37, 10]. A simpler
(nonconvex) quadratic problem than (TTRS) is the trust region subproblem, which
appears in trust region algorithms for unconstrained optimization:

(TR) min
x∈Rn

{xTBx + 2gTx : ‖x‖2 ≤ δ}.(4)
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Problem (TR) has been studied extensively in the literature; see, e.g., [5, 12, 20, 21,
22, 30, 31] and references therein; it enjoys many useful and attractive properties. In
particular, it is known that (TR) admits no duality gap and that the semidefinite
relaxation (SDR) of (TR) is tight. Moreover, the solution of (TR) can be extracted
from the dual solution. A necessary and sufficient condition for x̄ to be optimal for
(TR) is that there exists ᾱ ≥ 0 such that [15, 30]

(B + ᾱI)x̄ + g = 0,(5)

‖x̄‖2 ≤ δ,(6)

ᾱ(‖x̄‖2 − δ) = 0,(7)

B + ᾱI � 0.(8)

Unfortunately, in general these results cannot be extended to the (TTRS) problem, or
to (QPR). Indeed, it is known that the SDR of (QPR) is not necessarily tight [35, 36].
An exception is when the functions f0, f1, f2 are homogeneous quadratic functions and
there exists a positive definite linear combination of the matrices Aj [35]. Another
interesting result obtained in [35], based on the dual cone representation approach
[33], is that if f1 is concave and f2 is linear, then, although the SDR is not necessarily
tight, (QPR) can be solved efficiently.

If the original nonlinear constrained problem has complex variables, then instead
of (QPR) one should consider the complex variant (QPC). Optimization problems with
complex variables appear naturally in many engineering applications. For example, if
the estimation problem is posed in the Fourier domain, then typically the parameters
to be estimated will be complex [24, 28]. In the context of digital communications,
many signal constellations are modelled as complex valued. Another area where
complex variables naturally arise is narrowband array processing [9].

Of course, every complex quadratic problem of dimension n can be written as
a real quadratic problem of dimension 2n by decomposing the complex vector z as
z = x + iy, where x = �(z) and y = 	(z) are real. Then fj(z) can be written as

fj(z) = wTQjw + 2dT
j w + cj , with

w =

(
x
y

)
∈ R2n,Qj =

(
�(Aj) −	(Aj)
	(Aj) �(Aj)

)
,d =

(
�(bj)
	(bj)

)
.

However, the opposite claim is false: not every real quadratic problem of dimension
2n can be formulated as an n-dimensional complex quadratic problem. Evidently, the
family of complex quadratic problems is a special case of real quadratic problems.
Why then consider the complex setting separately? The answer to this question is
that, as we shall see, there are stronger results for complex problems than for their
real counterparts (cf. section 2).

In this paper we discuss both the complex and real settings. Our interest in the
complex case is two-fold: First, as noted above, in certain applications we naturally
deal with complex variables. Second, our derivations in the complex setting will serve
as a basis for the results in the real case. In section 2, we use an extended version
of the S-lemma [13] to show that under some mild conditions strong duality holds
for the complex valued problem (QPC) and that the SDR is tight. We then develop
optimality conditions similar to those known for the TR problem (4), and present a
method for calculating the optimal solution of (QPC) from the dual solution. Thus,
all the results known for (TR) can essentially be extended to (QPC). Section 3 treats
the real setting. After a discussion of the complex relaxation of (QPR), which is an
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alternative lifting procedure to the popular SDP relaxation, we present a sufficient
condition that ensures zero duality gap (and tightness of the SDR) for (QPR). Our
result is based on the connection between the image of the real and complex spaces
under a quadratic mapping. The advantage of our condition is that it is expressed
via the dual optimal solution and therefore can be validated in polynomial-time.
Furthermore, this condition can be used to establish strong duality in some general
classes of problems. As we show, an example where a problem of this form arises
naturally is in robust least squares design where the uncertainty set is described by
two norm constraints. In addition, preliminary numerical experiments suggest that
for random instances of the TTRS problem (3), our condition is often satisfied.

Throughout the paper, the following notation is used: For simplicity, instead
of inf/sup we use min/max; however, this does not mean that we assume that the
optimum is attained and/or finite. Vectors are denoted by boldface lowercase letters;
e.g., y, and matrices by boldface uppercase letters; e.g., A. For two matrices A
and B, A 
 B (A � B) means that A − B is positive definite (semidefinite).
Sn

+ = {A ∈ Rn×n : A � 0} is the set all real valued n × n symmetric positive
semidefinite matrices and H+

n = {A ∈ Cn×n : A � 0} is the set of all complex valued
n× n Hermitian positive semidefinite matrices. In is the identity matrix of order n.
The real and imaginary part of scalars, vectors, or matrices are denoted by �(·) and
	(·). The value of the optimal objective function of an optimization problem

(P) : min /max{f(x) : x ∈ C}

is denoted by val(P). We use some standard abbreviations such as SDP (semidefinite
programming), SDR (semidefinite relaxation), and LMI (linear matrix inequalities).

2. The complex case. We begin by treating the complex valued problem (QPC).
Using an extended version of the S-lemma we prove a strong duality result, and then
develop necessary and sufficient optimality conditions, similar to those known for the
TR problem (4) (conditions (5)–(8)). Finally, we discuss how to extract a solution for
(QPC), given a dual optimal point.

2.1. Strong duality for (QPC). The fact that strong duality in (nonconvex)
quadratic optimization problems is equivalent in some sense to the existence of a
corresponding S-lemma has already been exhibited by several authors [13, 25]. For
example, strong duality for quadratic problems with a single constraint can be shown
to follow from the nonhomogeneous S-lemma [13], which states that if there exists
x̄ ∈ Rn such that x̄TA2x̄ + 2bT2 x̄ + c2 > 0, then the following two conditions are
equivalent:

1. xTA1x+2bT1 x+ c1 ≥ 0 for every x ∈ Rn such that xTA2x+2bT2 x+ c2 ≥ 0.
2. There exists λ ≥ 0 such that(

A1 b1

bT1 c1

)
� λ

(
A2 b2

bT2 c2

)
.

Generalizations of the S-lemma in the real case are in general not true. For example,
the natural extension to the case of two quadratic inequalities that imply a third
quadratic inequality does not hold in general (see the example in [4]). However, the
following theorem of Fradkov and Yakubovich [13, Theorem 2.2] extends the S-lemma
to the complex case. This result will be the key ingredient in proving strong duality.

Theorem 2.1 (extended S-lemma [13]). Let

fj(z) = z∗Ajz + 2�(b∗jz) + cj , z ∈ Cn, j = 0, 1, 2,
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where Aj are n × n Hermitian matrices, bj ∈ Cn, and cj ∈ R. Suppose that there
exists z̃ ∈ Cn such that f1(z̃) > 0, f2(z̃) > 0. Then the following two claims are
equivalent:

1. f0(z) ≥ 0 for every z ∈ Cn such that f1(z) ≥ 0 and f2(z) ≥ 0.
2. There exists α, β ≥ 0 such that(

A0 b0

b∗0 c0

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)
.

The Lagrangian dual of (QPC) can be shown to have the following form:1

(DC) max
α≥0,β≥0,λ

{
λ

∣∣∣∣ ( A0 b0

b∗0 c0 − λ

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)}
.(9)

Problem (DC) is sometimes called Shor’s relaxation [29]. Theorem 2.2 states that if
problem (QPC) is finite and strictly feasible, then val(QPC) = val(DC).

Theorem 2.2 (strong duality for complex valued quadratic problems). Suppose
that problem (QPC) is strictly feasible, i.e., there exists z̃ ∈ Cn such that f1(z̃) >
0, f2(z̃) > 0. If val(QPC) is finite, then the maximum of problem (DC) is attained
and val(QPC) = val(DC).

Proof. Since val(QPC) is finite then clearly

val(QPC) = max
λ

{λ : val(QPC) ≥ λ}.(10)

Now, the statement val(QPC) ≥ λ holds true if and only if the implication

f1(z) ≥ 0, f2(z) ≥ 0 ⇒ f0(z) ≥ λ

is valid. By Theorem 2.1 this is equivalent to

∃α, β ≥ 0

(
A0 b0

b∗0 c0 − λ

)
� α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)
.(11)

Therefore, by replacing the constraint in (10) with the LMI (11), we obtain that
val(QPC) = val(DC). The maximum of (DC) is attained at (λ̄, ᾱ, β̄), where λ̄ is the
(finite) value val(QPC) and ᾱ, β̄ are the corresponding nonnegative constants that
satisfy the LMI (11) for λ = λ̄.

One referee pointed us to a recent related paper [18] from June 2005, which was
posted to a web site after we submitted our paper. In [18], the strong duality result
of Theorem 2.2 is derived by using an interesting new rank-one decomposition, while
our proof is a direct consequence of the classical extended S-lemma of Fradkov and
Yakubovich.

It is interesting to note that the dual problem to (DC) is the so-called SDR of
(QPC):

(SDRC) min
Z

{Tr(ZM0) : Tr(ZM1) ≥ 0,Tr(ZM2) ≥ 0, Zn+1,n+1 = 1,Z ∈ H+
n+1},

(12)

where

M j =

(
Aj bj
b∗j cj

)
.

1This formulation can be found in [34].



848 AMIR BECK AND YONINA C. ELDAR

By the conic duality theorem (see, e.g., [4]), it follows that if both problems (QPC) and
(DC) are strictly feasible, then they attain their solutions and val(QPC) = val(DC) =
val(SDRC). Finally, we note that strict feasibility of the dual problem (DC) is equiv-
alent to saying that there exist α̃ ≥ 0, β̃ ≥ 0 such that A0 
 α̃A1 + β̃A2. This
condition is automatically satisfied when at least one of the constraints or the objec-
tive function is strictly convex (see also [35, Proposition 2.1]), an assumption that is
true in many practical scenarios, for example in the TTRS problem (3).

2.2. Optimality conditions. Theorem 2.3 will be very useful in section 2.3,
where a method for extracting the optimal solution of (QPC) from the optimal dual
solution of (DC) will be described.

Theorem 2.3. Suppose that both problems (QPC) and (DC) are strictly feasible,
and let (ᾱ, β̄, λ̄) be an optimal solution of (DC). Then z̄ is an optimal solution of
(QPC) if and only if

(A0 − ᾱA1 − β̄A2)z̄ + b0 − ᾱb1 − β̄b2 = 0,(13)

f1(z̄), f2(z̄) ≥ 0,(14)

ᾱf1(z̄) = β̄f2(z̄) = 0.(15)

Proof. The proof follows from the strong duality result (Theorem 2.2) and from
saddle point optimality conditions (see, e.g., [2, Theorem 6.2.5]).

Note that a direct consequence of Theorem 2.3 is that the linear system (13) is
consistent.

We now develop necessary and sufficient optimality conditions for (QPC) assuming
strict feasibility, which are a natural generalization of the optimality conditions (5)–(8)
for the trust region subproblem. Notice that for the complex version of the (TTRS),
strict feasibility of (DC) is always satisfied since the norm constraint is strictly convex.

Theorem 2.4. Suppose that both problems (QPC) and (DC) are strictly feasible.
Then z̄ is an optimal solution of (QPC) if and only if there exist α, β ≥ 0 such that

(i) (A0 − αA1 − βA2)z̄ + b0 − αb1 − βb2 = 0;
(ii) f1(z̄), f2(z̄) ≥ 0;
(iii) αf1(z̄) = βf2(z̄) = 0;
(iv) A0 − αA1 − βA2 � 0.
Proof. The necessary part is trivial since z̄, ᾱ, and β̄ of Theorem 2.3 satisfy

conditions (i)–(iv). Suppose now that conditions (i)–(iv) are satisfied. Then by (ii), z̄
is feasible and therefore f0(z̄) ≥ val(QPC). To prove the reverse inequality (f0(z̄) ≤
val(QPC)), consider the unconstrained minimization problem:

min
z∈Cn

{f0(z) − ᾱf1(z) − β̄f2(z)}.(16)

We have

val((16)) ≤ min
z∈Cn

{f0(z) − ᾱf1(z) − β̄f2(z) : f1(z) ≥ 0, f2(z) ≥ 0}

≤ min
z∈Cn

{f0(z) : f1(z) ≥ 0, f2(z) ≥ 0} = val(QPC).(17)

Conditions (i) and (iv) imply that z̄ is an optimal solution of (16) so that

f0(z̄) − ᾱf1(z̄) − β̄f2(z̄) = val((16)) ≤ val(QPC),(18)

where the latter inequality follows from (17). By condition (iii) we have that f0(z̄) =
f0(z̄) − ᾱf1(z̄) − β̄f2(z̄). Combining this with (18) we conclude that f0(z̄) ≤
val(QPC).
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2.3. Finding an explicit solution of (QPC). Theorem 2.3 can be used to
find an explicit solution to (QPC) from the solution of the dual (DC). Specifically,
in section 2.3.1 we show that given the optimal dual solution, (QPC) reduces to a
quadratic feasibility problem, whose solution is described in section 2.3.2.

2.3.1. Reduction to a quadratic feasibility problem. Suppose that both
(QPC) and (DC) are strictly feasible. From Theorem 2.3, z̄ is an optimal solution if
it satisfies (13), (14), and (15). If A0 − ᾱA1 − β̄A2 
 0, then the (unique) solution
to the primal problem (QPC) is given by

z̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2).

Next, suppose that A0 − ᾱA1 − β̄A2 is positive semidefinite but not positive definite.
In this case (13) can be written as z = Bw+a, where the columns of B form a basis
for the null space of A0 − ᾱA1 − β̄A2 and a = −(A0 − ᾱA1 − β̄A2)

†(b0 − ᾱb1 − β̄b2)
is a solution of (13). It follows that z̄ = Bw̄ + a is an optimal solution to (QPC) if
and only if conditions (14) and (15) of Theorem 2.3 are satisfied, i.e.,

g1(w̄) ≥ 0, g2(w̄) ≥ 0, ᾱg1(w̄) = 0, β̄g2(w̄) = 0, (gj(w) ≡ fj(Bw + a)).(19)

We are left with the problem of finding a vector which is a solution of a system of
two quadratic equalities or inequalities as described in Table 1. This problem will be
called the quadratic feasibility problem.

Table 1

Cases of the quadratic feasibility problem.

No. Case Feasibility problem
I ᾱ = 0, β̄ = 0 g1(w) ≥ 0 and g2(w) ≥ 0
II ᾱ > 0, β̄ = 0 g1(w) = 0 and g2(w) ≥ 0
III ᾱ = 0, β̄ > 0 g1(w) ≥ 0 and g2(w) = 0
IV ᾱ > 0, β̄ > 0 g1(w) = 0 and g2(w) = 0

Note that since (λ̄, ᾱ, β̄) is an optimal solution of the dual problem (DC), we must
have A0 − ᾱA1 − β̄A2 � 0. Thus, the first case is possible only when A0 � 0.

We summarize the above discussion in the following theorem.
Theorem 2.5. Suppose that both problems (QPC) and (DC) are strictly feasible

and let (ᾱ, β̄, λ̄) be an optimal solution of problem (DC). Then
1. if A0− ᾱA1− β̄A2 
 0, then the (unique) optimal solution of (QPC) is given

by

z̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2),

2. if A0 − ᾱA1 − β̄A2 � 0 but not positive definite, then the solutions of
(QPC) are z = Bw + a, where the columns of B ∈ Cn×d form a ba-
sis for N (A0 − ᾱA1 − β̄A2), a is a solution of (13), and w ∈ Cd (d =
dim

(
N (A0 − ᾱA1 − β̄A2)

)
) is any solution of (19).

2.3.2. Solving the quadratic feasibility problem. We now develop a method
for solving all cases of the quadratic feasibility problem described in Table 1, under
the condition that f1 is strictly concave, i.e., A1 ≺ 0 (so that the corresponding
constraint is strictly convex).2 The strict concavity of g1(w) = f1(Bw + a) follows

2Note that this assumption readily implies that problem (DC) is strictly feasible.
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immediately. By applying an appropriate linear transformation on g1, we can assume
without loss of generality that g1(w) = γ − ‖w‖2 (γ ≥ 0). Our approach will be to
use solutions of at most two (TR) problems.

We split our analysis according to the different cases.
Case I+II. A solution to the feasibility problem in Case I (II) is any solution to

the problem max{g2(w) : ‖w‖2 ≤ γ} (max{g2(w) : ‖w‖2 = γ})
Case III. We first calculate w0,w1 given by

w0 ∈ argmin{g2(w) : ‖w‖2 ≤ γ}, w1 ∈ argmax{g2(w) : ‖w‖2 ≤ γ}.

A solution to the feasibility problem is then given by w̄ = w0 + η(w1 −w0), where η
is a solution to the scalar quadratic problem g2(w

0 + η(w1 −w0)) = 0 with η ∈ [0, 1].
Case IV. Let w0 and w1 be defined by

w0 ∈ argmin{g2(w) : ‖w‖2 = γ}, w1 ∈ argmax{g2(w) : ‖w‖2 = γ}.

The case in which w0 and w1 are linearly dependent can be analyzed in the same
way as Case III. If w0 and w1 are linearly independent we can define

u(η) = w0 + η(w1 −w0), w(η) =
√
γ

u(η)

‖u(η)‖ , η ∈ [0, 1].

A solution to the feasibility problem is given by w(η), where η is any root of the
scalar equation g2(w(η)) = 0, η ∈ [0, 1]. The latter equation can be written (after
some elementary algebraic manipulation) as the following quartic scalar equation:(

γu(η)∗A2u(η) + c2‖u(η)‖2
)2

= 4γ‖u(η)‖2(�(b∗2u(η)))2.(20)

Notice that (20) has at most four solutions, which have explicit algebraic expressions.
An alternative procedure for finding an explicit solution of (QPC) is described in

[18]. The dominant computational effort in both methods is the solution of the SDP
(SDRC) or its dual (DC), which can be solved by a primal dual interior point method
that requires O(n3.5) operations per accuracy digit (see, e.g., [4, section 6.6.1]).

3. The real case. We now treat the problem (QPR) in which the data and
variables are assumed to be real valued. The dual problem to (QPR) is

(DR) max
α≥0,β≥0,λ

{
λ

∣∣∣∣ ( A0 b0

bT0 c0 − λ

)
� α

(
A1 b1

bT1 c1

)
+ β

(
A2 b2

bT2 c2

)}
.

(21)

Note that this is exactly the same as problem (DC) (problem (9)), where here we use
the fact that the data is real and therefore b∗j = bTj . The SDR in this case is given by

(SDRR) min
X

{Tr(XM0) : Tr(XM1) ≥ 0,Tr(XM2) ≥ 0, Xn+1,n+1 = 1,X ∈ Sn+1
+ }.

(22)

In contrast to the complex case, strong duality is generally not true for (QPR).
Nonetheless, in this section we use the results obtained for (QPC) in order to establish
several results on (QPR). In section 3.1 we show that if the constraints of (QPR) are
convex, then (QPC), considered as a relaxation of (QPR), can produce an approximate
solution. In section 3.2 we relate the image of the real and complex space under a
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quadratic mapping, which will enable us to bridge between the real and complex
case. Using the latter result, a sufficient condition for zero duality gap is proved in
section 3.3. The condition is expressed via the optimal dual variables and thus can be
verified in polynomial time. Preliminary numerical results suggest that for the TTRS
problem (3) this condition is often satisfied. Moreover, we identify two general classes
of problems with zero duality gap, based on this condition. As we show in section 3.4,
these results can be applied to the robust least-squares problem in order to obtain a
polynomial time algorithm in the presence of uncertainty sets described by two norm
constraints.

3.1. The complex relaxation. As already mentioned, val(QPR) is not nec-
essarily equal to val(DR). However, the complex counterpart (QPC) does satisfy
val(QPC) = val(DR) and we can always find a complex valued solution to (QPC)
that attains the bound val(DR). Therefore, we can consider (QPC) as a tractable
relaxation (the complex relaxation) of the real valued problem (QPR). The following
example, whose data is taken from Yuan [36, p. 59], illustrates this fact.

Example. Consider the following real valued quadratic optimization problem:

min
x1,x2∈R

{−2x2
1 + 2x2

2 + 4x1 : x2
1 + x2

2 − 4 ≤ 0, x2
1 + x2

2 − 4x1 + 3 ≤ 0},(23)

which is a special case of (QPR) with

A0 =

(
−2 0
0 2

)
,A1 = A2 = −I, b0(2; 0), b1 = 0, b2 = (2; 0), c0 = 0, c1 = 4, c2 = −3.

The solution to the dual problem is given by ᾱ = 1, β̄ = 1, and λ̄ = −1. It is easy to see
that the optimal solution to (QPR) is given by x1 = 2, x2 = 0 and its corresponding
optimal solution is 0. The duality gap is thus 1. By the strong duality result of
Theorem 2.2, we can find a complex valued solution to the complex counterpart

min
z1,z2∈C

{−2|z1|2 + 2|z2|2 + 4�(z1) : |z1|2 + |z2|2 − 4 ≤ 0, |z1|2 + |z2|2 − 4�(z1) + 3 ≤ 0}.
(24)

with value equal to that of the dual problem (that is, equal to −1). Using the
techniques described in section 2.3 we obtain that the solution of problem (24) is
z1 = 7/4 +

√
15/16i, z2 = 0 with function value −1.

The following theorem states that if the constraints of (QPC) are convex (as in
the two trust region problem), then we can extract an approximate real solution that
is feasible from the optimal complex solution z̄ by taking x̄ = �(z̄).

Theorem 3.1. Suppose that both (QPR) and (DR) are strictly feasible. Let
A1,A2 ∈ Rn×n be negative definite matrices, A0 = AT

0 ∈ Rn×n, bj ∈ Rn, and
cj ∈ R. Let z̄ be an optimal complex valued solution of (QPC) and let x̄ = �(z̄).
Then x̄ is a feasible solution of (QPR) and

f0(x̄) − val(QPR) ≤ −	(z̄)TA0	(z̄).

Proof. To show that x̄ is a feasible solution of (QPR) note that for z ∈ Cn, j = 1, 2
one has

0 ≤ fj(z) = z∗Ajz + 2�(b∗jz) + cj

= �(z)TAj�(z) + 	(z)TAj	(z) + 2bTj �(z) + cj

≤ �(z)TAj�(z) + 2bTj �(z) + cj = fj(�(z)),
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where the last inequality follows from Aj ≺ 0. Thus, since z̄ is feasible, so is �(z̄).
Finally,

f0(�(z̄))−val(QPR) ≤ f0(�(z̄))−val(QPC) = f0(�(z̄))−f0(z̄) = −	(z̄)TA0	(z̄).

In our example the approximate solution is (7/4, 0) and its function value is equal
to 0.875.

The extension from real to complex variables can be considered as lifting. A very
popular lifting procedure is the SDR in which a nonconvex quadratic optimization
problem defined over Rn is lifted to the corresponding SDR, which is defined over the
space of n× n positive semidefinite matrices Sn

+. This approach has been studied in
various contexts such as approximation of combinatorial optimization problems (see
[4] and references therein), polynomial inequalities [19], and more. The lifting pro-
cedure we suggest is relevant only in the context of quadratic optimization problems
with two quadratic constraints. Our method is based on extending the real number
field R into the complex number field C. The value of the convex relaxation val(QPC)
is equal to the value of the SDR val(SDRR). The main difference between the two
strategies is in the “projection” stage onto Rn. In our strategy, the projection is
simple and natural: we take the real part of the vector. If the constraints are convex,
then we have obtained a feasible point. In contrast, the choice of projection of the
SDR solution, which is an n × n matrix, is not obvious. There are well established
methods for specific instances (such as Max-Cut problems), but it is not clear how
to extract a “good” approximate and feasible solution for general convex quadratic
constraints. Another advantage to our method is that the procedure for finding a so-
lution to (QPC) defined in section 2.3 can be manipulated so that it will output a real
valued optimal solution in the case where strong duality indeed holds. In contrast,
projection of the SDR solution may no longer be optimal, even in the case of strong
duality.

3.2. The image of the complex and real space under a quadratic map-
ping. One of the key ingredients in proving the sufficient condition in section 3.3 is a
result (Theorem 3.3) on the image of the spaces Cn and Rn under a quadratic map-
ping, composed from two nonhomogeneous quadratic functions. Results on the image
of quadratic mappings play an important role in nonconvex quadratic optimization
(see, e.g., [17, 25, 27] and references therein). We begin with the following theorem
due to Polyak [25, Theorem 2.2], which is very relevant to our analysis.

Theorem 3.2 (see [25]). Let A1,A2 ∈ Rn×n, (n ≥ 2) be symmetric matrices for
which the following condition is satisfied:

∃α, β ∈ R such that αA1 + βA2 
 0.(25)

Let b1, b2 ∈ Rn and c1, c2 ∈ R, and define fj(x) = xTAjx+ 2bTj x+ cj. Then the set

W = {(f1(x), f2(x)) : x ∈ Rn}

is closed and convex.
The following theorem states that the images of Cn and Rn under the quadratic

mapping defined in Theorem 3.2 are the same.
Theorem 3.3. Consider the setup of Theorem 3.2, and let fj(z) = z∗Ajz +

2�(b∗jz) + cj. Then the sets

F = {(f1(z), f2(z)) : z ∈ Cn}, W = {(f1(x), f2(x)) : x ∈ Rn}
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are equal. The proof of Theorem 3.3 relies on the following lemma.
Lemma 3.4. Let A be a real n× n symmetric matrix, b ∈ Rn, c ∈ R, and β ≥ 0.

Then

min
x∈Rn

{xTAx + 2bTx + c : ‖x‖2 = β} = min
z∈Cn

{z∗Az + 2�(b∗z) + c : ‖z‖2 = β}.
(26)

Proof. First note that (26) is obvious for β = 0. Suppose that β > 0. The value
of the first problem in (26) is equal to

max
μ

{μ : xTAx + 2bTx + c ≥ μ for every x ∈ Rn such that ‖x‖2 = β}.(27)

Similarly, the value of the second problem is equal to

max
μ

{μ : z∗Az + 2�(b∗z) + c ≥ μ for every z ∈ Cn such that ‖z‖2 = β}.(28)

By Theorem A.2 (note that condition (45) is satisfied for f1(x) ≡ ‖x‖2 − β with
β > 0), the value of both problems is equal to the value of

maxμ,λ μ

s.t.

(
A b

bT c− μ

)
� λ

(
I 0
0 −β

)
,

and therefore these values are the same.
We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. By Theorem 3.2 both W and F are convex. Obviously
W ⊆ F . To prove the opposite, we first assume without loss of generality that
f1(x) = ‖x‖2. The latter assumption is possible since (25) is satisfied. Suppose that
(a, b) ∈ F , i.e., a = ‖z‖2, b = f2(z) for some z ∈ Cn, and let

bmin = min{f2(z) : ‖z‖2 = a} and bmax = max{f2(z) : ‖z‖2 = a}.

By Lemma 3.4, there must be two real vectors x0,x1 ∈ Rn such that ‖x0‖2 = ‖x1‖2 =
a and f2(x

0) = bmin ≤ b ≤ bmax = f2(x
1). Therefore, (a, bmin), (a, bmax) ∈ W . Since

W is convex we conclude that (a, b), being a convex combination of (a, bmin) and
(a, bmax), also belongs to W .

3.3. A sufficient condition for zero duality gap of (QPR).

3.3.1. The condition. We now use the results on the complex valued problem
(QPC) in order to find a sufficient condition for zero duality gap and tightness of the
SDR of the real valued problem (QPR). Our derivation is based on the fact that if
an optimal solution of (QPC) is real valued, then (QPR) admits no gap with its dual
problem (DR).

Theorem 3.5. Suppose that both problems (QPR) and (DR) are strictly feasible
and that

∃α̂, β̂ ∈ R such that α̂A1 + β̂A2 
 0.(29)

Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). If

d = dim
(
N (A0 − ᾱA1 − β̄A2)

)
�= 1,(30)
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then val(QPR) = val(DR) = val(SDRR) and there exists a real valued solution to
(QPC).

Proof. Since both (SDRR) and (DR) are strictly feasible, val(DR) = val(SDRR).
Now, suppose that d = 0. Then by (13), a solution to (QPC) is given by the real
valued vector

x̄ = −(A0 − ᾱA1 − β̄A2)
−1(b0 − ᾱb1 − β̄b2).

Since (QPC) has a real valued solution it follows that val(QPR) = val(QPC) = val(DR),
where the last equality follows from Theorem 2.2.

Next, suppose that d ≥ 2. By Theorem 2.5, any optimal solution z̄ of (QPC) has
the form z̄ = Bw̄ + a, where w̄ ∈ Cd is a solution of

g1(w) ≥ 0, g2(w) ≥ 0, ᾱg1(w) = 0, β̄g2(w) = 0, (gj(w) ≡ fj(Bw + a)).(31)

Both the matrix B and the vector a are chosen to be real valued; such a choice is
possible since the columns of B form a basis for the null space of the real valued
matrix A1 − ᾱA1 − β̄A2 and a is an arbitrary solution of a real valued linear system.
Now, obviously (g1(w̄), g2(w̄)) ∈ S1, where S1 = {(g1(w), g2(w)) : w ∈ Cd}. Since B
has full column rank, if (29) is satisfied, then

α̂BTA1B + β̂BTA2B 
 0.(32)

The LMI (32) together with the fact that d ≥ 2 imply that the conditions of Theorem
3.3 are satisfied and thus S1 = S2, where S2 = {(g1(x), g2(x)) : x ∈ Rd}. Therefore,
there exists x̄ ∈ Rd such that gj(w̄) = gj(x̄) and as a result, (31) has a real valued
solution. To conclude, z̄ = Bx̄ + a ∈ Rn is a real valued vector which is an optimal
solution to (QPC).

A more restrictive sufficient condition than (30) is

dim(N (A0 − ᾱA1 − β̄A2)) = 0.

This condition, as opposed to condition (30), can be directly derived from comple-
mentarity conditions of (SDRR) and its dual (DR).

We note that although a direct verification of the sufficient condition (30) re-
quires the solution of the dual problem (DR), we will show that it is possible to use
this condition in order to prove strong duality is always satisfied for certain classes of
structured nonconvex quadratic problems (see section 3.3.3).

3.3.2. Numerical experiments. To demonstrate the fact that for the TTRS
problem (3), the sufficient condition of Theorem 3.5 often holds for random problems,
we considered different values of m and n (the number of constraints and the number
of variables in the original nonlinear problem) and randomly generated 1000 instances
of B, g,A, and c. We chose Δ = 0.1 and ξ = ‖AT (−αAc) + c‖, with

α = min

{
Δ

‖Ac‖ ,
cT (ATA)c

cT (ATA)2c

}
,

as suggested in the trust region algorithm of [6]. The SDP problems were solved by
SeDuMi [32]. The results are given in Table 2.

In the table, distribution is the distribution from which the coefficients of B, g,A,
and c are generated. There are two possibilities: uniform distribution (U [0, 1]) or



STRONG DUALITY IN NONCONVEX QUADRATIC OPTIMIZATION 855

Table 2

Results for TTRS.

n m distribution Nsuf mean sd
10 1 Normal 997 5.50 2.34
10 1 Uniform 1000 1.61 0.62
10 10 Normal 1000 5.04 2.31
10 10 Uniform 1000 1.60 0.61
100 1 Normal 1000 13.15 2.65
100 1 Uniform 1000 3.75 0.64
100 100 Normal 1000 12.54 2.31
100 100 Uniform 1000 3.71 0.65

standard normal distribution (N(0, 1)). Nsuf is the number of problems satisfying
the sufficient condition (30) out of 1000. mean and sd are the mean and standard
deviation of the minimal eigenvalue of the matrix A0 − ᾱA1 − β̄A2. Numerically,
the dimension of the null space in condition (30) was determined by the number of
eigenvalues of the matrix A0 − ᾱA1 − β̄A2 whose absolute value was less than 10−8.
It is interesting to note that almost all the instances satisfied condition (30) except
for 3 cases when n = 10,m = 1 with data generated from the normal distribution.
Of course, these experiments reflect the situation in random problems and the results
might be different (for better or for worse) if the data is generated differently.

3.3.3. Two classes of problems with zero duality gap. We will now present
two classes of nonconvex quadratic problems for which the sufficient condition of
Theorem 3.5 is always satisfied.

First class. Consider the problem of minimizing an indefinite quadratic function
subject to a norm constraint and a linear inequality constraint:

min
x∈Rn

{xTQx + 2bTx : ‖x‖2 ≤ δ,aTx ≤ ξ}.(33)

This problem was treated in [33, 35], where it was shown that the SDR is not always
tight, although a polynomial-time algorithm for solving this problem was presented.
We will find a condition on the data (Q,a, b) that will be sufficient for zero duality
gap.

Theorem 3.6. Suppose that problem (33) is strictly feasible and n ≥ 2. If the
dimension of N (Q − λmin(Q)In) is at least 2, then strong duality holds for problem
(33).

Proof. Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem to (33). From the
feasibility of the dual problem it follows that Q+ᾱIn � 0. Now, either ᾱ > −λmin(Q)
and in that case Q + ᾱIn is nonsingular and thus the dimension of N (Q + ᾱIn) is
0 or ᾱ = −λmin(Q) and in this case N (Q + ᾱIn) is of dimension at least 2 by the
assumptions. The result follows now from Theorem 3.5.

Second class. Consider problem (QPR) with matrices Ai of the following form:

Ai = Ir ⊗ Qi, i = 0, 1, 2,(34)

where Qi = QT
i ∈ Rm×m, r > 1, and n = rm. Here ⊗ denotes the Kronecker product.

In section 3.4 we will show that this class of problems naturally arises in unstructured
robust least squares problems. The following theorem, which is a direct consequence
of the sufficient condition (30), states that under some mild conditions (such as strict
feasibility), strong duality holds.
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Theorem 3.7. Suppose that both problems (QPR) and (DR) are strictly feasible

and that Ai is given by (34). Moreover, suppose that there exist α̂ and β̂ such that

α̂Q1 + β̂Q2 
 0.(35)

Then strong duality holds for (QPR).
Proof. The validity of condition (35) readily implies that (29) holds true. More-

over, by the premise of the theorem, both problems (QPR) and (DR) are strictly
feasible. We are thus left with the task of proving that condition (30) is satisfied. In-
deed, let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). Then the matrix
A0 − ᾱA1 − β̄A2 is equal to Ir ⊗ (Q0 − ᾱQ1 − β̄Q2). Using properties of eigenval-
ues of Kronecker products [14], we conclude that the multiplicities of the eigenvalues
of the latter matrix must be multiplicities of r, i.e., r, 2r, . . . . The dimension of
N (A0 − ᾱA1 − β̄A2) is the multiplicity of the eigenvalue 0, which by the fact that
r > 1, cannot be equal to 1. Hence, by Theorem 3.5, strong duality holds.

3.4. Application to unstructured robust least squares. The robust least
squares (RLS) problem was introduced and studied in [16, 7]. Consider a linear sys-
tem Ax ≈ b where A ∈ Rr×n, b ∈ Rr, and x ∈ Rn. Assume that the matrix and
right-hand side vector (A, b) are not fixed but rather given by a family of matrices3

(A, b)+ΔT , where (A, b) is a known nominal value and Δ ∈ R(n+1)×r is an unknown
perturbation matrix known to reside in a compact uncertainty set U . The RLS ap-
proach to this problem is to seek a vector x ∈ Rn that minimizes the worst case data
error with respect to all possible values of Δ ∈ U :

min
x

max
Δ∈U

∥∥∥∥Ax− b + ΔT

(
x
−1

)∥∥∥∥2

.(36)

In [16] the uncertainty set U in the unstructured case was chosen to contain all matrices
Δ satisfying a simple Frobenius norm constraint, i.e.,

Tr(ΔTΔ) ≤ ρ.(37)

The RLS problem is considered difficult in the case when the uncertainty set U is
given by an intersection of ellipsoids; see the related problem4 of finding a robust
counterpart of a conic quadratic problem [3]. Nonetheless, we will now show that a
byproduct of our results is that as long as r > 1, the RLS problem with uncertainty
set given by an intersection of two ellipsoids is tractable. Specifically, we consider an
uncertainty set U given by two norm constraints:

U = {Δ ∈ R(n+1)×r : Tr(ΔTBiΔ) ≤ ρi, i = 1, 2},(38)

where Bi = BT
i ∈ R(n+1)×(n+1) and ρi > 0. We also assume that

∃γ1 ≥ 0, γ2 ≥ 0 such that γ1B1 + γ2B2 
 0.(39)

The above condition will ensure strict feasibility of the dual problem to the inner
maximization problem of (36).

3The perturbation matrix appears in a transpose form for the sake of simplicity of notation.
4Note that finding a tractable formulation to the RLS problem is the key ingredient in deriving

a robust counterpart of a conic quadratic constraint of the form ‖Ax + b‖ ≤ cT x + d.
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The form of the uncertainty set (38) is more general than the standard single-
constraint form (37) and it can thus be used to describe more complicated scenarios
of uncertainties. Using some simple algebraic manipulations the objective function in
(36) can be written as

‖Ax− b+ΔT x̃‖2 = Tr(ΔT x̃x̃TΔ) + 2Tr((Ax− b)x̃TΔ) + Tr((Ax− b)(Ax− b)T ),

where we denoted

x̃ =

(
x
−1

)
.(40)

Relying on the identities

Tr(ATBA) = vec(A)T (Ir ⊗B) vec(A), Tr(ATC) = vec(A)T vec(C)(41)

for every A,C ∈ Rp×rB ∈ Rp×p, where for a matrix M , vec(M) denotes the vector
obtained by stacking the columns of M , the inner maximization problem in (36) takes
the following form:

max{vec(Δ)TQ vec(Δ) + 2fT vec(Δ) + c : Δ ∈ U},(42)

where Q = Ir ⊗ x̃x̃T ,f = vec(x̃(Ax−b)T ), and c = ‖Ax−b‖2. By the first identity
of (41) it follows that U can be written as

U = {Δ ∈ R(n+1)×r : vec(Δ)T (Ir ⊗Bi) vec(Δ) ≤ ρi, i = 1, 2}.

Therefore, all the matrices in the inner maximization problem (42) are of the form
Ir ⊗ G. Noting that all the other conditions of Theorem 3.7 are satisfied (strict
feasibility of the primal and dual problems and (35)), we conclude that strong duality
holds for (42) and its value is thus equal to the value of the dual problem given by

min
α≥0,β≥0,λ

{
−λ

∣∣∣∣(−Q + Ir ⊗ (αB1 + βB2) −f

−fT −c− λ− αρ1 − βρ2

)
� 0

}
.

Now, using the following identities (see [14]):

Q = Ir ⊗ x̃x̃T = (Ir ⊗ x̃)(Ir ⊗ x̃)T ,

f = vec(x̃(Ax− b)T ) = (Ir ⊗ x̃)(Ax− b)

the dual problem is transformed to

min
α≥0,β≥0,λ{

−λ

∣∣∣∣(−(Ir ⊗ x̃)(Ir ⊗ x̃T ) + Ir ⊗ (αB1 + βB2) −(Ir ⊗ x̃)(Ax− b)
−(Ax− b)T (Ir ⊗ x̃)T −‖Ax− b‖2 − λ− αρ1 − βρ2

)
� 0

}
,

which, by Schur complement, can be written as

min
α≥0,β≥0,λ

⎧⎨⎩−λ

∣∣∣∣∣∣
⎛⎝ Ir (Ir ⊗ x̃)T Ax− b

Ir ⊗ x̃ Ir ⊗ (αB1 + βB2) 0
(Ax− b)T 0 −λ− αρ1 − βρ2

⎞⎠ � 0

⎫⎬⎭ .
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Finally, we arrive at the following SDP formulation of the RLS problem (36):

min
α≥0,β≥0,λ,x

⎧⎨⎩−λ

∣∣∣∣∣∣
⎛⎝ Ir (Ir ⊗ x̃)T Ax− b

Ir ⊗ x̃ Ir ⊗ (αB1 + βB2) 0
(Ax− b)T 0 −λ− αρ1 − βρ2

⎞⎠ � 0

⎫⎬⎭ .

(43)

We summarize the discussion in this section in the following theorem.
Theorem 3.8. Consider the RLS problem (36), where the uncertainty set U is

given by (38), r > 1, and B1,B2 satisfy condition (39). Let (α, β, λ,x) be a solution
to the SDP problem (43), where x̃ is given in (40). Then x is the optimal solution of
the RLS problem (36).

Appendix. Extended Finsler’s theorem.
Theorem A.1 (Finsler’s theorem [11, 21]). Let F be one of the fields R or C and

let A,B ∈ Rn×n be symmetric matrices. Suppose that there exist x1,x2 ∈ Fn such
that x∗

1Ax1 > 0 and x∗
2Ax2 < 0. Then

z∗Bz ≥ 0 for every z ∈ Fn such that z∗Az = 0

if and only if there exists α ∈ R such that B − αA � 0.
We note that the complex case can be reduced to the real case by using

z∗Az = (xTyT )

(
A 0
0 A

)(
x
y

)
for all z = z + iy,x,y ∈ Rn, where A ∈ Rn×n is symmetric.

While Finsler’s theorem deals with homogeneous quadratic forms, the extended
version considers nonhomogeneous quadratic functions.

Theorem A.2 (extended Finsler’s theorem). Let F be one of the fields R or C

and let A1,A2 ∈ Rn×n be symmetric matrices such that

A2 � ηA1 for some η ∈ R.(44)

Let fj : Fn → R, fj(x) = x∗Ajx + 2�(bTj x) + cj, where bj ∈ Rn and cj is a real
scalar.5 Suppose that

∃x1,x2 ∈ Fn such that f1(x1) > 0, f1(x2) < 0.(45)

Then the following two statements are equivalent:
(i) f2(x) ≥ 0 for every x ∈ Fn such that f1(x) = 0.
(ii) There exists λ ∈ R such that(

A2 b2

bT2 c2

)
� λ

(
A1 b1

bT1 c1

)
.

Proof. (ii) ⇒ (i) is a trivial implication. Now, suppose that (i) is satisfied. Making
the change of variables x = (1/t)y (y ∈ Fn, t �= 0) and multiplying f1 and f2 by |t|2,
(i) becomes

g2 (y, t) ≥ 0 for every y ∈ Fn, t �= 0 such that g1 (y, t) = 0,(46)

5In the case F = R, fj can be written as fj(x) = xT Ajx + 2bT
j x + cj .
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where gj(y, t) = y∗Ajy+2�(bTj yt)+cj |t|2. Notice that if t would not be restricted to
be nonzero, then by Theorem A.1, statement (ii) is true (g1 and g2 are homogeneous
quadratic functions). Thus, all is left to prove is that (46) is true for t = 0. However,
by replacing t �= 0 with t = 0, (46) reduces to

y∗A2y ≥ 0 for every y ∈ Fn such that y∗A1y = 0,

which, by Theorem A.1, is equivalent to condition (44).
The condition in Theorem A.2 holds true, for instance, if A2 is positive definite

or if A1 is definite. The case in which A1 is definite was already proven for the real
case in [33, Corollary 6].
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1. Introduction. The problem of minimizing an extended real valued function
f is declared well-posed if any minimizing sequence clusters to a minimizer. That is,
if f(yn) −→ inf f and f has only one minimum point, then (yn)n converges to the
minimum point, while if f has more than one minimum point, then some subsequence
(ynk

)k converges to a minimizer. This crucial property—most informative when the
minimum point is unique and also interesting from a numerical point of view—was
introduced by Tikhonov in [12], and it was the objective of numerous studies: see, for
example, [3], [13], and [6]. It is commonly assumed there that f is at least sequen-
tially lower semicontinuous. There are, however, some important instances in which
even less than sequentially lower semicontinuity prevails. To wit, in the framework of
choice theory when an abstract preference relation � is represented by a utility func-
tion, to assume � continuous on a first countable topological space (see [4] and [2])
amounts to requiring that every utility function representing � be sequentially pseu-
docontinuous (Proposition 1 in [9]). A sequentially pseudocontinuous function is not
necessarily sequentially lower semicontinuous; see [7]. Broadly, sequential pseudocon-
tinuity requires that strict inequalities be preserved along approximating sequences
(see Proposition 2.3). Moreover, if � is a weakly continuous preference relation [1]
represented by utility functions, then any such utility satisfies a property introduced
in [8] which is called sequential weak pseudocontinuity in the following. The sequen-
tial weak pseudocontinuity generalizes the sequential pseudocontinuity; see [8]. The
sequential (weak) pseudocontinuity allows us to extend several well-known results
already obtained for functions at least sequentially lower semicontinuous: the Weier-
strass theorem, convergence results for minimum points and for social Nash equilibria,
existence results for MinSup and MinInf problems; see [7] and [8]. Finally, the sequen-
tial (weak) pseudocontinuity is related to monotone functions: any strictly monotone
function is a sequentially pseudocontinuous function and any monotone function is a
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sequentially weakly pseudocontinuous function; see [7] and [8] for finite dimensional
spaces.

The aim of the paper is to generalize the results already obtained for Tikhonov
well-posedness and parametric well-posedness using just the sequentially pseudocon-
tinuous or the sequentially weakly pseudocontinuous functions. The paper is orga-
nized as follows. In section 2 we present some properties and a useful characterization
for these classes of functions. In section 3 we obtain new sufficient conditions for
Tikhonov well-posedness of unconstrained optimization problems. In section 4 we
consider the case of constrained and parametric problems and compare our results
with the previous ones (see [6]). Finally, examples show that it is not possible to
further improve our results.

2. Pseudocontinuous functions. This section recalls some well-known con-
cepts and introduces a few classes of functions.

For simplicity let all spaces be metric. However, we point out that all the results of
the paper could be proved, using the same arguments, in the more general framework
of sequential convergence spaces (see Kuratowski [5]).

Let f be an extended real valued function defined on a metric space Z. The
function f is sequentially lower semicontinuous at z ∈ Z if

f(z) ≤ lim inf
n→∞

f(zn) ∀ zn −→ z in Z,

and f is sequentially upper semicontinuous at z if −f is sequentially lower semicon-
tinuous at z.

Let (An)n be a sequence of subsets of Z; then
• z ∈ Liminf An (see [5], inner limit of (An)n in [10]) if and only if there exists

a sequence (zn)n converging in Z to z and such that zn ∈ An for n sufficiently
large (n ∈ N);

• z ∈ LimsupAn (see [5], outer limit of (An)n in [10]) if and only if there exists
a subsequence (Ank

) of (An)n and a sequence (zk)k converging to z in Z such
that zk ∈ Ank

for each k ∈ N.
Let K be a set-valued function from X to Y , two metric spaces.

• K is sequentially lower semicontinuous at a point x ∈ X if K(x) ⊆ Liminf K(xn)
for all xn −→ x.

• K is sequentially closed at a point x ∈ X if LimsupK(xn) ⊆ K(x) for all
xn −→ x.

Let us remind the reader about some definitions introduced in [7] and [8].
Definition 2.1 (Definition 2.4 in [7]). Let f be an extended real valued function

defined on Z and z ∈ Z.
• f is said to be sequentially lower pseudocontinuous at z if

f(y) < f(z) ⇒
{
f(y) < lim inf

n→∞
f(zn)

∀ zn −→ z.

• f is said to be sequentially upper pseudocontinuous at z if −f is sequentially
lower pseudocontinuous at z.

• f is said to be sequentially pseudocontinuous at z if it is both sequentially
lower and upper pseudocontinuous at z.

Definition 2.2 (Definition 3.1 in [8]). Let f be an extended real valued function
defined on Z and z ∈ Z.
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• f is said to be sequentially lower weakly pseudocontinuous at z (sequentially
lower quasi-continuous in [8]) if

f(y) < f(z) ⇒
{
f(y) ≤ lim inf

n→∞
f(zn)

∀ zn −→ z.

• f is said to be sequentially upper weakly pseudocontinuous at z (sequentially
upper quasi-continuous in [8]) if −f is sequentially lower weakly pseudocontinuous
at z.

• f is said to be sequentially weakly pseudocontinuous at z (sequentially quasi-
continuous in [8]) if it is both sequentially lower and upper weakly pseudocontinuous
at z.

Trivially a sequentially lower pseudocontinuous function is also sequentially lower
weakly pseudocontinuous. Conversely, however, the well-known Dirichlet function
(which is equal to 0 on all rational numbers and equal to 1 on all irrational numbers)
is sequentially lower weakly pseudocontinuous, but it is not sequentially lower pseu-
docontinuous. Moreover, the class of sequentially lower pseudocontinuous functions
strictly includes the class of sequentially lower semicontinuous function (see [7, Ex-
ample 2.1]). Characterizations of the sequential lower pseudocontinuity are presented
in [7]. For simplicity, from now on, we omit the term sequentially.

Finally, we prove a new characterization of pseudocontinuous functions, useful in
the following.

Proposition 2.3. Let f be an extended real valued function defined on a metric
space Z. Then f is pseudocontinuous on Z if and only if the following holds:

f(x) < f(y)
xn −→ x
yn −→ y

⎫⎬⎭ =⇒ lim sup
n→∞

f(xn) < lim inf
n→∞

f(yn).(2.1)

Proof. First, assume that f is pseudocontinuous on Z. Let f(x) < f(y), xn −→ x,
and yn −→ y. We set Im(f) = {f(z) / z ∈ Z}.

If there exists a value f(z) ∈ ]f(x), f(y)[, then one has

lim sup
n→∞

f(xn) < f(z) < lim inf
n→∞

f(yn).

Otherwise, let ]f(x), f(y)[ ∩ Im(f) = ∅. Since f is upper pseudocontinuous at x, one
has

lim sup
n→∞

f(xn) < f(y).

Now, if f(x) < lim supn→∞ f(xn), then ]f(x), f(y)[ ∩ Im(f) �= ∅, which is in conflict
with our assumption. So, lim supn→∞ f(xn) ≤ f(x) < f(y). Similarly, f being lower
pseudocontinuous at y, one gets f(y) ≤ lim infn→∞ f(yn) and then

lim sup
n→∞

f(xn) ≤ f(x) < f(y) ≤ lim inf
n→∞

f(yn),

that is, the property (2.1).
Finally, assume that the property (2.1) is satisfied. Let f(x) < f(y), xn −→ x,

and (yn)n such that yn = y for all n. Then

lim sup
n→∞

f(xn) < f(y);
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that is, f is upper pseudocontinuous at x. Similarly, one can prove that property
(2.1) implies the lower pseudocontinuity of f at y.

Moreover, pseudocontinuity is connected with monotonicity. In fact, the following
result extends the results given in [7] and [8] for finite dimensional spaces.

Proposition 2.4. Let f be an extended real valued function defined on a normed
space V , and let C be a convex and pointed cone in V with its apex at the origin and
nonempty interior. If f is strictly monotone (resp., monotone) with respect to C, that
is, strictly increasing (resp., increasing),

y ∈ x + int C ⇐⇒ f(x) < f(y) (resp., f(x) ≤ f(y)),

or strictly decreasing (resp., decreasing),

y ∈ x + int C ⇐⇒ f(x) > f(y) (resp., f(x) ≥ f(y)),

then f is pseudocontinuous (resp., weakly pseudocontinuous) on V .
Proof. Suppose that f is strictly decreasing with respect to C.
We first prove that f is lower pseudocontinuous. Let z and y be such that

f(y) < f(z), and let zn −→ z. Then we have y ∈ z + int C. So, there exists an
element y′ ∈ y − int C and an open neighborhood A of z such that y′ ∈ u + int C for
all u ∈ A. Since zn −→ z, we have that y′ ∈ zn + int C for n sufficiently large. Then

f(y) < f(y′) ≤ lim inf
n→∞

f(zn).

Now we prove that f is upper pseudocontinuous. Let z and y be such that f(z) < f(y),
and let zn −→ z. Then z ∈ y + int C. Moreover, there exists y′ ∈ z − int C and an
open neighborhood B of z such that u ∈ y′ + int C for all u ∈ B. Consequently,
f(zn) < f(y′) for n sufficiently large. So,

lim sup
n→∞

f(zn) ≤ f(y′) < f(y).

Analogously, we obtain that f is pseudocontinuous if it is strictly increasing.
With similar arguments, one can prove that any monotone function is weakly

pseudocontinuous.

3. Well-posed unconstrained unparametric optimization. Let Y be a
metric space and f be a proper function defined on Y with values in ]−∞,+∞].
We recall that the minimum problem

M : min
y∈Y

f(y)

is Tikhonov well-posed (see [12], [3]) if −∞ < inf f and there exists a unique global
minimum point ŷ and any sequence (yn)n such that

f(yn) − min
y∈Y

f(y) −→ 0

(called a minimizing sequence) is converging to ŷ. Moreover, M is said to be Tikhonov
well-posed in the generalized sense (see [12], [3]) if −∞ < inf f , argmin(Y, f) =
{y′ ∈ Y / f(y′) ≤ f(y) for all y ∈ Y } is nonempty, and any minimizing sequence has
at least a subsequence converging to a global minimum point.

In the following, for simplicity, we refer to well-posed and well-posed in the gen-
eralized sense problems.
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Sufficient conditions for well-posedness and well-posedness in the generalized sense
of the problem M have been obtained for lower semicontinuous functions (see Chap-
ter 1 in [3]).

In this section, we generalize the previous results using lower weakly pseudocontin-
uous and lower pseudocontinuous functions. In fact, we have the following theorem.

Theorem 3.1. Let Y be a compact metric space, and let f : Y −→ ]−∞,+∞] be
a proper function. If argmin(Y, f) = {ŷ} and f is lower weakly pseudocontinuous on
Y , then M is well-posed.

Proof. Let (yn)n be a minimizing sequence of M which does not converge to ŷ.
Since Y is compact, there exists a subsequence (ynk

)k converging to a point ȳ �= ŷ.
Hence, limk→∞ f(ynk

) = f(ŷ) < f(ȳ), and we have f(ynk
) ∈ [f(ŷ), f(ȳ)[ for k suffi-

ciently large. If f(ynk
) = f(ŷ) for k sufficiently large, then ynk

= ŷ, which is impossible
since ynk

−→ ȳ. So, there exists y′ ∈ Y such that f(y′) ∈ ]f(ŷ), f(ȳ)[. Since f is
lower weakly pseudocontinuous at ȳ, we have f(y′) ≤ lim infk→∞ f(ynk

) = f(ŷ), and
we get a contradiction.

About well-posedness in the generalized sense, sufficient conditions are obtained
using lower pseudocontinuous functions.

Theorem 3.2. Let Y be a compact metric space, and let f : Y −→ ]−∞,+∞] be
a proper function. If f is lower pseudocontinuous on Y , then M is well-posed in the
generalized sense.

Proof. First, in light of [8, Corollary 3.1], we have that argmin(Y, f) is nonempty.
Assume a minimizing sequence (yn)n has a subsequence (ynk

)k that converges to
ȳ /∈ argmin(Y, f). So, there exists y ∈ Y such that f(y) < f(ȳ). Since f is lower
pseudocontinuous at ȳ, we have f(y) < lim infk→∞ f(ynk

) = minz∈Y f(z), and we get
a contradiction.

In order to obtain sufficient conditions for well-posedness, lower weak pseudocon-
tinuity (used in Theorem 3.1) cannot be weakened using the minimal conditions for
the existence of minimum points in a sequential setting (see [8] for general sequential
convergence spaces and [11] for topological spaces). In fact, in Example 3.1, a trans-
fer lower continuous function (see [11]) on a compact space determines a minimum
problem which is not well-posed.

Example 3.1. Let Y = [0, 2] and f : Y −→ R be such that

f(y) =

{
(y − 1)2 if y ∈ [0, 1[,

2 − y if y ∈ [1, 2].

The function f is not lower weakly pseudocontinuous at y = 1, but it is transfer lower
continuous on [0, 2]. Now, if yn −→ 1−, we have f(yn) −→ 0 = min f , but (yn)n
does not converge to the unique minimum point ŷ = 2. So, the associate minimum
problem is not well-posed.

As shown by Example 3.2, lower pseudocontinuity (used in Theorem 3.2) cannot
be substituted by lower weak pseudocontinuity in order to obtain a minimum problem
well-posed in the generalized sense.

Example 3.2. Let Y = [0, 2] and f : Y −→ R be such that

f(y) =

{
0 if y ∈ [0, 2]\{1},
1 if y = 1.

The function f is not lower pseudocontinuous at y = 1, but it is lower weakly pseu-
docontinuous on [0, 2]. If yn −→ 1−, we have f(yn) −→ 0 = min f , but 1 is not a
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minimum point. So, the associate minimum problem is not well-posed in the gener-
alized sense.

In order to obtain well-posedness, compactness of Y can be replaced by complete-
ness of Y and a suitable diameter assumption (already considered in [3]). For any
ε > 0, let

M(ε) =

{
y ∈ Y / f(y) − inf

z∈Y
f(z) < ε

}
,

and let diam[M(ε)] be the diameter of M(ε).
Theorem 3.3. Let f : Y −→ ]−∞,+∞] be a proper function. If M is well-posed,

then

lim
ε↓0

diam[M(ε)] = 0.(3.1)

Moreover, if Y is complete, f is lower pseudocontinuous and bounded from below on
Y , and (3.1) is satisfied, then M is well-posed.

Proof. The first part of the thesis is given in [3, Theorem 11]. Here we prove that
(3.1) is a sufficient condition for well-posedness.

Let (yn)n be a minimizing sequence of M. In light of (3.1), (yn)n is a Cauchy
sequence. Y being complete, (yn)n converges to a point ŷ ∈ Y . If ŷ /∈ argmin(Y, f),
there exists y ∈ Y such that f(y) < f(ŷ). Since f is lower pseudocontinuous at ŷ, we
get the following contradiction:

f(y) < lim inf
n→∞

f(yn) = inf
z∈Y

f(z).

So, ŷ ∈ argmin(Y, f). Again from (3.1), it follows that argmin(Y, f) = {ŷ}, and the
proof is concluded.

4. Well-posed constrained parametric optimization. Given X,Y , two
metric spaces, let f : X×Y −→ ]−∞,+∞] be a proper function and K be a set-valued
function defined on X with nonempty values in Y . For any x ∈ X, we consider the
following parametric minimum problem:

M(x) : min
y∈K(x)

f(x, y).

Let M = {M(x) / x ∈ X}. Following [13], the family M is said to be parametrically
well-posed at x ∈ X if

(i) −∞ < inf{f(x, y) / y ∈ K(x)} and there exists a unique global solution to
M(x);

(ii) if xn −→ x, any sequence (yn)n ⊆ Y , with yn ∈ K(xn) for n sufficiently large
and such that

f(xn, yn) − inf
z∈K(xn)

f(xn, z) −→ 0,

is converging to the unique global solution to M(x).
If xn −→ x, a sequence (yn)n ⊆ Y which satisfies the above condition (ii) is said to
be an approximating sequence of M(x) (with respect to (xn)n).

Moreover, if argmin(K(x), f(x, ·)) is nonempty, M is said to be parametrically
well-posed in the generalized sense at x ∈ X if, for every sequence xn −→ x, any
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approximating sequence (with respect to (xn)n) has some subsequence converging to
a point of argmin(K(x), f(x, ·)).

The following theorem gives sufficient conditions for the parametric well-posedness
of the family M , explicit on any data and weaker than continuity of the objective
function. Let ν be the marginal function defined on X by ν(x) = infy∈K(x) f(x, y).

Theorem 4.1. Let x ∈ X. If Y is compact and
(i) the function f is pseudocontinuous at (x, y), for any y ∈ K(x), and
(ii) the set-valued function K is closed and lower semicontinuous at x,

then the family M is parametrically well-posed in the generalized sense at x. More-
over, if M(x) has only one solution, then M is parametrically well-posed at x.

Proof. Since K(x) is compact and f is lower pseudocontinuous at (x, y) for all
y ∈ K(x), in light of [8, Corollary 3.1], argmin(K(x), f(x, ·)) is nonempty. Now
we prove that M is parametrically well-posed in the generalized sense at x. Let
xn −→ x and (yn)n be an approximating sequence (with respect to (xn)n) such that
any converging subsequence does not converge to an element of argmin(K(x), f(x, ·)).
Let (ynk

)k converge to a point y which is not a global minimum point of f(x, ·) over
K(x). Since K is closed at x, we have that y ∈ K(x) and there exists z ∈ K(x) such
that f(x, z) < f(x, y). K being lower semicontinuous at x, there exists a sequence
zk −→ z such that zk ∈ K(xnk

) for k sufficiently large. From Proposition 2.3, one
has

lim sup
k→∞

ν(xnk
) ≤ lim sup

k→∞
f(xnk

, zk) < lim inf
k→∞

f(xnk
, ynk

).(4.1)

Let α be a real number such that

lim sup
k→∞

ν(xnk
) < α < lim inf

k→∞
f(xnk

, ynk
).(4.2)

Therefore, there exists ko ∈ N such that

ν(xnk
) − f(xnk

, ynk
) < α− f(xnk

, ynk
)(4.3)

for all k ≥ ko. So, we obtain

0 = lim
k→∞

[ν(xnk
) − f(xnk

, ynk
)] ≤ α− lim inf

k→∞
f(xnk

, ynk
) < 0,

and we get a contradiction.
Assume now that argmin(K(x), f(x, ·)) = {ŷ}. Let (yn)n be an approximating

sequence (with respect to (xn)n) which does not converge to ŷ. By compactness of
Y , there exists a subsequence (ynk

)k of (yn)n converging to a point y ∈ Y \{ŷ}. Now
the thesis follows using the same arguments as in the previous case.

Sufficient conditions, weaker than continuity of f , for the parametric well-posed-
ness of M at a point x are given in [6]. More precisely, a lower semicontinuous
function f , whose marginal function ν is assumed to be upper semicontinuous, is
considered. Obviously, the assumptions of Theorem 4.1 are not connected with the
assumptions used in [6]. Moreover, we note that the result obtained in [6] can be
improved replaying the lower semicontinuity of f with the lower pseudocontinuity. In
fact, we have the following theorem.

Theorem 4.2. Let x ∈ X. If Y is compact and
(i) the function f is lower pseudocontinuous at (x, y), for any y ∈ K(x),
(ii) the function ν is upper semicontinuous at x, and
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(iii) the set-valued function K is closed at x,
then the family M is parametrically well-posed in the generalized sense at x. More-
over, if M(x) has only one solution, then M is parametrically well-posed at x.

Proof. Let xn −→ x. Assume an approximating sequence and (yn)n (with respect
to (xn)n) have a subsequence (ynk

)k that converges to y /∈ argmin(K(x), f(x, ·))
(nonempty in light of [8, Corollary 3.1]). So, one has f(x, z) < f(x, y) for some
z ∈ K(x), and f being lower pseudocontinuous at (x, y), one gets

ν(x) ≤ f(x, z) < lim inf
k→∞

f(xnk
, ynk

).

Since ν is upper semicontinuous at x, one obtains (4.2) for some real number α. So,
as in the proof of Theorem 4.1, it follows that M is parametrically well-posed in the
generalized sense at x.

If M(x) has only one solution, similarly one can obtain that M is parametrically
well-posed at x.

Note that the assumptions on the function f in Theorem 4.1 are not connected
with those in Theorem 4.2, as shown by Examples 4.1 and 4.2.

Example 4.1. Let f : [0, 1] × [0, 1] −→ R be defined by

f(x, y) =

⎧⎨⎩
2(1 − x) if (x, y) ∈ [0, 1[ × [0, 1/2],

2y(1 − x) if (x, y) ∈ [0, 1[ × ]1/2, 1],
−1 if (x, y) ∈ {1} × [0, 1]

and K(x) = [0, 1] for any x ∈ [0, 1].
The function f is pseudocontinuous at (1, y) for all y ∈ [0, 1], but the marginal

function ν is not upper semicontinuous at x = 1.
Example 4.2. Let f : [0, 1] × [0, 1] −→ R be defined by

f(x, y) =

⎧⎨⎩
x(y − 1) if (x, y) ∈ ]0, 1] × [0, 1[,

−1 if (x, y) ∈ [0, 1] × {1},
0 if (x, y) ∈ {0} × [0, 1[

and K(x) = [0, 1] for any x ∈ [0, 1].
All assumptions of Theorem 4.2 are satisfied at x = 0, but f is not upper pseu-

docontinuous at (0, 1).
Moreover, the assumption of pseudocontinuity used in Theorem 4.1 cannot be

weakened with weak pseudocontinuity. In fact, Example 4.3 shows a parametric
minimum problem with a weakly pseudocontinuous objective function which is not
parametrically well-posed in the generalized sense.

Example 4.3. Let f : [0, 1] × [0, 3] −→ R be the function defined as below:
• if x ∈ [0, 1[,

f(x, y) =

⎧⎨⎩
1 − y if y ∈ [0, 1[,

0 if y ∈ [1, 2],
(x− 1)y − 1 if y ∈ ]2, 3].

• if x = 1,

f(x, y) =

{
1 − y if y ∈ [0, 1],
−1 if y ∈ ]1, 3],

and let K be the set-valued function from [0, 1] to [0, 3] defined by K(x) = [0, 2x].
The function f is weakly pseudocontinuous at (1, y) for all y ∈ [0, 3], but it is not
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pseudocontinuous at (1, 2), and K satisfies assumption (ii) of Theorem 4.1. If we
consider the sequences (xn)n = (1 − 1/n)n and (yn)n = (1 − 1/n)n, then (yn)n is
an approximating sequence of M(1) (with respect to (xn)n), and it converges to
1 /∈ argmin(K(1), f(1, ·)) = ]1, 2]. Hence, M is not parametrically well-posed in the
generalized sense at x = 1.

In order to obtain parametric well-posedness, the compactness of Y can be re-
placed by completeness and a diameter assumption. Let

M(x, ε) =
{
y ∈ K(x) / f(x, y) − ν(x) < ε

}
.

The assumptions of Theorem 4.1 (or Theorem 4.2) are sufficient conditions for para-
metric well-posedness together with the following condition (already considered in [6]):

lim
ε↓0

diam[∪u∈B(x,ε) M(u, ε)] = 0,(4.4)

where B(x, ε) is the open ball with center x and ray ε. In fact, we have the following
result.

Theorem 4.3. If M is parametrically well-posed at x, then (4.4) holds. More-
over, if Y is complete, f is bounded from below, and (i) and (ii) of Theorem 4.1
(or (i), (ii), and (iii) of Theorem 4.2) are satisfied, then (4.4) implies that M is
parametrically well-posed at x.

Proof. Assume that M is parametrically well-posed at x and (εn)n is a decreasing
sequence of positive real numbers converging to 0. Let A(ε) = ∪u∈B(x,ε) M(u, ε). If
(4.4) is not true, there exists a positive number � and no ∈ N such that

� < diam[A(εn)] ∀ n ≥ no.

So, for any n ≥ no, there exist yn, zn ∈ A(εn) such that � < d(yn, zn). Consequently,
for any n ≥ no, there exist x1

n and x2
n belonging to B(x, εn) such that

yn ∈ M(x1
n, εn) and zn ∈ M(x2

n, εn).

Now the sequences (x1
n)n and (x2

n)n converge to x, and the sequences (yn)n and (zn)n
are approximating sequences of M(x) (with respect to (x1

n)n and (x2
n)n, respectively).

Since M is parametrically well-posed at x, the sequences (yn)n and (zn)n converge
to the same point (that is the unique solution to M(x)), and we get the following
contradiction:

0 < � ≤ lim
n→∞

d(yn, zn) = 0.

Assume now that xn −→ x and (yn)n is an approximating sequence (with respect to
(xn)n). From (4.4), it follows that (yn)n is a Cauchy sequence, so it converges to a
point ŷ. Since K is closed at x, one has ŷ ∈ K(x). If ŷ is not a solution to M(x),
using the same arguments of the proof of Theorem 4.1, we get a contradiction. Hence
ŷ is a solution to M(x). Again from (4.4), argmin(K(x), f(x, ·)) = {ŷ}, and the proof
is concluded.
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FOR SUFFICIENT LINEAR COMPLEMENTARITY PROBLEMS

IN A WIDE NEIGHBORHOOD OF THE CENTRAL PATH∗
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Abstract. A higher order corrector-predictor interior-point method is proposed for solving suf-
ficient linear complementarity problems. The algorithm produces a sequence of iterates in the N−

∞
neighborhood of the central path. The algorithm does not depend on the handicap κ of the prob-
lem. It has O((1 + κ)

√
nL) iteration complexity and is superlinearly convergent even for degenerate

problems.
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1. Introduction. The Mizuno–Todd–Ye (MTY) predictor-corrector algorithm
proposed by Mizuno, Todd, and Ye [9] is a typical representative of a large class
of MTY-type predictor-corrector methods, which play a very important role among
primal-dual interior-point methods. It was the first algorithm for linear programming
that had both polynomial complexity and superlinear convergence. This result was
extended to monotone linear complementarity problems that are nondegenerate, in
the sense that they have a strictly complementarity solution [6, 23]. It turned out that
the nondegeneracy assumption is not restrictive, since according to [10] a large class
of interior-point methods, which contains MTY, can have only linear convergence if
this assumption is violated. However, it is possible to obtain arbitrarily high order of
convergence for degenerate problems by using higher order information of the central
path [19, 21].

The existence of a central path is crucial for interior-point methods. An important
result of the 1991 monograph of Kojima et al. [7] shows that the central path exists
for any P∗ linear complementarity problem, provided that the relative interior of its
feasible set is nonempty. We recall that every P∗ linear complementarity problem is
a P∗(κ) problem for some κ ≥ 0, i.e.,

P∗ =
⋃
κ≥0

P∗(κ).

The class of sufficient matrices was introduced by Cottle, Pang, and Stone [3] in
connection with the linear complementarity problems. A matrix M ∈ Rn×n is said
to be column sufficient if

zi(Mz)i ≤ 0 ∀i implies zi(Mz)i = 0 ∀i.
The matrix M is called row sufficient if its transpose is column sufficient. The matrix
M is sufficient if it is both column and row sufficient. It is proved in the same book
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that the class of sufficient matrices is closely related to the existence of the solution of
the linear complementarity problems and the convexity of the solution set. A surpris-
ing result given by Väliaho [22] showed that the class of P∗ matrices coincides with
the class of sufficient matrices. Therefore, every P∗ linear complementarity problem
is a sufficient linear complementarity problem, and vice versa. The class of sufficient
linear complementarity problems is a very general framework for studying interior-
point methods. In 1995 Miao [8] extended the MTY predictor-corrector algorithm for
P∗(κ) linear complementarity problems. His algorithm has O((1 + κ)

√
nL) iteration

complexity and is quadratically convergent for nondegenerate problems. However,
the constant κ is explicitly used in the construction of the algorithm, which implies
that the algorithm cannot be used for sufficient linear complementarity problems.
Potra and Sheng [17] extended the MTY predictor-corrector algorithm further for
sufficient complementarity problems. While the algorithms of [17] do not depend on
the constant κ, their computational complexity does: if the problem is a P∗(κ) lin-
ear complementarity problem, they terminate in at most O((1 + κ)

√
nL) iterations.

Moreover, the algorithms may attain arbitrarily high orders of convergence on non-
degenerate problems. Predictor-corrector algorithms with arbitrarily high order of
convergence for degenerate sufficient linear complementarity problems were given in
[19]. The algorithms, as shown in [18], have O((1 + κ)

√
nL) iteration complexity for

P∗(κ) linear complementarity problems.
All the above algorithms operate in l2 neighborhoods, also known as the small

neighborhoods, of the central path. It is well known, however, that primal-dual
interior-point methods have better practical performances in wide neighborhoods of
the central path. Unfortunately, the iteration complexity of the predictor-corrector
methods that use wide neighborhoods is worse than the complexity of the correspond-
ing methods for small neighborhoods. Moreover, as shown in [2, 4], it is more diffi-
cult to develop and analyze predictor-corrector methods in wide neighborhoods. The
best iteration complexity achieved by any known interior-point method for monotone
linear complementarity problems in the wide neighborhoods using first order infor-
mation is O(nL). By using a large neighborhood defined by a suitable self-regular
proximity measure, Peng, Terlaky, and Zhao [12] have obtained a predictor-corrector
method with O(log n

√
nL) iteration complexity which is superlinearly convergent

on nondegenerate problems. It turns out that the complexity result can be im-
proved by using higher order information. The algorithms described in [11, 5, 24]
have O(

√
nL) iteration complexity. However, these algorithms are not of a predictor-

corrector type, and they are not superlinearly convergent. The algorithm described
in [20] operates in the δ−∞ neighborhood and is superlinear convergent for sufficient
linear complementarity problems, but no complexity results have been proved for
this algorithm. A predictor-corrector method for monotone linear complementar-
ity problems using wide neighborhoods of the central path was proposed in [14].
The algorithm has O(

√
nL) iteration complexity by using a higher order predic-

tor, and it is superlinear convergent even for degenerate problems. In a recent pa-
per, Potra and Liu [16] extended the algorithm in [14] to sufficient linear comple-
mentarity problems. Two algorithms are analyzed in [16]. Both algorithms are of
predictor-corrector type acting in between two wide neighborhoods of the central
path. The radii of those neighborhoods have to satisfy an inequality that depends
on the handicap κ of the problems. The first algorithm in [16] depends also on κ,
while the second does not. The second algorithm uses the first algorithm by assigning
κ = 1 and then doubles κ until a certain criterion is satisfied. Both algorithms have
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O((1 + κ)1+1/m
√
nL) iteration complexity and are superlinearly convergent even for

degenerate problems.
The traditional predictor-corrector algorithms operate between two neighbor-

hoods of the central path. The predictor step aims to decrease the duality gap while
keeping the point in the outer neighborhood. It is followed by a corrector step, which
brings the point back into the inner neighborhood so that the next predictor-corrector
iteration can be performed. As analyzed in a recent paper [15], the centering direction
is not as efficient in the wide neighborhoods as in the small neighborhoods, so that a
line search on the centering direction is always needed in the corrector step using wide
neighborhoods. Moreover, since the pure centering direction is anyhow inefficient in
the wide neighborhoods, a corrector-predictor method was proposed in [15], where
the corrector is used to improve both optimality and centrality. In the present paper,
we generalize this algorithm to sufficient linear complementarity problems. By us-
ing higher order information, the algorithm has O((1 + κ)

√
nL) iteration complexity,

which matches the best iteration complexity obtained in the small neighborhoods.
Moreover, our algorithm is superlinearly convergent even for degenerate problems.
More precisely, by using a predictor with order mp > 1, we show that the duality gap
converges to zero with Q-order mp + 1 in the nondegenerate case and with Q-order
(mp + 1)/2 in the degenerate case. Our algorithm improves considerably the results
of [16]. First, the algorithm is a corrector-predictor interior-point method so that it
uses only one wide neighborhood of the central path, whose radius can be any number
between 0 and 1, and therefore does not depend on κ. Second, its iteration complex-
ity is improved (O((1 + κ)

√
nL) versus O((1 + κ)1+1/m

√
nL)). Finally, by contrast

with the algorithms of [16] the present algorithm reduces the duality gap both in the
corrector and the predictor steps, and therefore it is more efficient. In the present
paper we work on horizontal linear complementarity problems (HLCP), which is a
slight generalization of the standard linear complementarity problem. Equivalence
results of different variants of linear complementarity problems can be found in [1].
We choose to work on HLCP because of its symmetry.

Conventions. We denote by N the set of all nonnegative integers. R, R+, and
R++ denote the set of real, nonnegative real, and positive real numbers, respectively.
For any real number κ, � κ � denotes the smallest integer greater than or equal to κ.
Given a vector x, the corresponding uppercase symbol denotes, as usual, the diagonal
matrix X defined by the vector. The symbol e represents the vector of all ones, with
dimension given by the context.

We denote componentwise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will
denote the vectors with components uivi, ui/vi, etc. This notation is consistent
as long as componentwise operations always have precedence in relation to matrix
operations. Note that uv ≡ Uv and if A is a matrix, then Auv ≡ AUv, but in general
Auv 
= (Au)v. Also if f is a scalar function and v is a vector, then f(v) denotes
the vector with components f(vi). For example if v ∈ Rn

+, then
√
v denotes the

vector with components
√
vi, and 1 − v denotes the vector with components 1 − vi.

Traditionally the vector 1 − v is written as e − v, where e is the vector of all ones.
Inequalities are to be understood in a similar fashion. For example if v ∈ Rn, then
v ≥ 3 means that vi ≥ 3, i = 1, . . . , n. Traditionally this is written as v ≥ 3 e. If ‖ . ‖
is a vector norm on Rn and A is a matrix, then the operator norm induced by ‖ . ‖ is
defined by ‖A ‖ = max{‖Ax ‖ ; ‖x ‖ = 1}. As a particular case we note that if U is
the diagonal matrix defined by the vector u, then ‖U ‖2=‖u ‖∞.
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We use the notations O(·), Ω(·), Θ(·), and o(·) in the standard way to express
asymptotic relationships between functions. The most common usage will be associ-
ated with a sequence {xk} of vectors and a sequence {τk} of positive real numbers. In
this case xk = O(τk) means that there is a constant K (dependent on problem data)
such that for every k ∈ N,

∥∥xk
∥∥ ≤ Kτk. Similarly, if xk > 0, xk = Ω(τk) means that

(xk)−1 = O(1/τk). If we have both xk = O(τk) and xk = Ω(τk), we write xk = Θ(τk).
If x, s ∈ Rn, then the vector z ∈ R2n obtained by concatenating x and s will be

denoted by �x, s �, i.e.,

z = �x, s � =

[
x
s

]
=

[
xT , sT

]T
.(1.1)

Throughout this paper the mean value of xs will be denoted by

μ(z) =
xT s

n
.(1.2)

2. The P∗(κ) horizontal linear complementarity problem. Given two ma-
trices Q,R ∈ Rn×n and a vector b ∈ Rn, the horizontal linear complementarity prob-
lem (HLCP) consists in finding a pair of vectors z = �x, s � such that

xs = 0,

Qx + Rs = b,(2.1)

x, s ≥ 0.

The standard (monotone) linear complementarity problem (SLCP or simply LCP)
is obtained by taking R = −I, and Q positive semidefinite. Let κ ≥ 0 be a given
constant. We say that (2.1) is a P∗(κ) HLCP if

Qu + Rv = 0 implies (1 + 4κ)
∑
i∈I+

uivi +
∑
i∈I−

uivi ≥ 0 for any u, v ∈ Rn,

where I+ = {i : uivi > 0} and I− = {i : uivi < 0}. If the above condition is satisfied,
we say that (Q,R) is a P∗(κ) pair and write (Q,R) ∈ P∗(κ). In case R = −I, (Q,−I)
is a P∗(κ) pair if and only if Q is a P∗(κ) matrix in the sense that

(1 + 4κ)
∑
i∈Î+

xi[Qx]i +
∑
i∈Î−

xi[Qx]i ≥ 0 ∀x ∈ Rn,

where Î+ = {i : xi[Qx]i > 0} and Î− = {i : xi[Qx]i < 0}. Problem (2.1) is then
called a P∗(κ) LCP and is extensively discussed in [7]. If (Q,R) belongs to the class

P∗ =
⋃
κ≥0

P∗(κ),

then we say that (Q,R) is a P∗ pair and (2.1) is a P∗ HLCP.
The class of sufficient matrices was defined by Cottle, Pang, and Stone [3]. The

appropriate generalization to sufficient pair [18, 19] is in terms of the null space of the
matrix [Q R] ∈ Rn×2n

Φ := N ([Q R]) = {�u, v �|Qu + Rv = 0}(2.2)
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and its orthogonal space

Φ⊥ =
{
�u, v �|u = QTx, v = RTx for some x ∈ Rn

}
.(2.3)

(Q,R) is called column sufficient if

�u, v � ∈ Φ, uv ≤ 0 implies uv = 0,

and row sufficient if

�u, v � ∈ Φ⊥, uv ≥ 0 implies uv = 0.

(Q,R) is a sufficient pair if it is both column and row sufficient. The corresponding
results of row and column sufficient matrices in [3] can be extended to row and column
sufficient pairs (see, for example, [20]): (Q,R) is a sufficient pair if and only if for any
b, the HLCP (2.1) has a convex (perhaps empty) solution set and every KKT point of

minx,s, xT s
s.t. Qx + Rs = b,

x, s ≥ 0,

is a solution of (2.1).
Väliaho’s result [22] states that a matrix is sufficient if and only if it is a P∗(κ)

matrix for some κ ≥ 0. The result can be extended to sufficient pairs by using the
equivalence results from [1] (see also [20]): (Q,R) is a sufficient pair if and only if
there is a finite κ ≥ 0 so that (Q,R) is a P∗(κ) pair. By extension, a P∗ HLCP will
be called a sufficient HLCP and a P∗ pair will be called a sufficient pair.

Let us note that if (Q,R) is a sufficient pair, then the matrix [Q R] is full rank.
In fact, we have the following slightly stronger result.

Theorem 2.1. Given two matrices Q,R ∈ Rn×n, if the pair (Q,R) is column
sufficient, the matrix [Q R] is full rank.

Proof. Let r be the rank of Q, and the LU factorization of Q can be written as

PQ = L

[
F1 F2

0 0

]
,

where P is a permutation matrix, L ∈ Rn×n is an invertible lower triangular matrix,
F1 ∈ Rn−r×n−r is an invertible upper triangular matrix, and F2 and the zeros are
matrices with the correct dimensions.

Let us denote by G

G = L−1PR =

[
G11 G12

G21 G22

]
,

where G11 ∈ Rn−r×n−r, and G12, G21, and G22 are with the correct dimensions.
Since permutation matrices are invertible, and L is invertible, we have

rank([Q R]) = rank(L−1P [Q R]) = rank

([
F1 F2 G11 G12

0 0 G21 G22

])
.

We denote by u1 and u2 the components of u in the first r and last n − r indices,
respectively, and similarly for v. Therefore, �u, v � ∈ Φ is equivalent to{

F1u1 + F2u2 + G11v1 + G12v2 = 0,
G21v1 + G22v2 = 0.
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For any v2 ∈ Ker(G22), we construct a pair of vectors u and v such that

v1 = 0, u2 = −v2, u1 = −F−1
1 (F2u2 + G12v2).

Clearly, we have �u, v � ∈ Φ. Moreover, we also obtain

u1v1 ≤ 0 and u2v2 = −v2
2 ≤ 0.

Because (Q,R) is column sufficient, we have

u1v1 = 0 and u2v2 = 0.

We thus have that v2 ∈ Ker(G22) implies v2 = 0. Therefore G22 is invertible, and

rank([Q R]) = rank

([
F1 F2 G11 G12

0 0 G21 G22

])
= n.

It is interesting to remark that row sufficiency alone does not imply the full rank
property. For example, take

Q =

[
1 0
0 0

]
and R =

[
−1 0
0 0

]
;

it is easily seen that (Q,R) is row sufficient, but rank([Q R]) = 1. We also note that
in [19, 18, 20], the full rank property was given as an assumption, which in fact always
hold because of the above theorem.

We denote the set of all feasible points of HLCP by

F = {z = �x, s � ∈ R2n
+ : Qx + Rs = b}

and its solution set by

F∗ = {z∗ = �x∗, s∗ � ∈ F : x∗s∗ = 0}.

The relative interior of F , which is also known as the set of strictly feasible points or
the set of interior points, is given by

F0 = F
⋂

R2n
++.

It is known (see, for example, [7]) that if F0 is nonempty, then the nonlinear system

xs = τe,
Qx + Rs = b

has a unique positive solution for any τ > 0. The set of all such solutions defines the
central path C of the HLCP, that is,

C = {z ∈ R2n
++ : Fτ (z) = 0, τ > 0},

where

Fτ (z) =

[
xs− τe

Qx + Rs− b

]
.
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If Fτ (z) = 0, then it is easy to see that τ = μ(z), where μ(z) is given by (1.2). The
wide neighborhood N−

∞(α) is defined as

N−
∞(α) = {z ∈ F0 : δ−∞(z) ≤ α },

where 0 < α < 1 is a given parameter and

δ−∞(z) :=

∥∥∥∥∥
[

xs

μ(z)
− e

]− ∥∥∥∥∥
∞

is a proximity measure of z to the central path. Alternatively, if we denote

D(β) = {z ∈ F0 : xs ≥ βμ(z)},

then the neighborhood N−
∞(α) can also be written as

N−
∞(α) = D(1 − α).

It is well known (see, for example, the proof in [15]) that

lim
α↓0

N−
∞(α) = lim

β↑1
D(β) = C, lim

α↑1
N−

∞(α) = lim
β↓0

D(β) = F .

3. A higher order corrector-predictor algorithm. The higher order cor-
rector and predictor use higher derivatives of the central path. Given a point z =
�x, s � ∈ D(β) , we consider the curve given by an mth order vector valued polynomial
of the form

z(θ) = z +
m∑
i=1

wiθi,(3.1)

where the vectors wi = �ui, vi � are obtained as solutions of the following linear
systems: {

su1 + xv1 = γμe− (1 + ε)xs,
Qu1 + Rv1 = 0,{
su2 + xv2 = εxs− u1v1,

Qu2 + Rv2 = 0,
(3.2) {

sui + xvi = −
∑i−1

j=1 u
jvi−j ,

Qui + Rvi = 0,
i = 3, . . . ,m.

In a corrector step we choose ε = 0 and γ ∈ [γ , γ], where 0 < γ < γ < 1 are given
parameters, while in a predictor step we take

γ = 0 and ε =

{
0 if HLCP is nondegenerate,
1 if HLCP is degenerate.

(3.3)

We note that in the corrector step, where we have ε = 0, w1 is the affine scaling
direction if γ = 0 and the classical centering direction if γ = 1. In system (3.2), w1 is
a convex combination of the affine scaling and the centering directions. The directions
wi are related to the higher derivatives of the central path [19]. We note that the
central path passing through z is analytic in μ when HLCP is nondegenerate and in√
μ when HLCP is degenerate.
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As the m linear systems in (3.2) have the same left-hand matrix, only one matrix
factorization and m backsolves are needed. Therefore it involves O(n3) + O(mn2)
arithmetic operations. We take m = mc in the corrector step, and m = mp in the
predictor step. From (3.1) and (3.2) it follows that

x(θ)s(θ) = (1 − θ)1+εxs + γθμe +

2m∑
i=m+1

θihi,

μ(θ) = (1 − θ)1+εμ + γθμ +

2m∑
i=m+1

θi(eThi/n),

where hi =

m∑
j=i−m

ujvi−j .(3.4)

In the development of our algorithm, we want to preserve positivity of each iterated
point. We thus give an upper bound θ0 for the step-length taken both in the predictor
and the corrector step:

θ0 = sup{θ̂ 0 : x(θ) > 0, s(θ) > 0 ∀θ ∈ [0 , θ̂ 0]}.(3.5)

We introduce the following notation, which will be used in describing both the cor-
rector and predictor steps:

p(θ) =
x(θ)s(θ)

μ(θ)
, f(θ) = min

i=1,...,n
pi(θ).(3.6)

The corrector. The corrector step is obtained by taking ε = 0, and 0 < γ < 1
in (3.1)–(3.2). The main purpose of the corrector step is to increase proximity to the
central path. However, we also improve the normalized complementarity gap μ(θ) at
the same time. We choose σ ∈ [σ, σ], where 0 < σ < σ < 1 are given parameters, and
define

θ1 = sup{θ̂ 1 : 0 ≤ θ̂ 1 ≤ θ0, μ(θ) ≤ (1 − σ(1 − γ)θ)μ ∀θ ∈ [0, θ̂ 1]}.(3.7)

The step-length of the corrector is obtained as

θc = argmax {f(θ) : θ ∈ [ 0, θ1] } .(3.8)

As a result of the corrector step we obtain the point

z = �x , s � := z(θc).(3.9)

We have clearly z ∈ D(βc) with βc > β. While the parameter β is fixed during the
algorithm, the positive quantity βc varies from iteration to iteration. However, we
will prove that there is a constant β∗

c > β, such that βc > β∗
c in all iterations.

The predictor. The predictor is obtained by taking z = z , where z is the result
of the corrector step, and γ = 0 in (3.1)–(3.2). The aim of the predictor step is to
decrease the normalized complementarity gap as much as possible while keeping the
iterate in D(β). We define the predictor step-length as

θp = argmin {μ(θ) : θ ∈ [ 0, θ2 ] } ,(3.10)
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where

θ2 = max{θ̂ 2 : z(θ) ∈ D(β) ∀θ ∈ [0, θ̂ 2]}.(3.11)

A standard continuity argument can be used to show that z(θ) > 0 ∀θ ∈ [0, θ2]. As a
result of the predictor step, we obtain a point

z+ = �x+, s+ � := z(θp).(3.12)

By construction we have z+ ∈ D(β), so that a new corrector step can be applied.
Summing up we can formulate the following iterative procedure.

Algorithm 1.
Given real parameters 0 < β < 1, 0 < γ < γ < 1, 0 < σ < σ < 1, integers mc,
mp ≥ 1, and a vector z0 ∈ D(β) :

Set k ← 0;
repeat

(corrector step)
Set z ← zk;
Choose γ ∈ [ γ, γ ] and set m = mc;
Compute directions wi = �ui, vi �, i = 1, . . . ,m, by solving (3.2);
Compute θ0 from (3.5)
If HLCP is skew-symmetric, set σ = 1 and θ1 = θ0;

Else, choose σ ∈ [σ, σ ], and compute θ1 from (3.7);
Compute corrector step-length θc from (3.8);
Compute z from (3.9);
Set z k ← z , μ k ← μ = μ(z ).
(predictor step)
Set z ← z k, γ = 0, and m = mp;
Compute directions wi = �ui, vi �, i = 1, . . . ,m, by solving (3.2);
Compute θp from (3.10);
Compute z+ from (3.12);
Set zk+1 ← z+, μk+1 ← μ+ = μ(z+), k ← k + 1.

continue
The computation of the exact values of θc and θp is quite involved, so that in practice
good estimates of θc and θp are obtained by appropriate line search procedures. In
particular, by adopting the line search procedure from [15] we can preserve both the
computational complexity and the superlinear convergence of the theoretical algo-
rithm. In fact the convergence properties can be proved by using the explicit lower
bounds in the next section.

4. Polynomial complexity. We analyze in this section the computational com-
plexity of Algorithm 1. In the proof of the complexity results, we will use the following
lemmas, which were proved in [16].

Lemma 4.1. Assume that HLCP (2.1) is P∗(κ), let w = �u, v � be the solution
of the linear system

su + xv = a,
Qu + Rv = 0,

where z = �x, s � ∈ R2n
++ and a ∈ Rn are given vectors, and consider the index sets:

I+ = {i : uivi > 0}, I− = {i : uivi < 0}.
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Then the following inequalities are satisfied:

1

1 + 4κ
‖u v ‖∞ ≤

∑
i∈I+

uivi ≤
1

4

∥∥∥ (xs)−1/2 a
∥∥∥2

2
.

Lemma 4.2. Assume that HLCP (2.1) is P∗(κ), and let w = �u, v � be the
solution of the linear system

su + xv = a,
Qu + Rv = 0,

where z = �x, s � ∈ R2n
++ and a ∈ Rn are given vectors. Then the following inequality

holds:

uT v ≥ −κ
∥∥∥ (xs)−1/2 a

∥∥∥2

2
.(4.1)

Let us denote

ηi =
∥∥Dui + D−1vi

∥∥
2
, where D = X−1/2S1/2.(4.2)

The following lemma is a slight improvement over the corresponding results in [16]
and a generalization to sufficient HLCP of the corresponding results in [15].

Lemma 4.3. If HLCP (2.1) is sufficient and z = �x, s � ∈ D(β), then for n ≥ 8,
the solution of (3.2) satisfies

1√
1 + 2κ

√
‖Dui ‖2

2 + ‖D−1vi ‖2
2 ≤ ηi ≤

2

1 + 2κ
αi

√
βμ

(
(1 + 2κ)τ

4

√
n

)i

,(4.3)

where

τ =
2
√
β(1 + ε− γ)2 + (1 − β)γ2

β
,(4.4)

and the sequence

αi =
1

i

(
2i− 2
i− 1

)
≤ 1

i
4i

is the solution of the following recurrence scheme:

α1 = 1, αi =

i−1∑
j=1

αj αi−j .

Proof. The first part of the inequality follows immediately, since by using (3.2)
and Lemma 4.2 we have∥∥Dui + D−1vi

∥∥2

2
=

∥∥Dui
∥∥2

2
+ 2ui T vi +

∥∥D−1vi
∥∥2

2

≥
∥∥Dui

∥∥2

2
+
∥∥D−1vi

∥∥2

2
− 2κ

∥∥Dui + D−1vi
∥∥2

2
.
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By multiplying the first equations of (3.2) with (xs)−1/2 we obtain

Du1 + D−1v1 = −
(
(1 + ε)(xs)1/2 − γμ(xs)−1/2

)
,

Du2 + D−1v2 = −
(
ε(xs)1/2 − (xs)−1/2u1v1

)
,

Dui + D−1vi = −(xs)−1/2
i−1∑
j=1

DujD−1vi−j , 3 ≤ i ≤ m.

Because z ∈ D(β) we have (xs)−1/2 ≤ (1/
√
βμ)e, and we deduce that

η1 = ‖(1 + ε)(xs)1/2 − γμ(xs)−1/2‖, η2 = ‖ε(xs)1/2 − (xs)−1/2u1v1‖,

and

ηi ≤
1√
βμ

i−1∑
j=1

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
, 3 ≤ i ≤ m.(4.5)

We have

η2
1 = ‖(1 + ε)(xs)1/2 − γμ(xs)−1/2‖2 =

n∑
j=1

(
(1 + ε)2xjsj − 2(1 + ε)γμ +

γ2μ2

xjsj

)

= ((1 + ε)2 − 2(1 + ε)γ)μn + γ2μ2
n∑

j=1

1

xjsj

≤ μn

(
(1 + ε)2 − 2(1 + ε)γ +

γ2

β

)
=

βμnτ2

4
,

which shows that the second inequality in (4.3) is satisfied for i = 1. We next show
that the inequality also holds for i = 2; i.e., we want to prove that

η2
2 ≤

(
1 + 2κ

8

)2

βμn2τ4 =
1

128
βμn2τ4(2 + 8κ + 8κ2).

Using Lemma 4.2, Corollary 2.3 of [13], and the fact z ∈ D(β), we have

η2
2 = ‖ε(xs)1/2 − (xs)−1/2u1v1‖2 =

n∑
j=1

(
ε2xjsj − 2εu1

i v
1
i +

(u1
i v

1
i )

2

xjsj

)

≤ ε2nμ + 2εκη2
1 +

η4
1

8βμ
(1 + 4κ + 8κ2)≤ ε2nμ+

εκβμnτ2

2
+

βμn2τ4

128
(1 + 4κ + 8κ2).

Therefore, it remains to show that

ε2nμ +
εκβμnτ2

2
≤ βμn2τ4

128
(1 + 4κ),

which holds trivially for ε = 0. The inequality holds for ε = 1, provided

βnτ4 ≥ 128, nτ2 ≥ 16.

Using the definition of τ (4.4), this reduces to

n(β(2 − γ)2 + (1 − β)γ2)2

β3
≥ 8,

n(β(2 − γ)2 + (1 − β)γ2)

β2
≥ 4.
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Since the minimum over 0 ≤ β, γ ≤ 1 of both left-hand side functions is attained
at β = γ = 1, we conclude that the second inequality in (4.3) is satisfied for i = 2
whenever n ≥ 8. For i ≥ 3 and 1 ≤ j < i we use the first inequality in (4.2) to obtain∥∥Duj

∥∥
2

∥∥D−1vi−j
∥∥

2
+
∥∥Dui−j

∥∥
2

∥∥D−1vj
∥∥

2

≤
(∥∥Duj

∥∥2

2
+
∥∥D−1vj

∥∥2

2

)1/2 (∥∥Dui−j
∥∥2

2
+
∥∥D−1vi−j

∥∥2

2

)1/2

≤ (1 + 2κ)ηj ηi−j .

From (4.5) it follows that

ηi ≤
1 + 2κ

2
√
βμ

i−1∑
j=1

ηj ηi−j , i = 2, . . . ,m.

The required inequalities are then easily proved by mathematical induction.
By virtue of Lemma 4.3 we obtain the following bound for ‖hi‖.
Lemma 4.4. If HLCP (2.1) is sufficient and z = �x, s � ∈ D(β), then for n ≥ 8,

the directions computed in (3.4) satisfy

ζi := ‖hi‖ ≤ 2βμ

(1 + 2κ)i
((1 + 2κ)τ

√
n )i, i = m + 1, . . . , 2m.(4.6)

Proof. For any m + 1 ≤ i ≤ 2m, we have

∥∥hi
∥∥

2
≤

m∑
j=i−m

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
≤

i−1∑
j=1

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2

=
1

2

i−1∑
j=1

(∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
+
∥∥Dui−j

∥∥
2

∥∥D−1vj
∥∥

2

)
≤ 1

2

i−1∑
j=1

√
‖Duj ‖2

2 + ‖D−1vj ‖2
2

√
‖Dui−j ‖2

2 + ‖D−1vi−j ‖2
2

≤ 1 + 2κ

2

i−1∑
j=1

ηj ηi−j ≤
2βμ

1 + 2κ

(
(1 + 2κ)τ

√
n

4

)i i−1∑
j=1

αj αi−j

=
2βμ

1 + 2κ

(
(1 + 2κ)τ

√
n

4

)i

αi ≤
2βμ

(1 + 2κ)i

(
(1 + 2κ)τ

√
n
)i
,

where the last inequality follows from the fact that αi ≤ 1
i 4

i.
From the above lemmas we obtain the following result.
Corollary 4.5. If HLCP (2.1) is sufficient and z = �x, s � ∈ D(β), then the

following relations hold for any α > 0, κ ≥ 0, and n ≥ 8:

α

μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
< 1 ∀ 0 ≤ θ ≤ 1

(1 + 2κ)τ
√
n

min

{
1 ,

(
1.4αβ

1 + 2κ

) −1
m+1

}
,(4.7)

α

μ
√
n

2m∑
i=m+1

θi
∥∥hi

∥∥
2
< θ ∀ 0 ≤ θ ≤ 1

(1 + 2κ)τ
√
n

min
{

1 , (1.4αβτ )
−1
m

}
.(4.8)
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Proof. For any t ∈ (0, 1], we have

2m∑
i=m+1

ti

i
≤ tm+1

2m∑
i=m+1

1

i
< tm+1

∫ 2m

m

du

u
= tm+1 log 2 < .7 tm+1.

Using Lemma 4.4 and the above inequality, we obtain

2m∑
i=m+1

θi
∥∥hi

∥∥
2
<

1.4βμ

1 + 2κ
((1 + 2κ)τ

√
nθ)m+1 ∀ θ ∈

(
0,

1

(1 + 2κ)τ
√
n

]
.(4.9)

Therefore,

α

μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
<

1.4αβ

1 + 2κ
((1 + 2κ)τ

√
nθ)m+1 ≤ 1

∀ θ ∈
(

0,
1

(1 + 2κ)τ
√
n

min

{
1 ,

(
1.4αβ

1 + 2κ

) −1
m+1

}]
.

Equation (4.9) also implies that

α

μ
√
n

2m∑
i=m+1

θi
∥∥hi

∥∥
2
<

1.4αβ

(1 + 2κ)
√
n

((1 + 2κ)τ
√
nθ)m+1

= 1.4αβτθ ((1 + 2κ)τ
√
nθ)m ≤ θ

∀ θ ∈
(

0,
1

(1 + 2κ)τ
√
n

min
{

1 , (1.4αβτ)
−1
m

}]
.

From the definition of τ (4.4) it follows that

2(1 + ε)
√

1 − β√
β

≤ τ ≤ 2 max

{
1 + ε√

β
,

√
1 − β + βε2

β

}
<

2(1 + ε)

β
.(4.10)

In the corrector step we take ε = 0; therefore we will use the bound τ < 2/β in the
analysis below.

Theorem 4.6. If HCLP (2.1) is sufficient, then Algorithm 1 is well defined and
the following relations hold for any κ ≥ 0 and n ≥ 8:

z k, zk ∈ D(β),

μk+1 ≤
(

1 − χ

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

)
μ k, k = 0, 1, . . . ,

μ k+1 ≤
(

1 − χ

(1 + 2κ)n
1
2+υ

)
μ k, k = 0, 1, . . . ,

where χ, χ are constants depending only on β, γ, γ , σ, σ , and

υ := min

{
1

2mc
,

mc + 1

2mc(mp + 1)

}
.(4.11)
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Proof.
Analysis of the corrector. On the corrector we have m = mc, ε = 0, 0 < γ <

γ < γ < 1, 0 < σ < γ < σ < 1, and τ < 2/β.
First, we prove that if z ∈ D(β), then the quantities θ0 defined in (3.5) satisfy

θ0 ≥ θ3 :=
β

2(1 + 2κ)
√
n

(
2.8

1 + 2κ

)− 1
mc+1

.(4.12)

This can be shown by using (4.7) with α = 2/β and the fact that θ3 < 1/2,

x(θ)s(θ)

μ
> (1 − θ)

xs

μ
+

1

μ

2m∑
i=m+1

θihi ≥ β

2
e− 1

μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
e > 0 ∀θ ∈ [0, θ3].

Since x(0) > 0, s(0) > 0, we can use a standard continuity argument to show that
x(θ) > 0, s(θ) > 0 ∀ θ ∈ [0, θ3] , which proves that θ0 ≥ θ3.

Next, we show that the quantities θ1 defined in (3.7) satisfy

θ1 ≥ θ4 :=
β

2(1 + 2κ)
√
n

(
(1 − σ )(1 − γ )

2.8

) 1
mc

.(4.13)

By using (4.8) with α = 1/ ((1 − σ )(1 − γ )), we deduce that the following inequalities
hold for any θ ∈ [0, θ4]:

μ(θ) − (1 − σ(1 − γ)θ)μ

μ
= −(1 − σ)(1 − γ)θ +

1

μn

2m∑
i=m+1

θieThi

≤ −(1 − σ )(1 − γ )θ +
1

μ
√
n

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤ 0,

which shows that θ1 ≥ θ4.
At last, we show that if z ∈ D(β), then

f(θ) ≥ β +
1

2
(1 − β)γ θ ≥ β +

1

2
(1 − β)γ θ ∀ θ ∈ [0, θ5] ,(4.14)

where

θ5 := min

{
θ4,

β

2(1 + 2κ)n
1
2+ 1

2mc

(
(1 − β)γ

5.6

) 1
mc

}
≥ χ5

(1 + 2κ)n
1
2+ 1

2mc

,(4.15)

χ5 :=
β

2
min

{
(1 − σ )(1 − γ )

2.8
,

(1 − β)γ

5.6

}
.(4.16)

It is easily seen that

p(θ) =
x(θ)s(θ)

μ(θ)
=

(1 − θ)xs + γθμe +
∑2m

i=m+1 θ
ihi

(1 − θ)μ + γθμ +
∑2m

i=m+1 θ
ieThi/n

(4.17)

≥
(1 − θ)βμe + γθμe +

∑2m
i=m+1 θ

ihi

(1 − θ)μ + γθμ +
∑2m

i=m+1 θ
ieThi/n
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= βe
(1 − β)γθμe + β

∑2m
i=m+1 θ

i(hi − (eThi/n)e) + (1 − β)
∑2m

i=m+1 θ
ihi

(1 − θ)μ + γθμ +
∑2m

i=m+1 θ
ieThi/n

≥ βe +
(1 − β)γθμ−

∑2m
i=m+1 θ

i
∥∥hi

∥∥
2

μ(θ)
e

≥ βe + (1 − β)γθ − 1

μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
e ∀ θ ∈ [0, 1].

The last inequality follows from the fact that

μ(θ) ≤ (1 − σ(1 − γ)θ)μ ≤ μ ∀ θ ∈ [0, θ4].

According to (4.8), with α replaced by 2
√
n/((1−β)γ) and τ replaced by 2/β, we have

1

μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
<

1

2
(1 − β)γ θ ∀θ ≤ β

2(1 + 2κ)
√
n

(
(1 − β)γ

5.6
√
n

) 1
m

,

and (4.14) follows from the above inequality and (4.17).
Relation (4.14) shows that if z ∈ D(β), then the point z obtained in the corrector

step of Algorithm 1 belongs to D(β + δ), where

δ =
1

2
(1 − β)γ θ5.(4.18)

As we mentioned before, the main purpose of the corrector is to increase proximity
to the central path. However, it turns out that if the corrector step-length θc is large
enough, then we also obtain a significant reduction of the duality gap during the
corrector step. In what follows we find a lower bound for θc in case the point z ∈ D(β)
is not very well centered. More precisely we show that

∃j such that pj :=
xjsj
μ

≤ β + .44 δ ⇒ θc > .2 θ5 .(4.19)

Let us denote

λ = .44 δ = .22(1 − β)γ θ5, q
i =

hi

μ
, i = m + 1, . . . , 2m.

For any θ ∈ [0, 1], we have

pj(θ) =
xj(θ)sj(θ)

μ(θ)
=

(1 − θ)pj + γθ +
∑2m

i=m+1 θ
iqij

(1 − θ) + γθ +
∑2m

i=m+1 θ
ieT qi/n

<
(1 − θ)(β + λ) + γθ +

∑2m
i=m+1 θ

iqij

(1 − θ) + γθ +
∑2m

i=m+1 θ
ieT qi/n

= β + λ +
γ(1 − β − λ)θ − (β + λ)

∑2m
i=m+1 θ

ieT qi/n +
∑2m

i=m+1 θ
iqij

1 − (1 − γ)θ +
∑2m

i=m+1 θ
ieT qi/n

≤ β + λ +
γ(1 − β − λ)θ + (1 + β+λ√

n
)
∑2m

i=m+1 θ
i
∥∥ qi ∥∥

2

1 − (1 − γ)θ − 1√
n

∑2m
i=m+1 θ

i ‖ qi ‖2

≤ β + λ +
γ(1 − β)θ + 2

∑2m
i=m+1 θ

i
∥∥ qi ∥∥

2

1 − (1 − γ)θ −
∑2m

i=m+1 θ
i ‖ qi ‖2

.
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Assume now that θ ∈ [0, .2 θ5] and set θ = .2φ. Since φ ∈ [0, θ5], by virtue of (4.8),
we can write

2m∑
i=m+1

θi
∥∥ qi ∥∥

2
=

2m∑
i=m+1

.2iφi
∥∥ qi ∥∥

2
≤ .2m+1

2m∑
i=m+1

φi
∥∥ qi ∥∥

2

<
.2m+1

2
γ(1 − β)φ =

.2m

2
γ(1 − β)θ ≤ .1γ(1 − β)θ.

Using the fact that θ5 < .5 ∀n ≥ 1, we obtain

pj(θ) < β + λ +
1.2γ(1 − β)θ

1 − (1 − γ + .1 γ(1 − β)) θ
≤ β + λ +

1.2γ(1 − β)θ

1 − θ

< β + λ + 1.4γ(1 − β)θ ≤ β + λ + .28γ(1 − β)θ5 = β + δ ∀ θ ∈ [0, .2 θ5].

It follows that f(θc) ≥ β+δ > max0≤θ≤.2 θ5 f(θ), wherefrom we deduce that θc > .2 θ5.
Analysis of the predictor. In the predictor step we have γ = 0 and m = mp.

From (4.4) it follows that τ = 2(1 + ε)/
√
β ≤ 4/

√
β. Since the predictor step follows

a corrector step, we have z ∈ D(β + δ) ⊂ D(β).
First, we study the behavior of the normalized duality gap in the predictor step.

We start by proving that

(1 − 2.5 θ)μ ≤ μ(θ) ≤ (1 − .5 θ)μ(4.20)

∀ 0 ≤ θ ≤ θ6 :=

√
β

4(1 + 2κ)
√
n

min

{
1 ,

(
11.2

√
β
) −1

mp

}
.

Due to the obvious fact that

(1 − 2θ) ≤ (1 − θ)2 ≤ (1 − θ) ∀ θ ∈ [0, 1],

we have

(1 − 2θ)μ +

2m∑
i=m+1

θi(eThi/n) ≤ μ(θ) ≤ (1 − θ)μ +

2m∑
i=m+1

θi(eThi/n).

Using (4.8), with α = 2 and τ = 4/
√
β, we obtain∣∣∣∣∣

2m∑
i=m+1

θi
(
eThi

n

)∣∣∣∣∣ ≤ 1√
n

2m∑
i=m+1

θi
∥∥hi

∥∥
2
< .5 θμ

∀ θ ∈ [0, θ6]. Using Lemma 4.4 and the sum of a geometric series with ratio .1, we

deduce that for any θ ∈ [0,

√
β

40(1+2κ)
√
n
] it holds that

μ′(θ) = −(1 + ε− 2εθ)μ +

2m∑
i=m+1

iθi−1

(
eThi

n

)
≤ −μ +

1√
n

2m∑
i=m+1

iθi−1
∥∥hi

∥∥
2

≤ −μ + 8μ
√
β

2m−1∑
i=m

(
4(1 + 2κ)θ

√
n√

β

)i

< −μ + 8μ
√
β

.1m

1 − .1

< −μ + 8μ
.1m

.9
< 0.
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Since θ6 >

√
β

44.8(1+2κ)
√
n
>

√
β

50(1+2κ)
√
n
, we conclude that

(1 − 2.5 θ)μ ≤ μ(θ) ≤ (1 − .5 θ)μ and μ′(θ) < 0(4.21)

∀θ ∈
[
0,

√
β

50(1 + 2κ)
√
n

]
.(4.22)

Next, we claim that the quantity θ2 from (3.11) used in the computation of the
predictor step-length satisfies

θ2 ≥ θ7 :=

√
β

4(1 + 2κ)
√
n

min

{
1 ,

(
11.2

√
β
) −1

mp
,

(
(1 + 2κ)δ

2β

) 1
mp+1

}
≥ χ7

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

,(4.23)

χ7 :=
1

4
min

{
1

11.2
,

(
(1 − β)γχ5

4

) 1
2

}
.(4.24)

Using (4.20) with n ≥ 8 we obtain

μ(θ) ≥ (1 − 2.5θ6)μ ≥
(

1 − 2.5

8
√

2

)
μ ≥ .7μ ∀ θ ∈ [0, θ6].

By taking γ = 0, and β + δ instead of β, in (4.17), using (4.7) with α = 1/(.7δ), we
deduce that

f(θ) ≥ β + δ −
∑2m

i=m+1 θ
i
∥∥hi

∥∥
2

μ(θ)
≥ β + δ − 1

.7μ

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≥ β ∀ θ ∈ [0, θ7],

which proves that θ2 ≥ θ7. From the definition of θ7 it follows that

θ7 ≥
√
β

4(1 + 2κ)
√
n

min

{
1

11.2
√
β
,

1√
β

(
(1 + 2κ)δ

2

) 1
mp+1

}

≥ 1

4(1 + 2κ)
√
n

min

{
1

11.2
,

(
(1 − β)γθ5

4

) 1
mp+1

}

≥
√
β

4(1 + 2κ)
√
n

min

{
1

11.2
,

(
(1 − β)γχ5

4n
mc+1
2mc

) 1
mp+1

}
≥ χ7

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

.

Bounding the decrease of the duality gap. Due to the fact that the duality
gap decreases both in the predictor step and the corrector step, a complete analy-
sis of the decreases of the duality gap has to be done by studying a succession of
corrector-predictor-corrector steps. Assume that we are at iteration k and have a
point zk ∈ D(β) with normalized duality gap μk. We follow the notations of Algo-
rithm 1. The corrector step produces a point z k ∈ D(β + δ), with δ given by (4.18).
The corresponding normalized duality gap clearly satisfies μk ≤ μk, but a bound on
the decrease of the duality gap cannot be given at this stage. The corrector is fol-
lowed by a predictor that produces a point zk+1 = z(θp) ∈ D(β) with duality gap
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μk+1 = μ(θp) = min0≤θ≤θ2 μ(θ). We have θ7 ≤ θ2 and θ7 ≤ θ6, so that according to
(4.20)

μk+1 ≤ μ(θ7) ≤ (1 − .5 θ7)μ k ≤
(

1 − χ7

2n
1
2+ mc+1

2mc(mp+1)

)
μ k, μ k ≤ μk.(4.25)

The above relation is sufficient for proving polynomial complexity, but it does not
take into account the contribution of the corrector step. A finer analysis is needed in
order to account for that. We distinguish two cases:

(a) θ2 ≥
√

β

50(1+2κ)
√
n
. According to (4.21), in this case we have

μk+1 = min
0≤θ≤θ2

μ(θ) ≤
(

1 −
√
β

100(1 + 2κ)
√
n

)
μ k ;

(b) θ2 <

√
β

50(1+2κ)
√
n
. In this case μ(θ) is decreasing on the interval [0, θ2], by

virtue of (4.21), and by using (4.23) we deduce that θp = θ2, f(θp) = β.
The latter equality must be true, since if f(θp) > β, then, by a continuity
argument, it follows that θ2 > θp, which is a contradiction (see the definition
of θ2 (3.11)). But if f(θp) = β, then, according to (3.8), in the next corrector
step we have θc > .2 θ5, so that

μ k+1 < (1 − .2σ(1 − γ )θ5)μk+1 ≤
(

1 − σ(1 − γ )χ5

5(1 + 2κ)n
1
2+ 1

2mc

)
μk+1.

In conclusion, for any k ≥ 0 we have

μ k+1 ≤ μk+1 ≤
(

1 −
√
β

100(1 + 2κ)
√
n

)
μ k

or

μ k+1 <

(
1 − σ(1 − γ )χ5

5(1 + 2κ)n
1
2+ 1

2mc

)(
1 − χ7

2(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

)
μ k.

By taking

χ := min

{√
β

100
,
σ(1 − γ )χ5

5
,
χ7

2

}
,

we deduce that

μ k+1 ≤
(

1 − χ

(1 + 2κ)n
1
2+υ

)
μ k, k = 0, 1, . . . ,

where υ is given by (4.11). The proof is complete.
As an immediate consequence of the above theorem we obtain the following com-

plexity result.
Corollary 4.7. Algorithm 1 produces a point z = �x, s � ∈ D(β) with xT s ≤ ε,

in at most O((1 + κ)n1/2+υ log(x0 T s0/ε)) iterations, where υ is given by (4.11).
It follows that if the order of either the corrector or the predictor is larger than a

multiple of logn, then Algorithm 1 has O ((1 + κ)
√
nL)-iteration complexity.
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Table 4.1

n 104 105 106 107 108 109 1010

�n.1� 3 4 4 6 7 8 11

Corollary 4.8. If max {mc, mp } = Ω(log n), then Algorithm 1 produces a point
z = �x, s � ∈ D(β) with xT s ≤ ε, in at most O((1 + κ)

√
n log(x0 T s0/ε)).

Proof. Under the hypothesis of the corollary there is a constant ϑ, such that

υ ≤ ϑ/ log n. Hence n1/2+υ ≤ n
ϑ

log n
√
n = eϑ

√
n.

Due to the fact that limn→∞ n1/nω

= 1 for any ω ∈ (0, 1), in applications we
can choose mp = �nω� for some value of ω ∈ (0, 1). This choice was initially sug-
gested by Roos (private communication) and subsequently used in [24] and [16]. A
correspondence between n and �nω� with ω = 0.1 is shown in Table 4.1.

5. Superlinear convergence. In this section we show that the duality gap of
the sequence produced by Algorithm 1 is superlinearly convergent. The result is based
on the following lemma, which is a consequence of the results about the analyticity
of the central path from [19].

Lemma 5.1. If HLCP (2.1) is sufficient, then the solution of (3.2) with γ = 0
satisfies

ui = O(μi), vi = O(μi), i = 1, . . . ,m, if HLCP (2.1) is nondegenerate

and

ui = O(μi/2), vi = O(μi/2), i = 1, . . . ,m, if HLCP (2.1) is degenerate.

By using the above lemma we obtain the following superlinear convergence result,
which is a trivial extension of the corresponding result in [15] to sufficient linear
complementarity problems.

Theorem 5.2. The sequence μk produced by Algorithm 1 satisfies

μk+1 = O(μ
mp+1
k ) if HLCP (2.1) is nondegenerate

and

μk+1 = O(μ
(mp+1)/2
k ) if HLCP (2.1) is degenerate.

6. Conclusions. We have presented a corrector-predictor interior-point algo-
rithm for sufficient HLCP acting in a wide neighborhood of the central path.

The corrector of order mc is used to improve both the centrality and the com-
plementarity gap. The predictor of order mp follows each corrector step to further
decrease the complementarity gap. If max{mc, mp} = Ω(log n), then the iteration
complexity of the algorithms is O((1 + κ)

√
nL). Although the complexity of our al-

gorithm depends on κ, the algorithm itself does not, so that the algorithm works for
the class of sufficient HLCP. Our algorithm has the best known iteration complexity
for sufficient linear complementarity problems and is superlinearly convergent even
for degenerate problems. The cost of implementing one iteration of our algorithm is
O(n3) arithmetic operations.
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Abstract. We investigate a class of two stage stochastic programs where the second stage
problem is subject to nonsmooth equality constraints parameterized by the first stage variant and
a random vector. We consider the case when the parametric equality constraints have more than
one solution. A regularization method is proposed to deal with the multiple solution problem, and
a sample average approximation method is proposed to solve the regularized problem. We then
investigate the convergence of stationary points of the regularized sample average approximation
programs as the sample size increases. The established results are applied to stochastic mathematical
programs with P0-variational inequality constraints. Preliminary numerical results are reported.
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1. Introduction. In this paper, we study the following stochastic mathematical
program:

min E [f(x, y(x, ξ(ω)), ξ(ω))]
s.t. x ∈ X ,

(1)

where X is a nonempty compact subset of Rm, f : Rm×Rn×Rk → R is continuously
differentiable, ξ : Ω → Ξ ⊂ Rk is a vector of random variables defined on probabil-
ity space (Ω,F , P ), E denotes the mathematical expectation, and y(x, ξ(ω)) is some
measurable selection (which will be reviewed in section 2.2) from the set of solutions
of the following system of equations:

H(x, y, ξ(ω)) = 0,(2)

where H : Rm×Rn×Rk → Rn is a piecewise smooth vector-valued function. Piecewise
smooth function is a large class of locally Lipschitz continuous functions which cover
most practical problems [29]. For the simplicity of notation, we will write ξ(ω) as
ξ, and this should be distinguished from where ξ is a deterministic vector of Ξ in a
context. Throughout this paper, we assume that the probability measure P of our
considered space (Ω,F , P ) is nonatomic.

The model is slightly different from the standard two stage stochastic program-
ming model where the second stage decision variate y is chosen to either minimize or
maximize f(x, y, ξ) for given x and every realization of ξ(ω). See an excellent survey
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by Ruszczyński and Shapiro [27, Chapters 1 and 2] for the latter. In some practical in-
stances, finding an optimal solution for the second stage problem may be very difficult
and/or expensive. For example, in a two stage stochastic Stackelberg–Nash–Cournot
model [32], x is the leader’s decision variable and y is the followers’ Nash–Cournot
equilibrium vector with each component representing a follower’s decision variable.
The followers’ equilibrium problem can be reformulated as a system of nonsmooth
equations like (2) which depends on the leader’s decision variable x and realization of
uncertainty ξ in market demand. In the case when the followers have multiple equi-
libria, the “selection” of an optimal y(x, ξ) at the second stage can be interpreted as
the leader’s attitude towards the followers’ multiple equilibria: an optimistic attitude
leads to a selection in favor of his utility, whereas a pessimistic attitude goes to an
opposite selection. See [32, section 2] for details. Alternatively such an optimal selec-
tion can be interpreted as that the leader puts in some resources so that the followers
reach an equilibrium in his favor. In either interpretation, finding such an optimal
y(x, ξ) implies additional cost to the leader.

Our argument here is that the leader may not necessarily select an extreme equi-
librium (which minimizes/maximizes f(x, y, ξ)); instead, he may select one of the fea-
sible equilibria y(x, ξ) under the following circumstances: (a) minimizing/maximizing
f(x, y, ξ) with respect to y may be difficult or even impossible numerically; for in-
stance, one can obtain only a local optimal solution or a stationary point; (b) in the
case when an optimal solution is obtainable, the cost for obtaining such a solution in
the second stage overweighs the overall benefit; for instance, the leader is a dominant
player, while the followers are small players and the range of possible followers’ equi-
libria is very narrow; (c) the chance of followers reaching one equilibrium or another
is equal, and the leader is unaware of which particular equilibrium may be actually
reached in the future and has no intention of putting in any additional resources to
influence it.

Of course, such a selection must be consistent for all x and ξ; in other words,
y(x, ξ) must be a single-valued function with some measurability or even continuity.
Note that there may exist many such selections, and the leader considers only one
of them. This means that the leader takes a neutral attitude towards the follower’s
every possible equilibrium. Note also that in this paper, the selection is not arbitrary
and is guided by a regularization method to be discussed shortly.

The argument can be extended to two stage stochastic mathematical programs
with equilibrium constraints (SMPECs)

min E[f(x, y(x, ξ), ξ)]
s.t. x ∈ X ,

(3)

where y(x, ξ) solves

min
y

f(x, y, ξ)

s.t. F (x, y, ξ)T (v − y) ≥ 0 ∀v ∈ C(x, ξ),
(4)

f and F are continuously differentiable function, ξ is a random variable, and C(x, ξ) is
a random convex set. SMPECs were initially studied by Patriksson and Wynter [18].
Like deterministic MPECs, SMPECs have various potential applications in engineer-
ing and economics, etc. [9, 34]. Over the past few years, SMPECs have received in-
creasing investigation from perspectives of both stochastic programming and MPEC;
see [17, 30, 35, 36] and the references therein. Observe that the second stage problem
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(4) is a deterministic parametric MPEC that is intrinsically nonconvex. Finding an
optimal solution for MPECs is often difficult if not impossible. Consequently it may
be a realistic approach to take some feasible measurable solution at the second stage
(which is a solution of the variational inequality problem in the constraint) rather
than trying to find an optimal one. Note that MPECs can be easily reformulated as a
nonsmooth system of equations, and this is the very reason why we consider general
nonsmooth equality constraints (2). We will discuss these in detail in section 5.

Having motivated our model, we next explain how to find the unspecified y(x, ξ)
in (1). Our idea can be outlined as follows. We approximate function H with some
function R parameterized by a small positive number μ and then solve the following
equation:

R(x, y, ξ, μ) = 0.(5)

Of course, R cannot be any function, and it must be constructed according to the
structure of H. First, it must coincide with H when μ = 0; second, it must have some
nice topological properties such as Lipschitz continuity and directional differentiabil-
ity. Finally and perhaps most importantly, (5) must have a unique solution for every
x ∈ X , ξ ∈ Ξ, and nonzero μ. We specify these needed properties in a definition of R
(Definition 2.1) and regard R as a regularization in consistency with the terminology
in the literature [19, 11]. Using the regularization method, we expect that an implicit
function ỹ(x, ξ, μ) defined by (5) approximates a measurable feasible solution y(x, ξ)
of (2), and consequently we can utilize the program

min E [f(x, ỹ(x, ξ, μ), ξ)]
s.t. x ∈ X(6)

to approximate the true problem (1), where y(x, ξ) is the limit of ỹ(x, ξ, μ) as μ → 0.
We then propose a sample average approximation (SAA) method to solve (6).

The SAA method and its variants, known under various names such as “stochastic
counterpart method,” “sample-path method,” “simulated likelihood method,” etc.,
were discussed in the stochastic programming and statistics literature over the years.
See, for instance, [22, 25, 3, 31] for general stochastic problems and [17, 4, 30, 32, 36]
for SMPECs.

We investigate the convergence of the SAA problem of (6) as μ → 0 and sam-
ple size tends to infinity. Since the underlying functions are piecewise smooth and
nonconvex in general, our analysis focuses on stationary points rather than local or
global optimal solutions. For this purpose, we study the optimality conditions for both
the true and the regularized problems. We introduce a kind of generalized Karush–
Kuhn–Tucker (KKT) condition for characterizing both true and regularized problems
in terms of Clarke generalized Jacobians (subdifferentials). Rockafellar and Wets [23]
investigated KKT conditions for a class of two stage convex stochastic programs and
derived some “basic Kuhn–Tucker conditions” in terms of convex subdifferentials.
More recent discussions on the optimality conditions can also be found in books by
Birge and Louveaux [5] and Ruszczyński and Shapiro [27]. These conditions rely on
the convexity of underlying functions and hence cannot be applied to our problems,
which are nonconvex.

The main contributions of this paper can be summarized as follows: we show that
under some conditions, the solution of (5) approximates a measurable solution of (2);
we then show that with probability 1 (w.p.1 for short) an accumulation point of a
sequence of generalized stationary points of the regularized problem is a generalized
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stationary point of the true problem. We propose an SAA method to solve the regu-
larized problem (6) and show that w.p.1 an accumulation point of the sequence of the
stationary points of the regularized SAA problem is a generalized stationary point
of the true problem as sample size tends to infinity and parameter μ tends to zero.
Finally, we apply the established results to a class of SMPECs where the underlying
function is a P0-function.

The rest of the paper is organized as follows. In section 2, we discuss the regular-
ization scheme. In section 3, we investigate the generalized stationary points of both
the regularized problem and the true problem. In section 4, we study the convergence
of the SAA program of the regularized problem. We then apply the established re-
sults to a class of stochastic MPEC problems in section 5. Some preliminary numerical
results are reported in section 6.

2. Preliminaries and a regularization scheme. In this section, we charac-
terize the function R in (5) and investigate the approximation of (6) to (1) as μ → 0.

Throughout this paper, we use the following notation. We use ‖ · ‖ to denote the
Euclidean norm of a vector, a matrix, and a compact set of matrices. Specifically, if
M is a compact set of matrices, then ‖M‖ := maxM∈M ‖M‖. We use dist(x,D) :=
infx′∈D ‖x − x′‖ to denote the distance between point x and set D. Here D may be
a subset of Rn or a subset of matrix space Rn×n. Given two compact sets C and D,
we use D(C,D) := supx∈C dist(x,D) to denote the distance from set C to set D. For
two sets C and D in a metric space, C + D denotes the usual Minkowski addition,
and CD := {CD | for all C ∈ C, for all D ∈ D} represents the multiplication.
We use B(x, δ) to denote the closed ball in Rn with radius δ and center x, that is,
B(x, δ) := {x′ ∈ Rm : ‖x′−x‖ ≤ δ}. For a vector-valued function g : Rm → Rl, we use
∇g(x) to denote the classical Jacobian of g when it exists. In the case when l = 1, that
is, g is a real-valued function, ∇g(x) denotes the gradient of g which is a row vector.
We use lim to denote the outer limit of a sequence of vectors and a set-valued mapping.
We let R++ := {x | x > 0, x ∈ R} and R2

++ := {(x, y) | x > 0, y > 0, x, y ∈ R}. For

a set-valued mapping A(u, v) : Rn × Rm → 2R
n×m

, πuA(u, v) denotes the set of all
n×n matrices M such that, for some n×m matrix N , the n× (n+m) matrix [M N ]
belongs to A(u, v).

2.1. Preliminaries. We first present some preliminaries about the Clarke gen-
eralized Jacobian of random functions which will be used throughout the paper.

Let G : Rj → Rl be a locally Lipschitz continuous vector-valued function. Recall
that the Clarke generalized Jacobian [10] of G at x ∈ Rj is defined as

∂G(x) := conv

{
lim

y→x,y∈DG

∇G(y)

}
,

where DG denotes the set of points at which G is Fréchet differentiable, ∇G(y) denotes
the usual Jacobian of G, and “conv” denotes the convex hull of a set. It is well known
that the Clarke generalized Jacobian ∂G(x) is a convex compact set [10]. In the case
that j = l, ∂G(x) consists of square matrices. We say ∂G(x) is nonsingular if every
matrix in set ∂G(x) is nonsingular, and in this case we use ∂G(x)−1 to denote the set
of all inverse matrices of ∂G(x).

In later discussions, particularly sections 2–4, we will have to deal with mathe-
matical expectation of the Clarke generalized Jacobians of locally Lipschitz random
functions. For this purpose, we recall some basics about measurability of a random
set-valued mapping.
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Let V ⊂ Rn be a compact set of Rn and ξ : Ω → Ξ ⊂ Rk be a random vector
defined on the probability space (Ω,F , P ) (note that we use the same notation ξ and
Ξ as in (1), although we do not have to in this general discussion). A random set-

valued mapping A(·, ξ) : V → 2R
n×m

is said to be closed-valued if for every v ∈ V
and ξ ∈ Ξ (a realization of ξ(ω)), A(v, ξ) is a closed set. Let B denote the space of
nonempty, closed subsets of Rn×m equipped with Hausdorff distance. Then A(v, ξ(·))
can also be viewed as a single-valued mapping from Ω to B. For a fixed v ∈ V ,
A(v, ξ(·)) : Ω → 2R

n×m

is said to be measurable if for every closed set B ⊂ Rn×m,
{ω : A(v, ξ(ω))

⋂
B 
= ∅} belongs to the σ-algebra F . Alternatively, by viewing

A(v, ξ(·)) as a single-valued mapping, we can say that A(v, ξ(·)) is measurable if and
only if for every B ∈ B, A(v, ξ(·))−1B is F-measurable. See Theorem 14.4 of [24].

We now define the expectation of A(v, ξ(ω)). A selection of a random set A(v, ξ(ω))
is a random matrix A(v, ξ) ∈ A(v, ξ) (which means A(v, ξ(ω)) is measurable). Selec-
tions exist. The expectation of A(v, ξ(ω)), denoted by E[A(v, ξ(ω))], is defined as the
collection of E[A(v, ξ(ω))], where A(v, ξ(ω)) is a selection. For a detailed discussion
in this regard, see [1, 2] and the references therein.

Finally, we need the following definitions concerning matrices and functions. A
matrix M ∈ Rl×l is called a P0-matrix if for any x 
= 0, there exists i ∈ {1, . . . , l}
such that xi(Mx)i ≥ 0 and xi 
= 0. It is evident that a positive semidefinite matrix is
a P0-matrix. A function G : D ⊂ Rl → Rl is said to be (over set D) a P0-function if
for all u, v ∈ δ with u 
= v,

max
i∈{1,...,l}
ui �=vi

(ui − vi)[Gi(u) −Gi(v)] ≥ 0.

For a continuously differentiable function G, if ∇G(x) is a P0-matrix for all x ∈ D,
then G(x) is a P0-function on D. For a comprehensive discussion of the properties of
the above matrices and functions, we refer readers to the book [11].

2.2. A regularization scheme. We specify the regularized approximation out-
lined in section 1 and investigate the limiting behavior of the implicit function defined
by the regularized approximation problem (6) as μ → 0.

Throughout this paper ∂H(x, y, ξ) denotes the Clarke generalized Jacobian of
H at (x, y, ξ), and ∂R(x, y, ξ, μ) denotes the Clarke generalized Jacobian of H at
(x, y, ξ, μ).

Definition 2.1. Let μ ∈ [0, μ0], where μ0 is a positive number. A continuous
function R : X × Rn × Ξ × [0, μ0] → Rn is said to be a regularization of H if the
following hold:

(i) for every x ∈ X , y ∈ Rn, ξ ∈ Ξ, R(x, y, ξ, 0) = H(x, y, ξ);
(ii) R(x, y, ξ, μ) is locally Lipschitz continuous and piecewise smooth on X ×Rn×

Ξ × [0, μ0];
(iii) for every x ∈ X , y ∈ Rn, and ξ ∈ Ξ,

lim
μ↓0

πx∂R(x, y, ξ, μ) ⊂ πx∂H(x, y, ξ), lim
μ↓0

πy∂R(x, y, ξ, μ) ⊂ πy∂H(x, y, ξ);

(iv) equation R(x, y, ξ, μ) = 0 defines a unique locally Lipschitz continuous func-
tion ỹ : X ×Ξ× (0, μ0) → Rn such that R(x, ỹ(x, ξ, μ), ξ, μ) = 0 for every x ∈
X , μ ∈ (0, μ0), ξ ∈ Ξ.

We call μ a regularization parameter (or variable).
The definition contains three elements. First, a regularization is a parameterized

continuous approximation and is locally Lipschitz continuous with respect to the
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regularization parameter when it is viewed as an additional variable. Second, the
regularization (part (iii)) satisfies some kind of Jacobian consistency [8] that was
widely used in smoothing methods when R is a smoothing of H; see [21] and the
references therein. A sufficient condition for this is that R is strictly differentiable at
μ = 0 (when μ is treated as a variable). Third, the regularization scheme defines a
unique function ỹ that approximates a measurable solution y(x, ξ) of (2). We shall
investigate the existence of such ỹ in Proposition 2.3.

Remark 2.2. Part (iv) of Definition 2.1 is implied by the following uniform
nonsingularity condition: for every (x, ξ, μ) ∈ X × Ξ × (0, μ0), there exists y such
that R(x, y, ξ, μ) = 0; πy∂R(x, y, ξ, μ) is uniformly nonsingular; i.e., there exists a
positive constant C > 0 such that for every x ∈ X , y ∈ Rn, ξ ∈ Ξ, μ ∈ (0, μ0),
‖[πy∂R(x, y, ξ, μ)]−1‖ ≤ C. The uniform nonsingularity implies that the outer limit
of πy∂R(x, y, ξ, μ) as μ → 0 is a strict subset of πy∂H(x, y, ξ), which does not include
singular matrices.

Proposition 2.3. Let R be a function satisfying conditions (i)–(iii) of Defini-
tion 2.1 and the uniform nonsingularity condition hold. Then R is a regularization
of H.

Proof. It suffices to verify (iv) in Definition 2.1; that is, (5) defines a unique
locally Lipschitz continuous implicit function ỹ : X × Ξ × (0, μ0) → Rn such that
R(x, ỹ(x, ξ, μ), ξ, μ) = 0 for all x ∈ X , ξ ∈ Ξ, μ ∈ (0, μ0). With the uniform nonsingu-
larity of πy∂R, the existence of such an implicit function on X × Rn × (0, μ0) comes
straightforwardly from [36, Lemma 2.3].

In the analysis of sections 3 and 4, we will not assume the uniform nonsingu-
larity. Instead we will assume a regularization R with nonsingularity of πy∂R and
other conditions which are weaker than the uniform nonsingularity. Note that not
every function has a regularized approximation. Our definition here is motivated by
the functions reformulated from equilibrium constraints. See section 5, particularly
Example 5.5, for a detailed explanation. In what follows we investigate the properties
of ỹ(x, ξ, μ), in particular, its limit as the regularization parameter μ tends to zero.

Theorem 2.4. Let R be a regularization of H and ỹ(x, ξ, μ) be the implicit
function defined as in Definition 2.1. Assume that limμ↓0 ỹ(x, ξ, μ) exists for every
x ∈ X and ξ ∈ Ξ, that is,

y(x, ξ) := lim
μ↓0

ỹ(x, ξ, μ), x ∈ X , ξ ∈ Ξ.(7)

Suppose that there exists a positive measurable function κ1(ξ) > 0 such that ‖ỹ(x, ξ, μ)‖
≤ κ1(ξ) for all (x, μ) ∈ X × (0, μ0) and that E[κ1(ξ)] < ∞. Then the following state-
ments hold:

(i) y(x, ξ) is a solution function of (2) on X × Ξ, and y(x, ξ(·)) : Ω → Rn is
measurable for every x ∈ X ;

(ii) if, in addition, there exists a measurable positive function L(ξ) > 0 such that

‖ỹ(x′′, ξ, μ) − ỹ(x′, ξ, μ)‖ ≤ L(ξ)‖x′′ − x′‖ ∀x′, x′′ ∈ X ,(8)

then y(·, ξ) is Lipschitz continuous on X for every ξ ∈ Ξ.
Proof. Part (i). By Definition 2.1, we have R(x, ỹ(x, ξ, μ), ξ, μ) = 0 for x ∈ X , ξ ∈

Ξ, μ ∈ (0, μ0). By Definition 2.1 and the continuity of R in y, it follows that

lim
μ↓0

R(x, ỹ(x, ξ, μ), ξ, μ) = R(x, y(x, ξ), ξ, 0) = H(x, y(x, ξ), ξ),

which indicates that y(x, ξ) is a solution of (2) for (x, ξ) ∈ X × Ξ.
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To show the measurability of y(x, ξ(ω)), observe that since ỹ(x, ξ, μ) is contin-
uous in ξ, then ỹ(x, ξ(·), μ) : Ω → Rn is measurable. Moreover, since ỹ(x, ξ, μ) is
bounded by κ1(ξ) and E[κ1(ξ)] < ∞, by the Lebesgue dominated convergence theo-
rem, y(x, ξ(·)) is measurable.

Part (ii). For x′, x′′ ∈ X , by (8), ‖ỹ(x′′, ξ, μ) − ỹ(x′, ξ, μ)‖ is dominated by
L(ξ)‖x′′ − x′‖. The latter is integrable. By the Lebesgue dominated convergence
theorem, we have from (8)

‖y(x′′, ξ) − y(x′, ξ)‖ = ‖ lim
μ↓0

(ỹ(x′′, ξ, μ) − ỹ(x′, ξ, μ))‖

= lim
μ↓0

‖ỹ(x′′, ξ, μ) − ỹ(x′, ξ, μ)‖ ≤ L(ξ)‖x′′ − x′‖ ∀x′, x′′ ∈ X .

This completes the proof.
The theorem above shows that we may obtain a measurable solution of (2) through

the process of regularization. Note that our assumption on the existence of limit (7)
may be relaxed. Indeed if the sequence of functions ỹ(·, ·, μ) has multiple accumulation
points, each of which is Lipschitz continuous, then y(x, ξ) can be taken from any of
them. Our assumption is to simplify the consequent discussion, and also we expect this
to be satisfied in practical instances; see Example 5.5. The boundedness condition for
ỹ(x, ξ, μ) holds under the uniform nonsingularity condition (Remark 2.2). Throughout
the rest of this paper, the y(x, ξ) in the true problem (1) refers to the limit of ỹ(x, ξ, μ)
as μ → 0.

3. Generalized Karush–Kuhn–Tucker (GKKT) conditions. In this sec-
tion, we investigate the KKT conditions of both true problem (1) and regularized
program (6). Our purpose is to show that w.p.1 the stationary points of the regular-
ized problem converge to a stationary point of the true problem (1) as the regulariza-
tion parameter is driven to zero; therefore the regularized problem (6) is a reasonable
approximation of the true problem.

3.1. GKKT conditions of the true problem. Let R be a regularization of
H and ỹ(x, ξ, μ) the solution of (5), let

y(x, ξ) = lim
μ↓0

ỹ(x, ξ, μ) for x ∈ X , ξ ∈ Ξ,

and let y(·, ξ) be Lipschitz continuous. In this subsection, we investigate the true
problem (1) associated with y(x, ξ). We first define a set which resembles the set of
Lagrange multipliers in nonlinear programming.

Definition 3.1. For (x, ξ) ∈ X × Ξ, let

Λ(x, ξ) :=conv{λ(x, ξ) ∈ Rn | 0 ∈ ∇yf(x, y(x, ξ), ξ)

+ λ(x, ξ)πy∂H(x, y(x, ξ), ξ)}.(9)

Note that λ(x, ξ) is a row vector. Note also that when y(x, ξ) is an optimal
solution of

min
y

f(x, y, ξ)

s.t. H(x, y, ξ) = 0,
(10)

Λ(x, ξ) contains the Lagrange multipliers of (10) in that the first-order necessary con-
dition of (10) can be written as 0 ∈ ∇yf(x, y(x, ξ), ξ) + λ(x, ξ)∂yH(x, y(x, ξ), ξ), and
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by [10, Proposition 2.3.16], ∂yH(x, y(x, ξ), ξ) ⊂ πy∂H(x, y(x, ξ), ξ). Note further that
Λ(x, ξ) is nonempty if and only if the set {λ(x, ξ) ∈ Rn | 0 ∈ ∇yf(x, y(x, ξ), ξ) +λ(x, ξ)
πy∂H(x, y(x, ξ), ξ)} is nonempty. For every λ(x, ξ) of the latter set, there exists
a matrix M ∈ πy∂H(x, y(x, ξ), ξ) such that 0 = ∇yf(x, y(x, ξ), ξ) + λ(x, ξ)M . A
necessary and sufficient condition for Λ(x, ξ) to be nonempty is that there exists
M ∈ πy∂H(x, y(x, ξ), ξ) such that rank([∇yf

T ,MT ]) = rank(MT ). Moreover, the set
Λ is bounded if and only if M is of full row rank. The following remark discusses the
particular case when πy∂H is nonsingular.

Remark 3.2. If πy∂H(x, y(x, ξ), ξ) is nonsingular for x ∈ Rm and ξ ∈ Ξ, then we
have

Λ(x, ξ) := −∇yf(x, y(x, ξ), ξ)conv([πy∂H(x, y(x, ξ), ξ)]−1).

The set contains the Lagrange multipliers of the standard second stage minimization
problem (10), since the nonsingularity of the Jacobian guarantees y(x, ξ) to be the
only feasible solution and hence trivially the optimal solution! If H is continuously
differentiable in x, y, and ξ, then πy∂H(x, y, ξ) reduces to ∇yH(x, y, ξ), and Λ(x, ξ)
reduces to a singleton,

Λ(x, ξ) = −∇yf(x, y(x, ξ), ξ)∇yH(x, y(x, ξ), ξ)−1.

This corresponds to the classical Lagrange multiplier of a standard second stage min-
imization problem (10).

In this paper, we consider the case when (2) has multiple solutions; therefore
πy∂H(x, y, ξ) cannot be nonsingular. For the simplicity of discussion, we make a blan-
ket assumption that Λ(x, ξ) is nonempty for x ∈ X and ξ ∈ Ξ, which implies that there
exists at least one matrix M ∈ πy∂H(x, y(x, ξ), ξ) such that rank([∇yf

T ,MT ]) =
rank(MT ). Using the notion of Λ, we can define the following optimality conditions
for the true problem associated with y(x, ξ).

Definition 3.3. Let Λ(x, ξ) be defined as in Definition 3.1. A point x ∈ Rm is
called a generalized stationary point of the true problem (1) if

0 ∈ E[∇xf(x, y(x, ξ), ξ) + Λ(x, ξ)πx∂H(x, y(x, ξ), ξ)] + NX (x),(11)

where the expectation is taken over the integrable elements of the set-valued integrand,
and NX (x) denotes the normal cone of X at x ∈ Rm [6]; that is,

NX (x) := [TX (x)]− = {ς ∈ Rm | 〈ς, d〉 ≤ 0 ∀d ∈ TX (x)},

where TX (x) := lim supt↓0(X −x)/t. We call (11) a GKKT condition of the true prob-
lem (1).

For the set of generalized stationary points to be well defined, it must contain
all local minimizers of the true problem. In what follows we discuss this and the
relationship between the GKKT conditions with other possible KKT conditions. For
this purpose, we need to state the following implicit function theorem for piecewise
smooth functions.

Lemma 3.4. Consider an underdetermined system of nonsmooth equations P (y, z)
= 0, where P : Rm × Rn → Rm is piecewise smooth. Let (ȳ, z̄) ∈ Rm × Rn be such
that P (ȳ, z̄) = 0. Suppose that πy∂P (ȳ, z̄) is nonsingular. Then

(i) there exist neighborhoods Z of z̄ and Y of ȳ and a piecewise smooth function
y : Z → Y such that y(z̄) = ȳ and, for every z ∈ Z, y = y(z) is the unique
solution of the problem P (y, z) = 0, y ∈ Y ;
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(ii) for z ∈ Z,

∂y(z) ⊂ conv{−V −1U : [V,U ] ∈ ∂P (y(z), z), V ∈ Rm×m, U ∈ Rm×n}.(12)
Proof. The existence of an implicit function comes essentially from the Clarke

implicit function theorem [10]. The piecewise smoothness and the differential inclusion
(12) follow from [21, Proposition 4.8] straightforwardly.

Note that the purpose of (12) is to give an estimate of the Clarke generalized
Jacobian of the implicit function using the Clarke generalized Jacobian of P , which
is relatively easier to obtain. The estimate may be improved under some index con-
sistency conditions; see [21] for details. With Lemma 3.4, we are ready to discuss
our GKKT condition. The proposition below establishes a relation between (local)
minimizers of the true problem and the generalized stationary points defined in Defi-
nition 3.3 under some circumstances.

Proposition 3.5. Let x∗ be a local minimizer of the true problem (associated
with the limit function y(x, ξ)) and [πy∂H(x∗, y(x∗, ξ), ξ)]−1 be nonsingular. Let
∇f(x, y(x, ξ), ξ), [πy∂H(x, y(x, ξ), ξ)]−1, and πx∂H(x, y(x, ξ), ξ) be bounded by a pos-
itive integrable function for all x in a neighborhood of x∗. Then x∗ is a generalized
stationary point of the true problem.

Proof. By Lemma 3.4,

∂y(x, ξ) ⊂ conv([−πy∂H(x, y(x, ξ), ξ)]−1)πx∂H(x, y(x, ξ), ξ)

for x close to x∗. Let v(x, ξ) := f(x, y(x, ξ), ξ). Under the boundedness conditions of
∇f(x, y(x, ξ), ξ), [πy∂H(x, y(x, ξ), ξ)]−1, and πx∂H(x, y(x, ξ), ξ), we have

0 ∈ ∂E[v(x∗, ξ)] + NX (x∗) ⊂ E[∂xv(x
∗, ξ)] + NX (x∗)

= E[∇xf(x∗, y(x∗, ξ), ξ) + ∇yf(x∗, y(x∗, ξ), ξ)∂y(x∗, ξ)] + NX (x∗)

⊂ E[∇xf(x∗, y(x∗, ξ), ξ) −∇yf(x∗, y(x∗, ξ), ξ)conv([πy∂H(x∗, y(x∗, ξ), ξ)]−1)

×πx∂H(x∗, y(x∗, ξ), ξ)] + NX (x∗)

= E[∇xf(x∗, y(x∗, ξ), ξ) + Λ(x∗, ξ)πx∂H(x∗, y(x∗, ξ), ξ)] + NX (x∗).(13)

The inclusion ∂E[v(x∗, ξ)] ⊂ E[∂xv(x
∗, ξ)] is deduced from the fact that the Clarke

generalized directional derivative of E[v(x, ξ)] is bounded by the expected value of the
Clarke generalized directional derivative of v(x, ξ). See [33, Proposition 2.12]. The
conclusion follows.

Remark 3.6. In the case when ∂H is singular, if

∇yf(x∗, y(x∗, ξ), ξ)∂y(x∗, ξ) ⊂ Λ(x∗, ξ)πx∂H(x∗, y(x∗, ξ), ξ),(14)

then we can draw a similar conclusion.
Note that if v(x, ξ) is regular at x∗ in the sense of Clarke [10, Definition 2.3.4] and

‖∂xv(x, ξ)‖ is bounded by some integrable function η(ξ), then by [15, Proposition 5.1],
∂E[v(x∗, ξ)] = E[∂xv(x

∗, ξ)]; consequently, equality holds in the first inclusion of (13).
This implies that the set of stationary points satisfying 0 ∈ ∂E[v(x∗, ξ)] + NX (x∗)
coincides with the set of stationary points satisfying 0 ∈ E[∂xv(x

∗, ξ)]+NX (x∗). Our
discussions above show that all these stationary points are contained in the set of
the generalized stationary points satisfying (11) under some appropriate conditions,
which means the latter gives a bound or an estimate of the former. To see how precise
the estimate is, we need to look at the second inclusion in (13) or the inclusion in
(14). The former relies on the index consistency of the piecewise smooth function H
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in y at the considered point [21]. The latter depends on the structure of Λ and πx∂H.
In general the inclusions are strict but perhaps not very loose. See [21, section 5] for
the comparisons of various GKKT conditions for deterministic nonsmooth equality
constrained minimization problems.

3.2. GKKT conditions of the regularized problem. We now consider the
GKKT conditions of the regularized program (6). Throughout this subsection and
section 4, we make the following assumption.

Assumption 3.7. Let R be a regularization of H. πy∂R(x, ỹ(x, ξ, μ), ξ, μ) is non-
singular for x ∈ X , ξ ∈ Ξ, μ ∈ (0, μ0).

This assumption is rather moderate and is satisfied by many regularizations. See
section 5 for a detailed discussion. Let us define the mapping of multipliers of the
regularized problem.

Definition 3.8. For (x, ξ, μ) ∈ X × Ξ × (0, μ0), let

Λreg(x, ξ, μ) :=conv{λ(x, ξ) ∈ Rn | 0 ∈ ∇yf(x, ỹ(x, ξ, μ), ξ)

+ λ(x, ξ)πy∂R(x, ỹ(x, ξ, μ), ξ, μ)}.(15)

Since πy∂R(x, ỹ(x, ξ, μ), ξ, μ) is nonsingular, then Λreg can be rewritten as

Λreg(x, ξ, μ) = −∇yf(x, ỹ(x, ξ, μ), ξ)conv([πy∂R(x, ỹ(x, ξ, μ), ξ, μ)]−1).(16)

Obviously, Λreg contains the set of Lagrange multipliers of the trivial second stage
regularized problem:

min
y

f(x, y, ξ) s.t. R(x, y, ξ, μ) = 0,

since ỹ(x, ξ, μ) is the unique feasible solution. Using the notion of Λreg, we define the
stationary point of the regularized problem.

Definition 3.9. Let Λreg(x, ξ, μ) be defined as in Definition 3.8. A point x ∈ Rm

is called a generalized stationary point of the regularized problem (6) if

0 ∈ E[∇xf(x, ỹ(x, ξ, μ), ξ) + Λreg(x, ξ, μ)πx∂R(x, ỹ(x, ξ, μ), ξ, μ)] + NX (x).(17)

We call condition (17) a GKKT condition for the regularized problem (6). Note that
this definition depends on the function ỹ(x, ξ, μ).

Let ṽ(x, ξ, μ) := f(x, ỹ(x, ξ, μ), ξ). Obviously, ṽ(·, ξ, μ) is locally Lipschitz con-
tinuous, since ỹ(·, ξ, μ) is locally Lipschitz continuous by assumption. Note that by
Lemma 3.4

∂ỹ(x, ξ, μ) ⊂ −conv([πy∂R(x, ỹ(x, ξ, μ), ξ, μ)]−1)πx∂R(x, ỹ(x, ξ, μ), ξ, μ).

If x∗ ∈ X be a local minimizer of the regularized problem, then under some appro-
priate measurable conditions (of ∂xṽ, etc.) we have

0 ∈ ∂E[ṽ(x∗, ξ, μ)] + NX (x∗) ⊂ E[∂xṽ(x
∗, ξ, μ)] + NX (x∗)

= E[∇xf(x∗, ỹ(x∗, ξ, μ), ξ) + ∇yf(x∗, ỹ(x∗, ξ, μ), ξ)∂xỹ(x
∗, ξ, μ)] + NX (x∗)

⊂ E[∇xf(x∗, ỹ(x∗, ξ, μ), ξ) −∇yf(x∗, ỹ(x∗, ξ, μ), ξ)

× conv([πy∂R(x∗, ỹ(x∗, ξ, μ), ξ, μ)]−1)πx∂R(x∗, ỹ(x∗, ξ, μ), ξ, μ)] + NX (x∗)

= E[∇xf(x∗, ỹ(x∗, ξ, μ), ξ) + Λreg(x∗, ξ)πx∂R(x∗, ỹ(x∗, ξ, μ), ξ, μ)]

+NX (x∗),(18)

which implies that an optimal solution of the regularized problem (6) is a generalized
stationary point.
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3.3. Convergence analysis of the regularized problem. In this subsection,
we investigate the convergence of the stationary points of regularized problem as
μ → 0. We first state the following intermediate result.

Lemma 3.10. Let R be a regularization of H and Λreg be defined as in Defini-
tion 3.8. Suppose that there exists a function ν1(ξ) > 0 such that

‖Λreg(x, ξ, μ)‖ ≤ ν1(ξ) ∀(x, μ) ∈ X × (0, μ0)(19)

and that E[ν1(ξ)] < ∞. Then Λreg(·, ξ, ·) is upper semicontinuous on X × (0, μ0), and

lim
μ↓0

Λreg(x, ξ, μ) ⊂ Λ(x, ξ), x ∈ X .(20)

Proof. The upper semicontinuity of Λreg on X × (0, μ0) follows from (16), the
upper semicontinuity of πy∂R(x, y, ξ, μ), and ∇yf(x, y, ξ) with respect to x, y, μ. In
what follows we show (20). By the definition of Λreg,

−∇yf(x, ỹ(x, ξ, μ), ξ) ∈ Λreg(x, ξ, μ)πy∂R(x, ỹ(x, ξ, μ), ξ, μ).(21)

By Definition 2.1(iii),

lim
μ↓0

πy∂R(x, ỹ(x, ξ, μ), ξ, μ) ⊂ πy∂H(x, y(x, ξ), ξ).

Therefore πy∂R(x, ỹ(x, ξ, μ), ξ, μ) is bounded for μ close to 0. This and condition (19)
allow us to take an outer limit on both sides of (21)

−∇yf(x, y(x, ξ), ξ) ∈ lim
μ↓0

[Λreg(x, ξ, μ)πy∂R(x, ỹ(x, ξ, μ), ξ, μ)]

⊂ lim
μ↓0

Λreg(x, ξ, μ) lim
μ↓0

πy∂R(x, ỹ(x, ξ, μ), ξ, μ).

Then we arrive at

−∇yf(x, y(x, ξ), ξ) ∈
[
lim
μ↓0

Λreg(x, ξ, μ)

]
πy∂H(x, y(x, ξ), ξ)).

The conclusion follows immediately from the definition of Λ.
Note that the boundedness condition (19) is satisfied if [πy∂R(x, ỹ(x, ξ, μ), ξ, μ)]−1

is uniformly bounded (see Remark 2.2) and f is uniformly Lipschitz continuous in y.
We are now ready to present the main result of this section concerning the convergence
of the stationary points of the regularized problem.

Theorem 3.11. Suppose that assumptions in Theorem 2.4 are satisfied. Suppose
also that there exists a function κ2(ξ), where E[κ2(ξ)] < ∞, such that for all (x, ξ, μ) ∈
X × Ξ × (0, μ0),

max{‖∇xf(x, ỹ(x, ξ, μ), ξ)‖, ‖πx∂R(x, ỹ(x, ξ, μ), ξ, μ)‖} ≤ κ2(ξ).(22)

Let {x(μ)} be a sequence of generalized stationary points of the regularized problem
(6). Assume that x∗ is an accumulation point of the sequence as μ → 0. Suppose that
condition (19) holds and that E[κ2(ξ)(1+ν1(ξ))] < ∞. Then w.p.1 x∗ is a generalized
stationary point of the true problem (1), that is,

0 ∈ E[∇xf(x∗, y(x∗, ξ), ξ) + Λ(x∗, ξ)πx∂H(x∗, y(x∗, ξ), ξ)] + NX (x∗).
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Proof. We use the Lebesgue dominated convergence theorem to prove the result.
Let

K(x, ξ, μ) := ∇xf(x, ỹ(x, ξ, μ), ξ) + Λreg(x, ξ, μ)πx∂R(x, ỹ(x, ξ, μ), ξ, μ).

First note that x(μ) is a generalized stationary point of (6), that is,

0 ∈ E[K(x(μ), ξ, μ)] + NX (x(μ)).(23)

Note that, by Lemma 3.10, limμ↓0 Λreg(x, ξ, μ) ⊂ Λ(x, ξ). By (19), Λreg(x, ξ, μ) is
uniformly dominated by ν1(ξ) for μ sufficiently small and x close to x∗. On the other
hand, by (22), ∇xf(x, y, ξ) and πx∂R(x, ỹ(x, ξ, μ), ξ, μ) are uniformly dominated by
κ2(ξ) for μ sufficiently small. Hence, K(x, ξ, μ) is uniformly dominated by κ2(ξ)(1 +
ν1(ξ)) for μ small enough and x sufficiently close to x∗. Note that E[κ2(ξ)(1+ν1(ξ))] <
∞; by the Lebesgue dominated convergence theorem, we then have

lim
μ↓0

E[K(x(μ), ξ, μ)] = E

[
lim
μ↓0

K(x(μ), ξ, μ)

]
= E

[
lim
μ↓0

[∇xf(x(μ), ỹ(x(μ), ξ, μ), ξ) + Λreg(x(μ), ξ, μ)πx∂R(x(μ), ỹ(x(μ), ξ, μ), ξ, μ)]

]
.

By Theorem 2.4 and Definition 2.1, we have by taking a subsequence if necessary on
{x(μ)}

lim
μ↓0

∇xf(x(μ), ỹ(x(μ), ξ, μ), ξ) = ∇xf(x∗, y(x∗, ξ), ξ)

and

lim
μ↓0

πx∂R(x(μ), ỹ(x(μ), ξ, μ), ξ, μ) ⊂ πx∂H(x∗, y(x∗, ξ), ξ).

In addition, notice that limμ↓0 Λreg(x(μ), ξ, μ) ⊂ Λ(x∗, ξ). Thus, with (23), it yields
that

0 ∈ E[∇xf(x∗, y(x∗, ξ), ξ) + Λ(x∗, ξ)πx∂H(x∗, y(x∗, ξ), ξ)] + NX (x∗).

This completes the proof.
Note that when f(x, y, ξ) and H(x, y, ξ) are uniformly Lipschitz in x, condition

(22) is satisfied, since πx∂R(x, ỹ(x, ξ, μ), ξ, μ) approximates πx∂H(x, y(x, ξ), ξ) follow-
ing Definition 2.1(iii).

4. Sample average approximations. In this section, we propose a sample
average approximation (SAA) method for solving the regularized program (6). SAA
methods have been extensively investigated in SMPECs recently. See, for instance,
[17, 30, 32, 35, 36]. Our convergence analysis is similar to that in [36]. However, there
are two main differences: (a) ỹ(x, ξ, μ) is a solution of a regularized equation (2),
which may be nonsmooth, while in [36] ỹ(x, ξ, μ) is an implicit smoothing of y(x, ξ)
and is smooth in x; (b) y(x, ξ) is the limit of {ỹ(x, ξ, μ)}μ→0 which satisfies (2) but it
not necessarily a unique implicit function of (2).

Let ξ1, . . . , ξN be an independent, identically distributed sample of ξ. We consider
the following SAA program:

min
x∈X ,y1,...,yN

fN (x, y1, . . . , yN ) :=
1

N

N∑
i=1

f(x, yi, ξi)

s.t. R(x, yi, ξi, μ) = 0, i = 1, . . . , N.

(24)
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Here μ > 0 is a small positive number which may depend on sample size N in
practical computation. Problem (24) is essentially a deterministic continuous min-
imization problem with variables x and y1, . . . , yN . It can also be regarded as a two
stage stochastic program with finite discrete distribution. Choosing which numerical
method for solving (24) depends on the structure and size of the problem. If the
problem is of relatively small size, and R is smooth, then many existing nonlinear
programming methods may be readily applied to solving the problem. When R is not
continuously differentiable, we need to employ those which can deal with nonsmooth-
ness. Bundle methods and aggregate subgradient methods are effective ones.

In the case when the problem size is large, decomposition methods which are pop-
ular in dealing with large scale stochastic programs seem to be the choice. Of course,
choosing which particular decomposition method also depends on the structure of
the problem such as linearity, convexity, separability, and sparsity of the underlying
functions. Higle and Sen [13] and Ruszczyński [26] presented a comprehensive dis-
cussion and review of various decomposition methods for solving two stage stochastic
programs. We refer readers to them and the references therein for the methods.

Note that our model (1) is motivated by SMPECs; hence it might be helpful to
explain how (24) is possibly solved when applied to SMPECs. For many practical
SMPEC problems such as the stochastic leader-followers problem and capital expan-
sion problem, f is convex in y, whereas f(x, y(x, ξ), ξ) is usually nonconvex in x.
Moreover, the feasible set of variable y is governed by a complementarity constraint
and is often nonconvex. This means that the feasible set of variable yi defined by an
equality constraint in (24) is nonconvex when μ = 0. However, since we assume πyR
is nonsingular for μ > 0, the equation has a unique solution yi for given x and ξi;
that is, the feasible set of yi is a singleton. This implies the minimization with respect
to variable yi is trivial theoretically, albeit not numerically, and this can be achieved
by solving an N system of equations simultaneously. Based on these observations,
if we can solve (24), then we are likely to obtain a point (xN (μ), y1

N (μ), . . . , yNN (μ))
with xN (μ) being a stationary point, while yiN (μ) is the unique global minimizer
which depends on xN (μ). Alternatively, we can say that xN (μ) is a stationary point
of (6).

In what follows, we focus on the Clarke stationary points of (24) given the non-
smooth and nonconvex nature of the problem. Following Hiriart-Urruty [14], we can
write down the GKKT conditions of (24) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ 1

N

N∑
i=1

∇xf(x, yi, ξi) +

N∑
i=1

λi∂xR(x, yi, ξi, μ) + NX (x),

0 ∈ 1

N

⎛⎜⎝ ∇yf(x, y1, ξ1)
...

∇yf(x, yN , ξN )

⎞⎟⎠+

⎛⎜⎝ λ1∂yR(x, y1, ξ1, μ)
...

λN∂yR(x, yN , ξN , μ)

⎞⎟⎠ ,

0 = R(x, yi, ξi, μ), i = 1, . . . , N.

(25)

Since by assumption for every (x, ξ) ∈ X × Ξ, equation R(x, y, ξ, μ) = 0 has a
unique solution ỹ(x, ξ, μ), then yi in (25) can be expressed as ỹ(x, ξi, μ), i = 1, . . . , N .
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Consequently, the above GKKT conditions can be rewritten as

(26)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ 1

N

N∑
i=1

∇xf(x, ỹ(x, ξi, μ), ξi) +

N∑
i=1

λi∂xR(x, ỹ(x, ξi, μ), ξi, μ) + NX (x),

0 ∈ 1

N

⎛⎜⎝ ∇yf(x, ỹ(x, ξ1, μ), ξ1)
...

∇yf(x, ỹ(x, ξN , μ), ξN )

⎞⎟⎠+

⎛⎜⎝ λ1∂yR(x, ỹ(x, ξ1, μ), ξ1, μ)
...

λN∂yR(x, ỹ(x, ξN , μ), ξN , μ)

⎞⎟⎠ .

Note that by [10, Proposition 2.3.16],

∂xR(x, y, ξ, μ) ⊂ πx∂R(x, y, ξ, μ) and ∂yR(x, y, ξ, μ) ⊂ πy∂R(x, y, ξ, μ).

In addition, under Assumption 3.7, πy∂R(x, yi, ξi, μ) is nonsingular; then we replace
λi, i = 1, . . . , N , in (25) with

− 1

N
∇yf(x, yi, ξi)conv([πy∂R(x, yi, ξi, μ)]−1), i = 1, . . . , N.

By writing yi as ỹ(x, ξi, μ), we may consider a weaker GKKT condition than (26) as

0∈ 1

N

N∑
i=1

[∇xf(x, ỹ(x, ξi, μ), ξi)

−∇yf(x, ỹ(x, ξi, μ), ξi)conv([πy∂R(x, ỹ(x, ξi, μ), ξi, μ)]−1)πx∂R(x, ỹ(x, ξi, μ), ξi, μ)]

+NX (x).

The “weaker” is in the sense that a point x satisfying (26) must satisfy the above
equation but not vice versa. Let Λreg(x, ξ, μ) be defined as in (16). Then the above
equation can be written as

0 ∈ 1

N

N∑
i=1

[
∇xf(x, ỹ(x, ξi, μ), ξi) + Λreg(x, ξi, μ)πx∂R(x, ỹ(x, ξi, μ), ξi, μ)

]
+NX (x).(27)

We say that a point x ∈ X is a generalized stationary point of the reduced regularized
SAA problem (24) if it satisfies (27). In what follows, we investigate the convergence
of the generalized stationary points as the sample size tends to infinity. We consider
two cases: (a) μ is set small and fixed, and the sample size N tends to infinity; (b) μ
depends on the sample size and is reduced to zero as N increases to infinity.

We establish the following theorem, which states the convergence results of gen-
eralized stationary points.

Theorem 4.1. Let assumptions in Theorem 3.11 hold, κ3(ξ) := max(ν1(ξ), κ2(ξ)),
and E[κ3(ξ)(1 + κ3(ξ))] < ∞. Then the following statements hold:

(i) Let μ > 0 be fixed. If {xN (μ)} is a sequence of generalized stationary points
which satisfy (27), then w.p.1 an accumulation point of the sequence is a
generalized stationary point of the regularized problem (6); that is,

0 ∈ E [G(x, ξ, μ)] + NX (x),

where G(x, ξ, μ) := ∇xf(x, ỹ(x, ξ, μ), ξ)+Λreg(x, ξ, μ)πx∂R(x, ỹ(x, ξ, μ), ξ, μ).
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(ii) Let μ = μN , where μN → 0 as N → ∞, and {x(μN )} be a sequence of gener-
alized stationary points which satisfy (27). Suppose that ‖πx∂H(x, y(x, ξ), ξ)‖
is also bounded by κ2(ξ) in (22). If x∗ is an accumulation point of {x(μN )},
then w.p.1 x∗ is a generalized stationary point of the true problem (1); that
is, x∗ satisfies

0 ∈ E[L(x, ξ)] + NX (x),(28)

where L(x, ξ) := ∇xf(x, y(x, ξ), ξ)+Λ(x, ξ)πx∂H(x, y(x, ξ), ξ), Λ, and y(x, ξ)
are as given in section 3.

Proof. Part (i). By assumption, there exists a unique ỹ(x, ξ, μ) such that

R(x, ỹ(x, ξ, μ), ξ, μ) = 0

for every (x, ξ, μ) ∈ X × Ξ × (0, μ0). Since ∂R(·, ỹ(·, ξ, μ), ξ, μ) is an upper semicon-
tinuous, compact set-valued mapping, then G(·, ·, μ) is also an upper semicontinuous
and compact set-valued mapping on X for every ξ ∈ Ξ. It follows from (19) and
(22) that G(x, ξ, μ) is uniformly dominated by κ3(ξ)(1+κ3(ξ)), which is integrable by
assumption. Assume without loss of generality that {xN (μ)} → {x∗}. Since xN (μ) is
a generalized stationary point of problem (24), we have by definition

0 ∈ 1

N

N∑
i=1

G(xN (μ), ξi, μ) + NX (xN (μ)).(29)

For any sufficiently small δ > 0, γ > 0, we estimate

D

(
1

N

N∑
i=1

G(xN (μ), ξi, μ), E[Gδ(x
∗, ξ, μ)] + γB

)
,

where Gδ(x
∗, ξ, μ) :=

⋃
x∈B(x∗,δ) G(x, ξ, μ) and E[Gδ(x

∗, ξ, μ)] =
⋃

G∈Gδ(x∗,ξ,μ) E[G].
Note that

D

(
1

N

N∑
i=1

G(xN (μ), ξi, μ), E[Gδ(x
∗, ξ, μ)] + γB

)

≤ D

(
1

N

N∑
i=1

G(xN (μ), ξi, μ),
1

N

N∑
i=1

Gδ/2(x
∗, ξi, μ) + γ/2B

)

+ D

(
1

N

N∑
i=1

Gδ/2(x
∗, ξi, μ) + γ/2B, E[Gδ(x

∗, ξ, μ)] + γB
)
.

By Lemma 3.2 of [36], the second term on the right-hand side of the equation tends
to zero w.p.1 as N → ∞. On the other hand, for N large enough such that xN (μ) ∈
B(x∗, δ), by definition G(xN (μ), ξi, μ) ⊂ Gδ(x

∗, ξi, μ), which leads to

D

(
1

N

N∑
i=1

G(xN (μ), ξi, μ),
1

N

N∑
i=1

Gδ(x
∗, ξi, μ) + γB

)
= 0

for N sufficiently large. Hence, by (29), it follows that

0 ∈ E[Gδ(x
∗, ξ, μ)] + NX (x∗) + γB w.p.1.
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By the Lebesgue dominated convergence theorem and noticing the arbitrariness of δ
and γ, we get the desired conclusion.

Part (ii). We now treat μ in G(x, ξ, μ) as a variable and define

Ĝ(x, ξ, μ) :=

{
G(x, ξ, μ), μ > 0,
A(x, ξ), μ = 0,

where A(x, ξ) := ∇xf(x, y(x, ξ), ξ) + limμ↓0 Λreg(x, ξ, μ)πx∂H(x, y(x, ξ), ξ). By as-

sumption, it follows that Ĝ(·, ξ, ·) : X × [0, μ0) → 2R
n

is an upper semicontinuous and
compact set-valued mapping for every ξ ∈ Ξ. Conditions (19) and (22) and the bound
κ2(ξ) on πx∂H(x, y(x, ξ), ξ) imply that Ĝ(x, ξ, μ) is bounded by κ3(ξ)(1+κ3(ξ)), which
is integrable by assumption. Since x(μN ) is a generalized stationary point of problem
(24) with μ = μN , it follows that

0 ∈ 1

N

N∑
i=1

Ĝ(x(μN ), ξi, μN ) + NX (x(μN )).(30)

Assume without loss of generality that x(μN ) → x∗ as N → ∞. For any small δ > 0
and γ > 0, we will show that

D

(
1

N

N∑
i=1

Ĝ(x(μN ), ξi, μN ), E [Lδ(x
∗, ξ)] + γB

)
→ 0, w.p.1 as N → ∞,

where Lδ(x
∗, ξ) = Ĝδ(x

∗, ξ, 0), Ĝδ(x, ξ, μ) =
⋃

(x′,μ′)∈B(x,δ)×[0,δ] G(x′, ξ, μ′). Note that

D

(
1

N

N∑
i=1

Ĝ(x(μN ), ξi, μN ), E [Lδ(x
∗, ξ)] + γB

)

≤ D

(
1

N

N∑
i=1

Ĝ(x(μN ), ξi, μN ),
1

N

N∑
i=1

Ĝδ/2(x
∗, ξi, 0) + γ/2B

)

+ D

(
1

N

N∑
i=1

Ĝδ/2(x
∗, ξi, 0) + γ/2B, E [Lδ(x

∗, ξ)] + γB
)
.

By Lemma 3.2 of [36], the second term on the right-hand side of the equation above
tends to zero as N → ∞. On the other hand, since Ĝ(x(μN ), ξi, μN ) ⊂ Ĝδ(x

∗, ξi, 0)
for any (x(μN ), μN ) ∈ B(x∗, δ) × [0, δ], hence the first term on the right-hand side
equals zero for N sufficiently large. Since γ and δ are arbitrarily small, thereby,
the conclusion follows immediately by virtue of the Lebesgue dominated convergence
theorem and (30). The proof is completed.

Theorem 4.1 states that if μ is fixed, then w.p.1. an accumulation point of a
sequence of the generalized stationary points of the regularized SAA problem (24) is a
generalized stationary point of the regularized problem (6). In the case that μ depends
on sample size N and is reduced to zero as N → ∞, then w.p.1. an accumulation point
of a sequence of the generalized stationary points of the regularized SAA problem (24)
is a generalized stationary point of the true problem.
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5. Applications to SMPECs.

5.1. Stochastic program with variational constraints. In this section, we
apply the results established in the preceding sections to the following stochastic math-
ematical programs with boxed constrained variational inequality (BVI) constraints:

min
x∈X

E [f(x, y(x, ξ), ξ)] ,(31)

where y(x, ξ) is a measurable solution to the VI problem

F (x, y, ξ)T (z − y) ≥ 0 ∀z ∈ Υ,(32)

where X is a nonempty compact subset of Rm, f : Rm×Rn×Rk → R is continuously
differentiable, ξ : Ω → Ξ ⊂ Rk is a vector of random variables defined on probability
space (Ω,F , P ) with nonatomic P , F : Rm × Rn × Rk → Rn is continuously differen-
tiable, F (x, ·, ξ) is a P0-function for every (x, ξ) ∈ X × Ξ, Υ := {y ∈ Rn | a ≤ y ≤ b},
a ∈ {R ∪ {−∞}}n, b ∈ {R ∪ {∞}}n, and a < b (componentwise). Here we assume
that Ξ is a compact set. Notice that if we set a = 0 and b = ∞, then problem (31) is
reduced to the stochastic mathematical programs with complementarity constraints.
For simplicity in analysis, we assume all components in a or b are finite or infinite
simultaneously. In other words, we will focus on the following cases: (i) a ∈ Rn and
b ∈ Rn; (ii) a ∈ Rn, b = ∞; (iii) a = −∞, b ∈ Rn; (iv) a = −∞, b = ∞.

For every (x, ξ) ∈ X × Ξ, the constraint of the second stage problem (32) is
actually a parametric BVI problem. Throughout this section, we assume that the
BVI has at least one solution for every (x, ξ) ∈ X × Ξ.

Let ΠΥ(y) be the Euclidean projection of y onto Υ. Then the parametric BVI
can be reformulated as a parameterized normal equation

H(x, y, ξ) := F (x,ΠΥ(y), ξ) + y − ΠΥ(y) = 0, (x, ξ) ∈ X × Ξ,(33)

in the sense that if y(x, ξ) is a solution of (33), then ȳ(x, ξ) := ΠΥ(y(x, ξ)) is a solution
of the BVI problem, and conversely, if ȳ(x, ξ) is a solution of the BVI, then y(x, ξ) :=
ȳ(x, ξ) − F (x, ȳ(x, ξ), ξ) is a solution of (33). Consequently, we can reformulate (31)
as

min
x∈X

E [f(x,ΠΥ(y(x, ξ)), ξ)] ,(34)

where y(x, ξ) is a measurable solution to the following equation:

H(x, y, ξ) = 0.(35)

Obviously, H defined in (33) is locally Lipschitz continuous and piecewise smooth
with respect to x, y, ξ as Υ is a box. The nonsmoothness of ΠΥ may result in the
ill-posedness of (33). Note also that since F is a P0-function, the parametric BVI
may have multiple solutions, and consequently (33) may have multiple solutions for
every x and ξ. In what follows, we use a smoothed regularization method to deal with
(33). First, we will use the Gabriel–Moré smoothing function to smooth ΠΥ [12], and
consequently we get a smooth approximation of (33)

R̂(x, v, y, ξ) := F (x, p(v, y), ξ) + y − p(v, y) = 0, (x, ξ) ∈ X × Ξ.(36)

Here p : Rn × Rn → Rn is continuously differentiable, except at the point (v, y) ∈
Rn × Rn, such that vi = 0 for some i ∈ {1, 2, . . . , n}, and for any (v, y) ∈ Rn × Rn,
p(v, y) ∈ Υ. We set vi = μ and apply the well-known Tikhonov regularization to R̂

R(x, y, ξ, μ) := R̂(x, μe, y, ξ) + μy = F (x, p(μe, y), ξ) + y − p(μe, y) + μy,(37)
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where e = (1, 1, . . . , 1) ∈ Rn and μ is a positive parameter.
In the following analysis, we use the well-known Chen–Harker–Kanzow–Smale

(CHKS) smoothing function [7, 16] to smooth the components of ΠΥ(y):

φ(α, c, d, β) = (c +
√

(c− β)2 + 4α2)/2 + (d−
√

(d− β)2 + 4α2)/2,

where (α, β) ∈ R++ × R and (c, d) ∈ R × R. Then

pi(μe, y) := φ(μ, ai, bi, yi)

= (ai +
√

(ai − yi)2 + 4μ2)/2 + (bi −
√

(bi − yi)2 + 4μ2)/2, i = 1, . . . , n.

For any μ ∈ R++ and (x, ξ) ∈ X ×Ξ, since p(μe, y) is continuously differentiable with
respect to y, it follows that R(x, y, ξ, μ) is continuously differentiable with respect to
x, y for almost every ξ. In what follows, we will verify that R defined in (37) satisfies
Definition 2.1 for regularization functions. We first state the following result.

Lemma 5.1. Given (x, ξ) ∈ X × Ξ and μ > 0, let R be defined as in (37). Then
the Jacobian ∇yR(x, y, ξ, μ) is nonsingular.

Proof. First, we have

∇yR(x, y, ξ, μ) = ∇yF (x, p(μe, y), ξ)D(μ, y) + μI + I −D(μ, y),

where D(μ, y) = diag(d1(μ, y), . . . , dn(μ, y)) and di(μ, y) = ∂pi(μe, y)/∂yi ∈ [0, 1]
for every i ∈ {1, . . . , n}. Since F (x, y, ξ) is a P0-function with respect to y and
p(μe, y) ∈ Υ, then ∇yF (x, p(μe, y), ξ) is a P0-matrix. For u ∈ Rn, let

[∇yF (x, p(μe, y), ξ)D(μ, y) + μI + I −D(μ, y)]u = 0.

We claim that D(μ, y)u = 0. Assume that [D(μ, y)u]i 
= 0 for any i; we then have

[D(μ, y)u]i[∇yF (x, p(μe, y), ξ)D(μ, y)u]i = −[D(μ, y)u]i[(μ + 1)u−D(μ, y)u]i

= −(μ + 1)di(μ, y)u
2
i + d2

i (μ, y)u
2
i < 0,

which contradicts the definition of P0-matrix of ∇yF (x, p(μe, y), ξ). So, D(μ, y)u = 0.
Hence, (μ+1)u = 0, which derives u = 0. Thus, ∇yR(x, y, ξ, μ) is nonsingular.

Lemma 5.2. Let {xk}, {yk}, {ξk} be sequences in X , Rn, Ξ and let {μk} be a
sequence in any closed subset of (0, μ0) with {‖yk‖} → ∞ as k → ∞, where μ0 is a
small positive number. Then ‖R(xk, yk, ξk, μk)‖ → ∞ as k → ∞.

See a detailed proof in the appendix.
By Lemmas 5.1 and 5.2, we are ready to show that function R constructed in (37)

is a regularization of H.
Proposition 5.3. Let μ0 be a small positive number. Function R defined in (37)

is a regularization of H as defined in Definition 2.1. Moreover, ỹ is continuously
differentiable on X × Ξ × (0, μ0).

The proof is long. We move it to the appendix.
Based on the above discussions, we can convert the true problem (31) (or equiv-

alently, (34)) to the following regularized program:

min
x∈X

E [f(x,ΠΥ(ỹ(x, ξ, μ)), ξ)] ,(38)

where ỹ(x, ξ, μ) uniquely solves R(x, y, ξ, μ) = 0, (x, ξ, μ) ∈ X × Ξ × (0, μ0).
In the next subsection, we will investigate a numerical method for solving (38) by

using its SAA.
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5.2. SAA program. In this subsection, we consider the SAA program of (38)

min
x∈X , y1,...,yN

1

N

N∑
i=1

f(x,ΠΥ(yi), ξi)

s.t. R(x, yi, ξi, μ) = 0, i = 1, . . . , N,

(39)

where μ is a small positive number. Analogous to the discussion in section 4, we can
write down the GKKT conditions of (39) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ 1

N

N∑
i=1

∇xf(x,ΠΥ(yi), ξi) +

N∑
i=1

λi∇xR(x, yi, ξi, μ) + NX (x),

0 ∈ 1

N

⎛⎜⎝ ∇yf(x,ΠΥ(y1), ξ1)∂ΠΥ(y1)
...

∇yf(x,ΠΥ(yN ), ξN )∂ΠΥ(yN )

⎞⎟⎠+

⎛⎜⎝ λ1∇yR(x, y1, ξ1, μ)
...

λN∇yR(x, yN , ξN , μ)

⎞⎟⎠ ,

0 = R(x, yi, ξi, μ), i = 1, . . . , N.

(40)

Following similar arguments as in section 4, we derive

0 ∈ 1

N

N∑
i=1

[
∇xf(x,ΠΥ(ỹ(x, ξi, μ)), ξi) + Λreg(x, ξi, μ)∇xR(x, ỹ(x, ξi, μ), ξi, μ)

]
+NX (x),(41)

where

Λreg(x, ξi, μ) = −∇yf(x,ΠΥ(ỹ(x, ξi, μ)), ξi)∂ΠΥ(ỹ(x, ξi, μ))∇yR(x, ỹ(x, ξi, μ), ξi, μ)−1.

Note that for any (x, y, ξ) ∈ X × Rn × Ξ and μ > 0,

∇xH(x, y, ξ) = ∇xR(x, y, ξ, μ) = ∇xF (x,ΠΥ(y), ξ)

and

∂ΠΥ(y) ⊂ {M ∈ Rn×n | M = diag(d1, . . . , dn), di ∈ [0, 1]}.

Obviously, ∂ΠΥ(y) is bounded for any y ∈ Rn. Assume that limμ↓0 ỹ(x, ξ, μ) exists.
Let y(x, ξ) = limμ↓0 ỹ(x, ξ, μ) on X × Ξ, and for (x, ξ) ∈ X × Ξ

Λ(x, ξ) := conv{λ(x, ξ) ∈ Rn | 0 ∈ ∇yf(x,ΠΥ(y(x, ξ)), ξ)∂ΠΥ(y(x, ξ))

+λ(x, ξ)πy∂H(x, y(x, ξ), ξ)}.

Following a similar argument as in Theorem 4.1, we derive convergence results for
(39) below.

Theorem 5.4. Suppose that there exist a function κ4(ξ) and a constant μ0 > 0
such that for all (x, ξ, μ) ∈ X × Ξ × (0, μ0)

max {‖∇xf(x,ΠΥ(ỹ(x, ξ, μ), ξ))‖, ‖∇xF (x,ΠΥ(ỹ(x, ξ, μ)), ξ)‖, ‖Λreg(x, ξ, μ)‖}
≤ κ4(ξ)(42)

with E [κ4(ξ)] < ∞. Suppose that E[κ4(ξ)(1 + κ4(ξ))] < ∞. Then
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(i) for fixed μ > 0, w.p.1 an accumulation point of the sequence of the generalized
stationary points {xN (μ)} of (39) satisfies

0 ∈ E [�(x, ξ, μ)] + NX (x),

where

�(x, ξ, μ) := ∇xf(x,ΠΥ(ỹ(x, ξ, μ)), ξ)+Λreg(x, ξ, μ)∇xF (x,ΠΥ(ỹ(x, ξ, μ)), ξ);

(ii) if μ = μN , where μN → 0 as N → ∞, and {x(μN )} is a sequence of general-
ized stationary points of (39), then w.p.1 an accumulation point of {x(μN )}
satisfies

0 ∈ E[M(x, ξ)] + NX (x),(43)

where

M(x, ξ) := ∇xf(x,ΠΥ(y(x, ξ)), ξ) + Λ(x, ξ)∇xF (x,ΠΥ(y(x, ξ)), ξ).

Note that the boundedness condition in (42) on ‖∇xf(x,ΠΥ(ỹ(x, ξ, μ)), ξ)‖ and
‖∇xF (x,ΠΥ(ỹ(x, ξ, μ)), ξ)‖ is satisfied if f and F are uniformly globally Lipschitz
with respect to x. The boundedness condition on Λreg(x, ξ, μ) is satisfied if f(x, y, ξ)
is uniformly globally Lipschitz with respect to y and πy∂H(x, y(x, ξ), ξ) is uniformly
nonsingular. In particular, if H(x, y, ξ) is regular in the sense of [20] in y at y(x, ξ),
then πy∂H(x, y(x, ξ), ξ) is nonsingular. See [20] for a detailed discussion in this regard.

Example 5.5. Consider the following stochastic mathematical program:

min
x∈X

E [f(x, y(x, ξ), ξ)] .(44)

Here f : R × R2 × R → R is given as

f(x, y, ξ) = 2(y1 − arctan y1) + 4y4
1y2/(1 + y2

1)2 + 1 + x + ξ,

and y(x, ξ) is any measurable solution of the following BVI problem:

F (x, y(x, ξ), ξ)T (z − y(x, ξ)) ≥ 0 ∀z ∈ Υ,(45)

where Υ = R2
+, X = [0, 1], ξ can be any random variable that can take values on the

interval Ξ := [−1,−1/4], and F (x, y, ξ) = (0, y1 + y2 + x + ξ − 1)T . Evidently, F is
continuously differentiable and F (x, ·, ξ) is a P0-function for every (x, ξ) ∈ X ×Ξ and

∇xF (x, y, ξ) = (0, 1)
T
.(46)

Note that f is continuously differentiable on R×R2 ×R, f ′
x(x, y, ξ) = f ′

ξ(x, y, ξ) = 1,
and

∇yf(x, y, ξ) =
(
2y2

1/(1 + y2
1) + 16y3

1y2/(1 + y2
1)3, 4y4

1/(1 + y2
1)2
)
.(47)

In this example, we have H(x, y, ξ) = (y1 − max{0, y1}, max{0, y1} + y2 + x + ξ − 1) .
It is not hard to obtain the solution set of the VI problem (45) as follows: for (x, ξ) ∈
X × Ξ,

Y(x, ξ) := {y ∈ R2
+ : y1 ≥ 1 − x− ξ, y2 = 0} ∪ {y ∈ R2

+ : y1 + y2 − 1 + x + ξ = 0}.
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Obviously, Y is a set-valued mapping on X × Ξ.
We now consider the regularization of the VI problem (45), in which given a

regularization parameter, we expect to derive a unique solution function on X × Ξ.
Note here that Υ = R2

+, we have ai = 0, and bi = ∞, i = 1, 2. Then we get the
ith component of the smoothing function pi(μe, y) = φ(μ, 0,∞, yi), i = 1, 2, μ > 0,

where φ is the reduced CHKS smoothing NCP function: φ(α, 0,∞, β) = (
√

β2 + 4α2+

β)/2, (α, β) ∈ R++ × R. By definition, we have pi(μe, y) = (
√

y2
i + 4μ2 + yi)/2, i =

1, 2, μ > 0. And

R(x, y, ξ, μ) =

(
−(
√

y2
1 + 4μ2 + y1)/2 + (1 + μ)y1

(
√
y2
1 + 4μ2 + y1)/2 + (1 + μ)y2 + x + ξ − 1

)
.

Evidently, R is continuously differentiable on X × R2 × Ξ × (0,∞).
After some basic manipulations, we derive the unique solution of R(x, y, ξ, μ) = 0

for any μ > 0, (x, ξ) ∈ X × Ξ as follows:

ỹ(x, ξ, μ) =
(√

μ/(μ + 1), (1 − x− ξ)/(1 + μ) −
√
μ/(μ + 1)

)T
.

Moreover, for any x ∈ X and μ > 0, ‖ỹ(x, ξ, μ)‖ ≤ κ1(ξ) with E[κ1(ξ)] < ∞, where
κ1(ξ) = 7 − ξ, and

‖ỹ(x′′, ξ, μ) − ỹ(x′, ξ, μ)‖ ≤ L(ξ)‖x′′ − x′‖ for any x′′, x′ ∈ X ,

where L(ξ) can be taken as any measurable positive function satisfying 1 ≤ E[L(ξ)] <
∞, say, L(ξ) = 1−ξ. Also, limμ↓0 ỹ(x, ξ, μ) = y(x, ξ) = (0, 1 − x− ξ) ∈ Y(x, ξ), (x, ξ)
∈ X × Ξ. Thereby, all conditions in Theorem 2.4 are satisfied. Obviously, y(x, ξ) is
measurable for every x ∈ X and Lipschitz continuous in x.

In addition, by Proposition 5.3, the regularization R defined above satisfies parts
(i)–(iv) of Definition 2.1, where μ0 can be chosen any small positive number.

Next, we investigate the boundedness condition (42). After some simple calcu-
lations, we can see that ỹ(x, ξ, μ) ∈ R2

++ for any (x, ξ, μ) ∈ X × Ξ × (0, μ̂), where

μ̂ = (
√

5 − 2)/4. So, ΠΥ(ỹ(x, ξ, μ)) = ỹ(x, ξ, μ) and

∂ΠΥ(ỹ(x, ξ, μ)) =

(
1 0
0 1

)
.

On the other hand, we have

∇yR(x, y, ξ, μ)−1 = �(y, μ)−1

⎛⎜⎜⎝
1 + μ 0

−1

2

(
1 +

y1√
y2
1 + 4μ2

)
−1

2

(
1 +

y1√
y2
1 + 4μ2

)
+ μ

⎞⎟⎟⎠ ,

where �(y, μ) = (1 + μ)[ 1
2
(1 − y1/

√
y2
1 + 4μ2) + μ]. Then it follows that

∇yR(x, ỹ(x, ξ, μ), ξ, μ)−1 =
1 + 2μ

2μ(1 + μ)2

⎛⎜⎜⎝
1 + μ 0

− 1 + μ

1 + 2μ

2μ2 − 1

1 + 2μ

⎞⎟⎟⎠ .
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In addition, we have

∇yf(x, ỹ(x, ξ, μ), ξ)

=
2μ

2μ + 1

(
(1 + 8

√
μ(μ + 1))

(
1 − x− ξ −

√
μ(μ + 1)

(2μ + 1)2

)
,

2μ

2μ + 1

)
.

Then, for μ ∈ (0, μ̂) and (x, ξ) ∈ X × Ξ, it follows that

Λreg(x, ξ, μ) = −∇yf(x,ΠΥ(ỹ(x, ξ, μ)), ξ)∂ΠΥ(ỹ(x, ξ, μ))∇yR(x, ỹ(x, ξ, μ), ξ, μ)−1

= −
(

8
√
μ(1 − x− ξ)√

1 + μ(1 + 2μ)2
+

1 − 6μ− 4μ2

(1 + μ)(1 + 2μ)2
,

2μ(2μ2 − 1)

(1 + μ)2(1 + 2μ)2

)
.

By applying some basic operations, we have ‖Λreg(x, ξ, μ)‖ < �(ξ) for any (x, μ) ∈
X × (0, μ0), where �(ξ) :=

√
2 + 8

√
2μ̂(1 − ξ). Assume that ξ follows a uniform

distribution with parameters −1 and −1/4, i.e., ξ ∼ U(−1,−1/4). Then E[�(ξ)] =√
2 + 13

√
2μ̂ < ∞ and E[�(ξ)(1 + �(ξ))] < ∞. Hence, we can choose κ4(ξ) = �(ξ)

in Theorem 5.4. This, together with (46) and (47), shows that the boundedness
condition (42) holds in this example.

Note that in this example, one may ask why the objective function f is not chosen
in a simpler form, say, a linear function of y rather than in a complex form as it stands.
The answer is that we use this example not only to illustrate how regularization works
for this particular SMPEC problem but also to demonstrate how the boundedness
conditions (19) in Lemma 3.10 and (42) of Theorem 5.4 can be satisfied. In this
particular example, if f is made linear in y, then we are not able to guarantee the
boundedness of the set Λreg, although this does not mean the method will not work.

6. Preliminary numerical results. We have carried out numerical tests on
the regularized SAA scheme for stochastic problems with VI constraints. In this
section, we report some preliminary numerical results. Such stochastic problems are
artificially made by ourselves, since there are few test problems on SMPECs in the
literature. The tests are carried out by implementing mathematical programming
codes in MATLAB 6.5 installed in a PC with Windows XP operating system. We use
the MATLAB built-in solver fmincon for solving the regularized SAA problems.

6.1. Estimating the optimal value of the regularized problem. The fol-
lowing methodology of constructing statistical lower and upper bounds was suggested
in [28]. Given μ > 0, let v(μ) denote the optimal value of the regularized problem
(38) and ṽN (μ) the optimal value of (39). It is known [28] that E[ṽN (μ)] ≤ v(μ).
To estimate the expected value E[ṽN (μ)], we generate M independent samples of ξ,
{ξ1

j , . . . , ξ
N
j }, j = 1, . . . ,M , each of size N . For each sample j, solve the corresponding

SAA problem (39), which can be written as

min
x∈X y1,...,yN

1

N

N∑
i=1

f(x,ΠΥ(yi), ξij)

s.t. R(x, yi, ξij , μ) = 0, i = 1, . . . , N.

(48)

Let ṽjN (μ), j = 1, . . . ,M , denote the corresponding optimal value of problem (48).
Compute

LN,M (μ) :=
1

M

M∑
j=1

ṽjN (μ),
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which is an unbiased estimate of E[ṽN (μ)]. Then LN,M (μ) provides a statistical lower
bound for v(μ). An estimate of variance of the estimator LN,M (μ) can be computed as

s2
L(M ;μ) :=

1

M(M − 1)

M∑
j=1

(
ṽjN (μ) − LN,M (μ)

)2

.

Let v(x, ξ, μ) = f(x,ΠΥ(ỹ(x, ξ, μ)), ξ) and ϑ̃(x, μ) = E[v(x, ξ, μ)]. Then an upper
bound for the optimal value v(μ) can be obtained by the fact that ϑ̃(x̄, μ) ≥ v(μ)
for any x̄ ∈ X . Hence, by choosing x̄ to be a near-optimal solution, for example,
by solving one SAA problem and using an unbiased estimator of ϑ̃(x̄, μ), we can
obtain an estimate of an upper bound for v(μ). To do so, generate M ′ independent
batches of samples: {ξ1

j , . . . , ξ
N ′

j }, j = 1, . . . ,M ′, each of size N ′. For x ∈ X , let

ṽjN ′(x, μ) := 1
N ′
∑N ′

i=1 v(x, ξ
i
j , μ). Then E[ṽjN ′(x, μ)] = ϑ̃(x, μ). Compute

UN ′,M ′(x̄;μ) :=
1

M ′

M ′∑
j=1

ṽjN ′(x̄, μ),

which is an unbiased estimate of ϑ̃(x̄, μ). So, UN ′,M ′(x̄;μ) is an estimate of an upper
bound on v(μ). An estimate of variance of the estimator UN ′,M ′(x̄, μ) can be computed
as

s2
U (x̄,M ′;μ) :=

1

M ′(M ′ − 1)

M ′∑
j=1

(
ṽjN ′(x̄, μ) − UN ′,M ′(x̄, μ)

)2

.

Note that in this part, for each j = 1, . . . ,M ′ and i = 1, . . . , N ′, we need to solve the
following repeated subproblems:

min f(x̄,ΠΥ(y), ξij)
s.t. R(x̄, y, ξij , μ) = 0;

then the corresponding optimal value is v(x̄, ξij , μ). Hence, we can obtain ṽjN ′(x̄, μ),

UN ′,M ′(x̄;μ), and s2
U (x̄,M ′;μ). Note that, in practice, we may choose x̄ to be any

of the solutions of the M regularized SAA problems (48) by generating independent
samples {ξ1

j , . . . , ξ
N
j }, j = 1, . . . ,M . In fact, we will use x̄j

N , the best optimal solu-
tion which estimates the smallest optimal value v(μ), to compute the upper bound
estimates, and the optimality gap.

Using the lower bound estimate and the objective function value estimate of the
optimal value, v(μ), of the first stage regularized problem as discussed above, we
compute an estimate of the optimality gap of the solution x̄ and the corresponding
estimated variance as follows:

GapN,M,N ′,M ′(x̄) := UN ′,M ′(x̄;μ) − LN,M (μ), S2
Gap := s2

L(M ;μ) + s2
U (x̄,M ′;μ).

6.2. Preliminary computational results. In the following test problem, we
choose different values for the regularization parameter μ and sample sizes N , M ,
N ′, and M ′. We report the lower and upper bounds, LN,M and UN ′,M ′ , of v(μ), the
sample variances, sL, sU , and the estimate of the optimality gap, Gap, of the solution
candidate x̄j

N , the variance of the gap estimator SGap.
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Table 1

Summary of lower and upper bounds on v(μ), the optimality gap.

μ N M N ′ M ′ LN,M sL x̄j
N UN′,M′ sU Gap SGap

10−3 200 10 200 10 .7345 .0118 .4928 .7632 .0138 .0287 .0181

10−4 200 10 200 10 .7657 .0142 .5056 .7719 .0150 .0062 .0207

10−5 200 10 200 10 .7749 .0138 .4948 .7841 .0127 .0092 .0188

10−3 300 10 300 10 .7295 .0104 .4837 .7406 .0096 .0111 .0141

10−4 300 10 300 10 .7506 .0018 .4988 .7574 .0118 .0069 .0167

10−5 300 10 300 10 .7668 .0120 .5071 .7727 .0149 .0059 .0191

Example 6.1. Consider the following problem:

min E[x2 + y2(x, ξ)
2]

s.t. 0 ≤ x ≤ 1,
(49)

where y(x, ξ) is a solution of the following complementarity problem, which is a special
case of VI problems:

0 ≤ F (x, y, ξ)⊥ y ≥ 0, F (x, y, ξ) = (0, y1 + y2 + x + ξ − 1)T ,

where ξ is a random variable with truncated standard normal distribution on [−1, 1].
Using the regularization scheme, we can convert the above problem into the following
problem:

min
x,y

E[x2 + (max(0, y2))
2]

s.t. R(x, y, ξ, μ) = 0, 0 ≤ x ≤ 1,

where μ is a small positive parameter tending to 0 and R(x, y, ξ, μ) is given in Exam-
ple 5.5. Note that the limit of the corresponding unique solution function ỹ(x, ξ, μ) of
R(x, y, ξ, μ) = 0 equals y(x, ξ) := (0, 1− x− ξ). After basic operations, we can derive
the optimal solution of problem (49) associated with y(x, ξ) as x∗ = 0.5, and the
optimal value is f∗ = 0.77454 (obtained from Maple). The test results are displayed
in Table 1.

The results show that both optimal solutions and values of the regularized SAA
problems approximate those of the true problem very well as sample size increases
and the regularization parameter is driven to zero. More numerical tests are needed
to evaluate the performance of the proposed method, but this is beyond the scope of
this paper.

Appendix. Proof of Lemma 5.2. We first define an index set I∞
0 := {i |

{yki } is unbounded, i = 1, . . . , n}. By assumption, I∞
0 is nonempty, and for all i ∈ I∞

0 ,
|yki | → ∞ as k → ∞. In the following analysis, we will consider the following cases:
(i) a = −∞, b = ∞; (ii) a ∈ Rn, b = ∞; (iii) a = ∞, b ∈ Rn; and (iv) a, b ∈ Rn.

Case (i). Since a = −∞, b = ∞, we have p(μe, y) = y. Then R(x, y, ξ, μ) =
F (x, y, ξ) + μy. We now construct a bounded sequence {wk} by letting wk

i = 0 if
i ∈ I∞

0 and wk
i = yki otherwise. Since F is a P0-function in y, hence for any k,

0 ≤ max
1≤i≤n

(yki − wk
i )[Fi(x

k, yk, ξk) − Fi(x
k, wk, ξk)]

= max
i∈I∞

0

yki [Fi(x
k, yk, ξk) − Fi(x

k, wk, ξk)]

= yki0 [Fi0(x
k, yk, ξk) − Fi0(x

k, wk, ξk)].(50)
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Here i0 denotes an index in I∞
0 at which the maximum value is attained. Without loss

of generality, we may assume that the above index i0 is independent of k. Since X and
Ξ are compact, and {wk} is bounded, hence {Fi0(x

k, wk, ξk)} is bounded by virtue of
the continuity of Fi0 . We now consider two cases: yki0 → ∞; yki0 → −∞. In the former

case, it follows from (50) that {Fi0(x
k, yk, ξk)} does not tend to −∞. Since {μk} is

contained in a closed interval of (0, μ0), hence Fi0(x
k, yk, ξk) + μkyki0 → ∞, which

implies that ‖F (xk, yk, ξk) + μkyk‖ → ∞. Similarly, in the latter case, we have that
{Fi0(x

k, yk, ξk)} does not tend to ∞ by (50). Thereby, Fi0(x
k, yk, ξk)+μkyki0 → −∞.

Thus, in both cases, we have ‖R(xk, yk, ξk, μk)‖ → ∞.
Case (ii). Note that in this case

pi(μe, y) = (ai +
√

(ai − yi)2 + 4μ2 + yi)/2, i = 1, . . . , n.

Then it is not hard to show that for each i, and any sequences {yli} and {μl} satisfying
yli → ∞ and μl being in a closed subset of (0, μ0) for all l, we have

lim
l→∞

[yli − pi(μ
le, yl)] = 0.(51)

Let

I∞
+ := {i ∈ I∞

0 | {yki } → ∞} and I∞
− := {i ∈ I∞

0 | {yki } → −∞}.

We now consider two cases: I∞
+ = ∅; I∞

+ 
= ∅. In Case (i), we have {yki } → −∞
for all i ∈ I∞

0 . Then it is easy to show that limk→∞ pi(μ
ke, yk) = ai for all i ∈ I∞

0 .
Thus, {p(μke, yk)} is bounded. Noticing the boundedness of {xk} and {ξk} and by
virtue of the continuity of Fi, i ∈ I∞

0 , it follows that∣∣(R(xk, yk, ξk, μk)
)
i

∣∣ =
∣∣Fi(x

k, p(μke, yk), ξk) − pi(μ
ke, yk) + yki + μkyki

∣∣→ ∞.

In Case (ii), evidently, limk→∞ pi(μ
ke, yk) = ∞ or ai for i ∈ I∞

+ or I∞
− . We now define

a sequence {vk} with vki := 0 if i ∈ I∞
+ ; vki := pi(μ

ke, yk) if i ∈ I∞
− ; vki := pi(μ

ke, yk)
if i /∈ I∞

0 . Based on the above arguments, evidently, {vk} is bounded. By the notion
of P0-function, we have

0 ≤ max
1≤i≤n

(pi(μ
ke, yk) − vki )[Fi(x

k, p(μke, yk), ξk) − Fi(x
k, vk, ξk)]

= max
i∈I∞

+

pi(μ
ke, yk)[Fi(x

k, p(μke, yk), ξk) − Fi(x
k, vk, ξk)]

= pj(μ
ke, yk)[Fj(x

k, p(μke, yk), ξk) − Fj(x
k, vk, ξk)],(52)

where j ∈ I∞
+ such that the maximum value is attained at j, without loss of generality,

which is assumed to be independent of k. By assumption, Fj is continuous, and note
that {xk}, {ξk}, {vk} are bounded; hence {Fj(x

k, vk, ξk)} is bounded as well. In
addition, since pj(μ

ke, yk) → ∞, thus by (52), {Fj(x
k, p(μke, yk), ξk)} does not tend

to −∞. Thereby, Fj(x
k, p(μke, yk), ξk) + μkykj → ∞. On the other hand, note that(

R(xk, yk, ξk, μk)
)
j

= Fj(x
k, p(μke, yk), ξk) + ykj − pj(μ

ke, yk) + μkykj

= Fj(x
k, p(μke, yk), ξk) + μkykj + ykj − pj(μ

ke, yk).

By (51), ykj − pj(μ
ke, yk) → 0. So,

(
R(xk, yk, ξk, μk)

)
j
→ ∞. Therefore,

‖R(xk, yk, ξk, μk)‖ → ∞.
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Case (iii). In this case, the arguments are similar to Case (ii). Here we omit them
for brevity.

Case (iv). Note that for any i ∈ I∞
0 , limk→∞ pi(μ

ke, yk) = limk→∞ φ(μk, ai, bi, y
k
i )

equals bi if yki → ∞ or ai if yki → −∞. Then {p(μke, yk)} is bounded; thereby,
{Fi(x

k, p(μke, yk), ξk)} is bounded as well for i ∈ I∞
0 . Hence,∣∣(R(xk, yk, ξk, μk)

)
i

∣∣ =
∣∣Fi(x, p(μ

ke, yk), ξk) + yki − pi(μ
ke, yk) + μkyki

∣∣→ ∞.

Thereby, ‖R(xk, yk, ξk, μk)‖ → ∞.
Proof of Proposition 5.3. Note that R is continuous on X×Rn×Ξ×[0, μ0]. We now

check parts (i)–(iv) in Definition 2.1. Obviously, part (i) holds, since p(0, y) = ΠΥ(y)
for any y ∈ Rn. By [20, Theorem 3.1], p(μe, y) is continuously differentiable at any
(μ, y) ∈ R++ × Rn. Then R is continuously differentiable on X × Rn × Ξ × (0, μ0].
Note also that H(x, y, ξ) is piecewise smooth; hence R is piecewise smooth on X ×
Rn × Ξ × [0, μ0]. Thereby, part (ii) holds.

We now consider part (iii). Note that

πx∂R(x, y, ξ, μ) = ∂xR(x, y, ξ, μ) = ∇xF (x, p(μe, y), ξ),

πx∂H(x, y, ξ) = ∂xH(x, y, ξ) = ∇xF (x,ΠΥ(y), ξ)

and limμ↓0 p(μe, y) = ΠΥ(y). Then we have

lim
μ↓0

∂xR(x, y, ξ, μ) = lim
μ↓0

∇xF (x, p(μe, y), ξ) = ∇xF (x,ΠΥ(y), ξ) = ∂xH(x, y, ξ)

for any (x, y, ξ) ∈ X × Rn × Ξ. On the other hand, noticing that πy∂H(x, y, ξ) =
∂yH(x, y, ξ) = (∇yF (x,ΠΥ(y), ξ)− I)∂ΠΥ(y) + I, and by Lemma 5.1, πy∂R(x, y, ξ, μ)
= ∂yR(x, y, ξ, μ) = ∇yR(x, y, ξ, μ) = (∇yF (x, p(μe, y), ξ)−I)D(μ, y)+μI+I. Hence,
to show limμ↓0 πy∂R(x, y, ξ, μ) ⊂ πy∂H(x, y, ξ), it suffices to prove limμ↓0 D(μ, y) ⊂
∂ΠΥ(y). Note that for any y ∈ Rn,

∂ΠΥ(y) =

⎡⎢⎣∂Π[a1,b1](y1) · · · 0
...

...
...

0 · · · ∂Π[an,bn](yn)

⎤⎥⎦ ,

where ∂Π[ai,bi](yi) equals 0 if yi ∈ (−∞, ai)∪ (bi,∞); 1 if yi ∈ (ai, bi); [0, 1] if yi = ai
or bi. Then, after some basic manipulations, limμ↓0 di(μ, y) = limμ↓0 ∂pi(μe, y)/∂yi
equals 0 if yi ∈ (−∞, ai) ∪ (bi,∞); 1 if yi ∈ (ai, bi); 1/2 if yi = ai or bi. Hence,
limμ↓0 di(μ, y) ⊂ ∂Π[ai,bi](yi) for each i; thereby, limμ↓0 D(μ, y) ⊂ ∂Π[a,b](y)(=
∂ΠΥ(y)). Thus, limμ↓0 ∇yR(x, y, ξ, μ) ⊂ ∂yH(x, y, ξ) for any (x, y, ξ) ∈ X × Rn × Ξ.
So, part (iii) holds.

Finally, we prove part (iv). Define a mapping G : Rm×Rn×Rk×R → Rm×Rn×
Rk ×R by G(x, y, ξ, μ) := (x,R(x, y, ξ, μ), ξ, μ) . Then G is continuously differentiable
on X×Rn×Ξ×(0, μ0). We first show that G is a diffeomorphism on X×Rn×Ξ×(0, μ0);
that is, G has a differentiable inverse function on X × Rn × Ξ × (0, μ0). It is well
known that a necessary and sufficient condition for function G to be a diffeomorphism
is the nonsingularity of the Jacobian ∇G at every point (x, y, ξ, μ) and the closedness
of G; that is, the image G(S) of any closed set S ⊂ X × Rn × Ξ × (0, μ0) is closed.
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We now prove the closedness of G. Let S be a closed subset of X×Rn×Ξ×(0, μ0).
Assume for the sake of a contradiction that G(S) is not closed. Then there exists a
convergent sequence {wk} ⊂ G(S) such that limk→∞ wk = w0, but w0 /∈ G(S). By
definition, there exists a sequence {zk} with zk = (xk, yk, ξk, μk) ∈ S such that wk =
G(zk). We consider two cases: (i) {zk} is bounded; (ii) {zk} is unbounded. In case (i),
obviously, there exists a convergent subsequence, {zkl}, of {zk} with {zkl} tending
to z0. Hence, z0 ∈ S given the closeness of S. Thus, liml→∞ wkl = liml→∞ G(zkl) =
G(z0). Clearly, G(z0) ∈ G(S). Since wkl → w0, then w0 = G(z0) ∈ G(S), which leads
to a contradiction as desired. In case (ii), without loss of generality, we assume that
‖zk‖ → ∞ as k → ∞. With the help of the compactness of X and Ξ, there exists
a subsequence {zkl} of {zk} such that {xkl}, {ξkl}, and {μkl} are bounded, while
‖ykl‖ → ∞ as l → ∞. Then, by Lemma 5.2, liml→∞ ‖R(xkl , ykl , ξkl , μkl)‖ = ∞.
Thus,

lim
l→∞

‖wkl‖ = lim
l→∞

‖G(zkl)‖ = ∞

by noticing wkl = G(zkl) =
(
xkl , R(xkl , ykl , ξ, μkl), ξkl , μkl

)
. This contradicts the fact

that liml→∞ wkl = w0. Therefore, G is closed on X × Rn × Ξ × (0, μ0).
Next, we prove the nonsingularity of ∇G. By Lemma 5.1, we can easily see that

∇G(x, y, μ, ξ) is nonsingular at any point (x, y, ξ, μ) ∈ X × Rn × Ξ × (0, μ0). Hence,
G is a diffeomorphism on X × Rn × Ξ × (0, μ0). Let G−1 denote its inverse function.
For any (x, y, ξ, μ) ∈ X × Rn × Ξ × (0, μ0), we then have (G−1(x, y, ξ, μ))x = x,
(G−1(x, y, ξ, μ))ξ = ξ, and (G−1(x, y, ξ, μ))μ = μ. Furthermore, for any (p, t, q) ∈
X × Ξ× (0, μ0), equation G(x, y, ξ, μ) = (p, 0, t, q) has a unique solution (x, y, ξ, μ) =
G−1 (p, 0, t, q) . Clearly, x = p, ξ = t, and μ = q. Let y = ỹ(p, t, q) :=

(
G−1(p 0 t q)

)
y
.

By virtue of the arbitrariness of p, t, and q, we obtain the unique solution of ỹ defined
on X×Ξ×(0, μ0), which satisfies R(x, ỹ(x, ξ, μ), ξ, μ) = 0 for (x, ξ, μ) ∈ X×Ξ×(0, μ0).
Thereby, part (iv) is satisfied. In addition, note that G is continuously differentiable
on X ×Rn ×Ξ× (0, μ0) by assumption. This leads to the continuous differentiability
of ỹ immediately.

In conclusion, based on the above arguments, function R defined in (37) satisfies
Definition 2.1. This completes the proof.
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GLOBAL OPTIMIZATION OF POLYNOMIALS USING GRADIENT
TENTACLES AND SUMS OF SQUARES∗

MARKUS SCHWEIGHOFER†

Abstract. We consider the problem of computing the global infimum of a real polynomial f on
Rn. Every global minimizer of f lies on its gradient variety, i.e., the algebraic subset of Rn where
the gradient of f vanishes. If f attains a minimum on Rn, it is therefore equivalent to look for the
greatest lower bound of f on its gradient variety. Nie, Demmel, and Sturmfels proved recently a
theorem about the existence of sums of squares certificates for such lower bounds. Based on these
certificates, they find arbitrarily tight relaxations of the original problem that can be formulated as
semidefinite programs and thus be solved efficiently. We deal here with the more general case when
f is bounded from below but does not necessarily attain a minimum. In this case, the method of Nie,
Demmel, and Sturmfels might yield completely wrong results. In order to overcome this problem, we
replace the gradient variety by larger semialgebraic subsets of Rn which we call gradient tentacles.
It now gets substantially harder to prove the existence of the necessary sums of squares certificates.

Key words. global optimization, polynomial, preorder, sum of squares, semidefinite program-
ming
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1. Introduction. Throughout this article, N := {1, 2, . . . }, R, and C denote
the sets of natural, real, and complex numbers, respectively. We fix n ∈ N and
consider real polynomials in n variables X̄ := (X1, . . . , Xn). These polynomials form
a commutative ring

R[X̄] := R[X1, . . . , Xn].

1.1. The problem. We consider the problem of computing good approxima-
tions for the global infimum

f∗ := inf{f(x) | x ∈ Rn} ∈ R ∪ {−∞}

of a polynomial f ∈ R[X̄]. Since f∗ is the greatest lower bound of f , it is equivalent
to compute

f∗ = sup{a ∈ R | f − a ≥ 0 on Rn} ∈ R ∪ {−∞}.(1)

To solve this hard problem, it has become a standard approach to approximate f∗ by
exchanging in (1) the nonnegativity constraint

f − a ≥ 0 on Rn(2)

by a computationally more feasible condition and analyze the error caused by this
substitution. Typically, the choice of this replacement is related to the interplay
between (globally) nonnegative polynomials, sums of squares of polynomials, and
semidefinite optimization (also called semidefinite programming).
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1.2. Method based on the fact that every sum of squares of polynomials
is nonnegative (Shor [Sho], Shor and Stetsyuk [SS], Parrilo and Sturmfels
[PS], et al.). We start with the most basic ideas concerning these connections which
can be found in greater detail in the references just cited. A first try is to replace
condition (2) by the constraint

f − a is a sum of squares in the polynomial ring R[X̄],(3)

since every sum of squares in R[X̄] is obviously nonnegative on Rn.
The advantage of (3) over (2) is that sums of squares of polynomials can be nicely

parametrized. Fix a column vector v whose entries are a basis of the vector space
R[X̄]d of all real polynomials of degree ≤ d in n variables (d ∈ N0 := {0} ∪ N). This
vector has a certain length k = dim R[X̄]d. It is easy to see that the map from the
vector space SRk×k of symmetric k× k-matrices to R[X̄]2d defined by M �→ vTMv is
surjective. Using the spectral theorem for symmetric matrices, it is not hard to prove
that a polynomial f ∈ R[X̄]2d is a sum of squares in R[X̄] if and only if f = vTMv
for some positive semidefinite matrix M ∈ SRk×k. Use the following remark, which
is an easy exercise (write the polynomials as sums of their homogeneous parts).

Remark 1. In any representation f =
∑

i g
2
i of a polynomial f ∈ R[X̄]2d as a sum

of squares gi ∈ R[X̄], we have necessarily deg gi ≤ d.
The described parametrization shows that the modified problem (where we ex-

change (2) by (3)), i.e., the problem to compute

f sos := sup{a ∈ R | f − a is a sum of squares in R[X̄]} ∈ R ∪ {−∞},(4)

can be written as a semidefinite optimization problem (also called semidefinite pro-
gram or SDP for short), i.e., as the problem of minimizing (or maximizing) an affine
linear function on the intersection of the cone of positive semidefinite matrices with
an affine subspace in SRk×k. For solving SDPs, there exist very good numerical algo-
rithms, perhaps almost as good as for linear optimization problems. Linear optimiza-
tion can be seen as the restriction of semidefinite optimization to diagonal matrices,
i.e., a method to minimize an affine linear function on the intersection of the cone
Rk

≥0 with an affine subspace of Rk. Speaking very vaguely, most concepts from linear
optimization carry over to semidefinite optimization because every symmetric matrix
can be diagonalized. We refer readers, for example, to [Tod] for an introduction to
semidefinite programming.

Whereas computing f∗ as defined in (1) is a very hard problem, it is relatively
easy to compute (numerically to a given precision) f sos defined in (4). Of course, the
question of how f∗ and f sos are related arises. Since (3) implies (2), it is clear that
f sos ≤ f∗. The converse implication (and thus f sos = f∗) holds in some cases: A
globally nonnegative polynomial

• in one variable or
• of degree at most two or
• in two variables of degree at most four

is a sum of squares of polynomials. We refer readers to [Rez] for an overview of these
and related old facts. However, recently Blekherman has shown in [Ble] that for
fixed degree d ≥ 4 and high number of variables n only a very small portion (in
some reasonable sense) of the globally nonnegative polynomials of degree at most d
in n variables are sums of squares. In particular, f sos will often differ from f∗. For
example, the Motzkin polynomial

M := X2Y 2(X2 + Y 2 − 3Z2) + Z6 ∈ R[X,Y, Z](5)
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is nonnegative but not a sum of squares (see [Rez, PS]). We have M∗ = 0 but
M sos = −∞. The latter follows from the fact that M is homogeneous and not a sum
of squares by the following remark applied to f := M − a for a ∈ R (which can again
be proved easily by considering homogeneous parts).

Remark 2. If f is a sum of squares in R[X̄], then so is the highest homogeneous
part (the leading form) of f .

We see that the basic problem with this method (computing f sos by solving an
SDP and hoping that f sos is close to f∗) is that polynomials positive on Rn in general
do not have a representation as a sum of squares, a fact that Hilbert already knew.

1.3. The Positivstellensatz. In the 17th of his famous of 23 problems, Hilbert
asked whether every (globally) nonnegative (real) polynomial (in several variables)
was a sum of squares of rational functions. Artin answered this question affirmatively
in 1926, and today there exist numerous refinements of his solution. One of them is
the Positivstellensatz (in analogy to Hilbert’s Nullstellensatz). It is often attributed
to Stengle [Ste], who clearly deserves credit for finding it independently and making
it widely known. However, Prestel [PD, section 4.7] recently discovered that Krivine
[Kri] knew the result about 10 years earlier in 1964. Here we state only the following
special case of the Positivstellensatz.

Theorem 3 (Krivine). For every f ∈ R[X̄], the following are equivalent:
(i) f > 0 on Rn.
(ii) There are sums of squares s and t in R[X̄] such that sf = 1 + t.
By this theorem, we have, of course, that f∗ is the supremum over all a ∈ R such

that there are sums of squares s, t ∈ R[X̄] with s(f − a) = 1 + t. When one tries to
write this as an SDP, there are two obstacles.

First, each SDP involves matrices of a fixed (finite) size. But with matrices of
a fixed size, we can parametrize sums of squares only up to a certain degree. We
need therefore to impose a degree restriction on s and t. There are no (at least up to
now) practically relevant degree bounds that could guarantee that such a restriction
would not affect the result. We refer readers to the tremendous work [Scd] of Schmid
on degree bounds. This first obstacle, namely the question of degrees of the sums
of squares, will accompany us throughout the article. The answer will always be to
model the problem not as a single SDP but as a whole sequence of SDPs, each SDP
corresponding to a certain degree restriction. As one solves one SDP after the other,
the degree restriction gets less restrictive, and one hopes for fast convergence of the
optimal values of the SDPs to f∗. For newcomers in the field, it seems at first glance
unsatisfactory having to deal with a whole sequence of SDPs rather than a single SDP.
But, after all, it is only natural that a very hard problem cannot be modeled by an
SDP of a reasonable size so that one has to look for good relaxations of the problem
which can be dealt with more easily and to which the techniques of mathematical
optimization can be applied.

The second obstacle is much more severe. It is the fact that the unknown poly-
nomial s ∈ R[X̄] is multiplied with the unknown a ∈ R on the left-hand side of the
constraint s(f −a) = 1+ t. This makes the formulation as an SDP (even after having
imposed a restriction on the degree of s and t) impossible (or at least highly nonob-
vious). Of course, if one fixes a ∈ R and a degree bound 2d for s and t, then the
question of whether there exist sums of squares s and t of degree at most 2d such
that s(f − a) = 1 + t is equivalent to the feasibility of an SDP. But this plays (at
least currently) only a role as a criterion that might help to decide whether a certain
fixed (or guessed) a ∈ R is a strict lower bound of f . We refer readers to [PS] for
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more details. What one needs are representation theorems for positive polynomials
that are better suited for optimization than the Positivstellensatz (even if they are
sometimes less aesthetic).

1.4. “Big ball” method proposed by Lasserre [L1]. In the last 15 years,
a lot of progress has been made in proving existence of sums of squares certificates
which can be exploited for optimization (although most of the new results were ob-
tained without having in mind the application in optimization which has been es-
tablished more recently). The first breakthrough was perhaps Schmüdgen’s theorem
[Sch, Corollary 3], all of whose proofs use the Positivstellensatz. In this article, we
will prove a generalization of Schmüdgen’s theorem, namely Theorem 9. In [L1],
Lasserre uses the following special case of Schmüdgen’s theorem which has already
been proved by Cassier [Cas, Théorème 4] and which can even be derived easily from
[Kri, Théorème 12].

Theorem 4 (Cassier). For f ∈ R[X̄] and R ≥ 0, the following are equivalent:
(i) f ≥ 0 on the closed ball centered at the origin of radius R.
(ii) For all ε > 0, there are sums of squares s and t in R[X̄] such that

f + ε = s + t(R2 − ‖X̄‖2).

Here and in the following, we use the notation

‖X̄‖2 := X2
1 + · · · + X2

n ∈ R[X̄].

Similar to section 1.2, it can be seen that for any fixed d ∈ N0, computing the
supremum over all a ∈ R such that f−a = s+ t(R2−‖X̄‖2) for some sums of squares
s, t ∈ R[X̄] of degree at most 2d amounts to solving an SDP. Therefore one gets a
sequence of SDPs parametrized by d ∈ N0. Theorem 4 can now be interpreted as a
convergence result; namely, the sequence of optimal values of these SDPs converges
to the minimum of f on the closed ball around the origin with radius R. If one has a
polynomial f ∈ R[X̄] attaining a minimum on Rn and for which one knows, moreover,
a big ball on which this minimum is attained, this method is good for computing f∗.
Of course, if one does not know such a big ball in advance, one might choose larger
and larger R. But at the same time one might have to choose a bigger and bigger
degree restriction d ∈ N0, and it is not really clear how to get a sequence of SDPs
that converges to f∗.

1.5. Lasserre’s high order perturbation method [L2]. Recently, Lasserre
used in [L2] a theorem of Nussbaum from operator theory to prove the following result
that can be exploited in a similar way for global optimization of polynomials.

Theorem 5 (Lasserre). For every f ∈ R[X̄], the following are equivalent:
(i) f ≥ 0 on Rn.
(ii) For all ε > 0, there is r ∈ N0 such that

f + ε

n∑
i=1

r∑
k=0

X2k
i

k!
is a sum of squares in R[X̄].

Note that (ii) implies that f(x) + ε
∑n

i=1 exp(xi) ≥ 0, for all x ∈ Rn and ε > 0,
which in turn implies (i). In condition (ii), r depends on ε and f . Using real algebra
and model theory, Netzer showed that in fact r depends only on ε, n, the degree of
f , and a bound on the size of the coefficients of f [Net, LN].
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1.6. “Gradient perturbation” method proposed by Jibetean and Lau-
rent [JL]. The most standard idea for finding the minimum of a function everybody
knows from calculus is to compute critical points, i.e., the points where the gradient
vanishes. It is a natural question whether the power of classical differential calculus
can be combined with the relatively new ideas using sums of squares. Fortunately,
it can and the rest of the article will be about how to merge both concepts, sums of
squares and differential calculus.

If a polynomial f ∈ R[X̄] attains a minimum in x ∈ Rn, i.e., f(x) ≤ f(y) for all
y ∈ Rn, then the gradient ∇f of f vanishes at x, i.e., ∇f(x) = 0. However, there are
polynomials that are bounded from below on Rn and yet do not attain a minimum
on Rn. The simplest example is perhaps

f := (1 −XY )2 + Y 2 ∈ R[X,Y ](6)

for which we have f > 0 on Rn but f∗ = 0, since limx→∞ f(x, 1
x ) = 0. In the following,

(∇f) :=

(
∂f

∂X1
, . . . ,

∂f

∂Xn

)
⊆ R[X̄]

denotes the ideal generated by the partial derivatives of f in R[X̄]. We call this ideal
the gradient ideal of f .

Without going into details, the basic idea of Jibetean and Laurent in [JL] is again
to apply a perturbation to f . Instead of adding a truncated exponential like Lasserre,

they just add ε
∑n

i=1 X
2(d+1)
i for small ε > 0 when deg f = 2d. If f > 0 on Rn,

then the perturbed polynomial fε := f + ε‖X̄‖2(d+1) is again a sum of squares but
this time only modulo its gradient ideal (∇fε). In this case, this is quite easy to
prove, since it turns out that this ideal will be zero-dimensional; i.e., R[X̄]/(∇fε) is
a finite-dimensional real algebra. We will later see in Theorems 6 and 46 that this
finite dimensionality is not needed for the sums of squares representation. But the
work of Jibetean and Laurent exploits the finite dimensionality in many ways. We
refer readers to [JL] for details.

1.7. “Gradient variety” method by Nie, Demmel, and Sturmfels [NDS].
The two perturbation methods just sketched rely on introducing very small coefficients
in a polynomial. These small coefficients might lead to SDPs which are hard to solve
because of numerical instability. It is therefore natural to think of another method
which avoids perturbation entirely. Nie, Demmels, and Sturmfels considered, for a
polynomial f ∈ R[X̄], its gradient variety

V (∇f) := {x ∈ Cn | ∇f(x) = 0}.

This is the algebraic variety corresponding to the radical of the gradient ideal (∇f). It
can be shown that a polynomial f ∈ R[X̄] is constant on each irreducible component of
the gradient variety (see [NDS] or use an unpublished algebraic argument of Scheiderer
based on Kähler differentials). This is the key to show that a polynomial f ∈ R[X̄]
nonnegative on its gradient variety is a sum of squares modulo its gradient ideal in the
case where the ideal is radical. In the general case where the gradient ideal is not nec-
essarily radical, the same thing still holds for polynomials positive on their gradient va-
riety. The following is essentially [NDS, Theorem 9] (confer also the recent work [M2]).
We will later prove a generalization of this theorem as a by-product. See Corollary 47.

Theorem 6 (Nie, Demmel, and Sturmfels). For every f ∈ R[X̄] attaining a
minimum on Rn, the following are equivalent:
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(i) f ≥ 0 on Rn.
(ii) f ≥ 0 on V (∇f) ∩ Rn.
(iii) For all ε > 0, there exists a sum of squares s in R[X̄] such that

f + ε ∈ s + (∇f).

Moreover, (ii) and (iii) are equivalent for all f ∈ R[X̄].
For each degree restriction d ∈ N0, the problem of computing the supremum over

all a ∈ R such that

f − a = s + p1
∂f

∂X1
+ · · · + pn

∂f

∂Xn

for some sum of squares s in R[X̄] and polynomials p1, . . . , pn of degree at most d can
be expressed as an SDP. Theorem 6 shows that the optimal values of the corresponding
sequence of SDPs (indexed by d) tend to f∗, provided that f attains a minimum on
Rn. However, if f does not attain a minimum on Rn, the computed sequence still
tends to the infimum of f on its gradient variety, which might, however, now be very
different from f∗. Take, for example, the polynomial f from (6). It is easy to see that
V (∇f) = {0}, and therefore the method computes f(0) = 1 instead of f∗ = 0. In
[NDS, section 7], the authors write:

“This paper proposes a method for minimizing a multivariate
polynomial f(x) over its gradient variety. We assume that the in-
fimum f∗ is attained. This assumption is nontrivial, and we do not
address the (important and difficult) question of how to verify that
a given polynomial f(x) has this property.”

1.8. Our “gradient tentacle” method. The reason why the method just de-
scribed might fail is that the global infimum of a polynomial f ∈ R[X̄] is not always a
critical value of f , i.e., a value that f takes on at least on one of its critical points in
Rn. Now there is a well-established notion of generalized critical values which includes
also the asymptotic critical values (a kind of critical value at infinity we will introduce
in Definition 12).

In this article, we will replace the real part V (∇f) ∩ Rn of the gradient variety
by several larger semialgebraic sets on which the partial derivatives do not necessarily
vanish but get very small far away from the origin. These semialgebraic sets often
look like tentacles, and that is what we will call them. All tentacles we will consider
are defined by a single polynomial inequality that depends only on the polynomial

‖∇f‖2 :=

(
∂f

∂X1

)2

+ · · · +
(

∂f

∂Xn

)2

and expresses that this polynomial gets very small. Given a polynomial f for which
one wants to compute f∗, the game will consist in finding a tentacle such that two
things will hold at the same time:

• There exist suitable sums of squares certificates for nonnegativity on the
tentacle.

• The infimum of f on Rn and on the tentacle coincide.
One can imagine that these two properties are hardly compatible. Taking Rn as
a tentacle would, of course, ensure the second condition, but we have discussed in
section 1.2 that the first one would be badly violated. The other extreme would
be to take the empty set as a tentacle. Then the first condition would trivially be
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satisfied, whereas the second would fail badly. How we will roughly be able to find the
balancing act between the two requirements is as follows: The second condition will
be satisfied by known nontrivial theorems about asymptotic behavior of polynomials
at infinity. The existence of suitable sums of squares certificates will be based on the
author’s (real) algebraic work [Sr1] on iterated rings of bounded elements (also called
real holomorphy rings).

1.9. Contents of the article. The article is organized as follows. In sec-
tion 2, we prove a general sums of squares representation theorem which generalizes
Schmüdgen’s theorem, mentioned in section 1.4. This representation theorem is inter-
esting in itself and will be used in the subsequent sections. In section 3, we introduce
a gradient tentacle (see Definition 17) which is defined by the polynomial inequality

‖∇f‖2‖X̄‖2 ≤ 1.

We call this gradient tentacle principal, since we can prove that it does the job in
a large number of cases (see Theorem 25), and there is hope that it works in fact
for all polynomials f ∈ R[X̄] bounded from below. Indeed, we have not found any
counterexamples (see Open Problem 33). In case this hope were disappointed, we
present in section 4 a collection of other gradient tentacles (see Definition 41) defined
by the polynomial inequalities

‖∇f‖2N (1 + ‖X̄‖2)N+1 ≤ 1 (N ∈ N).

Their advantage is that if f ∈ R[X̄] is bounded from below and N is large enough
for this particular f , then we can prove that the corresponding tentacle does the job
(see Theorems 46 and 50). We call these tentacles higher gradient tentacles, since
the degree of the defining inequality gets unfortunately high when N gets big, which
certainly has negative consequences for the complexity of solving the SDPs arising
from these tentacles. However, if f attains a minimum on Rn, then any choice of
N ∈ N will be good. Conclusions are drawn in section 5.

2. The sums of squares representation. In this section, we prove the impor-
tant sums of squares representation theorem we will need in the following sections.
It is a generalization of Schmüdgen’s Positivstellensatz (see [PD, Sch]), which is also
of independent interest. Schmüdgen’s result is not to be confused with the (classical)
Positivstellensatz we described in the introduction. The connection between the two
is that all known proofs of Schmüdgen’s result use the classical Positivstellensatz.
Our result, Theorem 9, is much harder to prove than Schmüdgen’s result. Its proof
relies on the theory of iterated rings of bounded elements (also called real holomorphy
rings) described in [Sr1].

Definition 7. For any polynomial f ∈ R[X̄] and subset S ⊆ Rn, the set
R∞(f, S) of asymptotic values of f on S consists of all y ∈ R for which there exists
a sequence (xk)k∈N of points xk ∈ S such that

lim
k→∞

‖xk‖ = ∞ and lim
k→∞

f(xk) = y.(7)

We now recall the important notion of a preordering of a commutative ring.
Except in the proof of Theorem 9, we need this concept only for the ring R[X̄].

Definition 8. Let A be a commutative ring (with 1). A subset T ⊆ A is called
a preordering if it contains all squares f2 of elements f ∈ A and is closed under
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addition and multiplication. The preordering generated by g1, . . . , gm ∈ A

T (g1, . . . , gm) =

⎧⎨⎩ ∑
δ∈{0,1}m

sδg
δ1
1 . . . gδmm | sδ is a sum of squares in A

⎫⎬⎭(8)

is by definition the smallest preordering containing g1, . . . , gm.
If g1, . . . , gm ∈ R[X̄] are polynomials, then the elements of T (g1, . . . , gm) have

obviously the geometric property that they are nonnegative on the (basic closed semi-
algebraic) set S they define by (9). The next theorem is a partial converse. Namely, if
a polynomial satisfies on S some stronger geometric condition, then it lies necessarily
in T (g1, . . . , gm). In case that S is compact, the conditions (a) and (b) below are
empty and the theorem is Schmüdgen’s Positivstellensatz (see [PD, Sch]). The more
general version we need here is quite hard to prove.

Theorem 9. Let f, g1, . . . , gm ∈ R[X̄] and set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.(9)

Suppose that
(a) f is bounded on S,
(b) f has only finitely many asymptotic values on S and all of these are positive,

i.e., R∞(f, S) is a finite subset of R>0, and
(c) f > 0 on S.
Then f ∈ T (g1, . . . , gm).
Proof. Write R∞(f, S) = {y1, . . . , ys} ⊆ R>0 and consider the polynomial

h :=

s∏
i=1

(f − yi).

This polynomial is “on S small at infinity” by which we mean that for every ε > 0
there exists k ∈ N such that for all x ∈ S with ‖x‖ ≥ k, we have |h(x)| < ε.

To show this, assume the contrary. Then there exists ε > 0 and a sequence
(xk)k∈N of points xk ∈ S with limk→∞ ‖xk‖ = ∞ and

|h(xk)| ≥ ε for all k ∈ N.(10)

Because the sequence (f(xk))k∈N is bounded by hypothesis (a), we find an infinite
subset I ⊆ N such that the subsequence (f(xk))k∈I converges. The limit must be one
of the asymptotic values of f on S, i.e., limk∈I,k→∞ f(xk) = yi for some i ∈ {1, . . . , s}.
Using (a), it follows that limk∈I,k→∞ h(xk) = 0, contradicting (10).

Let A := (R[X̄], T ), where T := T (g1, . . . , gm). The set

H ′(A) := {p ∈ R[X̄] | N ± p ∈ T for some N ∈ N}

is a subring of A (see, e.g, [Sr1, Definition 1.2]). We endow H ′(A) with the preordering
T ′ := T ∩ H ′(A) and consider it also as a preordered ring. By [Sr1, Corollary 3.7],
the smallness of h at infinity proved above is equivalent to h ∈ S∞(A) in the notation
of [Sr1]. By [Sr1, Corollary 4.17], we have S∞(A) ⊆ H ′(A) and consequently h ∈
H ′(A). The advantage of H ′(A) over A is that its preordering is Archimedean, i.e.,
T ′ + Z = H ′(A). According to an old criterion, for an element to be contained in an
Archimedean preordering (see, for example, [PD, Proposition 5.2.3 and Lemma 5.2.7]
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or [Sr1, Theorem 1.3]), our claim f ∈ T ′ follows if we can show that ϕ(f) > 0 for all
ring homomorphisms ϕ : H ′(A) → R with ϕ(T ′) ⊆ R≥0. For all such homomorphisms
possessing an extension ϕ̄ : A → R with ϕ̄(T ) ⊆ R≥0, this follows from hypothesis (c)
because it is easy to see that such an extension ϕ̄ must be evaluation p �→ p(x) in the
point x := (ϕ̄(X1), . . . , ϕ̄(Xn)) ∈ S. Using the theory in [Sr1], we will see that the
only possibility for such a ϕ not to have such an extension ϕ̄ is that ϕ(h) = 0. Then
we will be done, since ϕ(h) = 0 implies ϕ(f) = yi > 0 for some i. We have used here
that f ∈ H ′(A), which follows from h ∈ H ′(A), since H ′(A) is integrally closed in A
(see [Sr1, Theorem 5.3]).

So let us now use [Sr1]. By [Sr1, Corollary 3.7 and Theorem 4.18], the smallness
of h at infinity means that

Ah = H ′(A)h,

where we deal on both sides of this equation with the localization of a preordered
ring by the element h (see [Sr1, pages 24 and 25]). If ϕ : H ′(A) → R is a ring homo-
morphism with ϕ(T ′) ⊆ R≥0 and ϕ(h) = 0, then ϕ extends to a ring homomorphism
ϕ̃ : Ah = H ′(A)h → R with ϕ̃(Th) = ϕ̃(T ′

h) ⊆ R≥0. Then ϕ̄ := ϕ̃|A is the desired
extension of ϕ.

Example 10. Consider the polynomials

hN := 1 − Y N (1 + X)N+1 ∈ R[X,Y ] (N ∈ N)(11)

in two variables. We fix N ∈ N and apply Theorem 9 with f = hN+1, m = 3, g1 = X,
g2 = Y , and g3 = hN . The set S defined by the gi as in (9) is a subset of the first
quadrant which is bounded in the Y -direction but unbounded in the X-direction. Of
course, we have 0 ≤ hN ≤ 1 and

0 ≤ Y (1 + X) ≤ 1
N
√

1 + X
on S

showing that 0 is the only asymptotic value of

1 − hN+1 = (1 − hN )Y (1 + X)

on S and therefore R∞(hN+1, S) = {1}. It follows also that 0 ≤ hN+1 ≤ 1 on S. By
Theorem 9, we obtain

hN+1 + ε ∈ T (X,Y, hN )(12)

for all ε > 0.
The following lemma shows that (12) holds even for ε = 0, a fact that does

not follow from Theorem 9. This lemma will be interesting later to compare the
quality of certain SDP relaxations (see Proposition 49). In its proof, we will explicitly
construct a representation of hN+1 as an element of T (X,Y, hN ). Only part of this
explicit representation will be needed in the following, namely an explicit polynomial
g ∈ T (X,Y ) such that hN+1 ∈ T (X,Y ) + ghN ⊆ T (X,Y, hN ). This explains the
formulation of the statement. Theorem 9 will not be used in the proof but gave us
good hope before we had the proof. The role of Theorem 9 in this article is above all
to prove Theorems 25 and 46.

Lemma 11. For the polynomials hN defined by (11), we have

hN+1 −
(

1 +
1

N

)
Y (1 + X)hN ∈ T (X,Y ).
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Proof. For a new variable Z,

(Z − 1)2
N−1∑
k=0

(N − k)Zk = (Z − 1)2

(
N

N−1∑
k=0

Zk − Z

N−1∑
k=1

kZk−1

)

= (Z − 1)2
(
N

ZN − 1

Z − 1
− Z

∂

∂Z

(
ZN − 1

Z − 1

))
= N(Z − 1)(ZN − 1) − Z((Z − 1)NZN−1 − (ZN − 1))

= ZN+1 − (N + 1)Z + N.

Specializing Z to z := Y (1 + X), we have therefore

NhN+1 − (N + 1)zhN = N(1 − zN+1(1 + X)) − (N + 1)z(1 − zN (1 + X))

= zN+1X + (zN+1 − (N + 1)z + N)

= zN+1X + (z − 1)2
N−1∑
k=0

(N − k)zk ∈ T (X,Y ).

Dividing by N = (
√
N)2 yields our claim.

3. The principal gradient tentacle. In this section, we associate with ev-
ery polynomial f ∈ R[X̄] a gradient tentacle which is a subset of Rn containing the
real part of the gradient variety of f and defined by a single polynomial inequality
whose degree is not more than twice the degree of f . The infimum of any polynomial
f ∈ R[X̄] bounded from below on Rn will coincide with the infimum on its principal
gradient tentacle (see Theorem 19). Under some technical assumption (see Definition
20) which is not known to be necessary (see Open Problem 33), we prove a sums
of squares certificate for nonnegativity of f on its principal gradient tentacle which
is suitable for optimization purposes. This representation theorem (Theorem 25) is
of independent interest, and its proof is mainly based on the nontrivial representa-
tion theorem from the previous section and a result of Parusiński on the behavior of
polynomials at infinity [P1, Theorem 1.4]. In section 3.2, we outline how to get a
sequence of SDPs growing in size whose optimal values tend to f∗ for any f satisfying
the conditions of Theorem 25 (or perhaps for any f with f∗ > −∞ if the answer to
Open Problem 33 is yes). In sections 3.3 and 3.4, we give a MATLAB code for the
sums of squares optimization toolboxes YALMIP [Löf] and SOSTOOLS [PPS] that
produces and solves these SDP relaxations. This short and simple code is meant for
readers who have little experience with such toolboxes and want nevertheless to try
our proposed method on their own. In section 3.5, we provide simple examples which
have been calculated using the YALMIP code from section 3.3.

We start by recalling the concept of asymptotic critical values developed by Rabier
in his 1997 milestone paper [Rab]. For simplicity, we stay in the setting of real
polynomials right from the beginning (though part of this theory make sense in a
much broader context).

Definition 12. Suppose f ∈ R[X̄]. The set K0(f) of critical values of f consists
of all y ∈ R for which there exists x ∈ Rn such that ∇f(x) = 0 and f(x) = y. The set
K(f) of generalized critical values of f consists of all y ∈ R for which there exists a
sequence (xk)k∈N in Rn such that

lim
k→∞

‖∇f(xk)‖(1 + ‖xk‖) = 0 and lim
k→∞

f(xk) = y.(13)
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The set K∞(f) of asymptotic critical values consists of all y ∈ R for which there
exists a sequence (xk)k∈N in Rn such that limk→∞ ‖xk‖ = ∞ and (13) hold.

The following proposition is easy.
Proposition 13. The set of generalized critical values of a polynomial f ∈ R[X̄]

is the union of its set of critical and asymptotic critical values, i.e.,

K(f) = K0(f) ∪K∞(f).

The following notions go back to Thom [Tho].
Definition 14. Suppose f ∈ R[X̄]. We say that y ∈ R is a typical value of f

if there is neighborhood U of y in R and a smooth (i.e., C∞) manifold F such that
f |f−1(U) : f−1(U) → U is a (not necessarily surjective) trivial smooth fiber bundle;
i.e., there exist a smooth manifold F and a C∞ diffeomorphism Φ : f−1(U) → F ×U
such that f |f−1(U) = π2 ◦ Φ, where π2 : F × U → U is the canonical projection. We
call y ∈ R an atypical value of f if it is not a typical value of f . The set of all atypical
values of f is denoted by B(f) and called the bifurcation set of f .

Note that a Φ as in the above definition induces a C∞ diffeomorphism f−1(y) →
F × {y} ∼= F for every y ∈ U . In this context, the preimages f−1(y) are called fibers
and F is called the fiber. We do not require that the fiber bundle f |f−1(U) : f−1(U) →
U is surjective (if it is not, then the image is necessarily empty). Hence the fiber F
may be empty, and a typical value is not necessarily a value taken on by f . We make
use of the following well-known theorem (see, e.g., [KOS, Theorem 3.1]).

Theorem 15. Suppose f ∈ R[X̄]. Then B(f) ⊆ K(f) and K(f) is finite.
The advantage of K(f) over K0(f) is that f∗ ∈ K(f) even if f does not attain a

minimum on Rn. This is an easy consequence of Theorem 15. See Theorem 19.
Example 16. Consider again the polynomial f = (1−XY )2 +Y 2 ∈ R[X,Y ] from

(6) that does not attain its infimum f∗ = 0 on R2. Calculating the partial derivatives,
it is easy to see that the origin is the only critical point of f . Because f takes the
value 1 at the origin, we have K0(f) = {1} and therefore f∗ = 0 /∈ K0(f). Clearly, we
have 0 ∈ B(f), since f−1(−y) = ∅ = f−1(y) for small y ∈ R>0. By Theorem 15, we
have therefore 0 ∈ K∞(f) ⊆ K(f). To show this directly, a first guess would be that
‖∇f(x, 1

x )‖(1 + ‖(x, 1
x )‖) tends to zero when x → ∞ because limx→∞ f(x, 1

x ) = 0.
But in fact, this expressions tends to 2 when x → ∞. However, a calculation shows
that limx→∞ ‖∇f(x, 1

x )‖(1 + ‖(x, 1
x − 1

x3 )‖) = 0.
Definition 17. For a polynomial f ∈ R[X̄], we call

S(∇f) := {x ∈ Rn | ‖∇f(x)‖‖x‖ ≤ 1}

the principal gradient tentacle of f .
Remark 18. In the definition of S(∇f), the inequality ‖∇f(x)‖‖x‖ ≤ 1 could be

exchanged by ‖∇f(x)‖‖x‖ ≤ R for some constant R > 0. Then all subsequent results
will still hold with obvious modifications. Using an R different from 1 might have
in certain cases a practical advantage (see section 3.6). However, we decided to stay
with this definition in order to not get too technical and to keep the paper readable.

As expressed by the notation S(∇f), polynomials f with the same gradient ∇f
have the same gradient tentacle; in other words,

S(∇(f + a)) = S(∇f) for all a ∈ R.

The first important property of S(∇f) is stated in the following immediate con-
sequence of Theorem 15.



GLOBAL OPTIMIZATION OF POLYNOMIALS 931

Theorem 19. Suppose f ∈ R[X̄] is bounded from below. Then f∗ ∈ K(f) and
therefore f∗ = inf{f(x) | x ∈ S(∇f)}.

Proof. By Theorem 15, it suffices to show that f∗ ∈ B(f). Assume that f∗ /∈
B(f); i.e., f∗ is a typical value of f . Then for all y in a neighborhood of f∗, the fibers
f−1(y) are smoothly diffeomorphic to each other. But this is absurd, since f−1(y) is
empty for y < f∗ but certainly not empty in a neighborhood of f∗.

Let Pn−1(C) denote the (n−1)-dimensional complex projective space over C. For
a homogeneous polynomial f and a point z ∈ Pn−1(C), we simply say f(z) = 0 to
express that f vanishes on (a nonzero point of) the straight line z ⊆ Cn. Following
[P1], we give the following definition.

Definition 20. We say that a polynomial f ∈ C[X̄] has only isolated singular-
ities at infinity if f ∈ C (i.e., f is constant) or d := deg f ≥ 1 and there are only
finitely many z ∈ Pn−1(C) such that

∂fd
∂X1

(z) = · · · =
∂fd
∂Xn

(z) = fd−1(z) = 0,(14)

where f =
∑

i fi and each fi ∈ C[X̄] is zero or homogeneous of degree i.
As shown in [P1, section 1.1], the geometric interpretation of the above definition

is that the projective closure of a generic fiber of f has only isolated singularities.
Remark 21. A generic complex polynomial has only isolated singularities at

infinity. In fact, much more is true: A generic polynomial f ∈ C[X̄] of degree d ≥ 1
has no isolated singularities at infinity in the sense that there is no z ∈ Pn−1(C)
such that (14) holds. In more precise words, to every d ≥ 2, there exists a complex
polynomial relation that is valid for all coefficient tuples of polynomials f ∈ C[X̄] of
degree d for which (14) has an infinite number of solutions. This follows from the fact
that for a generic homogeneous polynomial g ∈ C[X̄] of degree d ≥ 1, there are only
finitely many points z ∈ Pn−1(C) such that ∂f

∂Xi
(z) = 0 for all i. See [Kus, Théorème

II] or [Shu, Proposition 1.1.1].
Remark 22. In the two variable case n = 2, every polynomial f ∈ C[X̄] has

only isolated singularities at infinity. This is clear, since (14) defines an algebraic
subvariety of P1(C).

The following theorem follows easily from [P1, Theorem 1.4].
Theorem 23. Suppose f ∈ R[X̄] has only isolated singularities at infinity. Then

R∞(f, S(∇f)) ⊆ K(f).

In particular, R∞(f, S(∇f)) is finite; i.e., f has only finitely many asymptotic values
on its principal gradient tentacle.

Proof. Let (xk)k∈N be a sequence of points xk ∈ S(∇f) and y ∈ R such that
limk→∞ ||xk|| = ∞ and limk→∞ f(xk) = y /∈ K0(f). We show that y ∈ K∞(f) using
implication (i) =⇒ (ii) in [P1, Theorem 1.4]. Because of our sequence (xk)k∈N, it
is impossible that there exist N ≥ 1 and δ > 0 such that for all x ∈ Rn with ‖x‖
sufficiently large and f(x) sufficiently close to y, we have

‖x‖‖∇f(x)‖ ≥ δ n
√
‖x‖.

This means that condition (ii) in [P1, Theorem 1.4] is violated. The implication
(i) =⇒ (ii) in [P1, Theorem 1.4] yields that y ∈ B(f) (here we use that y /∈ K0(f)).
But B(f) ⊆ K(f) by Theorem 15. This shows y ∈ K(f) \ K0(f) ⊆ K∞(f) by
Proposition 13.
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Lemma 24. Every f ∈ R[X̄] is bounded on S(∇f).
Proof. By the �Lojasiewicz inequality at infinity [Spo, Theorem 1], there exist

c1, c2 ∈ N such that for all x ∈ Cn,

|f(x)| ≥ c1 =⇒ |f(x)| ≤ c2‖∇f(x)‖‖x‖.

Then |f | ≤ max{c1, c2} on S(∇f).

3.1. The principal gradient tentacle and sums of squares. Here comes
one of the main results of this article which is interesting on its own but can later be
read as a convergence result for a sequence of optimal values of SDPs (Theorem 30).

Theorem 25. Let f ∈ R[X̄] be bounded from below. Furthermore, suppose that
f has only isolated singularities at infinity (which is always true in the two variable
case n = 2) or the principal gradient tentacle S(∇f) is compact. Then the following
are equivalent:

(i) f ≥ 0 on Rn.
(ii) f ≥ 0 on S(∇f).
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[X̄]

such that

f + ε = s + t(1 − ‖∇f‖2‖X̄‖2).(15)

Proof. First of all, the polynomial g := 1−‖∇f‖2‖X̄‖2 is a polynomial describing
the principal gradient tentacle

S := {x ∈ Rn | g(x) ≥ 0} = S(∇f).

Because sums of squares of polynomials are globally nonnegative on Rn, identity (15)
can be viewed as a certificate for f ≥ −ε on S. Hence it is clear that (iii) implies
(ii). For the reverse implication, we apply Theorem 9 (with m = 1 and g1 := g) to
f + ε instead of f . We have to check only the hypotheses. Condition (a) is clear
from Lemma 24. By Theorem 23, we have that R∞(f, S) is a finite set if f has only
isolated singularities at infinity. If S(∇f) is compact, the set R∞(f, S) is even empty.
Since f ≥ 0 on S by hypothesis, this set contains clearly only nonnegative numbers.
This shows condition (b); i.e., R∞(f + ε, S) = ε+R∞(f, S) is a finite subset of R>0.
Finally, the hypothesis f ≥ 0 on S gives f + ε > 0 on S, which is condition (c).
Therefore (ii) and (iii) are proved to be equivalent. The equivalence of (i) and (ii) is
an immediate consequence of Theorem 19.

Remark 26. Let f ∈ R[X̄] be bounded from below and S(∇f) be compact. Then
f attains its infimum f∗. To see this, observe that the equivalence of (i) and (ii) in
the preceding theorem implies

f∗ = sup{a ∈ R | f − a ≥ 0 on Rn}
= sup{a ∈ R | f − a ≥ 0 on S(∇f)}
= min{f(x) | x ∈ S(∇f)}.

The following observation is proved in the same way as Remark 2.
Remark 27. If f is a sum of squares in the ring R[[X̄]] of formal power series,

then its lowest (nonvanishing) homogeneous part must be a sum of squares in R[X̄].
Remark 28. There are polynomials f ∈ R[X̄] such that f ≥ 0 on Rn, but there is

no representation (15) for ε = 0. To see this, take a polynomial f ∈ R[X̄] such that
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f ≥ 0 on Rn, but f is not a sum of squares in the ring R[[X̄]] of formal power series
(the Motzkin polynomial from (5) is such an example by the preceding remark). Then
a representation (15) with ε = 0 is impossible, since the polynomial 1 − ‖∇f‖2‖X̄‖2

has a positive constant term and is therefore a square in R[[X̄]].

3.2. Optimization using the gradient tentacle and sums of squares. The-
orem 25 shows that under certain conditions, computation of f∗ amounts to computing
the supremum over all a such that f − a = s + t(1 − ‖∇f‖2‖X̄‖2) for some sums of
squares s and t in R[X̄]. As sketched in the introduction, sums of squares of bounded
degree can be nicely parametrized by positive semidefinite matrices. This motivates
the following definition.

Definition 29. For all polynomials f ∈ R[X̄] and all k ∈ N0, we define f∗
k ∈

R ∪ {±∞} as the supremum over all a ∈ R such that f − a can be written as a sum

f − a = s + t(1 − ‖∇f‖2‖X̄‖2),(16)

where s and t are sums of squares of polynomials with deg t ≤ 2k.
Here and in the following, we use the convention that the degree of the zero

polynomial is −∞ so that t = 0 is allowed in the above definition. Note that when
the degree of t in (16) is restricted, then automatically also the degree of s.

Therefore the problem of computing f∗
k can be written as an SDP. How to do this

is already suggested in our introduction. It goes exactly as in the well-known method
of Lasserre for optimization of polynomials on compact basic closed semialgebraic sets.
We refer readers to [L1, M1, Sr2] for the details. There are, anyway, several toolboxes
for MATLAB (a software for numerical computation) which can be used to create and
solve the corresponding SDPs without knowing these details. The toolboxes we know
are YALMIP [Löf] (which is very flexible and good for much more than sums of squares
things), SOSTOOLS [PPS] (which has a very flexible and nice syntax), GloptiPoly
[HL] (very easy to use for simple problems), and SparsePOP [KKW] (specialized for
sparse polynomials). Besides MATLAB and such a toolbox one needs also an SDP
solver for which the toolbox provides an interface.

A side remark that we want to make here is that to each SDP there is a dual
SDP, and it is desirable from the theoretical and practical point of view that strong
duality holds; i.e., the optimal value of the primal and dual SDP coincide. For the
SDPs arising from Definition 29, strong duality holds. This follows from the fact that
principal gradient tentacles (unlike gradient varieties) always have nonempty interior
(they always contain a small neighborhood of the origin). For a proof confer [L1,
Theorem 4.2], [M1, Corollary 3.2], or [Sr2, Corollary 21]. Here we will neither define
the dual SDP nor discuss its interpretation in terms of the so-called moment problem.

Recalling the definition of f sos in (4), we have obviously

f sos ≤ f∗
0 ≤ f∗

1 ≤ f∗
2 ≤ . . . ,(17)

and if f is bounded from below, then all f∗
k are lower bounds (perhaps −∞) of f∗

by Theorem 19. Note that the technique from Jibetean and Laurent (see section 1.6)
gives upper bounds for f∗ so that it complements nicely our method. It is easy to see
that Theorem 25 can be expressed in terms of the sequence f∗

0 , f
∗
1 , f

∗
2 , . . . as follows.

Theorem 30. Let f ∈ R[X̄] be bounded from below. Suppose that f has only
isolated singularities at infinity (e.g., n = 2) or the principle gradient tentacle S(∇f)
is compact. Then the sequence (f∗

k )k∈N converges monotonically increasing to f∗.
The following example shows that it is, unfortunately, in general not true that

f∗
k = f∗ for big k ∈ N.



934 MARKUS SCHWEIGHOFER

Example 31. Let f be the Motzkin polynomial from (5). By Theorem 30, we have
limk→∞ fk = 0. But it is not true that fk = 0 for some k ∈ N. By Definition 29, this
would imply that for all ε > 0, there is an identity (15) with sums of squares s and t
such that deg s ≤ k. Because S(∇f) has nonempty interior (note that ∇f(1, 1, 1) = 0,
since f(1, 1, 1) = 0), we can use [PS, Proposition 2.6(b)] (see [Sr2, Theorem 4.5] for
a more elementary exposition) to see that such an identity would then also have to
exist for ε = 0. But this is impossible, as we have seen in Remark 28.

Unfortunately, the assumption that f is bounded from below is necessary in The-
orem 30, as shown by the following trivial example.

Example 32. Consider f := X ∈ R[X] (i.e., let n = 1 and write X instead of X1).
Then K(f) = ∅, S(∇f) = [−1, 1], and (f∗

k )k∈N converges monotonically increasing to
inf{f(x) | −1 ≤ x ≤ 1} = −1 = −∞ = f∗.

Open Problem 33. Do Theorems 25 and 30 hold without the hypothesis that f
has only isolated singularities at infinity or S(∇f) is compact?

By the above arguments, it is easy to see that this question could be answered
in the affirmative if R∞(f, S(∇f)) were finite for all polynomials f ∈ R[X̄] bounded
from below on Rn. But this is not true, as the following counterexample shows. We
are grateful to Zbigniew Jelonek for pointing out to us this adaption of an example
of Parusiński [P2, Example 1.11].

Example 34. Consider the polynomial h := X + X2Y + X4Y Z ∈ R[X,Y, Z], set
f := h2, and define for fixed a > 0 the curve

γ : R>0 → R3 : s �→
(
s,

2a

s2
,−

(
1 + s

4a

)
2s2

)
.

Observe that

h(γ(s)) =
3

4
s + a and

∂h

∂X
(γ(s)) = 0,

and therefore f(γ(s)) = (3
4s + a)2 and

‖∇f‖2(γ(s)) = 4f‖∇h‖2(γ(s)) = 4s4

(
3

4
s + a

)2
((

1

2
− s

8a

)2

+ (2a)2

)
.

It follows that ‖∇f‖2(γ(s))‖γ(s)‖2 equals(
4s6 + 16a2 +

(
1 +

s

4a

)2
)(

3

4
s + a

)2
((

1

2
− s

8a

)2

+ (2a)2

)
,

which tends to (16a2 + 1)a2(1/4 + 4a2) for s → 0. We now see that for s → 0, ‖γ(s)‖
tends to infinity, f(γ(s)) tends to a2, and, when a is a sufficiently small positive
number, ‖∇f‖2(γ(s))‖γ(s)‖2 tends to a real number smaller than 1. This shows that
a2 ∈ R∞(f, S(∇f)) for every sufficiently small positive number a. Hence f is an
example of a polynomial bounded from below such that R∞(f, S(∇f)) is infinite.

3.3. Implementation in YALMIP. We show here how to encode computation
of f∗

k (as well as of f∗
−1 := f sos) for any k ∈ N with YALMIP. First, declare the

variables appearing in the polynomial f (here x and y) as well as the variable a to
maximize.
sdpvar x y a
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Now specify the polynomial f and the degree bound k (−1 for computing f sos). Here
we take the dehomogenization f := M(X,Y, 1), where M is the Motzkin polynomial
introduced in (5).

f = x^4 * y^2 + x^2 * y^4 - 3 * x^2 * y^2 + 1, k = 0

Now compute the partial derivatives with respect to the variables (here x and y) and
specify the polynomial g defining the gradient tentacle.

df = jacobian(f, [x y]), g = 1 - (df(1)^2 + df(2)^2) * (x^2 + y^2)

Define a polynomial variable t of degree ≤ 2k and impose the constraints that t and
f − a− tg are sums of squares (for some reason the current version of YALMIP does
here not accept a degree zero polynomial t so that this has to be modeled as a scalar
variable).

if k > 0

v = monolist([x; y], 2*k), coeffVec = sdpvar(length(v), 1)

t = coeffVec’ * v

constraints = set(sos(f - a - t * g)) + set(sos(t))

elseif k == 0

coeffVec = sdpvar(1, 1), t = coeffVec

constraints = set(sos(f - a - t * g)) + set(t > 0)

else

coeffVec = []

constraints = set(sos(f - a))

end

Now solve the SDP and output the result for a.

solvesos(constraints, -a, [], [a; coeffVec]), double(a)

3.4. Implementation in SOSTOOLS. Below we give an SOSTOOLS code
which is even slightly easier to read but essentially analogous to the YALMIP code.
In contrast to the YALMIP code above, the Symbolic Math Toolbox is required to
execute the code below.

syms x y a t

f = x^4 * y^2 + x^2 * y^4 - 3 * x^2 * y^2 + 1, k = 0

df = jacobian(f, [x y]), g = 1 - (df(1)^2 + df(2)^2) * (x^2 + y^2)

prog = sosprogram([x; y], a)

if k > 0

v = monomials([x; y], [0 : k]), [prog, t] = sossosvar(prog, v)

prog = sosineq(prog, f - a - t * g)

elseif k == 0

prog = sosdecvar(prog, t), prog = sosineq(prog, t)

prog = sosineq(prog, f - a - t * g)

else

prog = sosineq(prog, f - a)

end

prog = sossetobj(prog, -a), prog = sossolve(prog)

sosgetsol(prog, a)

3.5. Numerical results. The following examples have been computed on an
ordinary PC with MATLAB 7, YALMIP 3, and the SDP solver SeDuMi 1.1. Most of
the computations took a few seconds, some of them a few minutes. The first example
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corresponds exactly to the code in section 3.3. To compute the others, the variables,
the polynomial f , and the degree bound k have to be changed in that code.

Example 35. Let f := M(X,Y, 1) be the dehomogenization of the Motzkin poly-
nomial M from (5), i.e., f := M(X,Y, 1) = X4Y 2 + X2Y 4 − 3X2Y 2 + 1 ∈ R[X,Y ].
We have f∗ = 0 but f sos = −∞ (the latter is an easy exercise). If we execute the
program from section 3.3 with k = −1 instead of k = 0, the computer answers that
the SDP is infeasible, which means indeed that f sos = −∞. Executing the same
program for k = 0, 1, 2 yields f∗

0 ≈ −0.0017, f∗
1 ≈ −0.0013, and f∗

2 ≈ 0.000066, which
is already very close to f∗ = 0. By Theorem 30, the sequence f0, f1, f2, . . . converges
monotonically to f∗ = 0. But the computed value f∗

2 ≈ 0.000066 is positive so that
there are obviously numerical problems. Confer [PS, Example 2].

Example 36. Define f := M(X, 1, Z) ∈ R[X,Z], where M is the Motzkin poly-
nomial from (5), i.e., f = X4 + X2 + Z6 − 3X2Z2 ∈ R[X,Z]. Computation yields
f sos ≈ − 0.1780, f∗

0 ≈ − 5.1749 · 10−5, f∗
1 ≈ − 1.2520 · 10−7, and f∗

2 = 8.7662 · 10−10,
which “equals numerically” f∗ = 0. This is in accordance with Theorem 25, which
guarantees convergence to f∗, since we are in the two variable case. Confer [PS,
Example 3].

Example 37. Consider the Berg polynomial f := X2Y 2(X2 + Y 2 − 1) ∈ R[X,Y ]
with global minimum f∗ = − 1/27 attained in (±1/

√
3,±1/

√
3). We have f sos =

−∞, and running the corresponding program gives indeed an output saying that
the corresponding SDP is infeasible. The computed optimal values of the first prin-
cipal tentacle relaxations are f∗

0 ≈ − 0.0564, f∗
1 ≈ − 0.0555, f∗

2 ≈ − 0.0371, and
f∗
3 ≈ − 0.0370≈ − 1/27 = f∗. Confer [L1, Example 3], [NDS, Example 3], and [JL,

Example 4].
Example 38. Being a polynomial in two variables of degree at most four, we have

that for f := (X2 + 1)2 + (Y 2 + 1)2 − 2(X + Y + 1)2 ∈ R[X,Y ], f − f∗ must be a
sum of squares (see introduction) whence f∗ = f sos. By computation, we obtain for
all values f sos, f∗

0 , f
∗
1 , f

∗
2 approximately −11.4581. That all these computed values

are the same can be expected by f∗ = f sos and the monotonicity (17). Confer [L1,
Example 2] and [JL, Example 3].

Example 39. In [LL], it is shown that

f :=

5∑
i=1

∏
j 	=i

(Xi −Xj) ∈ R[X1, X2, X3, X4, X5]

is nonnegative on R5 but not a sum of squares of polynomials. Therefore f sos = −∞
by Remark 2, since f is homogeneous. The SDP solver detects indeed infeasibility
of the corresponding SDP. We have computed f∗

0 ≈ −0.2367, f∗
1 ≈ −0.0999, and

f∗
2 ≈ −0.0224. Solving the SDP relaxation computing f∗

2 already took the time of a
coffee break. As in [JL, Example 6], we observe therefore that minimizing f is after
the change of variables Xi �→ X1 − Yi (i = 2, 3, 4, 5) equivalent to minimizing

h := Y2Y3Y4Y5 +

5∑
i=2

(−Yi)
∏
j 	=i

(Yj − Yi) ∈ R[Y2, Y3, Y4, Y5].

Computing hsos results in infeasibility. The numerical results using the principle
gradient tentacle are h∗

0 ≈ −0.2380, h∗
1 ≈ −0.0351, h∗

2 ≈ −0.0072, h∗
3 ≈ −0.0019, and

h∗
4 ≈ −0.00086285, which is already very close to h∗ = 0. The condition in Theorem

30 is satisfied neither for f nor for h, and yet it seems that we have convergence to
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h∗. This is a typical observation that might give hope that Open Problem 33 has a
positive answer.

Example 40. Consider once more the polynomial f = (1 −XY )2 + Y 2 from (6)
and Example 16 that does not attain its infimum f∗ = 0 on R2. Since this polynomial
is by definition a sum of squares, we have f sos = 0 = f∗ and therefore f∗

k = 0 for
all k ∈ N by (17). By computation, we get f sos ≈ 1.5142 · 10−12, which is almost
zero but also f∗

0 ≈ 0.0016, f∗
1 ≈ 0.0727, and f∗

2 ≈ 0.1317, which shows that there
are big numerical problems. We have verified that the corresponding SDPs have
nevertheless been solved quite accurately. The problem is that small numerical errors
in the coefficients of a polynomial can perturb its infimum quite a lot whenever the
infimum is not attained (or attained very far from the origin). It should be subject
to further research how to fight this problem. Anyway, the gradient tentacle method
still performs in this example much better than the gradient variety method, which
yields the wrong answer 1 (as described in section 1.7). The method of Jibetean and
Laurent gives the best results in this case [JL, Example 5].

3.6. Numerical stability. If the coefficients of f and ‖∇f‖‖X̄‖ have an order
of magnitude very different from 1, then the defining polynomial g = 1−‖∇f‖2‖X̄‖2

for the gradient tentacle should be better exchanged by R− ‖∇f‖2‖X̄‖2, where R is
a real number of that order of magnitude. This is justified by Remark 18.

Example 40 and other experiments that we did with polynomials bounded from
below that do not attain a minimum are a bit disappointing and show that for this
“hard” class of polynomials (exactly the class we were attacking), a lot of work remains
to be done, at least on the numerical side. The corresponding SDPs tend to be
numerically unstable.

For polynomials attaining their minimum, the method in [NDS] is often much
more efficient, e.g., for Example 39.

4. Higher gradient tentacles. In this section, we associate with every poly-
nomial f ∈ R[X̄] a sequence of gradient tentacles. Each of these is defined by a
polynomial inequality just as the principal tentacle from section 3 was. But the de-
gree of this polynomial inequality for the Nth tentacle in this sequence will be roughly
2N times the degree of f . This has the disadvantage that the corresponding SDP re-
laxations get very big for large N . Also, we have to deal for each N with a sequence
of SDPs. All in all, we have therefore a double sequence of SDPs. The advantage
is, however, that we can prove a sums of squares representation theorem (Theorem
46) applicable for all f ∈ R[X̄] bounded from below independently of the answer to
Open Problem 33. Again, we think that this theorem is also of theoretical interest.
Implementation of the higher gradient tentacle method is analogous to sections 3.3
and 3.4. This time we do not give numerical examples because of Open Problem 33,
Remark 21, and numerical problems for big N .

Definition 41. For f ∈ R[X̄] and N ∈ N, we call

S(∇f,N) := {x ∈ Rn | ‖∇f(x)‖2N (1 + ‖x‖2)N+1 ≤ 1}

the Nth gradient tentacle of f .
A trivial fact that one should keep in mind is that ‖∇f(x)‖2(1 + ‖x‖2) ≤ 1 and

in particular ‖∇f(x)‖‖x‖ ≤ 1 for all x ∈ S(∇f,N). This shows that

V (∇f) ∩ Rn ⊆ S(∇f, 1) ⊆ S(∇f, 2) ⊆ S(∇f, 3) ⊆ · · · ⊆ S(∇f).

The definition of S(∇f,N) is motivated by the following definition, which is taken
from [KOS, page 79].
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Definition 42. Suppose f ∈ R[X̄] and N ∈ N. The set KN
∞(f) consists of all

y ∈ R for which there exists a sequence (xk)k∈N in Rn such that

lim
k→∞

||xk|| = ∞, lim
k→∞

‖∇f(xk)‖‖xk‖1+ 1
N = 0, and lim

k→∞
f(xk) = y.(18)

Clearly, we have

K1
∞(f) ⊆ K2

∞(f) ⊆ K3
∞(f) ⊆ · · · ⊆ K∞(f).

The next lemma says that this chain actually gets stationary and reaches K∞(f). For
the proof, we refer readers to [KOS, Lemma 3.1].

Lemma 43 (Kurdyka, Orro, and Simon). For all f ∈ R[X̄], there exists N ∈ N

such that

K∞(f) = KN
∞(f).

Now we prove for sufficiently large gradient tentacles what Theorem 19 was for
the principal gradient tentacle (which contains all higher gradient tentacles).

Theorem 44. Suppose f ∈ R[X̄] is bounded from below. Then f∗ ∈ K(f) and
there is N0 ∈ N such that for all N ≥ N0,

f∗ = inf{f(x) | x ∈ S(∇f,N)}.(19)

Proof. We know already from Theorem 19 that f∗ ∈ K(f). By Proposition 13,
at least one of the following two cases therefore must occur. The first case is that
f∗ ∈ K0(f). Then f∗ is attained by f on its gradient variety and therefore on the Nth
gradient tentacle for actually all N ∈ N. Hence we can set N0 := 1. In the second
case, f∗ ∈ K∞(f), we can choose some N0 ∈ N such that f∗ ∈ KN

∞(f) by the previous
lemma. Then f∗ ∈ KN

∞(f) for any N ≥ N0. This means that there exists a sequence
(xk)k∈N satisfying (18). Therefore ‖∇f(x)‖‖xk‖1+1/N ≤ 1

2 and consequently

‖∇f(xk)‖2N (1 + ‖xk‖2)N+1 ≤ ‖∇f(xk)‖2N (2‖xk‖2)N+1 ≤ 1

for all large k, since ‖xk‖ ≥ 1 and 2N+1 ≤ 22N . This shows that xk ∈ S(∇f,N) for
all large k, which implies our claim.

The great advantage of the higher gradient tentacles over the principal one is
that they are always small enough to admit only finitely many asymptotic values; i.e.,
there is no counterpart to Example 34.

Theorem 45. For every f ∈ R[X̄], R∞(f, S(∇f)) ⊆ K∞(f). In particular,
every f ∈ R[X̄] has only finitely many asymptotic values on each of its higher gradient
tentacles; i.e., the set R∞(f, S(∇f,N)) is finite for all N ∈ N.

Proof. Let y ∈ R be such that (7) holds for some sequence (xk)k∈N of points
xk ∈ S(∇f,N). By Definition 41,

‖∇f(xk)‖N‖xk‖N ≤ 1

‖xk‖
→ 0 for k → ∞,

implying (13). This shows that y ∈ K∞(f).
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4.1. Higher gradient tentacles and sums of squares. We are now able
to prove the third important sums of squares representation theorem of this article
besides Theorems 9 and 25.

Theorem 46. For all f ∈ R[X̄] bounded from below, there is N0 ∈ N such that
for all N ≥ N0, the following are equivalent:

(i) f ≥ 0 on Rn.
(ii) f ≥ 0 on S(∇f,N).
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[X̄]

such that

f + ε = s + t(1 − ‖∇f‖2N (1 + ‖X̄‖2)N+1).(20)

Moreover, these conditions are equivalent for all f attaining a minimum on Rn and
all N ∈ N. Finally, (ii) and (iii) are equivalent for all f ∈ R[X̄] and N ∈ N.

Proof. We first show that (ii) and (iii) are always equivalent. To see this, observe
that g1 := 1 − ‖∇f‖2N‖X̄‖2N+2 is a polynomial that defines the set S := {x ∈
Rn | g1 ≥ 0} = S(∇f,N). Because sums of squares of polynomials are globally
nonnegative on Rn, identity (20) can be viewed as a certificate for f ≥ −ε on S.
Hence it is clear that (iii) implies (ii). For the reverse implication, we apply Theorem
9 to f + ε instead of f . We have to check only the hypotheses. Condition (a) is clear
from Lemma 24. By Theorem 45, we have that R∞(f, S) is a finite set. Since f ≥ 0
on S by hypothesis, this set contains clearly only nonnegative numbers. This shows
condition (b); i.e., R∞(f + ε, S) = ε+R∞(f, S) is a finite subset of R>0. Finally, the
hypothesis f ≥ 0 on S gives f + ε > 0 on S, which is condition (c).

Now suppose that f ∈ R[X̄] attains a minimum f(x∗) = f∗ in a point x∗ ∈ Rn.
Then ∇f(x∗) = 0 and therefore x∗ ∈ S(∇f,N) for all N ∈ N. This shows that (i)
and (ii) are in this case equivalent for all N ∈ N.

By what has already been proved, it remains only to show that (i) and (ii) are
equivalent for large N ∈ N when f ∈ R[X̄] is bounded from below but does not attain
a minimum. But in this case, (19) holds by Theorem 44 yielding the equivalence of
the first two conditions.

Without needing it for our application, we draw the following immediate corollary.
Taking N = 1 in the second part of this corollary yields Theorem 6 of Nie, Demmel,
and Sturmfels.

Corollary 47. Suppose f ∈ R[X̄] and f ≥ 0 on V (∇f) ∩ Rn. Then f + ε is
for all ε > 0 a sum of squares modulo any principal ideal generated by a power of
the polynomial ‖∇f‖2(1 + ‖X̄‖2); i.e., for every ε > 0 and N ∈ N, there is a sum of
squares s in R[X̄] and a polynomial p ∈ R[X̄] such that

f = s + p(‖∇f‖2(1 + ‖X̄‖2))N .

In particular, f +ε is for all ε > 0 a sum of squares modulo each power of its gradient
ideal; i.e., for every ε > 0 and N ∈ N, there is a sum of squares s in R[X̄] such that

f ∈ s + (∇f)N .

Proof. The second claim follows from the first one. The first claim follows im-
mediately from implication (i) =⇒ (iii) in Theorem 46, which always holds for all
N ∈ N.
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4.2. Optimization using higher gradient tentacles and sums of squares.
The following definition can be motivated in the same way as Definition 29 in section 3.

Definition 48. For all polynomials f ∈ R[X̄], all N ∈ N, and all k ∈ N0, we
define f∗

N,k ∈ R∪{±∞} as the supremum over all a ∈ R such that f−a can be written
as a sum

f − a = s + t(1 − ‖∇f‖2N (1 + ‖X̄‖2)N+1),(21)

where s and t are sums of squares of polynomials with deg t ≤ 2k.

Again, as outlined in section 3, computation of fN,k amounts to solving an SDP
for each fixed N ∈ N and k ∈ N0. Recalling the definition of f sos in (4), we have for
each fixed N ∈ N,

f sos ≤ f∗
N,0 ≤ f∗

N,1 ≤ f∗
N,2 ≤ . . . ,

and if f is bounded from below, then all f∗
N,k are lower bounds of f∗ by Theorem 44.

It would be desirable to also have information on how the fN,k are related to each
other when not only k but also N varies. All we know about that is the following
proposition.

Proposition 49. For all f ∈ R[X̄], N ∈ N, and k ∈ N0,

f∗
N+1,k ≤ f∗

N,k+d.

Proof. Let us define the polynomials hN as in (11) and substitute into the identity
proved in Lemma 11 the polynomials ‖∇f‖2 for Y and ‖X̄‖2 for X̄. Then we get

1 − ‖∇f‖2(N+1)(1 + ‖X̄‖2)N+2 = p + q(1 − ‖∇f‖2N (1 + ‖X̄‖2)N+1),(22)

where p and

q :=

(
1 +

1

N

)
‖∇f‖2(1 + ‖X̄‖2)

are sums of squares of polynomials. The degree of q is no higher than 2(d−1)+2 = 2d.
Now if for a ∈ R we have an identity

f − a = s + t(1 − ‖∇f‖2(N+1)(1 + ‖X̄‖2)N+2)

for sums of squares s and t with deg t ≤ 2k, then for the same a

f − a = (s + tp) + tq(1 − ‖∇f‖2N (1 + ‖X̄‖2)N+1)

and deg(tq) ≤ 2(k + d).

We conclude by interpreting Theorem 46 as a convergence result concerning the
optimal values f∗

N,k of the proposed relaxations. This is the counterpart to Theorem
30 from section 2.

Theorem 50. For all f ∈ R[X̄] bounded from below, (f∗
N,k)k∈N converges mono-

tonically increasing to f∗, provided that N ∈ N is sufficiently large (depending on f).
If f attains a minimum on Rn, (f∗

N,k)k∈N converges monotonically increasing to f∗

no matter what N ∈ N is.
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5. Conclusions. We have proposed a method for computing numerically the
infimum of a real polynomial in n variables which is bounded from below on Rn. As
in [JL] and [NDS], the approach is to find semidefinite relaxations relying on sums
of squares certificates and critical point theory. As one could expect, polynomials
that do not attain a minimum on Rn (that are either unbounded from below or have
a finite infimum that is not attained) are particularly hard to handle. In [JL], this
problem (among others) was solved by perturbing the coefficients of the polynomial
to guarantee a minimum (in particular, boundedness from below). Though the re-
sults in [JL] are quite good, we are convinced that one should also look for other
methods that avoid perturbations and the danger of numerical ill-conditioning com-
ing along with them. Proving sums of squares representations for polynomials positive
on their gradient variety, it was shown by Nie, Demmel, and Sturmfels [NDS] that
an approach without perturbation is possible. The computational performance of
their method is extremely good. However, for polynomials that do not attain a min-
imum, their method yields wrong answers. Combining considerable machinery from
differential geometry and real algebraic geometry, we have shown that part of this
limitation can be removed. By using our gradient tentacles instead of the gradient
variety, polynomials that do not attain a minimum but are bounded from below can
also be handled. Our method has three major problems. First, we do not address
the important question of how to check efficiently if a polynomial is bounded from
below. For such polynomials, our method still gives a wrong answer (see Example
32). Second, it turns out that solving SDPs that arise from a polynomial that does
not attain a minimum takes sometimes a surprisingly long time. And third, small
numerical inaccuracies might lead to big changes in the infimum of a polynomial if
the infimum is not attained. All three problems should be subject to further research.
Polynomials not attaining a minimum remain hard to handle in practice. On the
theoretical side, we have combined the theory of generalized critical values with the
theory of real holomorphy rings and have obtained new interesting characterizations
of nonnegative polynomials.
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Abstract. We present a new generating set search (GSS) approach for minimizing functions
subject to linear constraints. GSS is a class of direct search optimization methods that includes
generalized pattern search. One of our main contributions in this paper is a new condition to
define the set of conforming search directions that admits several computational advantages. For
continuously differentiable functions we also derive a bound relating a measure of stationarity, which
is equivalent to the norm of the gradient of the objective in the unconstrained case, and a parameter
used by GSS algorithms to control the lengths of the steps. With the additional assumption that
the derivative is Lipschitz, we obtain a big-O bound. As a consequence of this relationship, we
obtain subsequence convergence to a KKT point, even though GSS algorithms lack explicit gradient
information. Numerical results indicate that the bound provides a reasonable estimate of stationarity.
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1. Introduction. We consider a class of direct search methods called generating
set search (GSS) [15] which encompasses methods such as generalized pattern search
[33, 18, 19] and certain classes of derivative-free optimization methods [21, 22, 23, 24].
The problem of interest is the linearly constrained minimization problem:

minimize f(x)

subject to Ax ≤ b.
(1.1)

Here f : Rn → R, A is an m × n matrix, and b is a vector in Rm. Both A and b are
assumed to be explicitly available. No assumption of nondegeneracy of the constraints
is made. Let Ω denote the feasible region

Ω = { x | Ax ≤ b } .

We assume that the objective f is continuously differentiable on Ω but that the
gradient is not computationally available because no procedure exists for computing
the gradient and it cannot be approximated accurately.
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Ω

(a) Initial pattern
for k = 0; k ∈ S.

Ω

(b) Move west for
k = 1; k ∈ U .

Ω

(c) Reduce step for
k = 2; k ∈ S.

Ω

(d) Move north for
k = 3; k ∈ U .

Ω

(e) Reduce step for
k = 4; k ∈ S.

Ω

(f) Move west for
k = 5; k ∈ U .

Fig. 1.1. Coordinate search with exact penalization applied to the modified Broyden tridiagonal
function with bound constraints.

1.1. An illustrative example. We illustrate an instance of a GSS method in
Figure 1.1. We consider coordinate search applied to the two-dimensional modified
Broyden tridiagonal function [4, 26], a standard test problem, with the addition of
bounds on the variables. Level curves of the function are shown in the background,
and the feasible region is the box labeled Ω. The current iterate xk is indicated by
a circle; this is the point with the lowest value of f found so far, also known as
the best point. If there are no constraints, a coordinate search method evaluates the
function at the 2n trial points defined by taking a step of a specified length from
xk along the positive and negative coordinate directions, i.e., the search directions.
The iterates must remain feasible with respect to the bound constraints present in
this problem, which means that infeasible trial points are not considered. Terminal
crosses show infeasible trial points; solid squares indicate feasible trial points. The
lighter versions given in (b)–(f) indicate the search directions and trial points from
the previous iteration.

To establish notation and give context for the discussion that follows, we give
an outline of a GSS method. Details are developed throughout the paper; complete
statements of the algorithms can be found in section 5.

Let x0 ∈ Ω be the initial iterate, and let Δ0 be the initial choice for the step-
length control parameter with Δ0 > Δtol > 0, where Δtol serves as a measure for
termination. The search proceeds for iterations k = 0, 1, 2, . . . until Δk < Δtol.

The first step in each iteration is to select a set of search directions. The number
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of search directions is denoted by pk and the set of search directions by

Dk = {d(1)
k , . . . , d

(pk)
k }.

The second step in each iteration is to construct feasible trial points of the form

xk + Δ̃
(i)
k d

(i)
k , i ∈ {1, . . . , pk},

with Δ̃
(i)
k ∈ [0,Δk] chosen to ensure feasibility. These trial points are where the

objective function may be evaluated in the search for a new best point to replace xk.
The third step is to determine whether the iteration is successful or unsuccessful

and correspondingly update x and Δ. If one of the trial points reduces the objective
function value by an acceptable amount, then that trial point becomes the new iterate
xk+1. The step-length control parameter may either be increased or, more usually,
left unchanged so that Δk+1 = Δk. In this case the iteration is deemed successful and
k is assigned to the set of successful iterates denoted by S. Otherwise, none of the
trial points improves the value of the objective function, so the step Δk is reduced,
e.g., Δk+1 = 1

2Δk, and the next iterate is unchanged, i.e., xk+1 = xk. In this case the
iteration is deemed unsuccessful and k is assigned to the set of unsuccessful iterates
denoted by U .

1.2. Goals of this paper. A primary contribution of this paper is a new con-
dition on the set of search directions Dk that is flexible but also sufficient to ensure
desirable convergence properties of the algorithm. Key to our new results is the way
in which the classification of constraints as being nearly binding is tied to Δk, the
step-length control parameter.

The following measure of stationarity, introduced in [5], is central to our analysis:
for x ∈ Ω,

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.

As discussed in [6], χ(x) is a continuous function on Ω. Furthermore, χ(x) = 0
for x ∈ Ω if and only if x is a Karush–Kuhn–Tucker (KKT) point of the linearly
constrained problem.

In Theorem 6.4, under certain assumptions, we show that at unsuccessful itera-
tions there is a big-O relationship between the step-length control parameter and the
measure of stationarity:

χ(xk) = O(Δk) for k ∈ U .(1.2)

This means that as Δk is reduced, the upper bound on the value of the measure
of stationarity is also reduced. Relationship (1.2) is analogous to the unconstrained
minimization result (see [8, section 3] or [15, section 3.6]):

‖∇f(xk) ‖ = O(Δk) for k ∈ U .(1.3)

Results (1.2) and (1.3) support using the magnitude of Δk as a test for termination.
In section 7 we give numerical illustrations of relationship (1.2).

Another consequence of (1.2) is that it leads directly to a global convergence result
(Theorem 6.5) showing that a subsequence of the iterates converges to a KKT point:

lim inf
k→∞

χ(xk) = 0.(1.4)

The latter follows immediately from (1.2) once the result lim infk→∞ Δk = 0 from
[33] is invoked, thus further simplifying prior global convergence analyses.
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1.3. Related work. The GSS methods we propose for solving linearly con-
strained problems are feasible-point methods; i.e., they require all iterates to be feasi-
ble. They also share many features with classical feasible directions methods that rely
on derivatives [2, 35, 36], especially in the way in which they handle the proximity of
the current iterate to the boundary of the feasible region.

Most prior related work has used similar mechanisms for identifying the set of
nearly binding linear constraints [25, 34, 19, 1, 30] and [24, Algorithm 2]. Constraints
were identified as being nearly binding by considering either the Euclidean distance
from the current iterate to the constraint faces [25, 19, 24, 1] or the magnitude of the
constraint residual | aTi x− bi | at the current iterate [34, 30]. A constraint was treated
as binding if one of the preceding measures fell below some fixed threshold.

The convergence properties of GSS algorithms rely on the presence at each itera-
tion of a theoretically necessary set of search directions, which we call core directions.
In the work just cited ([25, 34, 19, 1, 30] and [24, Algorithm 2]), the core directions are
all the generators for a set of cones. There are situations where the resulting number
of search directions is quite large. Since Δk can be reduced only at the conclusion of
an unsuccessful iteration, and each unsuccessful iteration requires the evaluation of
the function at the trial points defined by core directions, there is incentive to try and
keep the cardinality of the set of core directions small when the cost of computing f
at a feasible point is appreciable.

Algorithm 1 of [24] addresses this concern. Its core directions are the generators of
a single cone. However, the only allowable search directions are the core directions—
the set of search directions cannot be augmented.

The approach we advocate here is a compromise. Our set of core directions is
smaller than in [25, 34, 19, 1, 30] and [24, Algorithm 2], but the choice of search
directions is more flexible than Algorithm 1 of [24]. The core set need only contain
generators for a single cone, but accommodates additional search directions. As re-
ported in [17], the computational advantages of this compromise are appreciable in
terms of reducing the number of search directions per iteration, reducing the total
number of iterations, and reducing the total number of function evaluations.

Another focus of the work reported here is on establishing (1.2) and a related
result regarding the projection of the direction of steepest descent onto the polar
of the cone defined by the working set of constraints. Proposition 7.1 in [19] also
established a relationship between Δk and a different measure of stationarity. The
quantity

q(x) ≡ PΩ (x−∇f(x)) − x,(1.5)

where PΩ denotes the projection onto Ω, is a continuous function of x with the prop-
erty that q(x) = 0 for x ∈ Ω if and only if x is a KKT point. In [19, Proposition 7.1]
it is shown that

‖ q(xk) ‖ = O(
√

Δk) for k ∈ U ,(1.6)

a result that is neither as satisfying nor as useful as that in (1.2).
Continuing along the lines we began in [15], here we incorporate the sufficient

decrease step acceptance criterion from [23, 22, 24], while also preserving a version of
the algorithm that requires only simple decrease, as in the work in [19, 1, 30]. The
sufficient decrease condition simplifies the analysis. More importantly, the sufficient
decrease condition gives us greater flexibility in how we maintain feasibility in the
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presence of linear constraints. In particular, using a sufficient decrease acceptance
criterion makes steps onto the boundary straightforward.

As mentioned in section 1.2, given (1.2) it is straightforward to prove convergence
of a subsequence to a KKT point. The approach to convergence analysis in [1, 30] takes
a different tack by focusing on the directional derivatives along the search directions
and considering whether limit points of the sequence of iterates are KKT points. This
allows a relaxation of the smoothness assumptions on f . If f is not assumed to be
continuously differentiable, but is only assumed to be strictly differentiable at limit
points of the sequence of iterates, the results in [1, 30] show that those limit points
are KKT points. However, subsequence convergence to KKT points in the nonsmooth
case is not guaranteed by the results in [1, 30] and, in fact, may not be realized [15].

1.4. Organization. The paper is organized as follows. In section 2, we describe
the conditions on the set of core directions for GSS methods applied to problems
with linear constraints. As we saw in Figure 1.1, GSS algorithms may generate trial
points that are infeasible, so in section 3 we describe how feasibility is maintained. In
section 4 we discuss the globalization strategies. Formal statements of GSS algorithms
for solving linearly constrained problems are given in section 5. We present two general
algorithms. The first (Algorithm 5.1) uses a sufficient decrease condition as in [22, 24].
The second (Algorithm 5.2) uses a simple decrease condition as in [18, 19]. Results
showing the stationarity properties of these algorithms are derived in section 6. In
section 7 we discuss what the analysis reveals about using Δk to test for stationarity
and demonstrate its effectiveness on two test problems. In section 8, we summarize
the results and their importance. Appendix A contains a discussion of χ(x) and its
use as a measure of stationarity. Appendix B contains geometric results on cones and
polyhedra.

2. Search directions. GSS methods for linearly constrained optimization need
to choose Dk, the set of search directions, at each iteration. In this section, we
describe the conditions we place on Dk to guarantee (1.2), and thus (1.4). Since
GSS methods do not use gradient information, they cannot directly identify descent
directions. Instead, the set Dk must include enough search directions to guarantee
that at least one of them is a descent direction and, moreover, allows a sufficiently long
step within the feasible region if xk is not a KKT point. To describe the conditions
on the sets of search directions, we start in section 2.1 by reviewing some standard
concepts regarding finitely generated cones. Then, in section 2.2, we show how to
use the constraints Ax ≤ b to define cones that mirror the geometry of the boundary
of the polyhedron Ω near the current iterate xk. Finally, in section 2.3, we detail
the conditions placed on the set Dk to ensure that, for every iteration of any GSS
algorithm, there exists at least one direction along which it is possible to take a step
of sufficient length while remaining inside Ω.

2.1. Cones and generators. A cone K is a set that is closed under nonnegative
scalar multiplication, i.e., K is a cone if x ∈ K implies αx ∈ K for all α ≥ 0. The
polar of a cone K, denoted K◦, is defined by

K◦ =
{
v | wT v ≤ 0 for all w ∈ K

}
and is itself a cone. Given a convex cone K and any vector v, there is a unique closest
point of K to v, the projection of v onto K, which we denote by vK . Given a vector
v and a convex cone K, any vector v can be written as v = vK + vK◦ and vTKvK◦ = 0
[27, 12].
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A set of vectors G generates a cone K if K is the set of all nonnegative linear
combinations of elements of G. A cone K is finitely generated if it can be generated
by a finite set of vectors. For any finite set of vectors G, we define

κ(G) = inf
v∈Rn

vK �=0

max
d∈G

vT d

‖ vK ‖ ‖ d ‖ , where K is the cone generated by G.(2.1)

This is a generalization of the quantity given in [15, (3.10)], where G generates Rn.
Note that the value κ(G) is a property of the set G—not of the cone K. See Proposition
10.3 in [19] for a proof of the following result.

Proposition 2.1. If G 	= {0}, then κ(G) > 0.
A special case occurs if G generates Rn. In this case, a set of generators is a

positive spanning set [7]. Thus a positive spanning set is like a linear spanning set
but with the additional requirement that all the coefficients be nonnegative. One
particular choice of generating set for Rn is the set of the positive and negative unit
coordinate vectors

{e1, e2, . . . , en,−e1,−e2, . . . ,−en},

which is the set of search directions used for the illustration of coordinate search in
Figure 1.1.

2.2. Tangent and normal cones. Let aTi be the ith row of the constraint
matrix A and let

Ci =
{
y | aTi y = bi

}
denote the set where the ith constraint is binding. The set of indices for the binding
constraints at x is I(x) = { i | x ∈ Ci }. The normal cone at a point x, denoted by
N(x), is the cone generated by the binding constraints, i.e., the cone generated by the
set { ai | i ∈ I(x) } ∪ {0}. The presence of {0} means that N(x) = {0} if there are
no binding constraints. The tangent cone, denoted by T (x), is the polar of the normal
cone. Further discussion of the tangent and polar cones in the context of optimization
can be found, for instance, in [31, 12, 13, 29].

In our case, we are not only interested in the binding constraints, but also in the
nearby constraints. Given x ∈ Ω, the indices of the ε-binding constraints are given by

I(x, ε) = { i | dist(x, Ci) ≤ ε } .(2.2)

The vectors ai for i ∈ I(x, ε) are the outward-pointing normals to the faces of the
boundary of Ω within distance ε of x. The idea of using ε-binding constraints is
identical to one sometimes used in gradient-based feasible directions methods, e.g.,
[2, section 2.5].

Given x ∈ Ω, we define the ε-normal cone N(x, ε) to be the cone generated by
the set { ai | i ∈ I(x, ε) } ∪ {0}. The presence of {0} means that N(x, ε) = {0} if
I(x, ε) = ∅. The corresponding polar cone is the ε-tangent cone T (x, ε). Observe
that if ε = 0, then these are just the standard normal and tangent cones; that is,
N(x, 0) = N(x) and T (x, 0) = T (x).

Examples of ε-normal and ε-tangent cones are illustrated in Figure 2.1. The set
x + T (x, ε) approximates the feasible region near x, where “near” is with respect to
the value of ε. Note that if I(x, ε) = ∅, so that N(x, ε) = {0}, then T (x, ε) = Rn; in
other words, if the boundary is more than distance ε away, then the problem looks
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Fig. 2.1. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3. Note that for this example,
as ε varies from ε1 to 0, there are only the three distinct pairs of cones illustrated (N(x, ε3) = {0}).

unconstrained in the ε-neighborhood of x, as can be seen in the third example in
Figure 2.1. Observe that one can proceed from x along any direction in T (x, ε) for
a distance of at least ε, and remain inside the feasible region; this is formalized in
Proposition 2.2. Overall, the number of distinct ε-normal cones (and consequently
the number of distinct ε-polar cones) is finite; see Proposition 2.3.

Proposition 2.2. If x ∈ Ω, and v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω.
Proof. Let x ∈ Ω, and v ∈ T (x, ε) with ‖ v ‖ ≤ ε. Since v ∈ T (x, ε) = (N(x, ε))

◦
,

aTi v ≤ 0 for all i ∈ I(x, ε). Thus, x+v satisfies all constraints with i ∈ I(x, ε) because

aTi (x + v) = aTi x + aTi v ≤ b + 0 = b.

Meanwhile, if i 	∈ I(x, ε), the face Ci where the ith constraint is binding is more than
distance ε away from x. Thus, x + v ∈ Ω.

Proposition 2.3. For all x ∈ Ω and ε > 0, there are at most 2m distinct sets
I(x, ε). Consequently, there are at most 2m distinct cones N(x, ε) and at most 2m

distinct cones T (x, ε).
Proof. Each I(xk, εk) is a subset of {1, . . . ,m}, of which there are exactly 2m

possible subsets, including the empty set. The remainder of the proof follows directly
from the definitions of N(x, ε) and T (x, ε).

2.3. Conditions on the search directions. We now state the conditions on
the sets of search directions for GSS for linearly constrained optimization.

At each iteration, a linearly constrained GSS method assembles Dk, the set of
search directions. We partition Dk into two subsets that play different roles in the
analysis:

Dk = Gk ∪Hk.

The set Gk is required to generate T (xk, εk) and is called the set of core directions.
The requirement that the set of search directions contain a set of generators for
T (xk, εk) (which is always Rn in the unconstrained case) is what led to the name
generating set search [15].

The (possibly empty) set Hk accommodates any remaining directions in Dk, the
presence of which may prove instrumental in efforts to accelerate the overall progress
of the search. For instance, using Hk = {ai : i ∈ I(xk, εk)} can be advantageous
computationally [17].
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Fig. 2.2. Condition 1 is needed to avoid a sequence of Gk’s for which κ(Gk) → 0.

Our focus here is on the conditions on Gk. The set Hk accommodates additional
directions suggested by heuristics to improve the progress of the search, but has little
effect on the analysis. The generating set for T (xk, εk) contained in Gk is crucial.

Condition 1. There exists a constant κmin > 0, independent of k, such
that for every k for which T (xk, εk) 	= {0}, the set Gk generates T (xk, εk)
and satisfies κ(Gk) ≥ κmin.

Even though there are only finitely many ε-tangent cones T (x, ε), the set of possible
generators for each cone is not necessarily unique, as seen in Figure 2.2. The lower
bound κmin from Condition 1 precludes a sequence of Gk’s for which κ(Gk) → 0. Such
a situation is depicted in Figure 2.2 for

G =

{(
−1

0

)
,

(
1
0

)
,

(
−1
−η

)}
with three choices of η > 0. If −∇f(x) = (0, −1)T , neither of the first two elements
of G are descent directions. Furthermore, since

κ(G) ≤ max
d∈G

−∇f(x)T d

‖∇f(x) ‖ ‖ d ‖ =
η√

1 + η2
< η,

the remaining element in G will be an increasingly poor descent direction if η → 0. A
nonzero lower bound on κ(G), as in Condition 1, will keep the angle between v and at
least one generator bounded away from 90◦; see [15, sections 2.2 and 3.4.1] for further
discussion.

A simple technique to ensure Condition 1 is satisfied is as follows. Let k2 > k1.
If I(xk2 , εk2) = I(xk1 , εk1), use the same generators for T (xk2 , εk2) as were used for
T (xk1

, εk1). Recall from Proposition 2.3 that there at most 2m distinct index sets
I(x, ε) and their corresponding ε-tangent cones T (x, ε). It then follows that there are
at most 2m distinct sets G if the same set of generators is always used to generate
a particular ε-tangent cone. Since by Proposition 2.1 each G 	= {0} has a strictly
positive value for κ(G), and since this technique ensures there are only finitely many
Gk’s, we can set κmin = min{κ(Gk) : T (xk, εk) 	= {0}}. Thus, Condition 1 is satisfied.

We have not yet indicated how to compute the generators for a given T (xk, εk)
so as to assemble Gk. If the working set { ai | i ∈ I(xk, εk) } is linearly indepen-
dent, then it is straightforward to calculate the generators of T (xk, εk) as described in
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[25, 19, 17]. If the set { ai | i ∈ I(xk, εk) } is linearly dependent (e.g., in the degen-
erate case), then it is also possible to calculate the generators as described in [17]. In
the latter case, the experience reported in [17] suggests that the worst-case computa-
tional complexity bounds do not indicate expected performance. For example, for one
problem illustrated in [17], the worst-case estimate indicates that more than 4× 1017

vectors need to be considered when, in fact, only one vector was needed and this one
vector was easily identified in less than one-seventh of a second on a conventional
workstation using Fukuda’s cddlib package [9].

Finally, all the core directions must be uniformly bounded; see Condition 2.

Condition 2. There exist βmax ≥ βmin > 0, independent of k, such that for
every k for which T (xk, εk) 	= {0}, the following holds:

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk.

Condition 2 is easy to satisfy, say, by normalizing all search directions so that βmin =
βmax = 1. However, there may be situations where it makes sense to allow the
directions in Gk to accommodate scaling information. This poses no difficulties for
the analysis, so long as there are lower and upper bounds, independent of k, on the
norm of each d ∈ Gk.

3. Choosing the step lengths. Given a set of search directions, the length of
the step along each direction is dictated by the step-length control parameter Δk. In
the unconstrained case, the set of trial points at iteration k would be{

xk + Δkd
(i)
k | i = 1, . . . , pk

}
,

where

Dk =
{
d
(1)
k , d

(2)
k , . . . , d

(pk)
k

}
.

In the constrained case, however, some of those trial points may be infeasible. Thus,
the trial points are instead defined by{

xk + Δ̃
(i)
k d

(i)
k | i = 1, . . . , pk

}
,

where

Δ̃
(i)
k ∈ [0,Δk]

is chosen so that xk + Δ̃
(i)
k d

(i)
k ∈ Ω. The main requirement on choosing Δ̃

(i)
k is that a

full step is used if possible, as formally stated in the following condition.

Condition 3. If xk + Δkd
(i)
k ∈ Ω, then Δ̃

(i)
k = Δk.

The simplest formula for choosing Δ̃
(i)
k ∈ [0,Δk] that satisfies Condition 3 is

Δ̃
(i)
k =

{
Δk if xk + Δkd

(i)
k ∈ Ω,

0 otherwise.
(3.1)
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Fig. 3.1. The step-length control parameter Δk may lead to infeasible trial points. The effect
of using (3.1) is that infeasible points simply are not considered as candidates to replace xk.

This corresponds to a form of exact penalization (see [15, section 8.1]) since the effect

of (3.1) is to reject (by setting Δ̃
(i)
k = 0) any step Δkd

(i)
k that would generate an

infeasible trial point. Since the constraints are assumed to be explicit (i.e., A and b
are known), verifying the feasibility of a trial point is straightforward. This strategy
is illustrated in Figure 3.1.

More sophisticated strategies can be employed for choosing Δ̃
(i)
k when xk+Δkd

(i)
k

is infeasible. Since alternatives for choosing Δ̃
(i)
k depend on the globalization strategy,

we defer the discussion of further examples to section 4.

4. Globalization. Globalization of GSS refers to the conditions that are en-
forced to ensure that

lim inf
k→∞

Δk = 0.(4.1)

These conditions affect the decision of whether or not to accept a trial point as the
next iterate and how to update Δk. Globalization strategies for GSS are discussed
in detail in [15, section 3.7]. Here we review those features that are relevant to our
analysis of algorithms for the linearly constrained case.

In any GSS algorithm, xk is always the best feasible point discovered thus far;
i.e., f(xk) ≤ f(xj) for all j ≤ k. However, different conditions are imposed on how
much better a trial point must be to be accepted as the next iterate.

In general, for an iteration to be considered successful we require that

xk + Δ̃kdk ∈ Ω and f(xk + Δ̃kdk) < f(xk) − ρ(Δk)

for some dk ∈ Dk and Δ̃k ∈ [0,Δk].
(4.2)

The function ρ(·) is called the forcing function and must satisfy Condition 4.

Condition 4 (general requirements on the forcing function).
1. The function ρ(·) is a nonnegative continuous function on [0,+∞).
2. The function ρ(·) is o(t) as t ↓ 0; i.e., limt↓0 ρ(t) / t = 0.
3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.

Both ρ(Δ) ≡ 0 and ρ(Δ) = αΔp, where α > 0 and p > 1, satisfy Condition 4.
The first choice also requires globalization via a rational lattice, which is discussed in
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section 4.2. The second choice can be used with globalization via a sufficient decrease
condition, which is discussed in section 4.1.

In the case of a successful iteration (i.e., one that satisfies (4.2)), the next iterate
is defined by

xk+1 = xk + Δ̃kdk for k ∈ S.

(Recall from section 1.1 that the set of indices of all successful iterations is denoted
by S.) In addition, Δk is updated according to

Δk+1 = φkΔk, φk ≥ 1 for k ∈ S.

The parameter φk is called the expansion parameter.
For the kth iteration to be unsuccessful, it must be the case that

xk + Δkd 	∈ Ω or f(xk + Δkd) ≥ f(xk) − ρ(Δk) for every d ∈ Gk.(4.3)

When the iteration is unsuccessful, the best point is unchanged:

xk+1 = xk for k ∈ U .

(Recall from section 1.1 that the set of indices of all unsuccessful iterations is denoted
by U .) In addition, the step-length control parameter is reduced:

Δk+1 = θkΔk, θk ∈ (0, 1) for k ∈ U .

The parameter θk is called the contraction parameter.
There are intimate connections between choosing the φk or θk in the update for

Δk and guaranteeing that (4.1) holds. Further requirements depend on the particular
choice of globalization strategy, and so are given in sections 4.1 and 4.2.

4.1. Globalization via a sufficient decrease condition. In the context of
gradient-based nonlinear programming algorithms, the enforcement of a sufficient
decrease condition on the step is well established (e.g., [10, 28, 29], or see the discussion
in [15, section 2.2]). In the context of gradient-based methods, enforcing a sufficient
decrease condition ties the choice of the step-length control parameter to the expected
decrease, as estimated by the initial rate of decrease −∇f(xk)

T dk. In the context of
GSS methods, the underlying assumption is that the value of ∇f(xk) is unavailable—
which means that the types of sufficient decrease conditions often used with gradient-
based methods cannot be enforced. However, in [11] an alternative that uses the
step-length control parameter, rather than ∇f(xk), was introduced and analyzed in
the context of linesearch methods for unconstrained minimization. In [21, 22, 23, 24],
this basic concept was then extended to both unconstrained and constrained versions
of what we here refer to as GSS methods. We now review the essential features of
this approach.

Within the context of GSS methods for linearly constrained optimization, a suffi-
cient decrease globalization strategy requires the following of the forcing function ρ(·)
and the choice of the contraction parameter θk.

Condition 5 (the forcing function for sufficient decrease).
The forcing function ρ(·) is such that ρ(t) > 0 for t > 0.
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Fig. 4.1. Observe in the second illustration that globalization via a sufficient decrease condition
makes it possible to avoid infeasible trial points by simply stopping at the boundary of Ω.

Condition 6 (contracting Δk for sufficient decrease).
A constant θmax < 1 exists such that θk ≤ θmax for all k.

Full details are discussed in [15, section 3.7.1], but we include a few salient ob-
servations here. The requirements of Condition 5 are easily satisfied by choosing,
say, ρ(Δ) = 10−4Δ2, while the requirements of Condition 6 are easily satisfied by
choosing, say, θk = 1

2 for all k. The upper bound on the contraction factor θk en-
sures a predictable fraction of reduction on Δk at the conclusion of an unsuccessful
iteration.

If a sufficient decrease condition is being employed, then we can use an alternative

to the exact penalization strategy, given in (3.1), for choosing Δ̃
(i)
k when xk+Δkd

(i)
k 	∈

Ω: simply find the step to the nearest constraint from xk along d
(i)
k . This is a well-

known technique in nonlinear programming (see, for instance, [10, section 5.2] or [28,

section 15.4]). In other words, compute Δ̃
(i)
k as the maximum nonnegative feasible

step along d
(i)
k . This option is illustrated in Figure 4.1.

4.2. Globalization via a rational lattice. Traditionally, direct search meth-
ods have relied on simple, as opposed to sufficient, decrease when accepting a step [33].

In other words, it is enough for the step Δ̃
(i)
k d

(i)
k to satisfy f(xk + Δ̃

(i)
k d

(i)
k ) < f(xk).

The trade-off is that when the condition for accepting a step is relaxed to admit sim-
ple decrease, further restrictions are required on the types of steps that are allowed.
These restrictions are detailed in Conditions 7, 8, and 9.

Condition 7 (choosing the directions for the rational lattice).
Let G = ∪∞

k=0 Gk.
1. The set G is finite and so can be written as G = {g(1), . . . , g(p)}.
2. Every vector g ∈ G is of the form g ∈ Zn, where Z is the set of integers.
3. Every vector h ∈ Hk is of the form h ∈ Zn.
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Condition 8 (expanding or contracting Δk for the rational lattice).
1. The scalar τ is a fixed rational number strictly greater than 1.
2. For all k ∈ S, φk is of the form φk = τ �k , where �k ∈ {0, . . . , L}, L ≥ 0.
3. For all k ∈ U , θk is of the form θk = τmk , where mk ∈ {M, . . . ,−1},

M ≤ −1.

Condition 9 (choosing the steps for the rational lattice).

Δ̃
(i)
k satisfies either Δ̃

(i)
k = 0 or Δ̃

(i)
k = τ m̃

(i)
k Δk, where m̃

(i)
k ∈ {M̃, . . . , 0},

M̃ ≤ 0.

While the list of requirements in Conditions 7, 8, and 9 looks onerous, they can be
satisfied in a straightforward fashion. A discussion of the reasons for these conditions
can be found in [19, sections 3.4, 4, and 5]. (A detailed discussion of the rational
lattice globalization strategy for the unconstrained case can be found in [15, section
3.7.2].) Here we make only a few pertinent observations.

First, a critical consequence of Conditions 7 and 8 is that when these two con-
ditions are enforced, along with the exact penalization strategy in (3.1), Theorem
5.1 in [19] ensures that all iterates lie on a rational lattice. This fact plays a crucial
role in guaranteeing (4.1) when only simple decrease is enforced. Condition 9 is a
straightforward extension that preserves the fact that all the iterates lie on a rational
lattice while relaxing the exact penalization strategy in (3.1) (an example is shown in
Figure 4.2).

Obtaining a finite G to satisfy part 1 of Condition 7 can be done by following the
procedure outlined in section 2.3 (i.e., if I(xk2 , εk2) = I(xk1 , εk1) for k2 > k1, then use
the same generators for T (xk2 , εk2) as were used for T (xk1 , εk1)). To satisfy part 2, a
standard assumption in the context of simple decrease is that the linear constraints
are rational, i.e., A ∈ Qm×n, where Q denotes the set of rational numbers. By clearing
denominators, it is then possible—with some care—to obtain a set of integral vectors
to generate all possible ε-tangent cones; see [19, section 8] for further discussion. Part
3 is enforced directly.

In Condition 8, the usual choice of τ is 2. The parameter φk typically is chosen to
be 1 so that �k = 0 for all k, satisfying the requirement placed on φk in Condition 8.
Usually θk is chosen to be 1

2 so that mk = −1 for all k, satisfying the requirement
placed on θk in Condition 8. The fact that τ−1 is the largest possible choice of θk
obviates the need to explicitly bound θk from above, as was required in Condition 6
for sufficient decrease.

Condition 9 says that it is possible to choose a partial step along a given direction
so long as the trial point remains on a rational lattice. One strategy is illustrated
in Figure 4.2. Starting with the situation illustrated on the left, along direction

d(1), Δ̃
(1)
k = 0.5Δk yields the feasible trial step Δ̃

(1)
k d(1) while along direction d(3),

Δ̃
(3)
k = 0.25Δk yields the feasible trial step Δ̃

(3)
k d(3), as illustrated on the right. These

choices for Δ̃
(1)
k and Δ̃

(3)
k correspond to choosing m

(1)
k = −1 and m

(3)
k = −2, with

τ = 2 and M̃ = −2.
The general strategy is to find the largest Δ̃

(i)
k (by finding the largest m

(i)
k ) such

that xk + Δ̃
(i)
k d

(i)
k ∈ Ω while satisfying Condition 9. To do so, either reduce Δk by a
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Fig. 4.2. Globalization via a rational lattice means that the trial points lie on the rational lattice
that exists as a consequence of Conditions 7–9. For this example note that while the two reduced
steps are near the boundary, the requirement that they remain on the rational lattice means that
they may not be on the boundary.

factor of 1/τ until

xk + τm
(i)
k Δkd

(i)
k ∈ Ω with m

(i)
k ≥ M̃(4.4)

or set Δ̃
(i)
k = 0 if it is not possible to satisfy (4.4) (for instance, when xk is on the

boundary of the feasible region then any step along d
(i)
k would be infeasible).

5. GSS algorithms for linearly constrained problems. We now formally
state two GSS algorithms for solving linearly constrained optimization problems. The
fundamental requirement for both algorithms is that at every iteration k, the set
of search directions Dk must include a set of generators Gk for the ε-normal cone
T (xk, εk)—hence the name generating set search methods. The primary requirements
on the GSS methods presented here are that they satisfy Conditions 1, 2, 3, and 4.
The differences in the two versions given depend on the type of globalization that is
used: sufficient decrease in Algorithm 5.1 versus simple decrease in Algorithm 5.2.
Sufficient decrease requires Conditions 5 and 6. Simple decrease admits the choice
ρ(·) ≡ 0, but requires Conditions 7, 8, and 9 in lieu of Conditions 5 and 6.

New in the statements of Algorithms 5.1 and 5.2, and to the analysis that follows,
is the way in which εk is defined, which has bearing on the construction of the critical
set Gk ⊆ Dk. Here we set εk = min{εmax, βmaxΔk}. This selection of εk differs from
that used in either [19] or [24]. Specifically, in [19] and Algorithm 2 of [24]—as well
as earlier in [25], in a slightly restricted form—Gk is required to contain generators
for T (xk, ε) for all ε in the interval [0, εmax], with εmax > 0. This means that Gk may
need to contain generators for multiple cones rather than a single cone. Since Δk can
be reduced only at the conclusion of an unsuccessful iteration, and an unsuccessful
iteration requires the verification of (4.3), there is practical incentive to try and keep
the cardinality of Gk manageable when the cost of computing f(x) for x ∈ Ω is
appreciable. Thus, Algorithm 1 in [24] first introduced the potential for a smaller set
of search directions: the set of search directions must exactly generate T (xk, εk)—and
only T (xk, εk). Using our notation, this means that Hk = ∅ for all k. Furthermore,
for Algorithm 1 in [24], εk is simply a parameter decreased at unsuccessful iterations
as opposed to the particular choice of εk given here.

Our requirement that the search directions include generators for T (xk, εk), with
εk = min{εmax, βmaxΔk}, is a compromise. On the one hand, it may significantly
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Algorithm 5.1. Linearly constrained GSS using a sufficient

decrease globalization strategy

Initialization.

Let x0 ∈ Ω be the initial guess.

Let Δtol > 0 be the tolerance used to test for convergence.

Let Δ0 > Δtol be the initial value of the step-length control parameter.

Let εmax > βmaxΔtol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Conditions 4 and 5.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmaxΔk}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1 and 2.

Step 2. If there exists dk ∈ Dk and a corresponding Δ̃k ∈ [0,Δk] satisfying
Condition 3 such that xk + Δ̃kdk ∈ Ω and

f(xk + Δ̃kdk) < f(xk) − ρ(Δk),

then:

– Set xk+1 = xk + Δ̃kdk.

– Set Δk+1 = φkΔk for any choice of φk ≥ 1.

Step 3. Otherwise, for every d ∈ Gk, either xk + Δkd 	∈ Ω or

f(xk + Δkd) ≥ f(xk) − ρ(Δk).

In this case:

– Set xk+1 = xk (no change).

– Set Δk+1 = θkΔk for some choice θk ∈ (0, 1)
satisfying Condition 6.

If Δk+1 < Δtol, then terminate.

Fig. 5.1. Linearly constrained GSS using a sufficient decrease globalization strategy.

decrease the number of directions in Gk over that needed when Gk is required to
contain generators for T (xk, ε) for all ε in the interval [0, εmax]. On the other hand, it
allows Hk 	= ∅—the set of search directions can be augmented in an effort to accelerate
the search—without adversely affecting the convergence guarantees for the algorithm.

Yoking the value of εk to the value of Δk has geometrical motivations. Once Δk

is small enough, so that εk = βmaxΔk, full steps along directions in Gk will be feasible,
as Figure 2.1 demonstrates.

There is an intuitive practical appeal to allowing—while not requiring—Dk to
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Algorithm 5.2. Linearly constrained GSS using a rational

lattice globalization strategy

Initialization.

Let x0 ∈ Ω be the initial guess.

Let Δtol > 0 be the tolerance used to test for convergence.

Let Δ0 > Δtol be the initial value of the step-length control parameter.

Let εmax > βmaxΔtol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Condition 4, e.g., ρ(·) ≡ 0 is typical.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmaxΔk}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1, 2, and 7.

Step 2. If there exists dk ∈ Dk and a corresponding Δ̃k ∈ [0,Δk] satisfying
Conditions 3 and 9 such that xk + Δ̃kdk ∈ Ω and

f(xk + Δ̃kdk) < f(xk) − ρ(Δk),

then:

– Set xk+1 = xk + Δ̃kdk.

– Set Δk+1 = φkΔk for a choice of φk ≥ 1
satisfying Condition 8.

Step 3. Otherwise, for every d ∈ Gk, either xk + Δkd 	∈ Ω or

f(xk + Δkd) ≥ f(xk) − ρ(Δk).

In this case:

– Set xk+1 = xk (no change).

– Set Δk+1 = θkΔk for some choice θk ∈ (0, 1)
satisfying Condition 8.

If Δk+1 < Δtol, then terminate.

Fig. 5.2. Linearly constrained GSS using a rational lattice globalization strategy.

include more search directions. Note that if T (xk, εk) 	= {0}, then the directions
in Gk will move the search along directions that are in some sense “parallel” (the
situation is more complicated for n > 2) to the faces of the polyhedron that have
been identified by the working set. This is best seen in the illustration on the left in
Figure 2.1. Intuitively, it makes sense to also allow the search to move toward the
faces of the polyhedron that have been identified by the working set—particularly
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when the solution lies on the boundary of the feasible region. Such intuition is borne
out by the numerical results reported in [17].

Before proceeding, we note a technical difference between the presentation of the
algorithms in Algorithms 5.1 and 5.2 and what is assumed for the analysis in section 6.
In practice, GSS algorithms terminate when the step-length control parameter Δk falls
below a given threshold Δtol > 0. Because this is important to any implementation,
we have included it in the statement of the algorithm. In Theorems 6.3, 6.4, and 6.5,
however, we assume that the iterations continue ad infinitum (i.e., in the context of
the analysis, the reader should assume Δtol = 0).

5.1. GSS using a sufficient decrease condition. A linearly constrained GSS
algorithm based on a sufficient decrease globalization strategy is presented in Algo-
rithm 5.1. Using a sufficient decrease globalization strategy, as outlined in section
4.1, requires that we enforce two particular conditions. Condition 5 ensures that
ρ(Δk) = 0 only when Δk = 0. Condition 6 ensures that there is sufficient reduction
on Δk at unsuccessful iterations.

The only assumption on f necessary to show that some subsequence of {Δk}
converges to zero is that f be bounded below in the feasible region.

Theorem 5.1 (see Theorem 3.4 of [15]). Suppose f is bounded below on Ω. Then
for a linearly constrained GSS method using a sufficient decrease globalization strategy
satisfying Conditions 4, 5, and 6 (as outlined in Algorithm 5.1), lim infk→∞ Δk = 0.

5.2. GSS using a rational lattice. A linearly constrained GSS algorithm
based on a rational lattice globalization strategy is presented in Algorithm 5.2. The
choice ρ(·) ≡ 0 is standard for the rational lattice globalization strategy, which means
only simple decrease, i.e., f(xk + Δ̃kdk) < f(xk), is required. We note, however, that
a sufficient decrease condition may be employed in conjunction with a rational lattice
globalization strategy; see [15, section 3.7.2]. The choice ρ(·) ≡ 0 also means that
Condition 4 is satisfied automatically. The trade-off for using simple decrease is that
additional conditions must be imposed on the choice of admissible Dk (Condition 7),
φk and θk (Condition 8), and Δ̃k (Condition 9).

Using a rational lattice globalization strategy, to show that some subsequence of
the step-length control parameters goes to zero, the only assumption placed on f is
that the set F = { x ∈ Ω | f(x) ≤ f(x0) } be bounded. This is a stronger condition
on f than is needed when using a sufficient decrease globalization strategy, where all
that is required is that f be bounded below. The analysis for the rational lattice
globalization strategy requires the sequence {xk} to remain in a bounded set so as
to ensure that there is a finite number of lattice points to consider. We could adopt
this weaker assumption, though it is not clear how it would be enforced in practice.
Instead, assuming that F is bounded guarantees this requirement.

Theorem 5.2 (see Theorem 6.5 of [19]). Assume that F = {x∈Ω | f(x)≤ f(x0)}
is bounded and that A ∈ Qm×n, where Q denotes the set of rational numbers. Then
for a linearly constrained GSS method using a rational lattice globalization strategy
satisfying Conditions 4, 7, 8, and 9 (as outlined in Algorithm 5.2), lim infk→∞ Δk =
0.

6. Stationarity results. At unsuccessful iterations of the linearly constrained
GSS methods outlined in Algorithms 5.1 and 5.2, we can bound the measure of sta-
tionarity χ(xk) in terms of Δk. To do so, we make the following assumptions.
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Assumption 6.1. The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 6.2. The gradient of f is Lipschitz continuous with constant
M on Ω.

If Assumptions 6.1 and 6.2 hold, then there exists γ > 0 such that for all x ∈ F ,

‖∇f(x) ‖ < γ.(6.1)

We then have the following results for the algorithms in Algorithms 5.1 and 5.2.
Recall from section 2.1 that given a convex cone K and any vector v, we denote the
projection of v onto K by vK .

Theorem 6.3. Suppose that Assumption 6.2 holds. Consider the linearly con-
strained GSS algorithms given in Algorithms 5.1 and 5.2, both of which satisfy Con-
ditions 1, 2, and 3. If k ∈ U and εk satisfies εk = βmaxΔk, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤ 1

κmin

(
MΔkβmax +

ρ(Δk)

Δkβmin

)
.(6.2)

Here, κmin is from Condition 1, M is from Assumption 6.2, and βmax and βmin are
from Condition 2.

Proof. Clearly, we need only consider the case when [−∇f(xk)]T (xk,εk) 	= 0. Con-
dition 1 guarantees a set Gk that generates T (xk, εk). By (2.1) (with K = T (xk, εk)

and v = −∇f(xk)) there exists some d̂ ∈ Gk such that

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ‖ d̂ ‖ ≤ −∇f(xk)
T d̂.(6.3)

Condition 3 and the fact that iteration k is unsuccessful tell us that

f(xk + Δkd) ≥ f(xk) − ρ(Δk) for all d ∈ Gk for which xk + Δkd ∈ Ω.

Condition 2 ensures that for all d ∈ Gk, ‖Δkd ‖ ≤ Δkβmax and, by assumption,
Δkβmax = εk, so we have ‖Δkd ‖ ≤ εk for all d ∈ Gk. Proposition 2.2 then assures us
that xk + Δkd ∈ Ω for all d ∈ Gk. Thus,

f(xk + Δkd) − f(xk) + ρ(Δk) ≥ 0 for all d ∈ Gk.(6.4)

Meanwhile, since the gradient of f is assumed to be continuous (Assumption 6.2),
we can apply the mean value theorem to obtain, for some αk ∈ (0, 1),

f(xk + Δkd) − f(xk) = Δk∇f(xk + αkΔkd)
T d for all d ∈ Gk.

Putting this together with (6.4),

0 ≤ Δk∇f(xk + αkΔkd)
T d + ρ(Δk) for all d ∈ Gk.

Dividing through by Δk and subtracting ∇f(xk)
T d from both sides yields

−∇f(xk)
T d ≤ (∇f(xk + αkΔkd) −∇f(xk))

T
d + ρ(Δk)/Δk for all d ∈ Gk.
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Since ∇f(x) is Lipschitz continuous (Assumption 6.2) and 0 < αk < 1, we obtain

−∇f(xk)
T d ≤ MΔk‖ d ‖2 + ρ(Δk)/Δk for all d ∈ Gk.(6.5)

Since (6.5) holds for all d ∈ Gk, (6.3) tells us that for some d̂ ∈ Gk,

κ(Gk) ‖ [−∇f(xk)]T (xk,εk) ‖ ≤ MΔk‖ d̂ ‖ +
ρ(Δk)

Δk ‖ d̂ ‖
.

Using the bounds on ‖ d̂ ‖ in Condition 2,

‖ [−∇f(xk)]T (xk,εk) ‖ ≤ 1

κ(Gk)

(
MΔkβmax +

ρ(Δk)

Δkβmin

)
.

The theorem then follows from the fact that κ(Gk) ≥ κmin (Condition 1).
Theorem 6.4 relates the measure of stationarity χ(xk) to the step-length control

parameter Δk. Before we proceed, we define the following constant (recall that κ(·)
is defined in (2.1)):

νmin = min
{
κ(A) : A = ∪i∈I(x,ε){ai}, x ∈ Ω, ε ≥ 0, I(x, ε) 	= ∅

}
> 0.(6.6)

We know that νmin > 0 because there are no more than 2m possibilities for A.
Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Consider the linearly

constrained GSS algorithms given in Algorithms 5.1 and 5.2, both of which satisfy
Conditions 1, 2, and 3. If k ∈ U and εk = βmaxΔk, then

χ(xk) ≤
(

M

κmin
+

γ

νmin

)
Δk βmax +

1

κmin βmin

ρ(Δk)

Δk
.(6.7)

Here, κmin is from Condition 1, νmin is from (6.6), M is from Assumption 6.2, γ is
from (6.1), and βmax and βmin are from Condition 2.

Proof. Since εk = Δkβmax, Proposition B.2 tells us that

χ(xk) ≤ ‖ [−∇f(xk)]T (xk,εk) ‖ +
Δkβmax

νmin
‖ [−∇f(xk)]N(xk,εk) ‖.

Furthermore, the bound on ‖ [−∇f(xk)]T (xk,εk) ‖ from Theorem 6.3 holds. The pro-
jection onto convex sets is contractive, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ ‖∇f(xk) ‖. Un-
der Assumptions 6.1 and 6.2, (6.1) holds, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ γ. The result
follows.

If we choose either ρ(Δ) ≡ 0 or ρ(Δ) = αΔp with α > 0 and p ≥ 2, then we
obtain an estimate of the form χ(xk) = O(Δk).

The constants M , γ, and νmin in (6.7) are properties of the linearly constrained
optimization problem. The remaining quantities—the bounds on the lengths of the
search directions βmin and βmax, as well as κmin—are under the control of the algo-
rithm.

Before continuing, we observe that the Lipschitz assumption (Assumption 6.2)
can be relaxed. A similar bound can be obtained assuming only continuous differ-
entiability of f . Let ω denote the following modulus of continuity of ∇f(x): given
x ∈ Ω and r > 0,

ω(x, r) = max {‖∇f(y) −∇f(x) ‖ | y ∈ Ω, ‖ y − x ‖ ≤ r} .
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Then the proof of Theorem 6.4 yields the bound

χ(xk) ≤
1

κmin
ω(xk,Δkβmax) +

γ

νmin
Δk βmax +

1

κmin βmin

ρ(Δk)

Δk
.

Returning to Theorem 6.4, if we recall from Theorems 5.1 and 5.2 that the step-
length control parameter Δk is manipulated explicitly by GSS methods in a way that
ensures lim infk→∞ Δk = 0, then an immediate corollary is the following first-order
convergence result.

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Consider either
(i) the linearly constrained GSS algorithm in Algorithm 5.1, which satisfies Con-

ditions 1, 2, 3, 4, 5, and 6, or
(ii) the linearly constrained GSS algorithm in Algorithm 5.2, which satisfies Con-

ditions 1, 2, 3, 4, 7, 8, and 9, with the additional assumption that A is
rational.

For both algorithms we have lim infk→+∞ χ(xk) = 0.

7. Using Δk to terminate GSS methods after unsuccessful iterations.
We now present some numerical illustrations of the practical implications of Theo-
rem 6.4. We show that Δk can be used as a reasonable measure of stationarity when
implementing GSS methods to solve linearly constrained minimization problems. The
results in section 6 serve as a justification for terminating the search when Δk < Δtol.

To demonstrate that Δk is a reasonable measure of stationarity, we show the fol-
lowing results from experiments using an implementation of a GSS method for solving
linearly constrained optimization problems (a thorough discussion of the implemen-
tation, as well as further numerical results, can be found in [17]).

The first test problem is the following quadratic program (QP) for n = 8:

minimize f(x) =
∑n

j=1 j
2x2

j

subject to 0 ≤ x ≤ 1,∑n
j=1 xj ≥ 1,

(7.1)

where xj is the jth component of the vector x. The last constraint is binding at the
solution. The second test problem is posed on a pyramid in R3:

minimize f(x) =
∑3

j=1[(4 − j)2(xj − cj)
2 − xj ]

subject to x3 ≥ 0,

x1 + x2 + x3 ≤ 1,
x1 − x2 + x3 ≤ 1,

−x1 + x2 + x3 ≤ 1,
−x1 − x2 + x3 ≤ 1,

(7.2)

with c = (0.01, 0.01, 0.98)T . Again, xj and cj are the jth components of the vectors x
and j, respectively. The solution is at c, which is near the apex of the pyramid. The
algorithm actually visits the apex, which is a degenerate vertex insofar as there are
four constraints in three variables that meet there.

These two problems were solved using the implementation of Algorithm 5.1 re-
ported in [17]. The forcing function was ρ(Δ) = 10−4Δ2. The set of search directions
Dk contained both the set Gk, the generators for the ε-tangent cone T (xk, εk), as well
as the set Hk, which contained the nonzero generators for the ε-normal cone N(xk, εk).
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All search directions were normalized, so βmin = βmax = 1. For these choices, Theo-
rem 6.4 says that χ(xk) = O(Δk) at unsuccessful iterations when Δk ≤ εmax.

We used θk = 1
2 and φk = 1 for all k. After any unsuccessful iteration, we

recorded the value of Δk and computed the value of χ(xk). These values are reported
in Table 7.1 for unsuccessful iterations with εk = Δkβmax.

Table 7.1

GSS runs showing decrease in Δk versus the value of χ(xk) at unsuccessful iterations.

Δk χ(xk)

0.100000000000 0.762038045731
0.050000000000 0.719781449029
0.025000000000 0.683858024464
0.012500000000 0.522963684221
0.006250000000 0.147769116216
0.003125000000 0.009094010555
0.001562500000 0.009042346694
0.000781250000 0.005424114678
0.000390625000 0.002291442563
0.000195312500 0.000803137090
0.000097656250 0.000616656194
0.000048828125 0.000583197890
0.000024414063 0.000134935864
0.000012207031 0.000214535279
0.000006103516 0.000122058457
0.000003051758 0.000033834262
0.000001525879 0.000014798430
0.000000762939 0.000002976275
0.000000381470 0.000003506102
0.000000190735 0.000001047463

(a) The QP in (7.1).

Δk χ(xk)

0.100000000000 0.009296268053
0.050000000000 0.009296268053
0.025000000000 0.068321041838
0.012500000000 0.001889009252
0.006250000000 0.000193017831
0.003125000000 0.000193017831
0.001562500000 0.003786874320
0.000781250000 0.003080612089
0.000390625000 0.000016499610
0.000195312500 0.000016499610
0.000097656250 0.000004481178
0.000048828125 0.000004481178
0.000024414063 0.000001550420
0.000012207031 0.000007616742
0.000006103516 0.000007616742
0.000003051758 0.000001501552
0.000001525879 0.000000807763
0.000000762939 0.000000008203
0.000000381470 0.000000008203
0.000000190735 0.000000008203

(b) The QP in (7.2).

The point of the results reported in Table 7.1 is not to demand close scrutiny
of each entry but rather to demonstrate the trend in the quantities measured. We
clearly see the linear relationship between Δk and χ(xk) that Theorem 6.4 tells us to
expect. These results are consistent with findings for the unconstrained case [8] as
well as with a long-standing recommendation for using Δk as a stopping criterion for
direct search methods (see [14, 3, 32]).

One practical benefit of using Δk as a measure of stationarity is that it is already
present in GSS algorithms; no additional computation is required.

We close with the observation that the effectiveness of Δk as a measure of station-
arity clearly depends on the value of the constants in the bound in (6.7). For instance,
if f is highly nonlinear, so that the Lipschitz constant M is large, then using Δk to
estimate χ(xk) might be misleading. While GSS methods cannot control M , γ, or
νmin, which depend on the linearly constrained optimization problem, a careful imple-
mentation of GSS methods for solving linearly constrained optimization problems can
control the remaining constants in (6.7). Thus a careful implementation can ensure
that Δk is a useful measure of stationarity except when f is highly nonlinear (i.e., M
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is large with respect to ‖∇f ‖) or A is ill-conditioned.

8. Conclusions. The results we have presented are useful in several ways. First,
we present a new prescription for how the search directions should conform to the
boundary near an iterate xk. Theorems 6.3 and 6.4 bring out many of the elements
common to the approaches described in [18, 19] and [23, 24]. Although the globaliza-
tion approaches that ensure lim infk→∞ Δk = 0 differ, the same analysis shows that
for both classes of algorithms,

χ(xk) = O(Δk).

This result does not depend on the method of globalization.
Second, the results presented here give theoretical support for terminating GSS

methods for linearly constrained optimization when Δk falls below some tolerance.
Under the assumptions of Theorem 6.4, at the subsequence of unsuccessful iterations
(k ∈ U) we have χ(xk) = O(Δk) as Δk → 0. At the same time, Theorem 6.4 also sug-
gests that this stopping criterion may be unsuitable if the objective is highly nonlinear,
making clear the need for direct search methods, like all optimization algorithms, to
account for scaling.

Theorem 6.3 underlies the use of linearly constrained GSS methods in the aug-
mented Lagrangian framework given in [5]. The latter proceeds by successive ap-
proximate minimization of an augmented Lagrangian. The stopping criterion in the
subproblems involves the norm of the projection onto T (xk, ωk) of the negative gra-
dient of the augmented Lagrangian, for a parameter ωk ↓ 0. In the direct search
setting the gradient is unavailable. However, Theorem 6.3 enables us to use Δk as an
alternative measure of stationarity in the subproblems. Details appear in [16].

Appendix A. Criticality measure for first-order constrained stationar-
ity. Here we discuss χ(x) and ‖ q(x) ‖ in more detail. Because these measures are not
novel, we have relegated their discussion to an appendix.

For x ∈ Ω, progress toward a KKT point of (1.1) is measured by

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.(A.1)

This measure was originally proposed in [5] and is discussed at length in section 12.1.4
of [6], where the following properties are noted:

1. χ(x) is continuous,
2. χ(x) ≥ 0, and
3. χ(x) = 0 if and only if x is a KKT point for (1.1).

Showing that χ(xk) → 0 as k → ∞ for a subsequence of iterates k constitutes a global
first-order stationarity result.

To help better understand this measure, the w’s that define χ(x) in (A.1) are
illustrated in Figure A.1 for several choices of −∇f(x). Conn, Gould, and Toint
[6] observe that χ(x) can be interpreted as the progress that can be made on a
first-order model at x in a ball of radius unity with the constraint of preserving
feasibility. They go on to observe that χ(x) is a direct generalization of ‖∇f(x) ‖; in
fact, χ(x) = ‖∇f(x) ‖ whenever Ω = Rn or x−∇f(x) ∈ Ω.

The work in [19, 20] used the measure q(x) defined in (1.5) (this quantity appears
in [6] as equation (12.1.19)), but the resulting stationarity result is unsatisfying in the
case of general linear constraints. The quantity χ(x) turns out to be easier to work
with than q(x). The latter involves a projection onto the feasible polyhedron, and if
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Fig. A.1. How the w in (A.1) varies with −∇f(x) when x−∇f(x) �∈ Ω.

the constraints binding at the projection do not correspond to the constraints near x,
technical difficulties ensue in relating q(x) to the geometry of the feasible region near
x. This is not the case with χ(x).

Appendix B. Geometric results on cones and polyhedra. Here we present
geometrical results having to do with our use of χ(·) as a measure of stationarity.

The first proposition says that if one can move from x to x+v and remain feasible,
then v cannot be too outward-pointing with respect to the constraints near x. Recall
from section 2.1 that given a convex cone K and any vector v, there is a unique closest
point of K to v, the projection of v onto K, which we denote by vK . Thus vN(x,ε) is
the projection of v onto the ε-normal cone N(x, ε) while vT (x,ε) is the projection of v
onto the ε-tangent cone T (x, ε).

Proposition B.1. If x ∈ Ω and x + v ∈ Ω, then for any ε ≥ 0, ‖ vN(x,ε) ‖ ≤
ε/νmin, where νmin is the constant from (6.6).

Proof. Let N = N(x, ε). The result is immediate if vN = 0, so we need
only consider the case when vN 	= 0. Recall that N is generated by the outward-
pointing normals to the binding constraints within distance ε of x; thus, the set
A = { ai | i ∈ I(x, ε) } generates N . A simple calculation shows that the distance
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from x to
{
y | aTi y = bi

}
is (bi − aTi x)/‖ ai ‖, so it follows that

bi − aTi x

‖ ai ‖
≤ ε for all i ∈ I(x, ε).

Meanwhile, since x + v ∈ Ω, we have

aTi x + aTi v ≤ bi for all i.

The preceding two relations then lead to

aTi v ≤ bi − aTi x ≤ ε ‖ ai ‖ for all i ∈ I(x, ε).

Since N is generated by A ⊆ A = {a1, . . . , am} and vN 	= 0, by (2.1) and (6.6),

νmin ‖ vN ‖ ≤ max
i∈I(x,ε)

vTai
‖ ai ‖

≤ max
i∈I(x,ε)

ε ‖ ai ‖
‖ ai ‖

= ε.

For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v.(B.1)

Note from (A.1) that χ(x) = χ̂(x;−∇f(x)). We use v in (B.1) to emphasize that the
following results are purely geometric facts about cones and polyhedra.

The following proposition relates χ̂(x; v) to the projection of v onto the cones
T (x, ε) and N(x, ε). Roughly speaking, it says that if ε > 0 is small, so that we are
only looking at a portion of the boundary very near x, then the projection of v onto
T (x, ε) (i.e., the portion of v pointing into the interior of the feasible region) cannot
be small unless χ̂(x; v) is also small.

Proposition B.2. If x ∈ Ω, then for all ε ≥ 0,

χ̂(x; v) ≤ ‖ vT (x,ε) ‖ +
ε

νmin
‖ vN(x,ε) ‖,

where νmin is the constant from (6.6).
Proof. Let N = N(x, ε) and T = T (x, ε). Writing v in terms of its polar decom-

position, v = vN + vT , we obtain

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v ≤ max
x+w∈Ω
‖w ‖≤1

wT vT + max
x+w∈Ω
‖w ‖≤1

wT vN .

For the first term on the right-hand side we have

max
x+w∈Ω
‖w ‖≤1

wT vT ≤ ‖ vT ‖.

Meanwhile, for any w we have

wT vN = (wT + wN )T vN ≤ wT
NvN

since wT
T vN ≤ 0. Thus,

max
x+w∈Ω
‖w ‖≤1

wT vN ≤ max
x+w∈Ω
‖w ‖≤1

‖wN ‖ ‖ vN ‖.
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However, since x + w ∈ Ω, Proposition B.1 tells us that

‖wN ‖ ≤ ε

νmin
.

Therefore,

χ̂(x; v) ≤ ‖ vT ‖ +
ε

νmin
‖ vN ‖.
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CONVEX APPROXIMATIONS OF CHANCE CONSTRAINED
PROGRAMS∗

ARKADI NEMIROVSKI† AND ALEXANDER SHAPIRO†

Abstract. We consider a chance constrained problem, where one seeks to minimize a convex ob-
jective over solutions satisfying, with a given close to one probability, a system of randomly perturbed
convex constraints. This problem may happen to be computationally intractable; our goal is to build
its computationally tractable approximation, i.e., an efficiently solvable deterministic optimization
program with the feasible set contained in the chance constrained problem. We construct a general
class of such convex conservative approximations of the corresponding chance constrained problem.
Moreover, under the assumptions that the constraints are affine in the perturbations and the en-
tries in the perturbation vector are independent-of-each-other random variables, we build a large
deviation-type approximation, referred to as “Bernstein approximation,” of the chance constrained
problem. This approximation is convex and efficiently solvable. We propose a simulation-based
scheme for bounding the optimal value in the chance constrained problem and report numerical
experiments aimed at comparing the Bernstein and well-known scenario approximation approaches.
Finally, we extend our construction to the case of ambiguous chance constrained problems, where
the random perturbations are independent with the collection of distributions known to belong to
a given convex compact set rather than to be known exactly, while the chance constraint should be
satisfied for every distribution given by this set.

Key words. stochastic programming, chance constraints, convex programming, Monte Carlo
sampling, scenario generation, large deviation bounds, ambiguous chance constrained programming
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1. Introduction. Let us consider the following optimization problem:

Min
x∈X

f(x) subject to Prob
{
F (x, ξ) ≤ 0

}
≥ 1 − α.(1.1)

Here ξ is a random vector with probability distribution P supported on a set Ξ ⊂ Rd,
X ⊂ Rn is a nonempty convex set, α ∈ (0, 1), f : Rn → R is a real valued convex
function, F = (f1, . . . , fm) : Rn × Ξ → Rm, and Prob(A) denotes probability of
an event A. Probability constraints of the form appearing in (1.1) arise naturally
in various applications and are called chance (or probabilistic) constraints. Such
constraints can be viewed as a compromise with the requirement of enforcing the
constraints F (x, ξ) ≤ 0 for all values ξ ∈ Ξ of the uncertain data vector, which
could be too costly or even impossible. Chance constrained optimization problems
were introduced in Charnes, Cooper, and Symonds [8], Miller and Wagner [17], and
Prékopa [21].

Aside from potential modelling problems with formulation (1.1) (e.g., the neces-
sity to know the probability distribution of the random vector ξ, which in practice is
not always easy), there could be serious problems with numerical processing of chance
constraints. First, it may happen that the only way to check whether or not a given
chance constraint is satisfied at a given point x is to use Monte Carlo simulation, and
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this becomes too costly when α is small. The second potential difficulty is that even
with nice, say affine in x and in ξ, functions F (x, ξ), the feasible set of a chance con-
straint may happen to be nonconvex, which makes optimization under this constraint
highly problematic. It should be mentioned that there are generic situations where
the latter difficulty does not occur. First, there exists a wide family of logarithmically
concave distributions extensively studied by Prékopa [22]; he shows, in particular, that
whenever the distribution of a random vector ξ is logarithmically concave, the feasible
set of a chance constraint Prob{ξ : Ax ≥ ξ} ≥ 1 − ε (A is a deterministic matrix) or,
more generally, the feasible set of a chance constraint Prob{ξ : (x, ξ) ∈ X} ≥ 1− ε (X
is a deterministic convex set) is convex. There is also a recent result, due to Lagoa,
Li, and Sznaier [16], which states that the feasible set of a scalar chance constraint

Prob
{
aTx ≤ b

}
≥ 1 − ε(1.2)

is convex, provided that the vector (aT , b)T of the coefficients has symmetric loga-
rithmically concave density and ε < 1/2. Note, however, that in order to process a
chance constraint efficiently, we need both efficient computability of the probability
in question and the convexity of the corresponding feasible set. This combination
seems to be a “rare commodity.”1 As far as chance constraint (1.2) is concerned, the
only case known to us when both these requirements are satisfied is the one where the
random vector (aT , b)T is the image, under deterministic affine transformation, of a
random vector with rotationally invariant distribution; cf. [16]. The simplest case of
this situation is the one when (aT , b)T is a normally distributed random vector. There
are also other cases (see, e.g., [23, 11]) where a chance constraint can be processed
efficiently, but in general the problem still persists; there are numerous situations
where the chance constrained version of a randomly perturbed constraint F (x, ξ) ≤ 0,
even as simple-looking a one as the bilinear constraint (1.2), is “severely computation-
ally intractable.” Whenever this is the case, a natural course of action is to look for
tractable approximations of the chance constraint, i.e., for efficiently verifiable suffi-
cient conditions for its validity. In addition to being sufficient, such a condition should
define a convex and “computationally tractable” set in the x-space, e.g., should be
represented by a system of convex inequalities G(x, u) ≤ 0 in x and, perhaps, in ad-
ditional variables u ∈ Rs, with efficiently computable G(x, u). Whenever this is the
case, the problem

min
x∈X,u∈Rs

f(x) subject to G(x, u) ≤ 0(1.3)

is a convex programming problem with efficiently computable objective and con-
straints and as such it is efficiently solvable.2 This problem provides a conservative
approximation of the chance constrained problem of interest, meaning that the pro-
jection of the feasible set of (1.3) onto the space of x-variables is contained in the
feasible set of the chance constrained problem (1.1), so that an optimal solution to
(1.3) is feasible suboptimal solution to (1.1).

A general way to build computationally tractable approximations (not necessarily
conservative) of chance constrained problems is offered by the scenario approach based

1For example, let b in (1.2) be deterministic and a be uniformly distributed in the unit box. In
this case, the feasible set of (1.2) is convex, provided that ε < 1/2, but the left-hand side in (1.2) is
difficult to compute: it is known (see Khachiyan [15]) that it cannot be computed within accuracy ε
in time polynomial in dim a and ln(1/ε), unless P=NP.

2For a detailed description of tractability issues in continuous optimization and their relation to
convexity, see, e.g., [4, Chapter 5].
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on Monte Carlo sampling techniques. That is, one generates a sample ξ1, . . . , ξN of
N (independent) realizations of the random vector ξ and approximates (1.1) with the
problem

(PN ) min
x∈X

f(x) subject to F (x, ξν) ≤ 0, ν = 1, . . . , N.

The main advantage of this approach is its generality: it imposes no restrictions on
the distribution of ξ and on how the data enters the constraints. In order to build
(PN ) there is no need even to know what the distribution of ξ is; all we need is to be
able to sample from this distribution. Last, but not least, is the “tractability status”
of the approximation. The approximation (PN ) is efficiently solvable, provided that
the function F (x, ξ) is componentwise convex in x and is efficiently computable, and
the sample size N is not too large.

An important theoretical question related to the scenario approximation is the
following. The approximation itself is random and its solution may not satisfy the
chance constraints. The question is, How large should the sample size N be in order
to ensure, with probability of at least 1 − δ, that the optimal solution to (PN ) is
feasible for the problem of interest (1.1)? To some extent this question was resolved
in recent papers of Calafiore and Campi [6, 7] and de Farias and Van Roy [10]. Their
results were then extended in [14] to a more complicated case of ambiguous chance
constraints (that is, the case when the “true” distribution of ξ is assumed to belong to
a given family of distributions rather than to be known exactly, while the samples are
drawn from a specified reference distribution). The answer to the outlined question,
as given in [7], is that if F (x, ξ) is componentwise convex in x, then, under mild
additional conditions, with the sample size N satisfying

N ≥ N∗ := Ceil
[
2nα−1 log (12/α) + 2α−1 log (2/δ) + 2n

]
,(1.4)

the optimal solution to (PN ) is, with a probability of at least 1 − δ, feasible for the
chance constrained problem (1.1). A remarkable feature of this result is that, similar
to the scenario approximation itself it, is completely distribution-free.

Aside from the conservativeness (which is a common drawback of all approxima-
tions), an intrinsic drawback of the scenario approximation based on (1.4) is that, as
is easily seen, the sample size N should be at least inverse proportional to the risk α
and thus could be impractically large when the risk is small. Moreover, the sample
size as given by (1.4) (and by all other known results of this type) grows linearly with
n, which makes it difficult to apply the approach already to medium-size problems
(with α = 0.01 and n = 200, δ = 0.01, the estimate (1.4) results in N∗ = 285, 063).
Note that for a properly modified scenario approximation, “bad” dependence of N on
α given by (1.4) can be replaced with

N = O(1)
[
log(1/δ) + dm2 log(d log(1/α))

]
,(1.5)

provided that F (x, ξ) is affine in ξ and ξ has a “nice” distribution, e.g., uniform in a
box, or on the vertices of a box, or normal [19].

An alternative to the scenario approximation is an approximation based on “an-
alytical” upper bounding of the probability for the randomly perturbed constraint
F (x, ξ) ≤ 0 to be violated. The simplest approximation scheme of this type was
proposed in [2] for the case of a single affine in ξ inequality

f0(x) +
∑
j

ξjfj(x) ≤ 0(1.6)
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(cf., (1.2)). Assuming that ξj are independent-of-each-other random variables with
zero means varying in segments [−σi, σi], it is easy to see that if x satisfies the con-
straint

f0(x) + Ω

⎛⎝ d∑
j=1

σ2
j f

2
j (x)

⎞⎠1/2

≤ 0,(1.7)

where Ω > 0 is a “safety” parameter, then x violates the randomly perturbed con-
straint (1.6) with probability of at most exp

{
−κΩ2

}
, where κ > 0 is an absolute

constant (as we shall see in section 6, one can take κ = 1/2). It follows that if all
components fi(x, ξ) are of the form

fi(x, ξ) = fi0(x) +

d∑
j=1

ξjfij(x),(1.8)

then the optimization program

min
x∈X

f(x) subject to fi0(x) + Ω

⎛⎝ d∑
j=1

σ2
j f

2
ij(x)

⎞⎠1/2

≤ 0, i = 1, . . . ,m,(1.9)

with Ω :=
√

2 log(mα−1), is an approximation of the chance constrained problem
(1.1). This approximation is convex, provided that all fij(x) are convex and every
one of the functions fij(x) with j ≥ 1 is either affine or nonnegative. Another, slightly
more convenient computationally, analytical approximation of randomly perturbed
constraint (1.6) was proposed in [5]. Analytical approximations of more complicated
chance constraints, notably a randomly perturbed conic quadratic inequality, are pre-
sented in [18]. An advantage of the “analytical” approach as compared to the scenario
one is that the resulting approximations are deterministic convex problems with sizes
independent of the required value of risk (reliability) α, so that these approximations
remain practical also in the case of very small values of α. On the negative side,
building an analytical approximation requires structural assumptions on F (x, ξ) and
on the stochastic nature of ξ (in all known constructions of this type, ξj should be
independent of each other and possess “nice” distributions).

In this paper, we develop a new class of analytical approximations of chance
constraints, referred to as Bernstein approximations.3 Our major assumptions are
that the components of F (x, ξ) are of the form (1.8) with convex fij(x), and ξj
are independent of each other and possess distributions with efficiently computable
moment generating functions. Besides this, we assume that for every j ≥ 1 for which
not all of the functions fij(x), i = 1, . . . ,m, are affine, the corresponding random
variable ξj is nonnegative. Under these assumptions, the approximation we propose
is an explicit convex program.

After the initial version of this paper was released, we became aware of the paper
of Pinter [20] proposing (although not in full generality) Bernstein approximation,
even in its advanced “ambiguous” form (see section 6 below). The only (but, we
believe, quite important) step ahead in what follows as compared to Pinter’s paper is

3The construction is based on the ideas used by S. N. Bernstein when deriving his famous
inequalities for probabilities of large deviations of sums of independent random variables.
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that with our approach the natural scale parameter of Bernstein approximation (“h”
in Pinter’s paper) becomes a variable rather than an ad hoc chosen constant (as is the
case in [20]). Specifically, we manage to represent Bernstein bound in a form which is
jointly convex in the original decision variables and the scale parameter, which allows
one to deal, staying all the time within the convex programming framework, with the
bound which is pointwise optimized in the scale parameter.

The rest of the paper is organized as follows. In section 2 we introduce a class
of convex conservative approximations of (1.1). Bernstein approximation of (1.1) is
derived and discussed in section 3. In section 4, we propose a simple simulation-based
scheme for bounding the true optimal value in (1.1), which allows one to evaluate nu-
merically the quality (that is, the conservatism) of various approximations. In section
5, we report some preliminary numerical experiments with Bernstein approximation.
Our numerical results demonstrate that this approximation compares favorably with
the scenario one. In concluding section 6, we extend Bernstein approximation to the
case of ambiguous uncertainty model, where the tuple of distributions of (mutually
independent) components ξj of ξ is assumed to belong to a given convex compact set
rather than to be known exactly (cf., [14], where similar extensions of the scenario
approach are considered).

2. Convex approximations of chance constrained problems. In this sec-
tion we discuss convex approximations of chance constrained problems of the form
(1.1). As was mentioned in the introduction, chance constrained problems, even
simple-looking ones, are often computationally intractable. A natural way to over-
come, to some extent, this difficulty is to replace chance constraint problem (1.1)
with a tractable approximation. That is, with an efficiently solvable problem of the
form (1.3). To this end we require the function G(x, u) to be convex in (x, u) and
efficiently computable. We also would like the constraints G(x, u) ≤ 0 to be con-
servative, in the sense that if for x ∈ X and u it holds that G(x, u) ≤ 0, then
Prob

{
F (x, ξ) ≤ 0

}
≥ 1−α. Thus, feasible solutions to (1.3) induce feasible solutions

to (1.1), so that the optimal solution of the approximation is a feasible suboptimal
solution of the problem of interest. If these two conditions hold, we refer to (1.3) as a
convex conservative approximation of the true problem (1.1). Our goal in this section
is to construct a special class of convex conservative approximations.

Let us consider first the scalar case of m = 1, i.e., F : Rn × Ξ → R. Then the
probabilistic (chance) constraint of problem (1.1) is equivalent to the constraint

p(x) := Prob
{
F (x, ξ) > 0

}
≤ α.(2.1)

By 1lA we denote the indicator function of a set A, i.e., 1lA(z) = 1 if z ∈ A and
1lA(z) = 0 if z �∈ A.

Let ψ : R → R be a nonnegative valued, nondecreasing, convex function satisfying
the following property:

(∗) ψ(z) > ψ(0) = 1 for any z > 0.
We refer to function ψ(z) satisfying the above properties as a (one-dimensional) gen-
erating function. It follows from (∗) that for t > 0 and random variable Z,

E[ψ(tZ)] ≥ E
[
1l[0,+∞)(tZ)

]
= Prob{tZ ≥ 0} = Prob{Z ≥ 0}.

By taking Z = F (x, ξ) and changing t to t−1, we obtain that

p(x) ≤ E
[
ψ
(
t−1F (x, ξ)

)]
(2.2)
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holds for all x and t > 0. Denote that

Ψ(x, t) := tE
[
ψ
(
t−1F (x, ξ)

)]
.(2.3)

We obtain that if there exists t > 0 such that Ψ(x, t) ≤ tα, then p(x) ≤ α. In fact
this observation can be strengthened to

inf
t>0

[Ψ(x, t) − tα] ≤ 0 implies p(x) ≤ α.(2.4)

Indeed, let us fix x and set φ(t) := Ψ(x, t) − tα, Z := F (x, ξ). It may happen (case
(A)) that Prob {Z > 0} > 0. Then there exist a, b > 0 such that Prob {Z ≥ a} ≥ b,
whence

Ψ(x, t) = tE
[
ψ(t−1F (x, ξ))

]
≥ tbψ(t−1a) ≥ tb [ψ(0) + (ψ(a) − ψ(0))/t]

provided that 0 < t < 1 (we have taken into account that ψ(·) is convex). Since
ψ(a) > ψ(0), we conclude that

Ψ(x, t) ≥ γ := b(ψ(a) − ψ(0)) > 0 for 0 < t < 1,

and hence lim inft→+0 φ(t) > 0. Further, we have

lim inf
t→∞

E
[
ψ(t−1Z)

]
≥ ψ(0) ≥ 1,

and hence lim inft→∞ φ(t) = ∞ due to α ∈ (0, 1). Finally, φ(t) is clearly lower
semicontinuous in t > 0. We conclude that if (A) is the case, then inft>0 φ(t) ≤ 0
iff there exists t > 0 such that φ(t) ≤ 0, and in this case, as we already know, p(x)
indeed is ≤ α. And if (A) is not the case, then the conclusion in (2.4) is trivially true,
so that (2.4) is true.

We see that the inequality

inf
t>0

[
Ψ(x, t) − tα

]
≤ 0(2.5)

is a conservative approximation of (2.1)—whenever (2.5) is true, so is (2.1). Moreover,
assume that for every ξ ∈ Ξ the function F (·, ξ) is convex. Then G(x, t) := Ψ(x, t)−tα
is convex. Indeed, since ψ(·) is nondecreasing and convex and F (·, ξ) is convex, it
follows that (x, t) 
→ tψ(t−1F (x, t)) is convex4. This, in turn, implies convexity of the
expected value function Ψ(x, t), and hence convexity of G(x, t).

We obtain, under the assumption that X, f(·) and F (·, ξ) are convex, that

min
x∈X, t>0

f(x) subject to inf
t>0

[Ψ(x, t) − tα] ≤ 0(2.6)

gives a convex conservative approximation of the chance constrained problem (1.1).
Clearly the above construction depends on a choice of the generating function

ψ(z). This raises the question of what would be a “best” choice of ψ(z). If we
consider this question from the point of view of a better (tighter) approximation of
the corresponding chance constraints, then the smaller is ψ(·), the better is bound

4We have used the well-known fact that if f(x) is convex, so is the function g(x, t) = tf(t−1x),
t > 0. Indeed, given x′, x′′, λ ∈ (0, 1), and t′, t′′ > 0, and setting t = λt′ + (1 − λ)t′′, x = λx′ +
(1 − λ)x′′, we have λt′f(x′/t′) + (1 − λ)t′′f(x′′/t′′) = t

[
λt′t−1f(x′/t′) + (1 − λ)t′′t−1f(x′′/t′′)

]
≥

tf
(
t′λt−1(x′/t′) + (1 − λ)t′′t−1(x′′/t′′)

)
= tf(x/t).
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(2.2). If the right derivative ψ′
+(0) is zero, then ψ(z) ≥ ψ(0) = 1 for all z ∈ R,

and the above construction produces trivial bounds. Therefore we may assume that
a := ψ′

+(0) > 0. Since ψ(0) = 1 and ψ(·) is convex and nonnegative, we conclude
that ψ(z) ≥ max{1 + az, 0} for all z, so that the upper bounds (2.2) can be only

improved when replacing ψ(z) with the function ψ̂(z) := max{1 + az, 0}, which also
is a generating function. But the bounds produced by the latter function are, up to
scaling z ← z/a, the same as those produced by the function

ψ∗(z) := [1 + z]+,(2.7)

where [a]+ := max{a, 0}. That is, from the point of view of the most accurate
approximation, the best choice of the generating function ψ is the piecewise linear
function ψ∗ defined in (2.7).

For the generating function ψ∗ defined in (2.7) the approximate constraint (2.5)
takes the form

inf
t>0

[
E
[[
F (x, ξ) + t

]
+

]
− tα

]
≤ 0.(2.8)

Replacing in the left-hand side inft>0 with inft, we clearly do not affect the validity
of the relation; thus, we can rewrite (2.8) equivalently as

inf
t∈R

[
−tα + E

[
[F (x, ξ) + t]+

]]
≤ 0.(2.9)

In that form the constraint is related to the concept of conditional value at risk (CVaR)
going back to [13, 21]. Recall that CVaR of a random variable Z is

CVaR1−α(Z) := inf
τ∈R

[
τ +

1

α
E[Z − τ ]+

]
.(2.10)

It is easily seen that CVaR1−α(Z) is a convex and monotone functional on the space
of random variables with finite first moment, and that the (1−α)-quantile (“value at
risk”)

VaR1−α(Z) := inf [t : Prob(Z ≤ t) ≥ 1 − α]

of the distribution of Z is a minimizer of the right-hand side in (2.10), so that it
always holds that CVaR1−α(Z) ≥ VaR1−α(Z). Since the chance constraint in (1.1) is
nothing but VaR1−α[F (x, ξ)] ≤ 0, the constraint

CVaR1−α[F (x, ξ)] ≤ 0(2.11)

defines a convex conservative approximation of the chance constraint. The idea of
using CVaR as a convex approximation of VaR is due to Rockafellar and Uryasev
[24]. Recalling the definition of CVaR, we see that the constraints (2.9) and (2.11)
are equivalent to each other.

One of the possible drawbacks of using the “optimal” generating function ψ∗ (as
compared with the exponential ψ(z) := ez, which we will discuss in the next section)
in the above approximation scheme is that it is unclear how to compute efficiently the
corresponding function Ψ(x, t) even in the simple case F (x, ξ) := g0(x)+

∑d
j=1 ξjgj(x)

of affine in ξ function F (x, ξ) and independent-of-each-other random variables ξj with
known and simple distributions.



976 ARKADI NEMIROVSKI AND ALEXANDER SHAPIRO

There are several ways how the above construction can be extended for m > 1.
One simple way is to replace the constraints fi(x, ξ) ≤ 0, i = 1, . . . ,m, with one
constraint f(x, ξ) ≤ 0, say by taking f(x, ξ) := max{f1(x, ξ), . . . , fm(x, ξ)}. Note,
however, that this may destroy a simple, e.g., affine in ξ, structure of the constraint
mapping F (x, ξ). An alternative approach is the following.

Consider a closed convex cone K ⊆ Rm
+ and the corresponding partial order K ,

i.e., z K y iff z − y ∈ K. Of course, for the nonnegative orthant cone K := Rm
+ the

constraint F (x, ξ) ≤ 0 means that F (x, ξ) �K 0. We can also consider some other
convex closed cones and define constraints in that form. The corresponding chance
constraint can be written in the form

p(x) := Prob
{
F (x, ξ) �∈ −K

}
< α.(2.12)

Let ψ : Rm → R be a nonnegative valued, convex function such that the following
hold:

() ψ is K-monotone; i.e., if z K y, then ψ(z) ≥ ψ(y).
(�� ) ψ(z) > ψ(0) = 1 for every z ∈ Rm \ (−K).

We refer to function ψ(z) satisfying these properties as a K-generating function.
By (�� ) we have that E[ψ(F (x, ξ))] provides an upper bound for p(x), and the

corresponding inequality of the form (2.2) holds. Suppose, further, that for every
ξ ∈ Ξ the mapping F (·, ξ) is K-convex; i.e., for any t ∈ [0, 1] and x, y ∈ Rn,

tF (x, ξ) + (1 − t)F (y, ξ) K F (tx + (1 − t)y, ξ).

(Note that for K = Rm
+ , K-convexity means that F (·, ξ) is componentwise convex.)

Then for Ψ(x, t) := tE[ψ(t−1F (x, ξ))], the problem of the form (2.6) gives a convex
conservative approximation of the chance constrained problem (1.1).

In such construction for m > 1, there is no “best” choice of the K-generating
function ψ(z). A natural choice in the case of K = Rm

+ could be

ψ̂(z) := max
1≤i≤m

[1 + aizi]+,(2.13)

where ai > 0 are “scale parameters.”
Yet there is another possible extension of the above approximation scheme for

m > 1. Let α1, . . . , αm be positive numbers such that α1 + · · ·+αm ≤ α. The chance
constraint of (1.1) is equivalent to Prob {

⋃m
i=1{ξ : fi(x, ξ) > 0}} < α. Since

Prob

{
m⋃
i=1

{fi(x, ξ) > 0}
}

≤
m∑
i=1

Prob
{
fi(x, ξ) > 0},

it follows that the system of constraints

Prob
{
fi(x, ξ) > 0} ≤ αi, i = 1, . . . ,m,(2.14)

is more conservative then the original chance constraint. We can now apply the one-
dimensional construction to each individual constraint of (2.14) to obtain the following
convex conservative approximation of the chance constrained problem (1.1):

min
x∈X

f(x) subject to inf
t>0

[Ψi(x, t) − tαi] ≤ 0, i = 1, . . . ,m,(2.15)

where Ψi(x, t) := tE
[
ψi(t

−1fi(x, ξ))
]
, and each ψi(·), i = 1, . . . ,m, is a one-dimensional

generating function.
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Remark 2.1. An open question related to the approximation (2.15) is how to
choose αi. It would be very attractive to treat these quantities in (2.15) as design
variables (subject to the constraints αi > 0 and

∑
i αi ≤ α) rather than as parameters.

Unfortunately, such an attempt destroys the convexity of (2.15) and thus makes the
approximation seemingly intractable. The simplest way to resolve the issue in question
is to set

αi := α/m, i = 1, . . . ,m.(2.16)

3. Bernstein approximation. One of the drawbacks of using the piecewise
linear generating functions of the form (2.7) (or (2.13)) is that the corresponding
constraint function may be difficult to compute even for relatively simple functions
F (x, ξ). In this section we consider the (one-dimensional) generating function ψ(z) :=
ez. For such a choice of the generating function, constructions of the previous section
are closely related to the classical large deviations theory (cf., [9]).

We assume in this section that the following hold:

A1. The components ξj , j = 1, . . . , d, of the random vector ξ are independent of
other random variables.

We denote by Pj the probability distribution of ξj , supported on Ξj ⊂ R (so that the
support of the distribution P of ξ is Ξ = Ξ1 × · · · × Ξd), by

Mj(t) := E
[
etξj

]
=
∫

exp(tz)dPj(z),

the moment generating function, and by Λj(t) := logMj(t), the logarithmic moment
generating function of ξj .

A2. The moment generating functions Mj(t), j = 1, . . . , d, are finite valued for all
t ∈ R and are efficiently computable.

In fact, we could allow for the moment generating functions to be finite valued just in
a neighborhood of t = 0. We make the stronger assumption of requiring the moment
generating functions to be finite valued for all t in order to simplify the presentation.

A3. The components fi(x, ξ) in the constraint mapping F (x, ξ) are affine in ξ:

fi(x, ξ) = fi0(x) +

d∑
j=1

ξjfij(x), i = 1, . . . ,m,(3.1)

and the functions fij(x), j = 0, 1, . . . , d, are well defined and convex on
X. Besides this, for every j ≥ 1 such that Ξj �⊂ R+, all functions fij(x),
i = 1, . . . ,m, are affine. In addition, the objective f(x) in (1.1) is well defined
and convex on X.

In what follows, we refer to problem (1.1) satisfying the assumptions A1–A3 as an
affinely perturbed convex chance constrained problem.

Let z = (z0, z1, . . . , zd) ∈ Rd+1. By A1 and A2, the function

Φ(z) := log

⎛⎝E

⎡⎣exp

⎧⎨⎩z0 +

d∑
j=1

ξjzj

⎫⎬⎭
⎤⎦⎞⎠ = z0 +

d∑
j=1

Λj(zj)

is well defined and continuous in z. Besides this, it is convex (since, as is well known,
the logarithmic moment generating functions are so). Moreover, Φ(z) is monotone in
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z0 and in every zj with j ∈ J := {j ≥ 1 : Ξj ⊂ R+}. Finally, one clearly has for t > 0

and p(z) := Prob
{
z0 +

∑d
j=1 ξjzj > 0

}
that

Φ(t−1z) ≥ log p(z).

Consequently, for every β ∈ (0, 1),

∃t > 0 : tΦ(t−1z) − t log β ≤ 0 implies p(z) ≤ β.

Similar to the reasoning which led us to (2.4), the latter implication can be strength-
ened to

inf
t>0

[
tΦ(t−1z) − t log β

]
≤ 0 implies p(z) ≤ β.(3.2)

Now consider an affine chance constrained problem with real-valued constraint map-
ping

F (x, ξ) = g0(x) +

d∑
j=1

ξjgj(x).

By (3.2), the problem

min
x∈X

f(x) subject to inf
t>0

⎡⎣g0(x) +

d∑
j=1

tΛj(t
−1gj(x)) − t logα

⎤⎦ ≤ 0(3.3)

is a conservative approximation of the chance constrained problem (1.1). In fact this
approximation is convex. Indeed, the function

G(z, t) := tΦ(t−1z) − t log β

is convex in (z, t > 0) (since Φ(z) is convex) and is monotone in z0 and every zj with
j ∈ J , while, by A3, all gj(x), j = 0, 1, . . . , d, are convex in x ∈ X, and all gj(x) with
j ≥ 1 such that j �∈ J are affine. It follows that the function G(g0(x), . . . , gd(x), t) is
convex in (x ∈ X, t > 0), whence the constraint in (3.3) is convex; the objective is
convex by A3, and X was once forever assumed to be convex when formulating (1.1).
Thus, (3.3) is a convex conservative approximation of an affinely perturbed chance
constrained problem with m = 1, as claimed.

We can extend the outlined construction to the case of m > 1 in a way similar to
the construction of problem (2.15). That is, given an affinely perturbed chance con-
strained problem (1.1), (3.1), we choose αi > 0,

∑
i αi ≤ α, and build the optimization

problem

min
x∈X

f(x)

subject to inf
t>0

⎡⎣fi0(x) +

d∑
j=1

tΛj(t
−1fij(x)) − t logαi

⎤⎦ ≤ 0, i = 1, . . . ,m.
(3.4)

Similar to the case of m = 1, this problem is a convex conservative approximation of
(1.1). We refer to (3.4) as the Bernstein approximation of (1.1).

An advantage of the Bernstein approximation over the one discussed in the previ-
ous section is that under assumptions A1–A3, Bernstein approximation is an explicit
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convex program with efficiently computable constraints and as such is efficiently solv-
able.

Remark 3.1. A somehow less accurate version of Bernstein approximation was in
fact proposed in [2] for the situation where the random variables ξj are independent
with zero mean and supported on segments [−σi, σi]. We have cited this result in
the introduction; see (1.9). The justification of (1.9) is based on a straightforward
bounding from above (going back to Bernstein) of the associated logarithmic moment
generating function and demonstrating that if x satisfies (1.7), then the resulting
(conservative) version of the corresponding probability bound, as applied to z =
(fi0(x), fi1(x), . . . , fid(x)), implies that

Prob

⎧⎨⎩fi0(x) +

d∑
j=1

ξjfij(x) > 0

⎫⎬⎭ ≤ exp{−κΩ2}.

Clearly, Bernstein approximation as presented here is less conservative than (1.9),
since it is based on the corresponding “true” function rather than on its upper bound
given solely by the expected values and the sizes of supports of ξj .

4. Upper and lower bounds. In general, the approximation-based approach
to processing chance constrained problems requires mechanisms for (i) measuring the
actual risk (reliability) associated with the resulting solution, and (ii) bounding from
below the true optimal value Opt∗ of the chance constraint problem (1.1). Task (i)
corresponds to the case when the approximation is not necessarily conservative, as
it is the case, e.g., with the scenario approximation. With the latter, even applied
with the theoretically justified sample size (1.4), there is still a chance 1 − δ that the
resulting solution x̄ does not satisfy the chance constraint, and we would like to check
whether the solution indeed is feasible for (1.1). Task (ii) is relevant to basically all
approximations, since they usually are conservative (“for sure,” as Bernstein approx-
imation, or “with probability close to 1,” as the scenario approximation with sample
size (1.4)), and a lower bound on Opt∗ allows one to quantify this conservatism.

A straightforward way to measure the actual risk of a given candidate solution
x̄ ∈ X is to use Monte Carlo sampling. That is, a sample ξ1, . . . , ξN

′
of N ′ realizations

of random vector ξ is generated and the probability p(x̄) := Prob
{
F (x̄, ξ) �≤ 0

}
is

estimated as Δ/N ′, where Δ is the number of times the constraint F (x̄, ξν) ≤ 0,
ν = 1, . . . , N ′, is violated. A more reliable upper bound on p(x̄) is the random
quantity

α̂ := max
γ∈[0,1]

{
γ :

Δ∑
r=0

(
N ′

r

)
γr(1 − γ)N

′−r ≥ δ

}
,

where 1 − δ is the required confidence level. The quantity α̂ is, with probability of
at least 1 − δ, an upper bound on p(x̄), so that if our experiment results in α̂ ≤ α,
we may be sure, “up to probability of bad sampling ≤ δ,” that x̄ is feasible for (1.1)
and f(x̄) is an upper bound on Opt∗. Since the outlined procedure involves only the
calculation of quantities F (x̄, ξν), it can be performed with a large sample size N ′,
and hence feasibility of x̄ can be evaluated with a high reliability, provided that α is
not too small (otherwise the procedure would require an unrealistically large sample
size).

It is more tricky to bound Opt∗ from below. Here we propose a bounding scheme
as follows. Let us choose three positive integers M , N , L, with L ≤ M , and let
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us generate M independent samples ξ1,μ, . . . , ξN,μ, μ = 1, . . . ,M , each of size N , of
random vector ξ. For each sample we solve the associated optimization problem

min
x∈X

f(x) subject to F (x, ξν,μ) ≤ 0, ν = 1, . . . , N,(4.1)

and hence calculate its optimal value Optμ.
We compute the quantities Optμ, μ = 1, . . . ,M , by treating the infeasibility and

unboundedness according to the standard optimization conventions: the optimal value
of an infeasible optimization problem is +∞, while for a feasible and unbounded prob-
lem from below it is −∞. We then rearrange the resulting quantities {Optμ}μ=1,...,M

in nondescending order: Opt(1) ≤ · · · ≤ Opt(M) (in the statistics literature these are
called the order statistics of the sample {Optμ}μ=1,...,M ). By definition, the lower
bound on the true optimal value is the random quantity Opt(L).

Let us analyze the resulting bounding procedure. Let x be a feasible point of the
true problem (1.1). Then x is feasible for problem (4.1) with probability of at least
θN = (1 − α)N . When x is feasible for (4.1), we of course have Optμ ≤ f(x). Thus,
for every μ ∈ {1, . . . ,M} and for every ε > 0 we have

θ := Prob{Optμ ≤ Opt∗ + ε} ≥ θN .

Now, in the case of Opt(L) > Opt∗ + ε, the corresponding realization of the random
sequence Opt1, . . . ,OptM contains less than L elements which are less than or equal
to Opt∗ + ε. Since the elements of the sequence are independent, the probability
ρ(θ,M,L) of the latter event is

ρ(θ,M,L) =

L−1∑
r=0

(
M

r

)
θr(1 − θ)M−r.

Since θ ≥ θN , we have that ρ(θ,M,L) ≤ ρ(θN ,M,L).
Thus,

Prob
{

Opt(L) > Opt∗ + ε
}
≤ ρ(θN ,M,L).

Since the resulting inequality is valid for all ε > 0, we arrive at the bound

Prob
{

Opt(L) > Opt∗
}
≤

L−1∑
r=0

(
M

r

)
(1 − α)Nr

[
1 − (1 − α)N

]M−r
.(4.2)

We now arrive at the following simple result.
Proposition 4.1. Given δ ∈ (0, 1), let us choose positive integers M ,N ,L in

such a way that

L−1∑
r=0

(
M

r

)
(1 − α)Nr

[
1 − (1 − α)N

]M−r ≤ δ.(4.3)

Then with probability of at least 1−δ, the random quantity Opt(L) gives a lower bound
for the true optimal value Opt∗.

The question arising in connection with the outlined bounding scheme is how to
choose M , N , L. Given a desired reliability 1−δ of the bound and M and N , it is easy
to specify L: this should be just the largest L > 0 satisfying condition (4.3). (If no
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L > 0 satisfying (4.3) exists, the lower bound, by definition, is −∞.) We end up with
a question of how to choose M and N . For N given, the larger M is, the better. For
given N , the “ideal” bound yielded by our scheme as M tends to infinity is the lower
θN -quantile of the true distribution of the random variable Opt1. The larger M , the
better we can estimate this quantile from a sample of M independent realizations of
this random variable. In reality, however, M is bounded by the computational effort
required to solve M problems (4.1). Note that the larger the effort per problem, the
larger the sample size N . We have no definite idea how to choose N . As N grows,
the distribution of Opt1 “goes up” in the sense that Prob{Opt1 > a} increases for
every a. As a result, every lower θ-quantile of this distribution also increases. If our
bound were the lower θ-quantile of the distribution of Opt1, it would grow (that is,
improve) with N . Unfortunately, our bound is the (empirical estimate of) the lower
θN -quantile of the distribution in question, with θN decreasing as N grows, and this
decrease shifts the bound down. For the time being, we do not know how to balance
these two opposite trends, except for a trivial way to test several values of N and to
choose the best (the largest) of the resulting bounds. To keep reliability δ by testing
k different values of N , would require one to strengthen reliability of every one of
the tests, e.g., in accordance with the Bonferroni inequality, by replacing δ in the
right-hand side of (4.3) with δ/k.

5. Numerical illustration. We are about to present the results of an illustra-
tive experiment. While the model below is described in financial terms, we do not
pretend this toy model is of actual applied value; our only goal here is to compare
Bernstein approximations with the scenario approach (see the introduction).

Test problem: optimizing value at risk. The toy test problem we are about to
consider is the following. There are n + 1 assets 0, 1, . . . , n with random returns.
The problem is to distribute $1 between the assets in order to maximize the upper
(1−α)th quantile of the total profit (that is, the total return of the resulting portfolio
minus the initial capital of $1). The corresponding model is the chance constrained
linear programming problem

(Pα) max
x≥0, t∈R

t− 1 subject to Prob

⎧⎨⎩t >

n∑
j=0

rjxj

⎫⎬⎭ ≤ α,

n∑
j=0

xj ≤ 1,

where xj is the capital invested in asset j, and rj is the return of this asset.
The data we used in our experiment are as follows:
• There are n + 1 = 65 assets; asset #0 (“money”) has deterministic return
r0 ≡ 1, while the returns ri of the remaining 64 “true” assets are random
variables with expectations E[ri] = 1+ρi, with the nominal profits ρi varying
in [0, 0.1] and growing with i.

• The random variables ri, 1 ≤ i ≤ 64, are of the form

ri = ηi +

8∑
�=1

γi�ζ�,(5.1)

where ηi ∼ LN (μi, σ
2
i ) (that is, log ηi ∼ N (μi, σ

2
i )) is the individual noise in

ith return, ζ� ∼ LN (ν�, θ
2
� ) are “common factors” affecting all returns, and

γi� ≥ 0 are deterministic “influence coefficients.” All “primitive” random
variables (64 of ηi’s and 8 of ζ�’s) are independent of each other.
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We used ν� = 0, θ� = 0.1, μi = σi (that is, the more promising an asset at
average, the more risky it is). The influence coefficients γi� and the parameters

μi were chosen in such a way that E
[∑8

�=1 γi�ζ�
]

= ρi/2 and E[ηi] = 1+ρi/2
for all i.

Processing log-normal distributions. The random returns ri are linear combina-
tions of independent random variables η1, . . . , η64, ζ1, . . . , ζ8, so that the structure of
(Pα) allows for applying Bernstein approximation. The difficulty, however, is that
the random variables in question are log-normal and thus the corresponding moment-
generating functions are +∞ outside of the origin. This difficulty can be easily circum-
vented, specifically, as follows. Given a log-normal random variable ξ ∼ LN (μ, σ2),
and positive “threshold probability” ε > 0 and “resolution” Δ > 0, we associate with
these data a discrete random variable ξ̂ as follows. Let π(s) be the N (0, 1)-Gaussian
density and R be such that

∫∞
R

π(s)ds = ε/2; we split the segment [−R,R] into bins
[ak, ak+1], 1 ≤ k < n, of length σ−1Δ (the last bin can be shorter) and assign the
points b0 = 0, bk = exp{σak +μ}, k = 1, . . . , n, probability masses νk =

∫ ak+1

ak
π(s)ds,

where a0 = −∞ and an+1 = ∞. The variable ξ̂ takes the values bk, k = 0, . . . , n, with
probabilities νk. Note that this random variable can be thought of as a “rounding”
of ξ ∼ LN (μ, σ2): given a realization a of ξ, we look to which one of the n + 1 sets
[0, b1), [b1, b2),. . . , [bn−1, bn), [bn,∞) a belongs, and replace a with the left endpoint

of this set, thus obtaining a realization â of ξ̂. Note that with our choice of ai, we
always have â/a ≤ 1, and â/a ≥ exp{−Δ} unless a < b1 or a > bn; the latter can

happen with probability of at most ε. Thus, ξ̂ can be thought of as a lower bound
on ξ which with probability of ≥ 1 − ε is tight within factor exp{Δ}. Now let us
replace in (Pα) underlying log-normal random variables η1, . . . , ζ8 with their round-

ings η̂1, . . . , ζ̂8. Since we “round down” and all γi� are nonnegative, every feasible
solution to the resulting chance constrained problem will be feasible for (Pα) as well.
At the same time, the new problem is an affinely perturbed chance constrained prob-
lem with discrete random variables, and building its Bernstein approximation causes
no problems at all. This is the scheme we used in our experiments, the parameters
being ε = 10−6 and Δ = 0.0025. Even with that high (in fact, redundant) quality
of discretization, there was no difficulty with handling the resulting discrete random
variables—the average, over all 71 discrete random variables in question, number of
different values taken by a variable was just ≈ 138, which made computing Bernstein
bound a pretty easy task.

Tuning the approximations. Both approximations we are dealing with in our
experiments—the scenario and Bernstein one—are conservative in the sense that a
solution yielded by an approximation violates the randomly perturbed constraint in
question with probability αf , which is less than the required risk α (this claim is com-
pletely true for Bernstein approximation and is “true with high probability” for the
scenario one). Experiments show that the ratio α/αf could be pretty large (see Table
1), which makes it natural to look for ways to reduce the resulting conservatism. To
some extent, this can indeed be done via a simple tuning, provided that α is not too
small, so that the probabilities of order of α can be measured reliably by Monte Carlo
simulations with samples of reasonable size. When tuning Bernstein approximation,
we replace the required risk α by a larger quantity α+, solve the approximation as
if the required risk were α+, and then run Monte Carlo simulation in order to check
with a desired reliability whether the actual risk αf of the resulting solution is ≤ α.
We then choose the (nearly) largest possible α+ which meets the outlined requirement
and treat the associated solution as the result of our tuning. Of course, tuning can
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Table 1

Results of experiments with the value-at-risk model.

Quantity Value
Empirical

riska
Inferred
riska

Nominal optimal valueb 0.0950 — —
Upper boundc 0.0799 — —

Bernstein optimal value (tuned)db 0.0689 0.043 0.050

Bernstein optimal valueda 0.0586 0.002 0.004
Scenario optimal value (tuned)eb 0.0674 0.040 0.047
Scenario optimal valueea (N = 14, 684) 0.0557 0.001 0.003

Robust optimal valuef 0.0000 — —

be used in the case of scenario approximation as well, with the number of scenarios
in the role of tuning parameter.

The experiments. The experiments were conducted for the value of risk α = 0.05.
The reliability 1 − δ for the scenario approximation (see (1.4)) was set to 0.999.
Similarly, the reliability of all other simulation-based inferences (like those on actual
risks of various solutions, bound on the true optimal value in the chance constrained
problem, etc.) was set to 0.999. The results are presented in Table 1; the reader
should be aware that we work with a maximization problem, so that the larger the
value of the objective yielded by a method, the better. Therefore, what was before
a lower bound on the optimal value in the chance constrained problem becomes an
upper bound, etc.

Explanations to Table 1. aEmpirical risk makes sense only with respect to the
optimal values yielded by various methods and is the empirical frequency estimate,
taken over 10,000 simulations, of the probability p of violating the randomly per-
turbed constraint in (P0.05) at the solution yielded by the method. Inferred risk is
the 0.999-reliable upper bound on p, as inferred from the same 10,000 simulations.

bOptimal value in the nominal problem—the one where all randomly perturbed
coefficients are set to their expected values.

cSee section 4. Since (P0.05) is a maximization problem, the corresponding con-
struction yields an upper bound on the optimal value in (P0.05). The reliability of the
bound is 0.999.

daOptimal value in Bernstein approximation (3.4) of (P0.05).
dbOptimal value in tuned Bernstein approximation. In our experiment, the best

tuning corresponded to replacing the true value 0.05 of risk with the value 0.3.
eaOptimal value in the scenario approximation (PN ) of (P0.05), the sample size

N being chosen according to (1.4) (where n = 66, α = 0.05, and δ = 0.001).
ebOptimal value in tuned scenario approximation. In our experiment, the best

tuning corresponded to reducing the number of scenarios with its theoretical value
14,684 to 550.

fOptimal value given by robust optimization; under mild regularity assumptions,
which hold true in the case of (P ), this is the same as the optimal value in (Pα) in
the case of α = 0. In our case, the robust optimal value is 0, meaning that there is
no way to make guaranteed profit, so that the best, in the worst-case setting, policy
is to not to invest into “nonmoney” assets at all.

Discussion. A. As far as the objective value is concerned, Bernstein approxima-
tion outperforms the (nontuned) scenario approximation; the same is true for the
tuned versions of the procedures (this is consistent with all other numerical exper-
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iments we have run, including those for test problems of different structure). The
differences, although not large, are not negligible (2.2% for tuned approximations).

B. Additional good news about Bernstein approximation is that even with tuning,
this still is an implementable routine: the solution and the optimal value in (3.4),
(2.16) are well-defined functions of α, and the resulting value of the objective is better,
the larger α is. Consequently, tuning becomes an easy-to-implement routine, a kind
of bisection: we solve (3.4), (2.16) for a certain value of α and check the actual risk of
the resulting solution; if it is worse then necessary, we decrease α in (3.4), otherwise
increase it. In contrast to this, the optimal value and the optimal solution of scenario
approximation with a given sample size are random. For not too large sample sizes,
the variability of these random entities is high, which makes tuning difficult.

C. It should be added that Bernstein approximation in its nontuned form remains
practical in the case of very small risks α and/or high design dimension, that is, in
situations where the scenario approximation requires samples of unrealistic sizes. To
get an impression of the numbers, assume that we want α as small as 0.5% or even
0.1%, while the reliability 1 − δ of our conclusions (which in previous experiments
was set to 0.999) is now increased to 0.9999. In this case the scenario approximation
becomes completely impractical. Indeed, the theoretically valid sample size given by
(1.4) becomes 209,571 for α = 0.5% and 1,259,771 for α = 0.1%, which is a bit too
much. Using smaller sample sizes plus tuning also is problematic, since it becomes
too complicated to test the risk of candidate solutions by simulation. For example,
with α = 0.005 and α = 0.001, it takes over 100,000 simulations to conclude, with
reliability 0.9999, that a given candidate solution which in fact is feasible for (P0.9α)
is feasible for (Pα).

• At the same time, Bernstein approximation with no tuning is 100% reliable, re-
mains of the same complexity independently of how small is α, and at the uncertainty
level 0.5 results in the profits 0.0500 for α = 0.5% and 0.0445 for α = 0.1%. This is
not that bad, given that the robust optimal value in our situation is 0.

The bottom line, as suggested by the experiments (and as such, not conclusive yet)
is as follows: The scenario approximation has no advantages whatsoever as compared
to the Bernstein one, provided the latter is applicable (that is, that we are in the case
of a affinely perturbed convex chance constrained problem with known and simple
enough distributions of ξj).

6. The case of ambiguous chance constraints. As was mentioned in the
introduction, one of the basic problems with the formulation of chance constrained
problem (1.1) is that it assumes an exact knowledge of the underlying probability
distribution P of ξ. Therefore it appears natural to consider “robust” or minimax
versions of the chance constrained problems; for results in this direction, see [12, 27,
25, 26, 14] and references therein. When applying the minimax approach to chance
constrained problems, one assumes that the distribution P of random vector ξ in (1.1)
belongs to a given in advance family P of probability distributions supported on a
(closed) set Ξ ⊂ Rd and replaces the chance constraint in (1.1) with its worst-case,
over P ∈ P, version, thus arriving at the ambiguous chance constrained problem

min
x∈X

f(x) subject to ProbP

{
F (x, ξ) ≤ 0

}
≥ 1 − α ∀P ∈ P,(6.1)

where ProbP is the P -probability of the corresponding event.
Of course, we can replace the probability constraints in (6.1) with one constraint

by taking the minimum of ProbP

{
F (x, ξ) ≤ 0

}
with respect to P ∈ P. That is,
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problem (6.1) is constrained with respect to a “worst” distribution of the considered
family P. We can also write the probability constraints of (6.1) in the following form:

sup
P∈P

EP [1lAx
] ≤ α,(6.2)

where Ax := {ξ ∈ Ξ : F (x, ξ) �≤ 0}. The “worst-case-distribution” (or minimax)
stochastic programming problems were considered in a number of publications (e.g.,
[12, 27]). When applied to chance constraints, such worst-case-distribution problems
are called ambiguous chance constrained problems (see [14] and references therein).

For some families of distributions the maximum in the left-hand side of (6.2) can
be calculated explicitly. With every family P of probability distributions is associated
the function

ρ(Z) := sup
P∈P

EP [Z](6.3)

defined on a space of real-valued random variables Z. Formula (6.3) describes a dual
representation of so-called coherent risk measures introduced by Artzner et al [1].
Consider now the following family:

P :=
{
P : γ1P

∗ � P � γ2P
∗, P (Ξ) = 1

}
.(6.4)

Here γ1 and γ2 are constants such that 0 ≤ γ1 ≤ 1 ≤ γ2, P
∗ is a (reference) probability

distribution on Ξ and the notation P1 � P2 means that for two (not necessarily
probability) Borel measures P1 and P2 on Ξ it holds that P1(A) ≤ P2(A) for any
Borel set A ⊂ Ξ. The constraint P (Ξ) = 1 in (6.3) is written to ensure that P is
a probability measure. This family P defines a coherent risk measure, which can be
written in the following equivalent form:

ρ(Z) = E[Z] + inf
τ∈R

E [(1 − γ1)[τ − Z]+ + (γ2 − 1)[Z − τ ]+] ,(6.5)

where all expectations are taken with respect to the reference distribution P ∗. In
particular, for γ1 = 0 and κ := (γ2 − 1)/γ2,

ρ(Z) = CVaRκ[Z]

(cf., [25, 26]).
By the definition (6.4) of P we have that EP [1lAx ] ≤ γ2P

∗(Ax) for any P ∈ P,
with the equality holding if P (Ax) = γ2P

∗(Ax). Since P (Ξ) = 1, this can be achieved
iff γ2P

∗(Ax) + γ1(1−P ∗(Ax)) ≤ 1, i.e., iff P ∗(Ax) ≤ 1−γ1

γ2−γ1
. We obtain the following.

If α ≤ (1 − γ1)/(γ2 − γ1), then the ambiguous chance constrained
problem (6.1) with P given by (6.4) is equivalent to the chance con-
strained problem (1.1) with respect to the reference distribution P ∗

and with rescaled risk α ← α∗ := α/γ2.
Another popular example of a coherent risk measure is the mean-upper-absolute

semideviation

ρ(Z) := E[Z] + cE
([

Z − E[Z]
]
+

)
,(6.6)

where c ∈ [0, 1] is a constant and the expectations are taken with respect to a reference
distribution P ∗. It has the dual representation (6.3) with the corresponding family

P =
{
ζ ′ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖∞ ≤ c

}
,(6.7)
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where ζ ′ = dP/dP ∗ denotes the density of P with respect to P ∗ (cf., [26]). By using
the definition (6.6) it is straightforward to calculate that

ρ (1lAx) = P ∗(Ax) + 2cP ∗(Ax)(1 − P ∗(Ax)).(6.8)

By solving the quadratic inequality t+ 2ct(1− t) ≤ α for t = P ∗(Ax), we obtain that
P ∗(Ax) ≤ ϕ(α), where

ϕ(α) :=
1 + 2c−

√
1 + 4c(1 − 2α) + 4c2

4c

for c ∈ (0, 1], and ϕ(α) = α if c = 0. (Note that for α ∈ (0, 1) and c ∈ (0, 1], it always
holds that ϕ(α) ∈ (0, α).) We obtain the following.

The ambiguous chance constrained problem (6.1) with P given by
(6.7) is equivalent to the chance constrained problem (1.1) with re-
spect to the reference distribution P ∗ and with rescaled reliability
parameter α ← α∗ := ϕ(α).

Of course, such explicit reduction of the ambiguous chance constrained problem
(6.1) to the regular chance constrained problem (1.1) is possible only for some spe-
cific families P. Our current goal is to develop Bernstein-type approximation of the
constraint in (6.1). As before, we restrict ourselves with problems where the “bodies”
of the constraints are affine in ξ:

min
x∈X

f(x) subject to

inf
P∈P

ProbP

⎧⎨⎩ξ : fi0(x) +

d∑
j=1

ξjfij(x) ≤ 0, i = 1, . . . ,m

⎫⎬⎭ ≥ 1 − α.
(6.9)

6.1. Assumptions and construction.
Assumptions. From now on, we make the following assumptions about the “data”

of (6.9):
B1. The family P of possible distributions of ξ is as follows. Let Dj , j = 1, . . . , d,

be nonempty compact subsets of the axis, and M be a nonempty set of tuples
{Pj}dj=1, where Pj are Borel probability measures on Dj . We assume that

• whenever {Pj}dj=1, {P ′
j}dj=1 are two elements from M, so is {λPj + (1 −

λ)P ′
j}dj=1, λ ∈ [0, 1] (convexity), and

• whenever a sequence {P t
j }dj=1, t = 1, 2, . . . , of elements of M weakly con-

verges to {Pj}dj=1 (meaning that
∫
f(s)dP t

j (s) →
∫
f(s)dPj(s) as t → ∞

for every j and every continuous and bounded on the axis function f), then
{Pj}dj=1 ∈ M (weak closedness).
We assume that P is comprised of all product distributions P = P1×· · ·×Pd

on Rd with the tuple of marginals {Pj}dj=1 running through a given set M
with the outlined properties.
From now on, we equip the set M underlying, via the outlined construction,
the set P in question with the weak topology. It is well known that under
the above assumptions this topology is yielded by an appropriate metric on
M, and that with this metric M is a compact metric space.

The simplest example of a set P of the outlined structure is as fol-
lows. Let Dj be finite subsets of R, let Δ :=

⋃d
j=1 Dj = {s1, . . . , sK},

and let M be a closed and convex set of matrices P = [pkj ] 1≤k≤K
1≤j≤d
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with nonnegative entries such that
∑

k pkj = 1 for all j and pkj = 0
whenever sk �∈ Dj . For every P ∈ M, the jth column Pj of P
can be naturally identified with a probability distribution on Dj ;
the set P generated by M is comprised of all product distributions
P1 × · · · × Pd coming from matrices P ∈ M.

From now on, we denote a generic element of M by Q = {Qj}dj=1.
B2. The objective f(x) and all functions fij(x), i = 1, . . . ,m, j = 0, 1, . . . , d, are

convex and well defined on X. Moreover, let

J := {j : 1 ≤ j ≤ d, not all functions fij , i = 1, . . . ,m, are affine}.

We assume that whenever j ∈ J , the quantities ξj and ηj “are always non-
negative,” that is, for every j ∈ J
• jth marginal distribution of every P ∈ P is supported on the nonnegative
ray, and
• all points η ∈ U satisfy ηj ≥ 0
(compare with assumption A3 in section 3).

Building Bernstein approximation. For P = P1 × · · · × Pd, let P̂ be the tuple
{Pj}dj=1, so that when P runs trough P, P̂ runs through M.

Let

Φ(z,Q) := log

⎛⎝EQ1×···×Qd

⎡⎣exp

⎧⎨⎩z0 +

d∑
j=1

ξjzj

⎫⎬⎭
⎤⎦⎞⎠

= z0 +

d∑
j=1

log

(∫
exp{zjs}dQj(s)

)
, Q = {Qj}dj=1 ∈ M,

Φ̂(z) := max
Q∈M

Φ(z,Q).

(6.10)

By B1, Φ(z,Q) is a well-defined and continuous function of (z,Q) ∈ Rd+1×M (recall
that M is equipped with w∗-topology). From (6.10) it is also evident that Φ(z,Q)
is convex in z ∈ Rd+1 and concave in Q ∈ M. From these observations and the
compactness of M it follows that Φ̂(z) is well defined everywhere and is convex.

Finally, from B2 it follows that Φ(z,Q) (and therefore Φ̂(z)) is nondecreasing in z0

and in every zj with j ∈ J .

Now let

ΘQ(z, t) := tΦQ(t−1z), Θ̂(z, t) := tΦ̂(t−1z),

so that ΘQ(z, t) and Θ̂(z, t) are well-defined convex functions in the domain t > 0.
Same as in section 3, for every β ∈ (0, 1) and every z ∈ Rd+1 we have

inf
t>0

[
ΘP̂ (z, t) − t log β

]
≤ 0 implies ProbP

⎧⎨⎩z0 +

d∑
j=1

ξjzj > 0

⎫⎬⎭ ≤ β,
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and we arrive at the following implication:

P (β) :

{
∀Q ∈ M : inf

t>0
[ΘQ(z, t) − t log β] ≤ 0

}
implies that

Q(β) : sup
P∈P

ProbP

⎧⎨⎩z0 +

d∑
j=1

ξjzj > 0

⎫⎬⎭ ≤ β.

(6.11)

We are about to replace (6.11) with an equivalent and more convenient computation-
ally implication:

P̂ (β) :

{
inf
t>0

[
Θ̂(z, t) − t log β

]
≤ 0

}
implies that

Q(β) : sup
P∈P

ProbP

⎧⎨⎩z0 +

d∑
j=1

ξjzj > 0

⎫⎬⎭ ≤ β.

(6.12)

The advantage of (6.12) as compared to (6.11) is that the premise in the latter im-
plication is semi-infinite: to verify its validity, we should check certain conditions for
every Q ∈ M. In contrast to this, the premise in (6.12) requires checking validity
of a univariate convex inequality, which can be done by bisection, provided that the
function Θ̂ is efficiently computable. The latter condition is equivalent to efficient
computability of the function Φ̂(z), which indeed is the case when M is not too
complicated (e.g., is finite-dimensional and computationally tractable).

The validity of (6.12) and the equivalence of (6.11) and (6.12) are given by the
following lemma.

Lemma 6.1. Let 0 < β < 1. Then the following holds:

P̂ (β) iff P (β).(6.13)

Proof. Implication ⇒ in (6.13) is evident, since Θ̂(z, t) = maxQ∈M ΘQ(z, t). Note
that this implication combines with (6.11) to imply the validity of (6.12).

Now let us prove the implication ⇐ in (6.13). This is a straightforward conse-
quence of the fact that ΘQ(z, t) is concave in Q and convex in t > 0; for the sake of
completeness, we present the corresponding standard reasoning.

As we remember, Φ(z,Q) is continuous and concave in Q ∈ M; since ΘQ(z, t) =
tΦ(t−1z,Q), the function ΘQ(z, t) is continuous in (t > 0, Q ∈ M) and concave in
Q; the fact that this function is convex in t > 0 is already known to us. Now let
P (β) be valid, and let us prove the validity of P̂ (β). Let us fix z and set θ(t, Q) =
ΘQ(z, t) − t log β, and let γ > 0. By P (β), for every Q ∈ M there exists tQ > 0 such
that θ(t, Q) < γ. Since θ(t, Q) is continuous in Q ∈ M, there exists a neighborhood
(in M) VQ of the point Q such that θ(tQ, Q

′) ≤ γ for all Q′ ∈ VQ. Since M is a
compact set, there exist finitely many points Qi ∈ M such that the corresponding
neighborhoods VQi cover the entire M. In other words, there exist finitely many
positive reals t1, . . . , tN such that

min
1≤i≤N

θ(ti, Q) ≤ γ ∀Q ∈ M.(6.14)
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Since θ is concave and continuous in Q ∈ M and M is convex, (6.14) implies that

∃λ∗ ∈ ΔN :=

{
λ ∈ RN

+ :
∑
i

λi = 1

}
:
∑
i

λ∗
i θ(ti, Q) ≤ γ ∀Q ∈ M.(6.15)

The latter conclusion is a standard fact of convex analysis. For the
sake of a reader uncomfortable with possible infinite dimension of
M, here is a derivation of this fact from the standard von Neumann
lemma. For Q ∈ M, let ΛQ be the set of those λ ∈ ΔN for which∑

i λiθ(ti, Q) ≤ γ; the set ΛQ clearly is a closed subset of the finite-
dimensional compact ΔN . All we need is to prove that all these
sets have a point in common (such a point can be taken as λ∗), and
to this end it suffices to prove that all sets ΛQ from a finite family
ΛQ1 , . . . ,ΛQM

, Qj ∈ M, have a point in common. But the latter is
readily given by the von Neumann lemma as applied to the convex
hull QN of the points Qj , j = 1, . . . ,M (which is a finite-dimensional
convex compact set):

γ ≥ max
Q∈QN

min
λ∈ΔN

N∑
i=1

λiθ(ti, Q) = min
λ∈ΔN

max
Q∈QN

N∑
i=1

λiθ(ti, Q)

(the inequality is given by (6.14), the equality by the von Neumann

lemma; the required point in
⋂

i ΛQi
is argminλ∈ΔN

maxQ∈QN

∑N
i=1 λiθ(ti, Q)).

Since θ is convex in t > 0, setting tγ =
∑

i λ
∗
i ti we get from (6.15) that ΘQ(tγ , z)−

tγ log β ≡ θ(tγ , Q) ≤
∑

i λ
∗
i θ(ti, Q) ≤ γ for all Q ∈ M, whence Θ̂(tγ , z) − tγ log β ≡

maxQ∈M ΘQ(tγ , z) − tγ log β ≤ γ. Since tγ is positive by construction and γ > 0 is

arbitrary, we conclude that inft>0

[
Θ̂(tγ , z)− tγ log β

]
≤ 0, so that P̂ (β) is valid.

Putting things together, we arrive at the following result.
Theorem 6.2. Assume that the ambiguous chance constrained problem (6.9)

satisfies Assumptions B1 and B2, and let αi, i = 1, . . . ,m, be positive reals such that∑
i αi ≤ α. Then the program

min
x∈X

f(x) subject to inf
t>0

[
fi0(x) + tΨ̂(t−1zi[x]) − t logαi

]
︸ ︷︷ ︸

gi(x,t)

≤ 0, i = 1, . . . ,m,

zi[x] = (fi1(x), . . . , fid(x)), Ψ̂(z) = max
{Qj}d

j=1∈M

d∑
j=1

log

(∫
exp{zjs}dQj(s)

)
(6.16)

is a conservative approximation of problem (6.9): every feasible solution to the ap-
proximation is feasible for the chance constrained problem. This approximation is a
convex program and is efficiently solvable, provided that all fij and Ψ̂ are efficiently
computable, and X is computationally tractable.

Proof. Function gi(x, t) is obtained from the function θi(z, t) := Θ̂(z, t) − t logαi

by the substitution

(z, t) ← ((fi0(x), fi1(x), . . . , fid(x)), t).

The outer function θi(z, t) is convex and nondecreasing in z0 and every zj with j ∈ J
(see the remarks following (6.10)). The inner functions fi0(x), fij(x), j ≥ 1, are
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convex on X, and functions fij(x) with 0 < j �∈ J are affine. It follows that gi(x, t) is
convex in (t > 0, x ∈ X), so that (6.16) is indeed a convex program. Further, if x is

feasible for (6.16), then x ∈ X, and for every i the predicate P̂ (αi) corresponding to
z = (fi0(x), fi1(x), . . . , fid(x)) is valid, which, by (6.12), implies that

sup
P∈P

ProbP

⎧⎨⎩fi0(x) +

d∑
j=1

ξjfij(x) > 0

⎫⎬⎭ ≤ αi.

Since
∑

i αi ≤ α, x is feasible for (6.9).
Remark 6.1. Assumption B1 requires, among other things, from all distributions

P ∈ P to be supported on a common compact set D1 × · · · ×Dd. This requirement
can be straightforwardly relaxed to the requirement for all P ∈ P to have “uniformly
light tails”: there exists a function γ(t), t > 0, such that exp{αt}γ(t) → 0 as t → ∞
for all α, and for every Q = {Qj} ∈ M, every j and every t > 0 one has Qj({s : |s| ≥
t}) ≤ γ(t).

Examples. In order not to care for nonnegativity of ξj ’s associated with nonaffine
fij(·), we assume from now on that all functions fij , j = 1, . . . , d, in (6.9) are affine.

Example 1 (range information on ξj). Assume that all we know about the dis-
tributions of ξ is that ξj take values in given finite segments (and, as always, that
ξ1, . . . , ξd are independent). By shifting and scaling fij(x), we may assume w.l.o.g.
that ξj are independent and take values in [−1, 1]. This corresponds to the case where
M is the set of all d-element tuples of Borel probability distributions supported on
[−1, 1]. Denoting by Π the set of all Borel probability measures on [−1, 1], we have

Φ̂(z) = z0 +

d∑
j=1

max
Pj∈Π

log

(∫
exp{zjs}dPj(s)

)
= z0 +

d∑
j=1

|zj |,

Θ̂(z, t) = tΦ̂(t−1z) = z0 +

d∑
j=1

|zj |;

consequently, approximation (6.16) becomes

min
x∈X

f(x) subject to inf
t>0

⎡⎣fi0(x) +

d∑
j=1

|fij(x)| − t logαi

⎤⎦ ≤ 0, i = 1, . . . ,m,

or, which is the same due to αi ≤ 1,

min
x∈X

f(x) subject to fi0(x) +

d∑
j=1

|fij(x)| ≤ 0, i = 1, . . . ,m.(6.17)

As it could be expected, in the situation in question, Bernstein approximation recovers
the robust counterpart (RC) of the original uncertain problem [3], which in our case
is the semi-infinite optimization program:

(RC) min
x∈X

f(x) subject to fi0(x) +

d∑
j=1

ξjfij(x) ≤ 0 ∀i, ∀ξ ∈
⋃

P∈P

supp(P ).

It is clear that in the extreme case we are considering the approximation is exactly
equivalent to the chance constrained problem (6.9). A relatively good fact of Bernstein
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approximation (6.17) is that in our example it is no more conservative than (RC).
It is immediately seen that this is a general fact: whenever Bernstein approximation
(6.16) is well defined, its feasible set contains the feasible set of (RC).

We see that when all our knowledge on uncertainty is the ranges of ξj , both the
chance constrained problem (6.9) itself and its Bernstein approximation become the
completely worst-case oriented (RC). The situation changes dramatically when we
add something to the knowledge of ranges, for example, assume that we know the
expected values of ξj .

Example 2 (ranges and expectations of ξj are known). Assume that we know that
ξj are independent, take values in known finite segments, and have known expecta-
tions. As in Example 1, we may further assume w.l.o.g. that ξj vary in [−1, 1] and
have known expectations μj , |μj | ≤ 1. We are in the situation where M is the set of
all tuples {Qj}dj=1 with Qj belonging to the family Πμj

of all Borel probability dis-
tributions on [−1, 1] with expectation μj , j = 1, . . . , d, and P is the set of all product
distributions on Rd with the collection of marginal distributions belonging to M. It
is easy to see that when |μ| ≤ 1, then

Λμ(t) := max
Q∈Πμ

log

(∫
exp{ts}dQ(s)

)
= log(cosh(t) + μ sinh(t))5

and that Λμ(0) = 0, Λ′
μ(0) = μ, and Λ′′

μ(t) ≤ 1 for all t, whence

Λμ(s) ≤ μs + s2/2 ∀s.

We therefore have

Φ̂(z) := max
P∈P

log

⎛⎝EP

⎧⎨⎩exp{z0 +

d∑
j=1

ξjzj}

⎫⎬⎭
⎞⎠

= z0 +

d∑
j=1

log (cosh(zj) + μj sinh(zj))

≤ Φ̃(z) := z0 +

d∑
j=1

[
μjzj + z2

j /2
]
,

Θ̂(z, t) := tΦ̂(t−1z) = z0 +

d∑
j=1

t log
(
cosh(t−1zj) + μj sinh(t−1zj)

)
≤ Θ̃(z, t) := z0 +

d∑
j=1

μjzj + (2t)−1
d∑

j=1

z2
j .

(6.18)

To proceed, we were supposed to compute the functions

G(z, β) := inf
t>0

[
Θ̂(z, t) − t log β

]
5Here is the verification: let λ = sinh(t) and g(s) = exp{ts} − λs. This function is convex and

therefore takes its maximum on [−1, 1] at an endpoint; it is immediately seen that this maximum is
g(1) = g(−1) = cosh(t). It follows that when Q ∈ Πμ, one has

∫
exp{ts}dQ(s) =

∫
g(s)dQ(s)+λμ =

cosh(t) +μ sinh(t). The resulting upper bound on
∫

exp{ts}dQ(s) is achieved when Q is a two-point
distribution with mass (1 + μ)/2 at 1 and mass (1 − μ)/2 at −1.
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and write down Bernstein approximation (6.16) of the ambiguous chance constrained
problem in question as the convex program

min
x∈X

{
f(x) : G(zi[x], αi) ≤ 0, i = 1, . . . ,m

}
,

zi[x] = (fi0(x), fi1(x), . . . , fid(x))T ,
(6.19)

where αi > 0 are chosen to satisfy
∑

i αi ≤ α. While computing G(z, β) and its
derivatives in zj numerically (which is all we need in order to solve convex program
(6.19) numerically) is easy, a closed form analytic expression for this function seems
to be impossible. What we can do analytically is to bound G from above,6 exploiting
the simple upper bound on Θ̂ presented in (6.18). From the concluding inequality in
(6.18) it follows that

G(z, β) := inf
t>0

[
Θ̂(z, t) − t log β

]
≤ G∗(z, β) := inf

t>0

⎡⎣z0 +

d∑
j=1

μjzj + (2t)−1
d∑

j=1

z2
j − t log β

⎤⎦
= z0 +

d∑
j=1

μjzj +
√

2 log(1/β)

⎛⎝ d∑
j=1

z2
j

⎞⎠1/2

.

(6.20)

It follows that the convex optimization program

min
x∈X

⎧⎨⎩f(x) :
fi0(x) +

∑d
j=1 μjfij(x)

+
√

2 log(1/αi)
(∑d

j=1 f
2
ij(x)

)1/2

≤ 0, i = 1, . . . ,m

⎫⎬⎭ [
∑

i αi ≤ α]

is an approximation (more conservative than Bernstein) of the ambiguous chance
constrained problem (6.9), where the independent-of-each-other random perturbations
ξj are known to vary in [−1, 1] and possess expected values μj . As could be expected,
we have recovered (a slightly refined version of) the results of [2] mentioned in the
introduction (see (1.9) and Remark 3.1.

Comparing (6.17) and (6.19)–(6.20), we clearly see how valuable the in-

formation on expectations of ξj could be, provided that ξj are indepen-

dent (this is the only case we are considering). First of all, from the ori-

gin of G(z, β) it follows that the left-hand sides of constraints in (6.17)

are pointwise and ≥ their counterparts in (6.19), so that (6.19) is al-

ways less conservative than (6.17). To see how large the corresponding

“gap” could be, consider the case when all ξj have zero means (μj = 0

for all j). In this case, the ith constraint in (6.17) requires from the vec-

tor hi(x) := (fi1(x), . . . , fid(x))T to belong to the centered at the origin

‖ · ‖1-ball of radius ρ(x) = −fi0(x), let this ball be called V1(x). The ith

constraint in (6.19), first, allows for hi(x) to belong to V1(x) (recall that

(6.19) is less conservative than (6.17)) and, second, allows for this vector to

belong to the centered at the origin ‖ · ‖2-ball V2(x) of the radius κ−1ρ(x),

where κ =
√

2 log(1/αi) (see (6.20) and take into account that μj ≡ 0);

6It should be stressed that this bounding is completely irrelevant as far as the numerical pro-
cessing of (6.19) is concerned; the only purpose of the exercise to follow is to link our approach with
some previously known constructions.
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by convexity, it follows that the ith constraint in (6.19) allows for hi(x) to

belong to the set V1,2(x) = Conv{V1(x) ∪ V2(x)} ⊃ V1(x). When d is not

small, the set V1,2(x) is not merely larger, it is “much larger” than V1(x),

and, consequently, the ith constraint in (6.19) is “much less restricting”

than its counterpart in (6.17). To get an impression of what “much larger”

means, note that the distance from the origin to the boundary of V2(x)

along every direction is κ−1ρ(x); the distance to the boundary of V1,2(x)

can only be larger. At the same time, the distance from the origin to the

boundary of V1(x) along a randomly chosen direction is, with probability

approaching 1 as d → ∞, at most
√

π/2(1 + δ)d−1/2 for every fixed δ > 0.

Thus, the ratio of the distances, taken along a randomly chosen direction,

from the origin to the boundaries of V1,2(x) and of V1(x) is always ≥ 1,

and with probability approaching 1 as d → ∞, is at least (1−δ)κ−1
√

2d/π

for every δ > 0; in this sense V1,2 is “at average” nearly κ−1
√

2d/π times

larger in linear sizes than V1(x). Now, for all practical purposes κ is a mod-

erate constant;7 thus, we can say that as d grows, approximation (6.19)

becomes progressively (“by factor
√
d”) less conservative than (6.17).

Coming back to our examples, observe that if M = Π1 × · · · ×Πd, where Πj is a
given set in the space of Borel probability distributions on the axis, we have

Φ̂(z) = z0 +

d∑
j=1

max
Q∈Πj

log

(∫
exp{zjs}dQ(s)

)
,

and therefore computation of Φ̂(z) (which is all we need in order to build Bernstein ap-
proximation) reduces to computing the functions ΛΠ(t) ≡ maxQ∈Π log

(∫
exp{ts}dQ(s)

)
for Π = Π1, . . . ,Πd. In Table 2, we present explicit expressions for ΛΠ(·) for a number
of interesting sets Π comprised of distributions with support in a given finite segment
(which we w.l.o.g. can assume to be [−1, 1]). In the table, Mean[Q], Var[Q] stand
for the mean

∫
sdQ(s) and the second moment

∫
s2dQ(s) of distribution Q; to save

notation, we present the expressions for exp{ΛΠ(t)} rather than for ΛΠ itself.
Example 3 (“light tail” families). In previous examples, all distributions from Π

were supported on a fixed finite segment. Now consider the case when Π is com-
prised of Borel probability distributions P on the axis such that EP [exp{|xr|/r}] ≤
exp{σr/r}, where r ∈ (1,∞) and σ ∈ (0,∞) are given parameters. In this case, pre-
cise computations of ΛΠ(t) seems to be difficult, but we can point out a tight convex
upper bound on ΛΠ(·), specifically,

ΛΠ(t) ≤
{

σ|t|, |t| ≤ σr−1

σr/r + |t|r∗/r∗, |t| ≥ σr−1,
r∗ = r/(r − 1).(6.21)

This bound coincides with λΠ(t) when |t| ≤ σr−1 and coincides with ΛΠ(t) within
additive constant − log(1 − exp{−σr/r}) when |t| ≥ σr−1.

Here is a justification. It suffices to verify (6.21) when t ≥ 0. Let P ∈ Π. We
have |x|r/r + tr∗/r∗ − tx ≥ 0 for all x, whence

∫
exp{tx}dP (x) ≤

∫
exp{|x|r/r +

tr∗/r∗}dP (x) ≤ exp{σr/r + tr∗/r∗}; thus, (6.21) holds true when t ≥ σr−1. Now let
us prove that (6.21) is true when 0 ≤ t ≤ σr−1. In this range, the bound in (6.21) is
true when t = 0 and is linear in t, while ΛΠ(t) is convex in t, so that it suffices to verify

7With αi = α/m, even risk as small as α =1.e-12 and the number of constraints as large as
m = 10, 000, 000 result in κ ≤ 9.4.



994 ARKADI NEMIROVSKI AND ALEXANDER SHAPIRO

Table 2

exp{ΛΠ(·)} for several families Π of univariate distributions. The parameters μ, σ2 are subject
to natural restrictions |μ| ≤ 1, σ2 ≤ 1, μ2 ≤ σ2.

Π exp{ΛΠ(t)}
{Q : supp(Q) ⊂ [−1, 1], } exp{|t|}{
Q :

supp(Q) ⊂ [−1, 1],
Q is symmetric

}
cosh(t){

Q :
supp(Q) ⊂ [−1, 1], Q is
unimodal w.r.t. 0a

}
exp{|t|} − 1

|t|⎧⎨⎩Q :
supp(Q) ⊂ [−1, 1], Q
is unimodal w.r.t.

0 and symmetric

⎫⎬⎭ sinh(t)

t{
Q :

supp(Q) ⊂ [−1, 1],
Mean[Q] = μ

}
cosh(t) + μ sinh(t){

Q :
supp(Q) ⊂ [−1, 1],
μ− ≤ Mean[Q] ≤ μ+

}
cosh(t) + max [μ− sinh(t), μ+ sinh(t)]{

Q :
supp(Q) ⊂ [−1, 1]
Mean[Q] = 0,Var[Q] ≤ σ2

}
exp{−|t|σ2} + σ2 exp{|t|}

1 + σ2{
Q :

supp(Q) ⊂ [−1, 1], Q is
symmetric, Var[Q] ≤ σ2

}
σ2 cosh(t) + (1 − σ2)

{
Q :

supp(Q) ⊂ [−1, 1],
Mean[Q] = μ,Var[Q] ≤ σ2

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1−μ)2 exp{tμ−σ2

1−μ
}+(σ2−μ2) exp{t}

1−2μ+σ2 , t ≥ 0

(1+μ)2 exp{tμ+σ2

1+μ
}+(σ2−μ2) exp{−t}

1+2μ+σ2 , t ≤ 0

aQ is unimodal w.r.t. 0 if Q is the sum of two measures: a mass at 0 and a measure with den-
sity p(s) which is nondecreasing when t ≤ 0 and nonincreasing when t ≥ 0.

the bound’s validity when t = σr−1. This we already know, since with t = σr−1 we
have σr/r+tr∗/r∗ = tσ. Further, when 0 ≤ t ≤ σr−1, our upper bound coincides with
ΛΠ(t)—look what happens when P assigns mass 1 to the point x = σ. Finally, let
t > σr−1, and let P assign the mass μ = λ exp{(σr−tr∗)/r} to the point tr∗−1 and the
mass 1− μ to the point 0; here λ = (1 − exp{−σr/r}) / (1 − exp{−tr∗/r}). Since t ≥
σr−1, we have tr∗ ≥ σr, so that λ ≤ 1 and μ ∈ [0, 1]; thus, P indeed is a probability dis-
tribution. An immediate computation shows that

∫
exp{|x|r/r}dP (x) = exp{σr/r},

so that P ∈ Π. We now have
∫

exp{tx}dP (x) ≥ μ exp{tr∗} = λ exp{σr/r + tr∗/r∗},
so that ΛΠ(t) ≥ σr/r + tr∗/r∗ − log λ ≥ σr/r + tr∗/r∗ − log(1 − exp{−σr/r}).

We could proceed in the same fashion, adding more a priori information on the
distribution of ξ; until this information becomes too complicated for numerical pro-
cessing, it can be “digested” by Bernstein approximation. Instead of moving in this
direction, we prefer to present an example of another sort, where the assumptions un-
derlying Theorem 6.2 are severely violated, but the Bernstein approximation scheme
still works.

Example 4 (parametric uncertainty). Assume that we know a priori that some
of ξj are normal, and the remaining ones are Poisson; however, we do not know
exactly the parameters of the distributions. Specifically, let us parameterize a normal
distribution by its mean and variance (note: variance, not standard deviation!), and
a Poisson distribution by its natural parameter λ (so that the probability for the

corresponding random variable to attain value i = 0, 1, . . . is λi

i! exp{−λ}). Let us
arrange parameters of the d distributions in question in a vector ω, and assume that
our a priori knowledge is that ω belongs to a known-in-advance convex compact set
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Ω. We assume also that the latter set is “realizable” in the sense that every point
ω ∈ Ω indeed represents a collection of distributions of the outlined type; specifically,
the coordinates of ω ∈ Ω which represent variances of normal distributions and the
parameters of the Poisson distributions are positive. Note that our a priori knowledge
is incompatible with assumption B1: convexity in the space of parameters has little
in common with convexity in the space of distributions. For example, when the
mean of a normal distribution with unit variance runs through a given segment, the
distribution itself moves along a complicated curve. We can, however, try to use the
same approach which led us to Theorem 6.2. Observe that when Pj is the Poisson
distribution with parameter λ, we have

log

(∫
exp{rs}dPj(s)

)
= log

( ∞∑
i=0

(λer)i

i!
exp{−λ}

)
= log(exp{λer − λ})

= λ exp{r} − λ;

the resulting function is continuous, convex in r, as is always the case for the loga-
rithmic moment generating function, and is concave in λ, which is pure luck. We are
equally lucky with the normal distribution Pj with mean μ and variance ν:

log

(∫
exp{rs}dPj(s)

)
= log

(
1√
2πν

∫
exp

{
rs− (s− μ)2

2ν

}
ds

)
= rμ +

r2ν

2
,

and the result again is continuous, convex in r and concave in (μ, ν). It follows that if
Pω is the joint distribution of the sequence of d normal/Poisson independent random
variables ξj , the vector of parameters of the marginal distributions being ω, then, for
every vector z ∈ Rd+1, the function

Φω(z) = log

⎛⎝EPω

⎡⎣exp

⎧⎨⎩z0 +

d∑
j=1

ξjzj

⎫⎬⎭
⎤⎦⎞⎠

is given by a simple explicit expression, is continuous in (z ∈ Rd+1, ω ∈ Ω), and is
convex in z and concave (in fact even affine) in ω. We now can use the reasoning
which led us to Theorem 6.2 and (6.16) to conclude that the optimization problem

min
x∈X

f(x) subject to inf
t>0

[
tΦ̂(t−1zi[x]) − t logαi

]
≤ 0, i = 1, . . . ,m,

Φ̂(z) = max
ω∈Ω

Φω(z), zi[x] = (fi0(x), fi1(x), . . . , fid(x))

is an approximation of the ambiguous chance constrained problem under considera-
tion, provided that αi ∈ (0, 1) are such that

∑
i αi ≤ α. This approximation is convex,

provided that all functions fij are convex and well defined on X and the functions fij
with j’s corresponding to normally distributed components in ξ are affine. Finally,
our approximation is computationally tractable, provided that Φ̂(·) is efficiently com-
putable (which indeed is the case when Ω is computationally tractable).

Acknowledgment. We express our gratitude to Yuri Kan who brought to our
attention the paper of Pinter [20].
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[22] A. Prékopa, Stochastic Programming, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1995.
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DETERMINANT MAXIMIZATION OF A NONSYMMETRIC
MATRIX WITH QUADRATIC CONSTRAINTS∗
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Abstract. This paper presents the problem of maximizing the determinant of a real K × K-
matrix B, subject to the constraint that each row bk of B satisfies btkΓkbk ≤ 1, where Γ1, . . . ,ΓK

are K given real symmetric positive definite matrices. This problem comes from a specific blind
signal separation approach, but the criterion differs from approximate diagonalization criteria usu-
ally encountered in this area. Furthermore our criterion corresponds to the following nice geomet-
rical problem: given K ellipsoids in RK , εk = {x : xtΓkx ≤ 1}, k = 1, . . . ,K, find K vectors,
b1 ∈ ε1, . . . , bK ∈ εK , such that the volume of the parallelepiped defined by these vectors is max-
imum. Existence and uniqueness of the solution are discussed. An iterative algorithm, based on a
relaxation technique, is proposed in order to solve this problem, and its convergence is proved under
a simple sufficient condition. Some numerical experiments are performed showing the behavior of
the algorithm and its comparison with Newton’s methods for nonlinear optimization.
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1. Introduction. We consider the optimization problem

maximize detB, B = [b1, . . . , bK ]t,

subject to btkΓkbk ≤ 1, k = 1, . . . ,K,(1.1)

where G = {Γ1, . . . ,ΓK} is a set of K given real symmetric positive definite matrices.
From a geometrical point of view, this problem is equivalent to the following:

Given K ellipsoids in RK , εk = {x : xtΓkx ≤ 1}, k = 1, . . . ,K, find K vectors,
b1 ∈ ε1, . . . , bK ∈ εK , such that the volume of the parallelepiped defined by these
vectors is maximum. Note that the dimension K of the problem is equal to the
number of ellipsoids. As we will see in section 3, this nice geometrical problem has
an explicit solution for K = 2 and for some particular classes of jointly diagonalizable
matrices. Otherwise, the existence of a solution is easily proved, but the uniqueness is
a tricky problem. This last point will be illustrated by several examples with diagonal
matrices when K = 3.

We will see in section 3.4 below that this max-det problem, with |detB| instead of
detB, is equivalent to maximizing, with respect to B, the following criterion coming
from a blind source separation problem:

l(B;G) = log |detB| − 1

2

K∑
k=1

btkΓkbk.(1.2)

This max-det problem becomes a convex optimization problem, as those considered
in [14], only when B is restricted to the cone of symmetric positive definite ma-
trices. We propose an algorithm, using a relaxation technique, for this max-det
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problem in the set of all square matrices. Numerical experiments in the last section
show that this algorithm is very fast in comparison with Newton’s methods for large
values of K. Each step of our algorithm consists of maximizing l(B;G) with respect
to one row bk when the other rows bj , j �= k, are fixed; l(B;G) is strictly concave with

respect to bk and the solution b̂k is explicit. Denoting by 〈·, ·〉Γk
the inner product

in RK , defined by 〈x, y〉Γk
= xtΓky, and by ‖ · ‖Γk

the corresponding norm, this

solution satisfies ‖b̂k‖Γk
= 1 and 〈b̂k, bj〉Γk

= 0 for j �= k. So, b̂k is the normalized
projection error of bk with respect to 〈·, ·〉Γk

on the subspace spanned by the rows
bj , j �= k. Notice that the existence of a solution to our max-det problem (Proposition
3.9) proves the following relevant fact: Given K inner products 〈·, ·〉Γk

, k = 1, . . . ,K,
in RK , there exist K vectors b1, . . . , bK such that, for each k, bk is orthogonal to
bj , j �= k, with respect to 〈·, ·〉Γk

.
The criterion l(B;G) comes from a blind source separation method based on the

maximum likelihood principle [8]. In this area, other methods lead to approximate
diagonalization criteria of a set of N matrices C1, . . . , CN (see, for example, [1], [3],
[11], [15]). Here, the required matrix B is such that, for each k, only the off-diagonal
elements of the kth row (and column) of BΓkB

t are set to zero and N = K. Thus
l(B;G) is not an approximate diagonalization criterion, except for K = 2.

The blind source separation problem is presented in section 2, and the max-det
problem is studied in section 3. The last section is devoted to the algorithm.

2. The blind source separation problem. Let X(t) = AS(t), t = 1, . . . , T ,
be the observations of an instantaneous linear mixture of sources S(·). The mix-
ing matrix A is an unknown K ×K nonsingular matrix. The goal is to extract the
sources from the observations, with a minimum knowledge about the sources except
that they are statistically independent. Independent components analysis exploits
only the space independence between the sources [7]. In this case, each component
Sk(·), k = 1, . . . ,K, of the source process S(·) can be modeled as a sequence of inde-
pendent identically distributed variables (white sources), provided that there is not
more than one Gaussian source in the mixture [3]. Second-order methods exploit
the decorrelation hypothesis but require sources having distinct normalized spectra
(colored sources) [1]. The method proposed in [8] is in this last category, but, using
the maximum entropy principle, Sk(·) is modeled as an AR(pk) stationary zero-mean
Gaussian process. This model is parametrized by the set βk = {βk(j), j = 1, . . . , pk}
of its partial autocorrelation coefficients, since the innovation variance is fixed equal
to 1. The innovation variance is a scale parameter which is integrated in the norm
of the columns of A. So, Sk = [Sk(1), . . . , Sk(T )]t is a zero-mean Gaussian random
vector with a T × T covariance matrix, denoted by RT

k (βk), which depends only on
βk. Using the independence of the sources, the probability density function of the
bloc ST = [S(1), . . . , S(T )] equals

[2π]−KT/2
K∏

k=1

[detRT
k (βk)]

−1/2 exp−1

2

K∑
k=1

St
k[R

T
k (βk)]

−1Sk.

Thus, the log-likelihood function of the observations XT = [X(1), . . . , X(T )] = AST is

lT (XT ;B, β) = T log |detB| − 1

2

K∑
k=1

btkXT [RT
k (βk)]

−1Xt
T bk

−1

2

K∑
k=1

log[detRT
k (βk)] −

KT

2
log(2π),
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where B = A−1 is the separating matrix and β = {β1, . . . , βK}. Notice that B and
β are two independent parameters. The maximization of lT (XT ;B, β) is obtained
through a relaxation technique. When B is fixed, the maximization with respect to
β leads to K independent problems of maximum likelihood estimation of AR models.
When β is fixed, we recognize criterion (1.2) with

Γk =
1

T
XT [RT

k (βk)]
−1XT , k = 1, . . . ,K.

Related approaches, in this blind source separation area, lead to various problems of
approximate diagonalization of some sets of matrices [5], [10], [15]. For instance, the
problem in [10] is to maximize, with respect to the separating matrix B, the following
criterion:

log |detB| − 1

2

N∑
n=1

log det diag(BCnB
t),

where C1, . . . , CN is a set of K×K symmetric positive definite matrices obtained from
an estimate of the spectral density of X(·) [11]. This criterion measures the global
deviation of the matrices BCnB

t from diagonality and is invariant with respect to
the scale of the rows of B.

3. The max-det problem. We consider the first and second derivatives of the
criterion l(B;G). Then, we describe some special cases in which an explicit solution
is obtained. Finally, we discuss the existence and the uniqueness of the solution.

3.1. Derivatives of the criterion. Let {ek, k = 1, . . . ,K} be the canonical
base of RK . We also use the notations bij and aij to designate the entries of B and
A = B−1, and δij is the Kronecker symbol (δij = 1 if i = j, else 0).

Proposition 3.1. The first and second derivatives of the criterion l(B;G) are
given by

∂l(B;G)

∂bij
= aji − etjΓiB

tei,(3.1)

∂2l(B;G)

∂bkl∂bij
= −aliajk − δkiΓi(j, l).(3.2)

Proof. Let Bij be the matrix formed by deleting row i and column j from B; then

detB =
∑
k

bik(−1)i+k detBik, aji = (−1)i+j detBij(detB)−1.

Using the derivative (log |x|)′ = x−1 for x �= 0, we obtain the gradient of log det |B|,

∂ log |detB|
∂bij

= aji, ∇ log det |B| =
∂ log |detB|

∂B
= B−t.

The differentiation (see [2])

0 = dI = d(BtB−t) = dBtB−t + Btd(B−t)

gives d(B−t) = −B−tdBtB−t. So the quadratic form associated with the Hessian of
log |detB| is

〈dB,∇2 log |detB|(dB)〉 = −trace(dBtB−tdBtB−t).
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The identification of the coefficient of dbkldbij gives

∂2 log det |B|
∂bkl∂bij

= −aliajk.

The derivatives of the quadratic part in the criterion are obvious.
As we will see below (Proposition 3.10), the solution of our problem satisfies the

optimality conditions ∇l(B;G) = 0. Using the first derivatives (3.1) and the notation
A = [a1, . . . , aK ], we have

∂l(B;G)

∂bk
= ak − ΓkB

tek = 0 ⇐⇒ ak = ΓkB
tek.

By applying the matrix B to this equality, we obtain the following result.
Corollary 3.2. The optimality conditions ∇l(B;G) = 0 are equivalent to the

following set of equations:

BΓkB
tek = ek, k = 1, . . . ,K.(3.3)

Corollary 3.3. The Hessian matrix is negative definite, ∇2l(B;G) ≺ 0, if and
only if

trace(X2) +

K∑
k=1

xt
kBΓkB

txk > 0(3.4)

for all K ×K-matrices X = [x1, . . . , xK ]t �= 0.
Proof. Using the second derivatives (3.2), the Hessian is negative definite if and

only if

〈dB,∇2l(B;G)〉 = −trace(dBtB−tdBtB−t) −
K∑

k=1

trace(eke
t
kdBΓkdB

t) < 0

for all dB �= 0. Thus the result is given by taking dB = BXt.
Notice that trace(X2) in (3.4) shows that the Hessian is not always negative defi-

nite. This point is the main difficulty in the implementation of the Newton methods.
On the other hand, the following property is very useful.

Lemma 3.4. For any nonsingular square matrix M , we have

l(BM−1;GM ) = l(B;G) − log |detM |,

where GM = {MΓ1M
t, . . . ,MΓKM t}.

In order to maximize the criterion in a neighborhood of a nonsingular matrix B,
it is apparently easier to maximize l(X;GB) with respect to X, since we have

∂l(X;GB)

∂xk

∣∣∣∣
X=I

= ek −BΓkbk,
∂2l(X;GB)

∂xl∂xk

∣∣∣∣
X=I

= −eke
t
l − δlkBΓkB

t.(3.5)

Let us denote by ∇B and ∇2
B the gradient vector and the Hessian matrix asso-

ciated with (3.5); i.e., ∇B = [et1 − bt1Γ1B
t, . . . , etK − btKΓKBt]t and ∇2

B = −[E + ΓB ]
with

E =

⎡⎢⎣ e1e
t
1 · · · eKet1

...
...

...
e1e

t
K · · · eKetK

⎤⎥⎦ , ΓB =

⎡⎢⎣ BΓ1B
t

. . .

BΓKBt

⎤⎥⎦ .
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Notice that ∇B and ∇2
B are gradient and Hessian of l(X;GB) as a function of

(xt
1, . . . , x

t
K)t, where X = [x1, . . . , xK ]t at X = I, and are simply obtained from

B without computing A = B−1. In the algorithm, the new iterate is given by

B(n + 1) = [I + λndB]B(n),(3.6)

where λn is a scale factor to be chosen and dB corresponds to the Newton step

[dbt1, . . . , db
t
K ]t = dB, ∇2

B(n)dB = −∇B(n).

Here, maximizing l(X;GB) instead of l(B;G) leads to the introduction of the relative
gradient ∇B . Generally, this approach simplifies the computation of the Hessian, but
its more relevant interest is in the statistical properties of the corresponding methods
in blind source separation problems [4].

Let E be a diagonal matrix whose diagonal elements are equal to ±1, called a sign
matrix. Then, if B is a solution of (3.3), so is EB and l(EB;G) = l(B;G). In what
follows, we will say that a matrix M is essentially unique when it is uniquely defined,
up to a left multiplication by a sign matrix. Note that a row-permutation of B, which
is a classical invariance property in blind source separation, corresponds here to the
same permutation on the order of the matrices Γ1, . . . ,ΓK in G.

3.2. The case K = 2. In this situation, an explicit formula for the solution is
obtained. A matrix B satisfying (3.3) realizes a joint diagonalization of Γ1 and Γ2.
This is related to the eigendecomposition problem [9, p. 467].

Lemma 3.5. Let Γ1 and Γ2 be two symmetric matrices. Assume that Γ1 is
positive definite. Then there exists a matrix W satisfying

WΓ1W
t = I, WΓ2W

t = Δ,

where Δ = diag(δ1, . . . , δK) is a diagonal matrix. Moreover, the matrix W is essen-
tially unique if and only if the elements of Δ are distinct and arranged in decreasing
(or increasing) order.

The rows of W are the eigenvectors of Γ2, with respect to the inner product
〈·, ·〉Γ1 , associated with the eigenvalues given by Δ, i.e., the roots of the polynomial
det(Γ2 − δΓ1), since we have Γ2W

t = Γ1W
tΔ.

Proposition 3.6. Let Γ1 and Γ2 be two nonproportional symmetric positive
definite matrices of order 2. Then the solution of the max-det problem is essentially
unique and given by

B =

(
1 0
0 1√

δ2

)
W, detB =

(
δ1
δ2

)1/4

(det Γ1 × det Γ2)
−1/4

,

where δ1, δ2, and W are elements of the joint diagonalization

WΓ1W
t =

(
1 0
0 1

)
, WΓ2W

t =

(
δ1 0
0 δ2

)
, δ1 > δ2 > 0.

Proof. Using Lemma 3.4 with M = W , we have B = CW , where C is the solution
of the max-det problem in which Γ1 = I and Γ2 = Δ. Now, the solutions of (3.3) are
essentially equal to

C =

(
1 0
0 1√

δ2

)
, C̃ =

(
0 1
1√
δ1

0

)
.
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Fig. 3.1. The max-det problem with Γ1 = I (ellipsoid ε1) and Γ2 = Δ (ellipsoid ε2): The
solution B = [b1, b2]t defines the parallelepiped (hatched) with maximum area when b1 ∈ ε1 and
b2 ∈ ε2.

Let δ = detC. The characteristic polynomials of the Hessian matrices are

PC(λ) = δ2(δ2λ + 2)(λ + 2)(δ2
2λ

2 + (δ1 + 1)δ2λ + δ1 − δ2),

PC̃(λ) = δ1(δ1λ + 2)(λ + 2)(δ2
1λ

2 + (δ2 + 1)δ1λ + δ2 − δ1).

It follows that PC(λ) has four negative roots, whereas PC̃(λ) has one positive and
three negative roots. Hence B = CW is the unique matrix, up to a sign factor, that
realizes the maximum of (1.2). The equalities

detB = δ
−1/2
2 detW = δ

−1/2
2 (det Γ1)

−1/2 = δ
1/2
1 (det Γ2)

−1/2

give the expression of detB.
Notice that the other solution of (3.3), B̃ = C̃W , corresponds to a saddle point.

When the matrices are proportional, Γ2 = δΓ1, we have δ1 = δ2 = δ, and the solution
is

B =

(
1 0
0 1√

δ

)
Γ
−1/2
1 ,

where Γ
−1/2
1 is the inverse matrix of any square root of Γ1.

The solution, for Γ1 = I and Γ2 = Δ, is illustrated by Figure 3.1.

3.3. The case of jointly diagonalizable matrices. We suppose here that the
set of matrices G satisfies Γk = AΔkA

t, k = 1, . . . ,K, with Δk = diag(δk(1), . . . , δk(K))
a (positive definite) diagonal matrix. This situation corresponds to the asymptotic
conditions in the blind source separation problem. We have XT = AST and

Γk = A
1

T
ST [RT

k (βk)]
−1St

TA
t, k = 1, . . . ,K.

Thus, as T goes to infinity, the matrix 1
T ST [RT

k (βk)]
−1St

T goes to a diagonal matrix Δk

because the sources are independent. Moreover, Δk satisfies 1 = δk(k) < δk(j), j �= k
[8]. This leads to the following result.
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Proposition 3.7. Let Γk = AΔkA
t, k = 1, . . . ,K, be a set of K ×K symmetric

positive definite matrices which are jointly diagonalizable. Suppose that each diagonal
matrix Δk = diag(δk(1), . . . , δk(K)) satisfies 1 = δk(k) < δk(j), j �= k. Then B = A−1

is the essentially unique solution of the max-det problem.
Proof. Using Lemma 3.4 with M = A−1, the solution is B = UA−1, where

U = [u1, . . . , uK ]t is the solution of the max-det problem associated with the diagonal
matrices Δk, k = 1, . . . ,K. We have

|detU | ≤
K∏

k=1

‖uk‖,

where ‖u‖2 = utu is the usual Euclidean norm, with equality if and only if ut
kuj = 0

for j �= k. Now, both constraint ut
kΔkuk ≤ 1 and hypothesis 1 = δk(k) < δk(j), j �= k,

lead to ‖uk‖ ≤ 1 with equality if and only if uk = ±ek. Because U is a sign matrix,
the solution B = A−1 is essentially unique.

This proposition can be extended as follows.
Proposition 3.8. Let Γk = AΔkA

t, k = 1, . . . ,K, be a set of K ×K symmetric
positive definite matrices which are jointly diagonalizable. The solution B of the max-
det problem satisfies

|detB| ≤ |detA|−1
K∏

k=1

δ
−1/2
k ,

where Δk = diag(δk(1), . . . , δk(K)) and δk = minj δk(j), k = 1, . . . ,K. This upper
bound is achieved if and only if there exists a permutation {j1, . . . , jK} of {1, . . . ,K}
such that δk(jk) = δk, k = 1, . . . ,K, and the solution is essentially unique if and only
if such a permutation is unique.

Proof. By Lemma 3.4 we can restrict ourself to the case of diagonal matrices.
Using the notation and the arguments of the proof above, we have

|detU | ≤
K∏

k=1

‖uk‖ ≤
K∏

k=1

δ
−1/2
k ,

and the upper bound is achieved if and only if U = Δ−1/2V , with Δ = diag(δ1, . . . , δK)
and V = [v1, . . . , vK ]t, where vk is an eigenvector of Δk associated with the eigenvalue
δk and V V t = I. If there exists a permutation {j1, . . . , jK} of {1, . . . ,K} such that
jk ∈ Jk = {j : δk(j) = δk}, k = 1, . . . ,K, then the upper bound is realized by
vk = ±ejk , k = 1, . . . ,K, and V is essentially a permutation matrix. Suppose now
that the upper bound is achieved. Then V .2 = (v.2ij), where v.2ij = v2

ij , is doubly
stochastic. So there is a permutation matrix V ∗ = (v∗ij) such that v∗ij = 0 whenever

v.2ij = 0 [6, Theorem 20.3, p. 329], and the entries of V ∗ define the desired permutation.
Finally, since any doubly stochastic matrix is a convex combination of permutation
matrices [6, Theorem 20.4, p. 330], the solution is essentially unique if and only if
such a permutation is unique.

In all other cases, no general result has been obtained. We now give some com-
ments and examples, for diagonal matrices, in order to show the difficulties of the
problem.

For any permutation {j1, . . . , jK} of {1, . . . ,K}, the matrix

U t =

[
ej1√
δ1(j1)

, . . . ,
ejK√
δK(jK)

]
, detU =

[
K∏

k=1

δk(jk)

]−1/2

(3.7)
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is a solution of the following system coming from (3.3):

UΔkU
tek = ek, k = 1, . . . ,K.(3.8)

Example 4 below shows that other solutions can exist. From Proposition 3.3, a solu-
tion of (3.8) corresponds to a maximum if and only if

δk(jl)

δl(jl)
>

δk(jk)

δl(jk)
, k < l = 1, . . . ,K,

but it is not proved that the solution of the max-det problem is in this set. Notice
that the system (3.8) has a continuum of solutions if, for some k �= l, there exists
i �= j such that δk(i)δl(j) = δl(i)δk(j).

Let us consider now some examples illustrating different situations.
1. For K = 3,Δ1 = diag(1, 2, 1),Δ2 = diag(1, 1, 2), and Δ3 = diag(2, 1, 1), the

maximum is equal to 1 and given by the matrices essentially equal to I or to

Π =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠ .

2. For K = 3,Δ1 = diag(1, 1, 1),Δ2 = diag(1, 1, 2), and Δ3 = diag(2, 3, 1), the
maximum is also equal to 1, but is realized by a continuum of solutions given
by the matrices essentially equal to

U =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠ , −π

2
< θ ≤ π

2
.

3. For K = 3,Δ1 = diag(1, 1, 1),Δ2 = diag(1, 3, 2), and Δ3 = diag(1, 3, 4), the
maximum is equal to 1/

√
2 and given by the matrices essentially equal to

U =

⎛⎝ 0 1 0

0 0 1/
√

2
1 0 0

⎞⎠ .

However, saddle points of the criterion are given by the following matrices:⎛⎝ 1 0 0

0 1/
√

3 0
0 0 1/2

⎞⎠ ,

⎛⎝ 0 0 1

sin θ cos θ/
√

3 0

cos θ − sin θ/
√

3 0

⎞⎠ , −π

2
< θ ≤ π

2
,

and we have observed that our algorithm can converge to such points.
4. For K = 3,Δ1 = diag(1, 1, 1),Δ2 = diag(3, 9, 11)/12, and Δ3 = diag(7, 5, 15)/

20, the maximum is equal to 4 and essentially uniquely realized by

U =

⎛⎝ 0 0 1
2 0 0
0 2 0

⎞⎠ .

Five solutions of (3.8) are given by

U t = [ej/
√
δ1(j), ek/

√
δ2(k), el/

√
δ3(l)],
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where (j, k, l) �= (3, 1, 2) are the other permutations of (1, 2, 3). However, in
this case, the matrix⎛⎝ 1 2 1

−1 1 −3
5 −1 −1

⎞⎠⎛⎝
√

0.1 0 0

0
√

0.2 0

0 0
√

0.1

⎞⎠
is also a solution of (3.8).

5. For K = 3,Δ1 = diag(1, 2, 5),Δ2 = diag(5, 1, 2), and Δ3 = diag(2, 5, 1), the
maximum is equal to 1 and given by the matrices essentially equal to I. The
other solutions of (3.8), associated with the permutations of (1, 2, 3), lead to
saddle points except for (2, 3, 1) for which the matrix⎛⎝ 0 1/

√
2 0

0 0 1/
√

2

1/
√

2 0 0

⎞⎠
provides a local maximum of the criterion.

3.4. Existence of the solution. The existence of a solution of our max-det
problem is obtained by considering the criterion l(B;G) given in (1.2).

Proposition 3.9. The maximum of l(B;G) is attained by a nonsingular matrix
B satisfying the set of equations (3.3).

Proof. Let λk be the smallest eigenvalue of Γk. The inequality

l(B;G) ≤
K∑

k=1

[
log ‖bk‖ −

λk

2
‖bk‖2

]
shows the coercivity of l(B;G). Thus we can restrict ourself to a set of bounded
matrices B. Now, in such a set, l(B;G) goes to −∞ when B goes to a singular matrix
because l(B;G) < log det |B|. Then the maximum is attained by a nonsingular matrix
B, and this matrix satisfies (3.3).

Notice that btkΓkbk ≤ 1 leads to ‖bk‖ ≤ λ−1
k . So

∏K
k=1 λ

−1
k is an upper bound

for detB. This upper bound is attained if and only if Bev = [λ
−1/2
1 v1, . . . , λ

−1/2
K vK ]t,

where vk is an eigenvector associated with λk, satisfies (3.3). For example, this will
be the case for jointly diagonalizable matrices, Γk = V ΛkV

t, k = 1, . . . ,K, with
V = [v1, . . . , vk]

t, V tV = I, and λk being the smallest element of Λk.
From a geometrical point of view, it is natural to maximize detB in the formula-

tion of our max-det problem. On the other hand, the maximum likelihood principle in
the blind source separation problem leads to the presence of |detB| instead of detB
in the formulation of the criterion l(B;G). In fact, the two optimization problems
are equivalent (have the same set of solutions) if we consider either detB or |detB|
in the two formulations. We have already observed that l(EB;G) = l(B;G) for any
sign matrix E . Furthermore, det EB = det E × detB with det E = ±1. So the set of
matrices that maximize the criterion l(B;G), with detB instead of |detB|, is the set
of matrices that maximize l(B;G) and satisfy detB > 0. This set is also the set of
solutions of our max-det problem. More precisely, we have the following result.

Proposition 3.10. The maximization of detB subject to the constraint (1.1) is
equivalent to minimizing the criterion

l∗(B;G) = − log detB +
1

2

K∑
k=1

(btkΓkbk − 1).
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Proof. If B satisfies (1.1), EB also satisfies (1.1), for any sign matrix E , so we can
restrict ourself to the set of matrices B with detB > 0. Then, our max-det problem
is equivalent to the minimization of − log detB subject to (1.1). Let us consider the
Lagrange function associated with

L(B,μ) = − log detB +

K∑
k=1

μk(b
t
kΓkbk − 1),

where μ = (μ1, . . . , μK)t is the vector of Lagrange multipliers. Since detB is bounded
under the constraint (1.1) and − log detB goes to +∞ when B tends to a singular
matrix, the minimum of − log detB, subject to (1.1), exists and is attained by a
nonsingular matrix B. For such a matrix, we have

∂btkΓkbk
∂B

= 2 [0, . . . , 0,Γkbk, 0, . . . , 0]
t �= 0, k = 1, . . . ,K,

because bk �= 0 and Γk is positive definite. So, the linear independence constraint
qualification holds. Then, there exists μ such that the solution B satisfies the KKT
necessary conditions

μk ≥ 0, μk(b
t
kΓkbk − 1) = 0, btkΓkbk − 1 ≤ 0, k = 1, . . . ,K,

∂L(B,μ)

∂B
= 0.

We have

∂L(B,μ)

∂B
= 0 ⇐⇒ 2μkBΓkbk = ek, k = 1, . . . ,K.(3.9)

Setting SB = {B : detB > 0, btkΓkbk ≤ 1, k = 1, . . . ,K} and Sμ = {μ : μk ≥ 0, k =
1, . . . ,K}, the min-max theorem gives

min
B∈SB

max
μ∈Sμ

L(B,μ) ≥ max
μ∈Sμ

min
B∈SB

L(B,μ).

From

min
B∈SB

max
μ∈Sμ

L(B,μ) = min
B∈SB

− log detB, max
μ∈Sμ

min
B∈SB

L(B,μ) ≥ min
B∈SB

L(B,μ∗)

given by μ = 0 and μ∗ = (1/2, . . . , 1/2)t, we obtain

min
B∈SB

− log detB ≥ min
B∈SB

L(B,μ∗) = min
B∈SB

l∗(B;G) ≥ min
B

l∗(B;G).(3.10)

Now, if ŜB is the set of matrices B satisfying detB > 0 and (3.3), Proposition 3.9
leads to

min
B

l∗(B;G) = min
B∈ŜB

l∗(B;G) = min
B∈ŜB

− log detB ≥ min
B∈SB

− log detB,(3.11)

because ŜB ⊂ SB . Relations (3.10) and (3.11) give the equality

min
B∈SB

− log detB = min
B

l∗(B;G)(3.12)

and show that{
B̂ : l∗(B̂;G) = min

B
l∗(B;G)

}
⊆

{
B̂ : − log det B̂ = min

B∈SB

− log detB

}
.
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Conversely, if B̂ ∈ SB minimizes − log detB, it is also a minimum for l∗(B;G) since

− log det B̂ ≥ l∗(B̂;G) ≥ min
B

l∗(B;G) = − log det B̂,

and the proof is achieved. Notice that (3.3) corresponds to (3.9) with μ = μ∗.
In the proof above, equality (3.12) shows that there is no duality gap and μ∗ is a

strong duality solution for our max-det problem although this problem is nonconvex.

3.5. The uniqueness problem. We have shown that the solution of our max-
det problem is essentially unique for two nonproportional matrices (see Proposition
3.6) and for particular jointly diagonalizable matrices (see Propositions 3.7 and 3.8).
Neither a general result for this problem nor a sufficient condition for the solutions
of (3.3) to be a set of isolated points has been obtained. Indeed, this last condition
guarantees the convergence of our algorithm. In section 3.3 we have seen, for jointly
diagonalizable matrices, that the maximum can be reached by two distinct matrices
(example 1) or by a continuum set of matrices (example 2). This comes from the par-
ticular structure of these matrices, and such nuisance disappears in the blind source
separation problem, because G = {Γk, k = 1, . . . ,K} is a set of estimated matrices.
However, the existence of saddle points (example 3) and local maxima (example 5) for
the criterion will be probably true more often than not. This comes from the conti-
nuity of l(B,G) with respect to G. We suggest computing the upper bound

∏K
k=1 λ

−1
k

of detB and starting the algorithm with the matrix Bev = [λ
−1/2
1 v1, . . . , λ

−1/2
K vK ]t

presented above. These points will be illustrated at the end of the next section.

4. The algorithm. The algorithm and its convergence properties are presented,
and some numerical experiments are performed showing its behavior.

We maximize l(B,G) by a relaxation technique on the rows bk, k = 1, . . . ,K, of
B. Such an iterative method guarantees that the criterion increases at each step.
Then, the convergence of the algorithm can be obtained under reasonable conditions.

4.1. The relaxation technique. The gradient of l(B,G) with respect to bk
vanishes if and only if ek = BΓkbk, i.e., ‖bk‖Γk

= 1 and 〈bk, bj〉Γk
= 0 for j �= k. The

Hessian

∇2
bk
l(B;G) = −aka

t
k − Γk, [a1, . . . , aK ] = A = B−1

is negative definite. So the maximum of l(B,G), with respect to bk and when the
other rows of B are fixed, has the following explicit solution. Let B be a nonsingular
matrix of order K, and let B(k) denote the (K− 1)×K-matrix obtained by removing
the kth row of B. Hence the orthogonal projector in RK , according to 〈·, ·〉Γk

, on the
subspace spanned by the rows of B(k) is

Pk = Bt
(k)

[
B(k)ΓkB

t
(k)

]−1

B(k)Γk.

Thus the maximum of l(B,G) is realized by ±b̂k with

b̂k =
(I − Pk)bk

‖(I − Pk)bk‖Γk

.

Our algorithm proceeds as follows. A nonsingular initial matrix B(0) is chosen.
Then the algorithm constructs a sequence {B(n), n ≥ 0} by modifying successively
the rows of the current matrix using the above process. B(n + 1) differs from B(n)
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only by one row; i.e., bk(n + 1) = ±b̂k(n) for some k and the sign is chosen in such a
way that the first nonzero component of bk(n + 1) is positive. By construction, each
matrix B(n) is nonsingular.

4.2. Convergence of the algorithm. We have seen that the criterion l(B;G) is
bounded and is strictly concave with respect to bk. Hence l(B(n+1);G) ≥ l(B(n);G),
with equality if and only if B(n + 1) = B(n). However, this equality is not sufficient
to prove that B(n) satisfies (3.3); this will be true if and only if B(n + K) = B(n).
However, we have the following result.

Proposition 4.1. The sequence {l(B(n);G), n ≥ 0} is convergent.
This does not prove the convergence of the sequence {B(n), n ≥ 0}, which requires

many intermediate results.
Lemma 4.2. The projection Pk(n)bk(n), computed at each step of the algorithm,

converges to 0 when n goes to +∞.
Proof. Assume, without any loss of generality, that the (n + 1)th step concerns

the modification of the first row of B(n). On the one hand, we have, for n ≥ K,

l(B(n + 1);G) − l(B(n);G) = log |detB(n + 1)A(n)|,

where A(n) = [a1(n), . . . , aK(n)] = B(n)−1. On the other hand, we have

B(n + 1)A(n) =

⎛⎜⎜⎜⎝
〈b1(n + 1), a1(n)〉 . . . . . . 〈b1(n + 1), aK(n)〉

0 1 0 0
...

...
. . .

...
0 . . . . . . 1

⎞⎟⎟⎟⎠ .

Proposition 4.1 shows that the difference l(B(n+1);G)−l(B(n);G) goes to 0; therefore
the inner product 〈b1(n + 1), a1(n)〉 goes to ±1. By construction we have

b1(n + 1) = ± b1(n) − P1(n)b1(n)

‖b1(n) − P1(n)b1(n)‖Γ1

,

and then

〈b1(n + 1), a1(n)〉 = ±〈b1(n), a1(n)〉 − 〈P1(n)b1(n), a1(n)〉
‖b1(n) − P1(n)b1(n)‖Γ1

= ± 1

‖b1(n) − P1(n)b1(n)‖Γ1

.

Therefore, ‖b1(n) − P1(n)b1(n)‖Γ1 converges to 1 when n goes to +∞. Since

‖P1(n)b1(n)‖2
Γ1

= ‖b1(n)‖2
Γ1

− ‖b1(n) − P1(n)b1(n)‖2
Γ1

= 1 − ‖b1(n) − P1(n)b1(n)‖2
Γ1
,

one deduces that ‖P1(n)b1(n)‖2
Γ1

converges to 0 when n goes to +∞.
Now we show that, asymptotically, B(n) satisfies the optimality condition (3.3).
Lemma 4.3. The sequence {B(n), n ≥ 0} satisfies

lim
n→+∞

B(n)ΓkB(n)tek = ek, k = 1, . . . ,K.

Proof. We have to show that, for all k, j = 1, . . . ,K,

lim
n→+∞

〈bk(n), bj(n)〉Γk
= δkj .
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Let bi(n) be the row modified at the (n + 1)th step,

bi(n + 1) =
bi(n) − Pi(n)bi(n)

‖bi(n) − Pi(n)bi(n)‖Γi

.

For k = i, we have 〈bi(n+1), bj(n+1)〉Γi = δij by construction. For the same reason,
we have 〈bj(n), bi(n)〉Γj = 0 for j �= i because of the (K−1) preceding steps (provided
that n ≥ K − 1). Hence one obtains

〈bj(n + 1), bi(n + 1)〉Γj = 〈bj(n), bi(n + 1)〉Γj

=
〈bj(n), bi(n) − Pi(n)bi(n)〉Γj

‖bi(n) − Pi(n)bi(n)‖Γj

= −
〈bj(n), Pi(n)bi(n)〉Γj

‖bi(n) − Pi(n)bi(n)‖Γj

.

Since ‖bj(n)‖Γj = 1 for j = 1, . . . ,K and Pi(n)bi(n) goes to 0 (according to the
Lemma 4.2), one deduces that 〈bj(n + 1), bi(n + 1)〉Γj converges to 0 when n goes to
+∞. When both j and k are not equal to i, 〈bj(n + 1), bk(n + 1)〉Γj = 0 if the jth
row was modified after the kth one, which corresponds to the following situations:
i < k < j, k < j < i, and j < i < k. Otherwise, we use the same argument as above
from the following equalities. We have

〈bj(n + 1), bk(n + 1)〉Γj
= −

〈bj(l), Pk(l)bk(l)〉Γj

‖bk(l) − Pk(l)bk(l)‖Γk

, l = n− i + k + 1,

for j < k < i or k < i < j, and

〈bj(n + 1), bk(n + 1)〉Γj = −
〈bj(l), Pk(l)bk(l)〉Γj

‖bk(l) − Pk(l)bk(l)‖Γk

, l = n− i + k −K + 1,

for i < j < k.
Lemma 4.4. The sequence {B−1(n), n ≥ 0} is bounded.
Proof. We recall the notation A(n) = [a1(n), . . . , aK(n)] = B−1(n) and take the

usual norm, ‖A‖2 = trace(AAt). Let λk (resp., μk) be the smallest (resp., the largest)
eigenvalue of the matrix Γk. Since n ≥ K − 1, we have

‖A(n)‖2 =

K∑
k=1

‖ak(n)‖2 ≤
K∑

k=1

μ2
k

λk
.

Indeed, assume that bk(n) is the row defined at the nth step. By the construction
process, bk(n) is characterized by

B(n)Γkbk(n) = ek ⇐⇒ ak(n) = Γkbk(n).

The second expression yields to the inequality ‖ak(n)‖ ≤ μk‖bk(n)‖. Moreover,
‖bk(n)‖2

Γk
= 1 implies that ‖bk(n)‖2 ≤ 1

λk
.

Lemma 4.5. The gradient of l(B;G), evaluated at B(n), converges to 0 when n
goes to +∞, and any accumulation point of the sequence {B(n), n ≥ 0} satisfies the
optimality condition (3.3).

Proof. From Proposition 3.1, we have

∇bk l(B(n);G) = ak(n) − ΓkB
t(n)ek = A(n)(ek −B(n)ΓkB

t(n)ek), k = 1, . . . ,K.

The matrix A(n) is bounded and, according to the Lemma 4.3,

lim
n→+∞

B(n)ΓkB
t(n)ek = ek ∀ k = 1, . . . ,K;
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Table 4.1

Behavior of the algorithm in three situations: random (6 cases), saddle points, and local max-
ima. Variables are computed, in each row, with N = 1000 choices of matrices Γk and Bev or
R = 100 random matrices as starting value. See the text for further explanation.

Matrices Γk η div ev div r swe ev swe r nonun ev �= r

0 0.4 11.3 12.2 3 1
1 0.9 10.5 11.5 1 0

Random 2 2.3 10.2 11.1 0 0
3 2.0 11.1 12.3 1 0
4 2.1 10.1 11.1 2 0
5 4.1 10.8 11.8 4 1

10−3 0 133.0 44.5 50.2 999 0

10−2 0 52.6 45.0 55.4 376 0

Saddle points 10−1 32 38.7 58.2 63.9 111 23
1 7 6.7 31.3 33.6 29 6
10 2 2.4 15.0 16.2 11 1
100 1 1.0 10.6 11.4 4 1

10−3 0 0.0 6.6 11.4 523 0

10−2 0 0.4 7.7 11.4 137 0

Local maxima 10−1 0 0.1 10.2 13.4 11 0
1 2 3.7 25.6 27.7 23 8
10 2 2.6 15.5 16.6 6 0
100 0 0 10.8 11.7 5 1

then the first part of the lemma is achieved. Let B∗ be an accumulation point of
the sequence {B(n), n ≥ 0}. Then there exists a increasing function ϕ such that
the sequence {B(ϕ(n)), n ≥ 0} converges to B∗. This subsequence satisfies the limit
property of Lemma 4.3, and this, using the continuity of the inner product, achieves
the second part of the lemma.

Lemma 4.6. limn→+∞ ‖B(n + 1) −B(n)‖ = 0.
Proof. Assume that B(n + 1) differs from B(n) by its kth row; then we have

‖B(n + 1) −B(n)‖ = ‖bk(n + 1) − bk(n)‖,

bk(n + 1) − bk(n) =
bk(n)(1 − ‖bk(n) − Pk(n)bk(n)‖Γk

) − Pk(n)bk(n)

‖bk(n) − Pk(n)bk(n)‖Γk

.

Thus bk(n+1)− bk(n) converges to 0 when n goes to +∞ since Pk(n)bk(n) converges
to 0 and ‖bk(n)‖Γk

= 1.
Both the lemma and a theorem in Ostrowski [13, p. 173] lead to the following

result.
Theorem 4.7. The sequence {B(n), n ≥ 0} given by the algorithm converges;

otherwise, the set of solutions of the optimality condition (3.3) is a continuum.

4.3. Numerical experiments. Two sets of experiments are conducted. The
former illustrates the behavior of our algorithm, and the latter compares our approach
with Newton’s methods for nonlinear optimization.

Table 4.1 summarizes results on the behavior of the algorithm. For K = 3, three
kinds of situations are considered: random, saddle points and local maxima. In the
first, the set G is random; i.e., the matrices Γk, k = 1, 2, 3, are mutually independent
with Γk = RkR

t
k, where Rk is a random matrix whose elements are independent

zero-mean Gaussian variables with variance one. In the two other situations, we use
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diagonal matrices with random perturbations

Γk = Δk + ηRkR
t
k, k = 1, 2, 3,

where Rk is as above and η is a scalar factor. The diagonal matrices Δk are those
introduced in section 3.3 illustrating saddle points (example 3) and local maxima
(example 5). Each row of the table corresponds to N = 1000 experiments associated
with N independent choices of G. For each experiment, our algorithm is used starting
with B(0) equal to the matrix Bev using the eigenvectors (see section 3.5) and also
to R = 100 random matrices Br, r = 1, . . . , R (Br is distributed like Rk above). The
algorithm is stopped when the two following conditions are satisfied:

• abs(l(B(mK + K);G) − l(B(mK);G)) < 10−8,
• maxi,j{|Bij(mK + K) −Bij(mK)|} < 10−8,

or when the number of sweeps reaches 200 (a sweep corresponds to the change of
B(mK) into B(mK + K)). We use 10−8, instead of 10−4 as below, in order to well
separate, in each experiment, the distinct values of l(B̂;G) given by distinct values
of B(0), for the computation of “nonun” and “ev �= r.” Noting B̂ev and B̂r as the
solutions of the algorithm associated with B(0) = Bev and B(0) = Br, variables
“nonun” and “ev �= r” in Table 4.1 give, respectively, for the N experiments, the
number of cases where maxr(l(B̂r;G))−minr(l(B̂r;G)) > 10−4 and |maxr(l(B̂r;G))−
l(B̂ev;G)| > 10−4. So “nonun” represents the number of experiments for which the
solution given by the algorithm is not unique, since it depends on the starting value
B(0); “ev �= r” measures the ability of the algorithm to reach the maximum, when the
starting value is Bev. Variable “div ev” is the number of divergences of the algorithm
(when the number of sweeps reaches 200) when B(0) = Bev, and “div r” is the
corresponding mean number using R starting values B(0) = Br. Variables “swe ev”
and “swe r” are the mean number of sweeps for convergence of the algorithm starting
with B(0) = Bev (N trials) and B(0) = Br (N × R trials), respectively, computed
only on the convergence cases.

Looking at ev �= r and div ev, it is clear that the algorithm must be initialized
with B(0) = Bev. In that way, saddle points or local maxima seem to be avoided.
The random cases reported here have been obtained with numerous tries in order
to select cases with increasing values of div ev. The corresponding values of div r
and the relatively stability of swe ev and swe r lead to the following conclusions.
Generally, the algorithm converges quickly, except for some “ill-conditioned” sets G
for which the convergence is very slow, whatever the starting value. “nonun” shows
that the uniqueness problem is not so crucial in standard situations. “div r” illustrates
Theorem 4.7, since the set of solutions of the optimality condition (3.3) is a continuum
in the saddle points situation, while these solutions are isolated points, including
saddle points, in the local maxima situation.

We compare now our relaxation method with Newton’s methods for nonlinear
optimization. First, we use the Newton approach described in (3.6). The scale factor
λn is provided by the quadratic and cubic line search procedure given in section
9.7 of [12]. Furthermore, when the Hessian H = ∇2

B(n) is not negative definite, we

replace it by H − (λmax +10−4)I, where λmax is the largest eigenvalue of H, in order
to guarantee that the Newton direction dB is an ascent direction. Table 4.2 gives
results of a set of variables for K = 3, 5, 8, 10, 12, 15, 20, and 25. Each row of the
table corresponds to N = 1000 experiments associated with N independent choices
of G in the random situation. For each experiment, our algorithm, like the Newton
method, is used starting with B(0) equal to the matrix Bev using the eigenvectors.
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Table 4.2

Comparison between the relaxation method (r) and Newton’s method (n), using the line search
procedure with modification of the Hessian, for eight dimensions K. Variables are computed, in each
row, with N = 1000 choices of matrices Γk and Bev as starting value.

Dim div r − n swe r swe n cpu r cpu n cpu hes cpu ls hes ls

K = 3 2 - 0 0 - 1 6.1 5.0 0.0088 0.0095 0.0018 0.0023 241 265
K = 5 1 - 0 1 - 6 8.7 6.6 0.0169 0.0166 0.0060 0.0030 457 489
K = 8 2 - 0 5 - 10 10.9 7.9 0.0271 0.0710 0.0488 0.0050 661 696
K = 10 0 - 0 9 - 13 13.3 8.8 0.0386 0.1900 0.1543 0.0063 777 808
K = 12 1 - 0 14 - 15 14.1 9.3 0.0501 0.4848 0.4225 0.0080 836 860
K = 15 3 - 0 16 - 22 16.9 10.2 0.0847 1.8966 1.7376 0.0114 914 933
K = 20 1 - 0 25 - 32 20.4 11.0 0.1498 11.1208 10.6141 0.0150 973 979
K = 25 3 - 0 31 - 29 22.2 11.8 0.2721 53.3996 51.9327 0.0260 986 987

The stopping rule is the same as above, but with 10−4 instead of 10−8 and 20K
instead of 200 for the maximum number of sweeps. Variable “div” gives, for the
N experiments, the number of divergences of the two methods, in the order r − n.
Noting by B̂r and B̂n the solutions given by our relaxation method and by Newton’s
method, variable “r−n” represents, for the N experiments, the number of cases where
l(B̂r;G) > l(B̂n;G) + 2 × 10−4 and l(B̂n;G) > l(B̂r;G) + 2 × 10−4. Variables “swe
r” and “swe n” are the means of sweeps of our algorithm and of Newton’s method,
computed only on the convergence cases. Variables “cpu r,” “cpu n,” “cpu hes,” and
“cpu ls” are the means of cpu times in seconds, computed only on the experiments
for which the algorithms converge, of the relaxation algorithm, the Newton’s method,
the modification of the Hessian, and the line search procedure, respectively. Finally,
variables “hes” and “ls” give, for Newton’s method, the number of cases where the
Hessian has positive eigenvalues and those where the line search procedure is necessary
(at least one time during the sweeps of an experiment).

Table 4.2 shows that the performances of the two methods are similar (see variable
“r−n”). However, our relaxation method is faster (cpu time) than Newton’s method,
although the mean number of sweeps of Newton’s method is lower than that of the
relaxation method. Notice that the gain in cpu time increases very quickly with K:
from 1 at K = 5 to 196 for K = 25. As it can be seen from variable “hes,” the
Hessian frequently has positive eigenvalues, but Newton’s method always converges,
and we have observed than the Hessian is always negative definite at convergence. An
important difference between the two methods is that, in the relaxation technique,
the successive values B(n) satisfy the constraint btkΓkbk = 1, k = 1, . . . ,K, while this

constraint is approximatively satisfied only by the solution B̂n given by the Newton’s
method. This can explain that “swe r” is greater than “swe n,” since the search for
the solution is confined on this constrained set in the relaxation technique. Variable
“cpu hes” shows that the difference in cpu time between the two methods comes
essentially from the computation of the eigenvalues of the Hessian. So, we propose
to use a negative definite approximation of ∇2

B(n) = E + ΓB(n) by canceling the off-
diagonal blocs of E. The corresponding results are reported in Table 4.3. We observe
that the performances of the two methods are still similar (variable “r−n”). But this
decreases the convergence properties of Newton’s method (variables “div” and “swe
n”), and the relaxation method remains faster (cpu time) than Newton’s method. As
suggested by one referee, we also compare our method with Newton’s method using
the trust region approach. For that, we use the FMINUNC procedure of Matlab
7.0.1, with gradient and Hessian coming from Proposition 3.1. Our stopping rule is
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Table 4.3

Comparison between the relaxation method (r) and Newton’s method (n), using the line search
procedure with approximation of the Hessian, for eight dimensions K. Variables are computed, in
each row, with N = 1000 choices of matrices Γk and Bev as starting value.

Dim div r − n swe r swe n cpu r cpu n cpu ls ls

K = 3 2 - 15 3 - 0 5.8 9.7 0.0097 0.0131 0.0034 88
K = 5 1 - 13 1 - 2 8.5 16.3 0.0157 0.0196 0.0047 213
K = 8 1 - 10 6 - 3 11.3 24.3 0.0268 0.0527 0.0073 347
K = 10 0 - 10 3 - 4 12.8 27.7 0.0347 0.0916 0.0076 376
K = 12 0 - 10 8 - 5 14.7 33.5 0.0494 0.1835 0.0129 479
K = 15 1 - 10 11 - 6 16.9 39.6 0.0758 0.5262 0.0197 508
K = 20 2 - 7 16 - 13 20.5 50.6 0.1620 2.2173 0.0320 612
K = 25 3 - 8 14 - 19 23.8 55.1 0.2902 6.4221 0.0548 696

Table 4.4

Comparison between the relaxation method (r) and Newton’s method (n), using the trust region
approach, for eight dimensions K. Variables are computed, in each row, with N = 1000 choices of
matrices Γk and Bev as starting value.

Dim div r − n swe r swe n cpu r cpu n

K = 3 0 - 0 33 - 3 3.6 4.3 0.0051 0.0320
K = 5 0 - 0 27 - 5 4.7 5.5 0.0111 0.0461
K = 8 0 - 0 16 - 13 5.7 6.7 0.0194 0.0916
K = 10 0 - 0 19 - 17 6.4 7.4 0.0243 0.1401
K = 12 0 - 0 22 - 23 7.3 8.0 0.0338 0.2106
K = 15 0 - 0 20 - 24 8.1 8.7 0.0512 0.4572
K = 20 0 - 0 28 - 35 9.4 9.6 0.1033 1.0445
K = 25 0 - 0 46 - 53 10.3 10.2 0.1790 3.6607

Table 4.5

Behavior of the relaxation method for large dimensions K. Variables are computed, in each
row, with N = 100 choices of matrices Γk and Bev as starting value.

Dim div r swe r cpu r

K = 25 0 24.2 0.2912
K = 30 0 28.3 0.6337
K = 50 0 35.6 5.5955
K = 75 2 47.9 23.8969
K = 100 3 85.7 109.1694

modified in order to agree with that of this procedure. Thus, our algorithm is stopped
when either abs(l(B(mK+K);G)− l(B(mK);G)) < 10−4 or maxi,j{|Bij(mK+K)−
Bij(mK)|} < 10−4, or when the number of sweeps reaches 20K. This corresponds to
TolFun = 10−4, T olX = 10−4, and MaxIter = 20K in the options of the FMINUNC
procedure. As can be seen in Table 4.4, the performances of the two methods remain
similar, and the relaxation method is still faster than Newton’s method. The gain in
cpu time is less important for large values of K: it increases from 4 for K = 5 to 20
for K = 25 but is equal to 6 for K = 3.

In fact, these methods are not adapted for very large values of K, because the
convergence begins slow. This can be seen in Table 4.5 for the relaxation method.
In blind sources separation area, small values of K are frequently encountered, and
some applications are restricted to K = 2.
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Abstract. We give a proximal bundle method for minimizing a convex function f over a convex
set C. It requires evaluating f and its subgradients with a fixed but possibly unknown accuracy ε > 0.
Each iteration involves solving an unconstrained proximal subproblem and projecting a certain point
onto C. The method asymptotically finds points that are ε-optimal. In Lagrangian relaxation of
convex programs, it allows for ε-accurate solutions of Lagrangian subproblems and finds ε-optimal
primal solutions. For semidefinite programming problems, it extends the highly successful spectral
bundle method to the case of inexact eigenvalue computations.
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1. Introduction. We consider the convex constrained minimization problem

f∗ := inf{ f(u) : u ∈ C },(1.1)

where C is a nonempty closed convex set in the Euclidean space Rn with inner product
〈·, ·〉 and norm | · |, and f : Rn → R is a convex function. We assume that for a fixed
accuracy tolerance εf ≥ 0, for each u ∈ C we can find an approximate value fu and
an approximate subgradient gu of f that produce the approximate linearization of f :

f̄u(·) := fu + 〈gu, · − u〉 ≤ f(·) with f̄u(u) = fu ≥ f(u) − εf .(1.2)

Thus fu ∈ [f(u) − εf , f(u)] estimates f(u), while gu ∈ ∂εf f(u); i.e., gu is a member
of the εf -subdifferential ∂εf f(u) := {g : f(·) ≥ f(u) − εf + 〈g, · − u〉} of f at u.

Our assumption is realistic in many applications. For instance, if f is a max-type
function of the form

f(u) := sup {Fz(u) : z ∈ Z } ,(1.3)

where each Fz : Rn → R is convex and Z is an infinite set, then it may be impossible to
compute f(u). However, if for some fixed (and possibly unknown) tolerance εf we can
find an εf -maximizer of (1.3), i.e., an element zu ∈ Z satisfying Fzu(u) ≥ f(u) − εf ,
then we may set fu := Fzu(u) and take gu as any subgradient of Fzu at u to satisfy
(1.2). An important special case arises in Lagrangian relaxation [HUL93, Chap. XII],
[Lem01], where problem (1.1) with C := Rn

+ is the Lagrangian dual of the primal
problem

sup ψ0(z) s.t. ψi(z) ≥ 0, i = 1: n, z ∈ Z,(1.4)
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with Fz(u) := ψ0(z) + 〈u, ψ(z)〉 for ψ := (ψ1, . . . , ψn). Then, for each multiplier
u ≥ 0, we need only find zu ∈ Z such that fu := Fzu(y) ≥ f(u) − εf in (1.3) to
use gu := ψ(zu). For instance, if (1.4) is a semidefinite program (SDP) with each ψi

affine and Z the set of symmetric positive semidefinite matrices of order m with a
bounded trace, then f(u) is the maximum eigenvalue of a symmetric matrix M(u)
depending affinely on u [Tod01, sect. 6.3], and zu can be found by computing an
approximate eigenvector corresponding to the maximum eigenvalue of M(u) via the
Lanczos method [HeK02, HeR00, Nay06].

The recent paper [Kiw06b] extended the proximal bundle methods of [Kiw90] and
[HUL93, sect. XV.3] to the inexact setting of (1.2) (see [Hin01, Kiw85, Kiw95, Mil01,
Sol03] for earlier related developments, and [Kiw05] for numerical tests). Such meth-
ods at each iteration find a trial point that minimizes over C a polyhedral model of
f built from accumulated linearizations, stabilized by a quadratic prox term centered
at a point which is usually the best iterate found so far. Solving this subproblem
can require much work for large n even when the set C is polyhedral, including the
simplest case of C = Rn

+ used in Lagrangian relaxation.
This paper extends the projection-proximal method of [Kiw99] to the case of

inexact linearizations. For this method, we may regard (1.1) as an unconstrained
problem f∗ = inf fC with the essential objective

fC := f + iC ,(1.5)

where iC is the indicator function of C (iC(u) = 0 if u ∈ C, ∞ otherwise). In its
simplest form, the method generates the trial point in two steps. The first proximal
step minimizes a polyhedral model f̌ of f , augmented with a quadratic proximal term
and a linearization of iC obtained at the previous iteration, to produce a linearization
of f̌ . The second projection step minimizes over C this linearization augmented with
the proximal term; this amounts to projecting a certain point onto C to produce the
trial point and the next linearization of iC . Thus the standard bundle subproblem
is replaced by two subproblems, where the first “unconstrained” subproblem is much
easier to solve, and the projection is straightforward if the set C is “simple.” Our
development is related to the alternating linearization approach of [KRR99], in which
the prox subproblem for the sum of two functions, such as (1.5), is approximated by
two subproblems in which the functions are alternately represented by linear models.

Our extension of [Kiw99] is natural and simple: the original method is run as
if the objective linearizations were exact until a test on predicted descent discovers
their inaccuracy; then the proximity weight is decreased to produce descent or confirm
that the current prox center is εf -optimal. We show that our method asymptotically
estimates the optimal value f∗ of (1.1) with accuracy εf and finds εf -optimal points.
In Lagrangian relaxation, under standard convexity and compactness assumptions on
problem (1.4) (see section 5), it finds εf -optimal primal solutions by combining partial
Lagrangian solutions, even when Lagrange multipliers don’t exist. These features
are essentially “inherited” from the inexact framework of [Kiw06b] (although some
technical developments are nontrivial). On the other hand, this paper reorganizes and
simplifies the convergence framework of [Kiw06b] and sheds light on several important
issues not discussed in there (such as the “true” impact of inexact evaluations, the
possible use of “more inexact” null steps, primal recovery for Lagrangian relaxation
with subgradient aggregation, and Lagrangian relaxation of equality constraints).

For the important special case where the functions ψi of the primal problem (1.4)
are affine, we show how to employ nonpolyhedral models of f . Each model has the
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form f̌(·) := supz∈Ž Fz(·) stemming from (1.3), where Ž is a closed convex subset
of Z. Then the proximal step can be implemented by solving a dual subproblem of
minimizing a convex quadratic function over Ž (e.g., via interior-point methods when
Ž is simple enough), and the projection on C := Rn

+ is trivial. Further, the dual
subproblem solutions estimate εf -optimal primal solutions asymptotically as above.
In particular, our framework extends the highly successful methods of [FGRS06, sect.
3.2] and [ReS06, sect. 3] (see Remark 5.6).

Finally, for SDP (see below (1.4)) our general framework yields extensions of sev-
eral variants of the spectral bundle method [Hel03, Hel04, HeK02, HeR00, Nay99].
This method employs the nonpolyhedral models discussed above, with Ž constructed
from accumulated eigenvectors of the dual objective matrix M(u). The original ver-
sion of [HeR00] could handle only equality-constrained SDPs. Its extension [HeK02] to
inequality-constrained SDPs can be seen as a specialization of the method of [Kiw99];
this helps in distinguishing its “driving force” from “implementation details” (al-
though the latter are, of course, crucial for its performance in practice). Hence the
primal recovery result of [Hel04, Thm. 3.6] also follows from our more general re-
sults (see Theorems 3.7 and 5.2); in fact, we don’t need the assumption of [Hel04,
Thm. 3.6] that the dual problem has a solution (see Remark 5.7(i)). Our exten-
sion to the case of approximate eigenvectors (see below (1.4)) is relevant for both
theory and practice. Namely, while the existing version [HeK02] already employs ap-
proximate eigenvectors at so-called null steps (and this saves much work in practice
[Hel03, HeK02, Nay99, Nay06]), it requires exact eigenvalues at the remaining descent
steps. Our theoretical results show what to expect if approximate eigenvectors are
used at descent steps as well, thus opening room for more efficient implementations.

The paper is organized as follows. In section 2 we present our method for general
objective models. Its convergence is analyzed in section 3. Various modifications
and model choices are given in section 4. Applications to Lagrangian relaxation are
studied in section 5.

Our notation is fairly standard. PC(u) := arg minC | · −u| is the projector onto
C.

2. The proximal-projection bundle method. Our method generates a se-
quence of trial points {uk}∞k=1 ⊂ C for evaluating the approximate values fk

u := fuk ,
subgradients gk := guk , and linearizations fk := f̄uk such that

fk(·) = fk
u + 〈gk, · − uk〉 ≤ f(·) with fk(u

k) = fk
u ≥ f(uk) − εf ,(2.1)

as stipulated in (1.2). At iteration k, the current prox (or stability) center ûk :=

uk(l) ∈ C for some k(l) ≤ k has the value fk
û := f

k(l)
u (usually fk

û = mink
j=1 f

j
u); note

that, by (2.1),

fk
û ∈ [f(ûk) − εf , f(ûk)].(2.2)

For a model f̌k ≤ f , the next point uk+1 approximately solves the prox subproblem

min f̌k(·) + iC(·) +
1

2tk
| · −ûk|2,(2.3)

where tk > 0 is a stepsize that controls the size of |uk+1 − ûk|. To this end, two
partial linearizations of (2.3) are employed. First, replacing iC by its past linearization
ı̄k−1
C ≤ iC in (2.3), we find its solution ǔk+1 and a linearization f̄k ≤ f̌k such that
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ǔk+1 solves (2.3) with f̌k, iC replaced by f̄k, ı̄
k−1
C . Next, replacing f̌k by f̄k in (2.3),

we find its solution uk+1 and a linearization ı̄kC ≤ iC such that uk+1 solves (2.3) with
f̌k, iC replaced by f̄k, ı̄

k
C . Due to evaluation errors, we may have fk

û < f̌k(û
k), in

which case the predicted descent vk := fk
û − f̄k(u

k+1) may be nonpositive; then tk is
increased and uk+1 is recomputed to decrease f̄k(u

k+1) until vk > 0. A descent step
to ûk+1 := uk+1 is taken if fk+1

u ≤ fk
û − κvk for a fixed κ ∈ (0, 1). Otherwise, a null

step ûk+1 := ûk occurs; then f̄k and the new linearization fk+1 are used to produce
a better model f̌k+1 ≥ max{f̄k, fk+1} (e.g., f̌k+1 = max{f̄k, fk+1}).

Specific rules of our method will be discussed after its formal statement below.
Algorithm 2.1.

Step 0 (initialization). Select u1 ∈ C, a descent parameter κ ∈ (0, 1), a stepsize
bound tmin > 0, and a stepsize t1 ≥ tmin. Set f̄0 := f1 (cf. (2.1)), ı̄0C := 〈p0

C , · − u1〉
with p0

C := 0, û1 := u1, f1
û := f1

u := fu1 , g1 := gu1 (cf. (2.1)), i1t := 0, k := k(0) := 1,
l := 0 (k(l) − 1 will denote the iteration of the lth descent step).

Step 1 (model selection). Choose f̌k : Rn → R closed convex and such that

max{f̄k−1, fk} ≤ f̌k ≤ fC .(2.4)

Step 2 (proximal point finding). Set

ǔk+1 := arg min

{
φk
f (·) := f̌k(·) + ı̄k−1

C (·) +
1

2tk
| · −ûk|2

}
,(2.5)

f̄k(·) := f̌k(ǔ
k+1) + 〈pkf , · − ǔk+1〉 with pkf :=

1

tk
(ûk − ǔk+1) − pk−1

C .(2.6)

Step 3 (projection). Set

uk+1 := arg min

{
φk
C(·) := f̄k(·) + iC(·) +

1

2tk
| · −ûk|2

}
= PC(ûk − tkp

k
f ),(2.7)

ı̄kC(·) := 〈pkC , · − uk+1〉 with pkC :=
1

tk
(ûk − uk+1) − pkf ,(2.8)

vk := fk
û − f̄k(u

k+1), pk :=
1

tk
(ûk − uk+1), and εk := vk − tk|pk|2.(2.9)

Step 4 (stopping criterion). If max{|pk|, εk} = 0, stop (fk
û ≤ f∗).

Step 5 (stepsize correction). If vk < −εk, set tk := 10tk, i
k
t := k, and go back to

Step 2.
Step 6 (descent test). Evaluate fk+1

u and gk+1 (cf. (2.1)). If the descent test
holds,

fk+1
u ≤ fk

û − κvk,(2.10)

set ûk+1 := uk+1, fk+1
û := fk+1

u , ik+1
t := 0, k(l + 1) := k + 1, and increase l by 1

(descent step); otherwise, set ûk+1 := ûk, fk+1
û := fk

û , and ik+1
t := ikt (null step).

Step 7 (stepsize updating). If k(l) = k + 1 (i.e., after a descent step), select
tk+1 ≥ tk; otherwise, either set tk+1 := tk or choose tk+1 ∈ [tmin, tk] if ik+1

t = 0.
Step 8 (loop). Increase k by 1 and go to Step 1.
Several comments on the method are in order. Step 1 may choose the simplest

model f̌k = max{f̄k−1, fk}; more efficient choices are given in section 4.4. For a
polyhedral model f̌k, subproblem (2.5) can be handled via simple quadratic program-
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ming (QP) solvers [Kiw86]; in contrast, the more difficult subproblem (2.3) employed
in [Kiw06b] requires more sophisticated solvers even for a polyhedral set C [Kiw94].
The projection of (2.7) is easily found if the set C is “simple” (e.g., the Cartesian
product of boxes, simplices, and ellipsoids).

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which
involves the aggregate linearization f̄k

C := f̄k + ı̄kC and the optimality measure

Vk := max
{
|pk|, εk + 〈pk, ûk〉

}
.(2.11)

Lemma 2.2. (i) The vectors pkf and pkC defined in (2.6) and (2.8) are in fact
subgradients,

pkf ∈ ∂f̌k(ǔ
k+1) and pkC ∈ ∂iC(uk+1),(2.12)

and the linearizations f̄k and ı̄kC defined in (2.6) and (2.8) provide the minorizations

f̄k ≤ f̌k, ı̄kC ≤ iC , and f̄k
C := f̄k + ı̄kC ≤ fC .(2.13)

(ii) The aggregate subgradient pk defined in (2.9) and the linearization f̄k
C above

satisfy

pk = pkf + pkC =
ûk − uk+1

tk
,(2.14)

f̄k
C(·) = f̄k(u

k+1) + 〈pk, · − uk+1〉.(2.15)

(iii) The predicted descent vk and the aggregate linearization error εk of (2.9)
satisfy

vk = tk|pk|2 + εk and εk = fk
û − f̄k

C(ûk).(2.16)

(iv) The aggregate linearization f̄k
C is expressed in terms of pk and εk as follows:

fk
û − εk + 〈pk, · − ûk〉 = f̄k

C(·) ≤ fC(·).(2.17)

(v) The optimality measure Vk of (2.11) satisfies Vk ≤ max{|pk|, εk}(1 + |ûk|)
and

fk
û ≤ fC(u) + Vk

(
1 + |u|

)
for all u.(2.18)

(vi) We have vk ≥ −εk ⇔ tk|pk|2/2 ≥ −εk ⇔ vk ≥ tk|pk|2/2. Moreover, vk ≥ εk,
−εk ≤ εf , and

vk ≥ max

{
tk|pk|2

2
, |εk|

}
if vk ≥ −εk,(2.19)

Vk ≤ max

{(
2vk
tk

)1/2

, vk

}(
1 + |ûk|

)
if vk ≥ −εk,(2.20)

Vk <

(
2εf
tk

)1/2 (
1 + |ûk|

)
if vk < −εk.(2.21)
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Proof. (i) By (2.5)–(2.6), the optimality condition (using ∇ı̄k−1
C = pk−1

C ; cf. (2.8))

0 ∈ ∂φk
f (ǔk+1) = ∂f̌k(ǔ

k+1) + pk−1
C +

ǔk+1 − ûk

tk
= ∂f̌k(ǔ

k+1) − pkf

and the equality f̄k(ǔ
k+1) = f̌k(ǔ

k+1) yield pkf ∈ ∂f̌k(ǔ
k+1) and f̄k ≤ f̌k. By (2.7)–

(2.8),

0 ∈ ∂φk
C(uk+1) = pkf + ∂iC(uk+1) +

uk+1 − ûk

tk
= ∂iC(uk+1) − pkC

(using ∇f̄k = pkf ) and ı̄kC(uk+1) = iC(uk+1) = 0 give pkC ∈ ∂iC(uk+1) and ı̄kC ≤ iC .

Combining both minorizations, we obtain that f̄k + ı̄kC ≤ f̌k + iC ≤ fC by (2.4) and
(1.5).

(ii) Use the linearity of f̄k
C := f̄k + ı̄kC , (2.6), (2.8) with ı̄kC(uk+1) = 0, and (2.9).

(iii) Rewrite (2.9), using the fact that f̄k
C(ûk) = f̄k(u

k+1) + tk|pk|2, by (ii).
(iv) We have fk

û − εk = f̄k
C(ûk) by (iii), and f̄k

C is affine by (ii) and minorizes fC
by (i).

(v) Use the Cauchy–Schwarz inequality in the definition (2.11) and in (iv).
(vi) The equivalences follow from the expression of vk = tk|pk|2 + εk in (iii); in

particular, vk ≥ εk. Next, by (2.16), (2.13), and (2.2) with fC(ûk) = f(ûk) (ûk ∈ C),
we have

−εk = f̄k
C(ûk) − fk

û ≤ fC(ûk) − fk
û = f(ûk) − fk

û ≤ εf .

Finally, to obtain the bounds (2.19)–(2.21), use the equivalences together with the
facts that vk ≥ εk, −εk ≤ εf and the bound on Vk from assertion (v).

The optimality estimate (2.18) justifies the stopping criterion of Step 4: Vk = 0
yields fk

û ≤ inf fC = f∗; thus, the point ûk is εf -optimal ; i.e., f(ûk) ≤ f∗ + εf by
(2.2). In the case of exact evaluations (εf = 0), we have vk ≥ εk ≥ 0 by Lemma
2.2(vi), Step 5 is redundant, and Algorithm 2.1 becomes essentially that of [Kiw99,
Alg. 3.1]. When inexactness is discovered via vk < −εk, the stepsize tk is increased
to produce descent or confirm that ûk is εf -optimal. Namely, when ûk is bounded in
(2.21), increasing tk drives Vk to 0, so that fk

û ≤ f∗ asymptotically. Whenever tk is
increased at Step 5, the stepsize indicator ikt �= 0 prevents Step 7 from decreasing tk
after null steps until the next descent step occurs (cf. Step 6). Otherwise, decreasing
tk at Step 7 aims at collecting more local information about f at null steps.

We now show that an infinite cycle between Steps 2 and 5 means that ûk is
εf -optimal.

Lemma 2.3. If an infinite cycle between Steps 2 and 5 occurs, then fk
û ≤ f∗ and

Vk → 0.
Proof. At Step 5 during the cycle the facts that Vk < (2εf/tk)

1/2(1 + |ûk|) by
(2.21) and tk ↑ ∞ as the cycle continues give Vk → 0, so that fk

û ≤ inf fC = f∗ by
(2.18).

3. Convergence. In view of Lemma 2.3, we may suppose that the algorithm
neither terminates nor cycles infinitely between Steps 2 and 5 (otherwise ûk is εf -
optimal). At Step 6, we have uk+1 ∈ C and vk > 0 (by (2.19), since max{|pk|, εk} > 0
at Step 4), so that ûk+1 ∈ C and fk+1

û ≤ fk
û for all k. We shall show that the

asymptotic value f∞
û := limk f

k
û satisfies f∞

û ≤ f∗. As in [Kiw99, sect. 4], we assume
that the model subgradients pkf ∈ ∂f̌k(ǔ

k+1) in (2.12) satisfy

{pkf} is bounded if {uk} is bounded.(3.1)
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It will be seen in Remark 4.4 that typical models f̌k satisfy this condition automati-
cally.

We first consider the case where only finitely many descent steps occur. After
the last descent step, only null steps occur, and the sequence {tk} eventually becomes
monotone, since once Step 5 increases tk, Step 7 can’t decrease tk; thus the limit
t∞ := limk tk exists. We deal with the cases of t∞ = ∞ in Lemma 3.1 and t∞ < ∞
in Lemma 3.2 below.

Lemma 3.1. Suppose there exists k̄ such that only null steps occur for all k ≥ k̄,

and t∞ := limk tk = ∞. Let K := {k ≥ k̄ : tk+1 > tk}. Then Vk
K−→ 0 at Step 5.

Proof. At iteration k ∈ K, before Step 5 increases tk for the last time, we have

Vk < (2εf/tk)
1/2(1 + |ûk̄|) by (2.21); consequently, tk → ∞ gives Vk

K−→ 0.
Lemma 3.2. Suppose there exists k̄ such that, for all k ≥ k̄, only null steps occur

and Step 5 doesn’t increase tk. Then Vk → 0.
Proof. First, using partial linearizations of subproblems (2.5) and (2.7), we show

that their optimal values φk
f (ǔk+1) ≤ φk

C(uk+1) are nondecreasing and bounded above.

Fix k ≥ k̄. By the definitions in (2.5)–(2.6), we have f̄k(ǔ
k+1) = f̌k(ǔ

k+1) and

ǔk+1 = arg min
{
φ̄k
f (·) := f̄k(·) + ı̄k−1

C (·) + 1
2tk

| · −ûk|2
}

(3.2)

from ∇φ̄k
f (ǔk+1) = 0. Since φ̄k

f is quadratic and φ̄k
f (ǔk+1) = φk

f (ǔk+1), by Taylor’s
expansion

φ̄k
f (·) = φk

f (ǔk+1) + 1
2tk

| · −ǔk+1|2.(3.3)

Similarly, by the definitions in (2.7)–(2.8), we have ı̄kC(uk+1) = iC(uk+1) = 0,

uk+1 = arg min
{
φ̄k
C(·) := f̄k(·) + ı̄kC(·) + 1

2tk
| · −ûk|2

}
,(3.4)

φ̄k
C(·) = φk

C(uk+1) + 1
2tk

| · −uk+1|2.(3.5)

Next, to bound the objective values of the linearized subproblems (3.2) and (3.4) from
above, we use the minorizations f̄k ≤ fC and ı̄k−1

C , ı̄kC ≤ iC of (2.13) with ûk ∈ C:

φk
f (ǔk+1) + 1

2tk
|ǔk+1 − ûk|2 = φ̄k

f (ûk) ≤ f(ûk),(3.6a)

φk
C(uk+1) + 1

2tk
|uk+1 − ûk|2 = φ̄k

C(ûk) ≤ f(ûk),(3.6b)

where the equalities stem from (3.3) and (3.5). Due to the minorization ı̄k−1
C ≤ iC ,

the objectives of subproblems (3.2) and (2.7) satisfy φ̄k
f ≤ φk

C . On the other hand,

since ûk+1 = ûk, tk+1 ≤ tk (cf. Step 7), and f̄k ≤ f̌k+1 by (2.4), the objectives of (3.4)
and the next subproblem (2.5) satisfy φ̄k

C ≤ φk+1
f . Altogether, by (3.3) and (3.5), we

see that

φk
f (ǔk+1) + 1

2tk
|uk+1 − ǔk+1|2 = φ̄k

f (uk+1) ≤ φk
C(uk+1),(3.7a)

φk
C(uk+1) + 1

2tk
|ǔk+2 − uk+1|2 = φ̄k

C(ǔk+2) ≤ φk+1
f (ǔk+2).(3.7b)

In particular, the inequalities φk
f (ǔk+1) ≤ φk

C(uk+1) ≤ φk+1
f (ǔk+2) imply that the non-

decreasing sequences {φk
f (ǔk+1)}k≥k̄ and {φk

C(uk+1)}k≥k̄, which are bounded above
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by (3.6) with ûk = ûk̄ for all k ≥ k̄, must have a common limit, say φ∞ ≤ f(ûk̄).
Moreover, since the stepsizes satisfy tk ≤ tk̄ for all k ≥ k̄, we deduce from the bounds
(3.6)–(3.7) that

φk
f (ǔk+1), φk

C(uk+1) ↑ φ∞, ǔk+2 − uk+1 → 0,(3.8)

and the sequences {ǔk+1} and {uk+1} are bounded. Then the sequence {pkf} is

bounded by (3.1), and the sequence {gk} is bounded as well, since gk ∈ ∂εf f(uk)
by (2.1), whereas the mapping ∂εf f is locally bounded [HUL93, sect. XI.4.1].

We now show that the approximation error ε̌k := fk+1
u −f̄k(u

k+1) vanishes. Using
the form (2.1) of fk+1, the minorization fk+1 ≤ f̌k+1 of (2.4), the Cauchy–Schwarz
inequality, and the optimal values of subproblems (2.5) and (2.7) with ûk = ûk̄ for
k ≥ k̄, we estimate

ε̌k := fk+1
u − f̄k(u

k+1) = fk+1(ǔ
k+2) − f̄k(u

k+1) + 〈gk+1, uk+1 − ǔk+2〉
≤ f̌k+1(ǔ

k+2) − f̄k(u
k+1) + |gk+1||uk+1 − ǔk+2|

= φk+1
f (ǔk+2) − φk

C(uk+1) + Δk − ı̄kC(ǔk+2) + |gk+1||uk+1 − ǔk+2|,(3.9)

where Δk := |uk+1 − ûk̄|2/2tk − |ǔk+2 − ûk̄|2/2tk+1. To see that Δk → 0, note that

|ǔk+2 − ûk̄|2 = |uk+1 − ûk̄|2 + 2〈ǔk+2 − uk+1, uk+1 − ûk̄〉 + |ǔk+2 − uk+1|2,

|uk+1 − ûk̄|2 is bounded, ǔk+2 − uk+1 → 0 by (3.8), and tmin ≤ tk+1 ≤ tk for k ≥ k̄
by Step 7. These properties also give ı̄kC(ǔk+2) → 0, since by (2.8) and the Cauchy–
Schwarz inequality, we have

|̄ıkC(ǔk+2)| ≤ |pkC ||ǔk+2 − uk+1| with |pkC | ≤ |uk+1 − ûk̄|/tk + |pkf |,

where {pkf} is bounded. Hence, using (3.8) and the boundedness of {gk+1} in (3.9)

yields limk ε̌k ≤ 0. On the other hand, for k ≥ k̄ the null step condition fk+1
u >

fk
û − κvk gives

ε̌k =
[
fk+1
u − fk

û

]
+
[
fk
û − f̄k(u

k+1)
]
> −κvk + vk = (1 − κ)vk ≥ 0,

where κ < 1 by Step 0; we conclude that ε̌k → 0 and vk → 0. Finally, since vk → 0,
tk ≥ tmin (cf. Step 7), and ûk = ûk̄ for k ≥ k̄, we have Vk → 0 by (2.20).

We may now finish the case of infinitely many consecutive null steps.
Lemma 3.3. Suppose that there exists k̄ such that only null steps occur for all

k ≥ k̄. Let K := {k ≥ k̄ : tk+1 > tk} if tk → ∞, K := {k : k ≥ k̄} otherwise. Then

Vk
K−→ 0.
Proof. Steps 5–7 ensure that the sequence {tk} is monotone for large k. We have

Vk
K−→ 0 from either Lemma 3.1 if t∞ = ∞, or Lemma 3.2 if t∞ < ∞.
It remains to analyze the case of infinitely many descent steps.
Lemma 3.4. Suppose that infinitely many descent steps occur and f∞

û := limk f
k
û >

−∞. Let K := {k : fk+1
û < fk

û}. Then limk∈K Vk = 0. Moreover, if {ûk} is bounded,

then Vk
K−→ 0.

Proof. We have 0 < κvk ≤ fk
û − fk+1

û if k ∈ K, fk+1
û = fk

û otherwise (see Step 6).

Thus
∑

k∈K κvk ≤ f1
û − f∞

û < ∞ gives vk
K−→ 0 and hence εk, tk|pk|2

K−→ 0 by (2.19)
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and |pk| K−→ 0, using tk ≥ tmin (cf. Step 7). For k ∈ K, ûk+1 − ûk = −tkp
k by (2.9),

so

|ûk+1|2 − |ûk|2 = tk
{
tk|pk|2 − 2〈pk, ûk〉

}
.

Sum up and use the facts that ûk+1 = ûk if k /∈ K,
∑

k∈K tk ≥
∑

k∈K tmin = ∞ to
get

lim
k∈K

{
tk|pk|2 − 2〈pk, ûk〉

}
≥ 0

(since otherwise |ûk|2 → −∞, which is impossible). Combining this with tk|pk|2
K−→ 0

gives limk∈K〈pk, ûk〉 ≤ 0. Since also εk, |pk|
K−→ 0, we have limk∈K Vk = 0 by (2.11).

If {ûk} is bounded, using εk, |pk|
K−→ 0 in Lemma 2.2(v) gives Vk

K−→ 0.
We may now state and prove our principal result.
Theorem 3.5. (i) We have fk

û ↓ f∞
û ≤ f∗, and additionally limk Vk = 0 if

f∗ > −∞.
(ii) f∗ ≤ limk f(ûk) ≤ limk f(ûk) ≤ f∞

û + εf .
Proof. The inequalities in (ii) stem from the facts that f∗ = infC f , {ûk} ⊂ C,

and f(ûk) ≤ fk
û + εf for all k by (2.2). By (ii), if f∞

û = −∞, then f∗ = −∞ in (i).
Hence, suppose f∗ > −∞. Then f∞

û ≥ f∗ − εf > −∞ by (ii). We have limk Vk = 0
by Lemma 3.3 in the case of finitely many descent steps, or by Lemma 3.4 otherwise.
Finally, using limk Vk = 0 in the estimate (2.18) gives f∞

û ≤ inf fC = f∗.
It is instructive to examine the assumptions of the preceding results.
Remark 3.6. (i) Inspection of the preceding proofs reveals that Theorem 3.5

requires only convexity and finiteness of f on C, and local boundedness of the ap-
proximate subgradient mapping u �→ gu of f on C (see below (3.8)). In particular, it
suffices to assume that f is finite convex on a neighborhood of C.

(ii) The requirement max{f̄k−1, fk} ≤ f̌k of (2.4) is needed only after null steps
in the proof of Lemma 3.2. After a descent step (when k = k(l)), Step 1 may take
any f̌k ≤ fC .

We now show that for exact evaluations (εf = 0), our algorithm has the usual
strong convergence properties of typical bundle methods. Instead of requiring that
infk tk ≥ tmin > 0, as before, we give more general stepsize conditions in the theorem
below.

Theorem 3.7. Suppose that εf = 0. Let U∗ := Arg minC f denote the (possibly
empty) solution set of problem (1.1). Then we have the following statements:

(i) If only l < ∞ descent steps occur and tk ↓ t∞ > 0, then ûk(l) ∈ U∗ and
Vk → 0.

(ii) Assuming that infinitely many descent steps occur, suppose that
∑

k∈K tk =

∞ for K := {k : f(ûk+1) < f(ûk)}. Then f(ûk) ↓ f∗. Moreover, we have the
following.

(a) Let ε̌k := f(ûk+1) − f̄k(û
k+1) for k ∈ K. If U∗ �= ∅ and

∑
k∈K tk ε̌k < ∞

(e.g., supk∈K tk < ∞), then ûk → û∞ ∈ U∗, and Vk
K−→ 0 if infk∈K tk > 0.

(b) If U∗ = ∅, then |ûk| → ∞.
Proof. Since εf = 0, Step 5 is inactive, and Algorithm 2.1 fits the framework of

[Kiw99, Alg. 3.1]. For l �→ ∞, the conclusion follows from Lemma 3.2 and Theorem
3.5. For l → ∞, combine [Kiw99, Thm. 4.4] and the proof of Lemma 3.4.
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4. Modifications.

4.1. Looping between subproblems. To obtain a more accurate solution to
the prox subproblem (2.3), we may cycle between subproblems (2.5) and (2.7), up-
dating their data as if null steps occur without changing the model f̌k. Specifically,
for a given subproblem accuracy threshold κ̌ ∈ (0, 1), suppose that the following step
is inserted after Step 5.

Step 5′ (subproblem accuracy test). If

f̌k(u
k+1) > fk

û − κ̌vk,(4.1)

set ı̄k−1
C (·) := ı̄kC(·), pk−1

C := pkC and go back to Step 2.
We now give two motivations for the test (4.1) written as (cf. (2.9))

ε̄k := f̌k(u
k+1) − f̄k(u

k+1) > (1 − κ̌)vk.

First, when ε̄k is small relative to vk, f̌k is correctly approximated by f̄k, so the loop
can be broken. Second, since f̄k ≤ f̌k (Lemma 2.2(i)) in (2.7), by standard arguments
[Kiw99, p. 145], the distance from uk+1 to the prox solution of (2.3) is at most

√
2tk ε̄k.

The analysis of this modification is given in the following remarks.
Remark 4.1. (i) For any k, each execution of Steps 2 through 5′ is called a loop.

First, suppose that finitely many loops occur for each k. By its proof, Lemma 2.2
holds at Step 4 for the current quantities. This suffices for the proofs of Lemmas 2.3,
3.1, and 3.4, whereas the proofs of Lemma 3.3 and Theorem 3.5 will go through once
Lemma 3.2 is established. The proof of Lemma 3.2 is modified as follows. For each
k ≥ k̄, (3.6) and (3.7a) hold at each loop, and (3.7b) holds for the final loop. For any
preceding loop, letting ǔk+1

next and φk
f,next stand for ǔk+1 and φk

f produced by Step 2 on

the next loop, use the minorization f̄k ≤ f̌k of (2.13) in subproblems (3.4) and (2.7)
to get φ̄k

C ≤ φk
f,next and, by (3.5),

φk
C(uk+1) + 1

2tk
|ǔk+1

next − uk+1|2 = φ̄k
C(ǔk+1

next) ≤ φk
f,next(ǔ

k+1
next).(4.2)

Then, replacing (3.7b) by (4.2) for all nonfinal loops, we deduce that the optimal
values φk

f (ǔk+1) ≤ φk
C(uk+1) can’t decrease during the loops or when k grows; hence

(3.8) and the boundedness of {ǔk+1} and {uk+1} follow as before. For the rest of the
proof, let ǔk+2 in (3.9) stand for the point produced by Step 2 on the first loop at
iteration k + 1, and argue as before.

(ii) Next, suppose that infinitely many loops occur at iteration k = ǩ, for some

ǩ. If Step 5 drives tk to ∞, f ǩ
û ≤ f∗ and Vk → 0 by the proof of Lemma 2.3. Hence

we may assume that Step 5 doesn’t increase tk at all. To show that Vk → 0 (in

which case f ǩ
û ≤ f∗ by (2.18)), we suppose that the subdifferential ∂f̌k is locally

bounded, and we use a subgradient mapping C � u �→ ǧu ∈ ∂f̌k(u). Consider the
following modification of Algorithm 2.1. Starting from the first loop at iteration
k = ǩ, omit Step 5′; at Step 6 set fk+1

u := f̌k(u
k+1), gk+1 := ǧuk+1 , and κ := κ̌;

at Step 7, set tk+1 := tk; finally, when Step 1 is reached, set f̌k := f̌k−1. This
modification only translates loops into additional iterations with a constant model
f̌k = f̌ǩ; in particular, only null steps occur, because the descent test (2.10) can’t
hold with fk+1

u := f̌k(u
k+1) and κ := κ̌ due to the model test (4.1). Further, the

“new” linearization fk+1(·) := fk+1
u + 〈gk+1, · − uk+1〉 satisfies fk+1 ≤ f̌k+1. Hence,

to get Vk → 0, we may use the proof of Lemma 3.2, obtaining boundedness of {pkf},
{gk+1} from the boundedness of {ǔk+1}, {uk+1} and the local boundedness of ∂f̌ǩ.
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Note that having ı̄k−1
C as a model of iC in subproblem (2.5) is essential only after

null steps or loops due to Step 5′. Otherwise, a better model may be constructed as
follows. After Step 5 increases tk, we can set ı̄k−1

C (·) := ı̄kC(·), pk−1
C := pkC , or use the

more efficient update uk := PC(ûk − tkp
k
f ), pk−1

C := (ûk − uk)/tk − pkf , and ı̄k−1
C (·) :=

〈pk−1
C , · − uk〉, which corresponds to resolving subproblem (2.7) before going back to

Step 2. Similarly, if ûk+1 �= ûk after Step 7, we may use ũ := PC(ûk+1 − tk+1p
k
f ),

pkC := (ûk+1 − ũ)/tk+1 − pkf , and ı̄kC(·) := 〈pkC , · − ũ〉, where ũ plays the rôle of uk+1.

4.2. Evaluation errors and relaxed null-step requirements. We now in-
spect the impact of inexact evaluations on our preceding results, in order to obtain
weaker convergence conditions and to provide some practical recommendations.

Our assumption (1.2) on the error tolerance εf means εf := supu∈C [f(u)− fu] <
∞. In fact, we need only the weaker condition that εf := supk ε

k
f < ∞ for the evalu-

ation errors εkf := f(uk) − fk
u (cf. (2.1)). Thus, for εf := supk ε

k
f , Theorem 3.5 says

that our method produces solutions that are as good as the supplied linearizations.
In fact, the asymptotic accuracy depends only on the errors that occur at descent

steps. Indeed, at Step 1 we have ûk = uk(l) and f(ûk) = fk
û + ε

k(l)
f , where k(l) − 1 is

the iteration number of the lth (i.e., latest) descent step (see Steps 0 and 6). Hence
the tolerance εf in Theorem 3.5(ii) may be replaced by the asymptotic error

ε∞f :=

⎧⎨⎩ ε
k(l)
f if only l < ∞ descent steps occur,

liml ε
k(l)
f otherwise.

(4.3)

In particular, ε∞f = 0 if all descent steps happen to be exact. On the other hand,

whenever an inexact descent step occurs, then εk+1
f := f(uk+1)−fk+1

u may potentially

determine ε∞f (only if fk+1
u ≤ f∗, since f∞

û ≤ f∗ by Theorem 3.5).
Since the asymptotic error is not influenced by the errors occurring at null steps,

let us now discuss the case where infinitely many successive null steps occur. Then,
by the proof of Lemma 3.2, instead of the requirement supk ε

k
f < ∞ (which may

be difficult to check for some oracles), it suffices if the following relaxed null-step
requirements are met:

(a) the sequence {gk} is bounded whenever the sequence {uk} is bounded;
(b) a null step implies that fk+1

u > fk
û − κ̄vk for some fixed parameter κ̄ ∈ [κ, 1).

Condition (a) holds if the mapping u �→ gu is locally bounded on C (cf. Remark
3.6(i)). Condition (b) means that the new linearization fk+1 may have any accuracy,
as long as it improves the next model sufficiently at uk+1. For κ̄ > κ, the oracle may
set an indicator iκ̄ := 1 when κ̄ should replace κ in the descent test (2.10) to accept
a shallower null step; iκ̄ := 0 otherwise (i.e., when (2.10) is not modified). Of course,
shallow cuts may slow down convergence, but this may be offset by saving the oracle’s
work per call. To illustrate these requirements, consider the following generalization
of the setting of [HeK02].

Example 4.2. Suppose that the objective f has the form f(·) := supz∈Z Fz(·)
of (1.3) with Fz(·) convex and ∂Fz(·) locally bounded on C, uniformly w.r.t. z ∈ Z.
Suppose for each k that the oracle used for approximate evaluation of f(uk+1) gen-
erates points z(i) ∈ Z, i = 1, 2, . . . , stopping for some i to deliver fk+1

u := Fz(i)(uk+1)
and some gk+1 ∈ ∂Fz(i)(uk+1). To meet the relaxed null-step requirements, the oracle
may stop when Fz(i)(uk+1) > fk

û − κ̄vk holds, possibly together with other conditions,
setting iκ̄ := 1 to force a null step.
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Remark 4.3. For an SDP (cf. section 5.6), Example 4.2 accommodates the “in-
exact null steps” of [HeK02], which can save much work in eigenvalue computations
[Hel03, Nay99, Nay06]. In general, when the relaxed null-step requirements are met
and the descent steps are exact, then ε∞f = 0 in (4.3) and Theorem 3.7 holds (by its
proof). In particular, Theorem 3.7 holds for the method of [HeK02].

Insisting that all descent steps be exact may be unrealistic (e.g., as in [Hel03,
HeK02, Nay06], where this issue is ignored) or too expensive (cf. [Kiw05]).

For the oracle of Example 4.2, additional stopping criteria may be employed to
make a “too inexact” descent step less likely. The general idea is to make the oracle
work harder before a descent step is accepted. We distinguish the following two cases.

Case 1. Suppose that the oracle’s underestimates Fz(i)(uk+1) of f(uk+1) improve
when i grows. Then for a given iteration limit imax the oracle may stop when ei-
ther Fz(i)(uk+1) > fk

û − κ̄vk and i ≤ imax (setting iκ̄ := 1 to force a null step), or
Fz(i)(uk+1) ≤ fk

û − κvk and i = imax (setting iκ̄ := 0 for a descent step).
Case 2. In addition to the assumptions of Case 1, suppose that the oracle gener-

ates upper bounds f
(i)
up ≥ f(uk+1) such that f̄

(i)
up −Fz(i)(uk+1) → 0 if i → ∞. Then the

oracle may also stop as soon as for some i ≤ imax, f̄
(i)
up < fk

û , or f
(i)
up − Fz(i)(uk+1) ≤

εr|Fz(i)(uk+1)| for a given relative accuracy tolerance εr > 0, setting iκ̄ := 0 to pro-
mote a descent step.

We add that Case 2 covers oracles employing branch and bound in Lagrangian
relaxation of integer programming problems. Then, for difficult Lagrangian subprob-
lems, it pays to use rather loose accuracy requirements, because tighter criteria (e.g.,
small εr) may force the oracle to work too long on some calls (see, e.g., [Kiw05]). For-
tunately, a typical branch-and-bound oracle generates a good lower bound Fz(i)(uk+1)

quickly (although improving the upper bound f
(i)
up may need much time). Then the

stopping criterion of Case 2 with a moderate tolerance εr (or another heuristic crite-
rion) may still ensure that the actual error εk+1

f := f(uk+1) − fk+1
u is small enough.

Thus our framework is especially suitable for applications with oracles that deliver
reasonably accurate linearizations most of the time, although explicit control of their
accuracy might be too costly. (We add that the preceding remarks apply also to the
method of [Kiw06b], and they partly explain the good numerical results of [Kiw05].)

4.3. A weaker descent test. As in [Kiw06b, sect. 4.3], at Steps 5 and 6 we may
replace the predicted decrease vk = tk|pk|2 + εk (cf. (2.16)) by the smaller quantity
wk := tk|pk|2/2+ εk. Then the equivalences in Lemma 2.2(vi) are replaced by the fact
that

wk ≥ −εk ⇐⇒ tk|pk|2
4

≥ −εk ⇐⇒ wk ≥ tk|pk|2
4

.

Hence, wk ≥ −εk at Step 6 implies wk ≤ vk ≤ 3wk and vk ≥ −εk for the bounds
(2.19)–(2.20), whereas for Step 5, the bound (2.21) is replaced by the fact that

Vk <

(
4εmax

tk

)1/2

(1 + |ûk|) if wk < −εk.

The preceding results extend easily. (In the proof of Lemma 3.2, fk+1
u > fk

û − κwk

implies fk+1
u > fk

û−κvk, whereas in the proof of Lemma 3.4,
∑

k∈K vk ≤ 3
∑

k∈K wk <
∞.)
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4.4. Linearization accumulation, selection, and aggregation. There are
three basic choices of polyhedral models satisfying relation (2.4) rewritten as

max{f̄k, fk+1} ≤ f̌k+1 ≤ fC .(4.4)

First, accumulation takes f̌k+1 := max{f̌k, fk+1}, f̌1 := f1; then we may replace
fC by f in (4.4), using the minorizations f̄k ≤ f̌k of (2.13) and fk+1 ≤ f of (2.1).
In other words, here f̌k = maxk

j=1 fj is the richest model stemming from all the past
linearizations, but its storage requirements and QP work per iteration grow with k,
so the other choices discussed below are more attractive in practice.

Second, selection retains only selected linearizations for its kth model,

f̌k(·) := max
j∈Jk

fj(·) with k ∈ Jk ⊂ {1, . . . , k}.(4.5)

Then f̌k ≤ f by (2.1), so, in view of (4.4), we need only show how to choose the
set Jk+1 so that f̄k ≤ f̌k+1. Since pkf ∈ ∂f̌k(ǔ

k+1) by (2.12) and each fj is affine in

(4.5), there exist multipliers νkj , j ∈ Jk, also known as convex weights, such that (cf.
[HUL93, Ex. VI.3.4])

(pkf , 1) =
∑
j∈Jk

νkj (∇fj , 1), νkj ≥ 0, νkj
[
f̌k(ǔ

k+1) − fj(ǔ
k+1)

]
= 0, j ∈ Jk.(4.6)

Then, using relations (2.6) and (4.6), it is easy to obtain the following expansion:

(f̄k, 1) =
∑
j∈Ĵk

νkj (fj , 1) with Ĵk := {j ∈ Jk : νkj > 0}.(4.7)

In other words, the aggregate linearization f̄k is a convex combination of the “ordi-
nary” linearizations fj selected by the active set Ĵk. Since f̄k ≤ maxj∈Ĵk

fj , it suffices
to choose

Jk+1 ⊃ Ĵk ∪ {k + 1}.(4.8)

Active-set methods for solving subproblem (2.5) [Kiw86, Kiw94] find multipliers νkj
such that |Ĵk| ≤ n + 1. Hence we can keep |Jk+1| ≤ n̄ for any given upper bound
n̄ ≥ n + 2.

Third, aggregation treats the past aggregate linearizations f̄j like the “ordinary”
linearizations fj , defining f−j := f̄j for j = 0: k− 1 to replace (4.5) by the aggregate
model

f̌k(·) := max
j∈Jk

fj(·) with k ∈ Jk ⊂ {1 − k : k}, fj := f̄−j for j ≤ 0.(4.9)

The weights νkj of (4.6) produce f−k := f̄k via (4.7), and relation (4.8) is replaced by

Jk+1 ⊃ {−k, k + 1},(4.10)

so that only n̄ ≥ 2 linearizations may be kept. Formally, if fj ≤ f for all j ∈ Jk,
then f−k := f̄k ≤ f by (4.7); hence, by induction, (4.9)–(4.10) yield (4.4) for all k.
Of course, the selection requirement (4.8) may replace (4.10) whenever |Ĵk| ≤ n̄− 1.
After a descent step, we can replace (4.8) and (4.10) by Jk+1 � k + 1 (cf. Remark
3.6(ii)).

Remark 4.4. In the proof of Lemma 3.2, condition (3.1) holds automatically for
the models discussed above. Indeed, by (4.6) (and induction for aggregation), we have
pkf ∈ co{gj}kj=1 and hence |pkf | ≤ maxk

j=1 |gj |, whereas the sequence {gk} is bounded.

Similarly, each model f̌k has a bounded subdifferential, as required in Remark 4.1(ii).
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5. Lagrangian relaxation.

5.1. The primal problem. Let Z be a real inner-product space with a finite
dimension m̄. (We could, of course, always identify Z with Rm̄, but a less concrete
approach helps our future development.) In this section we consider the special case
where problem (1.1) with C := Rn

+ is the Lagrangian dual problem of the following
primal convex optimization problem in Z:

ψmax
0 := max ψ0(z) s.t. ψi(z) ≥ 0, i = 1: n, z ∈ Z,(5.1)

where ∅ �= Z ⊂ Z is compact and convex, and each ψi is concave and closed (upper
semicontinuous) with domψi ⊃ Z. The Lagrangian of (5.1) has the form ψ0(z) +
〈u, ψ(z)〉, where ψ := (ψ1, . . . , ψn) and u is a multiplier. Suppose that, at each u ∈ C,
the dual function

f(u) := max {ψ0(z) + 〈u, ψ(z)〉 : z ∈ Z }(5.2)

can be evaluated with accuracy εf ≥ 0 by finding a partial Lagrangian εf -solution

z(u) ∈ Z such that fu := ψ0(z(u)) + 〈u, ψ(z(u))〉 ≥ f(u) − εf .(5.3)

Thus f is finite convex and has an εf -subgradient mapping gu := ψ(z(u)) for u ∈ C.
In view of Remark 3.6(i), we suppose that ψ(z(·)) is locally bounded on C. (Note
that the whole set ψ(z(C)) is bounded if infZ minn

i=1 ψi > −∞, or the function ψ is
continuous on Z.)

5.2. Primal recovery with selection. We first consider our method with lin-
earization selection (cf. section 4.4).

The partial Lagrangian solutions zk := z(uk) (cf. (5.3)) and their constraint values
gk := ψ(zk) determine the linearizations (2.1) as Lagrangian pieces of f in (5.2):

fk(·) = ψ0(z
k) + 〈·, ψ(zk)〉.(5.4)

Using their weights {νkj }j∈Jk
(cf. (4.6)), we may estimate a solution to (5.1) via the

aggregate primal solution

ẑk :=
∑
j∈Jk

νkj z
j .(5.5)

By (4.7), this convex combination is associated with the aggregate linearization f̄k
via

(f̄k, ẑ
k, 1) =

∑
j∈Ĵk

νkj (fj , z
j , 1) with Ĵk := {j ∈ Jk : νkj > 0}.(5.6)

We now derive useful bounds on ψ0(ẑ
k) and ψ(ẑk), generalizing [Kiw06b, Lem. 5.1].

Lemma 5.1. ẑk ∈ Z, ψ0(ẑ
k) ≥ fk

û − εk − 〈pk, ûk〉, and ψ(ẑk) ≥ pkf ≥ pk.

Proof. By (5.6), ẑk ∈ co{zj}j∈Ĵk
⊂ Z, ψ0(ẑ

k) ≥
∑

j ν
k
j ψ0(z

j), and ψ(ẑk) ≥∑
j ν

k
j ψ(zj) by convexity of Z and concavity of ψ0, ψ. Since pkC ∈ ∂iRn

+
(uk+1) by

(2.12), we have pkC ≤ 0 and 〈pkC , uk+1〉 = 0 [HUL93, Ex. III.5.2.6(b)], so pkf = pk−pkC ≥
pk by (2.14). Next, using (5.6) with pkf = ∇f̄k by (2.6) and ∇fj = ψ(zj) by (5.4),

we get f̄k(0) =
∑

j ν
k
j ψ0(z

j) and pkf =
∑

j ν
k
j ψ(zj). Since f̄k(0) = f̄k

C(0) − ı̄kC(0) with
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ı̄kC(0) = −〈pkC , uk+1〉 = 0 from (2.8), we have f̄k(0) = f̄k
C(0) = fk

û − εk − 〈pk, ûk〉 by
(2.17). Combining the preceding relations yields the conclusion.

In terms of the optimality measure Vk of (2.11), the bounds of Lemma 5.1 imply

ẑk ∈ Z with ψ0(ẑ
k) ≥ fk

û − Vk, ψi(ẑ
k) ≥ −Vk, i = 1: n.(5.7)

We now show that {ẑk} has cluster points in the set of εf -optimal primal solutions of
(5.1),

Zεf := { z ∈ Z : ψ0(z) ≥ ψmax
0 − εf , ψ(z) ≥ 0 } ,(5.8)

unless this set is empty, i.e., the primal problem is infeasible.
Theorem 5.2. Either f∗ = −∞ and fk

û ↓ −∞, in which case the primal problem
(5.1) is infeasible, or f∗ > −∞, fk

û ↓ f∞
û ∈ [f∗ − εf , f∗], limk f(ûk) ≤ f∞

û + εf , and

limk Vk = 0. In the latter case, let K ′ ⊂ N be a subsequence such that Vk
K′
−→ 0. Then

we have the following:
(i) The sequence {ẑk}k∈K′ is bounded, and all its cluster points lie in the set

Z.
(ii) Let ẑ∞ be a cluster point of the sequence {ẑk}k∈K′ . Then ẑ∞ ∈ Zεf .

(iii) dZεf
(ẑk) := infz∈Zεf

|ẑk − z| K′
−→ 0.

Proof. The first assertion follows from Theorem 3.5 (since f∗ = −∞ implies primal

infeasibility by weak duality). In the second case, using fk
û ↓ f∞

û ≥ f∗−εf and Vk
K′
−→

0 in the bounds of (5.7) yields limk∈K′ ψ0(ẑ
k) ≥ f∗−εf and limk∈K′ minn

i=1 ψi(ẑ
k) ≥ 0.

(i) By (5.7), {ẑk} lies in the set Z, which is compact by our assumption.
(ii) We have ẑ∞ ∈ Z, ψ0(ẑ

∞) ≥ f∗−εf , and ψ(ẑ∞) ≥ 0 by the closedness of ψ0 and
ψ. Since f∗ ≥ ψmax

0 by weak duality (cf. (1.1), (5.1), (5.2)), we get ψ0(ẑ
∞) ≥ ψmax

0 −εf .
Thus ẑ∞ ∈ Zεf by the definition (5.8).

(iii) This follows from (i), (ii), and the continuity of the distance function
dZεf

.

Remark 5.3. (i) For Theorem 5.2, we can replace εf in (5.8) by ε∞f (cf. (4.3)).
(ii) By the proofs of Lemma 2.3 and Theorem 5.2, if an infinite cycle between Steps

2 and 5 occurs, then Vk → 0 yields dZεf
(ẑk) → 0. Similarly, if Step 4 terminates with

Vk = 0, then ẑk ∈ Zεf . In both cases, we can replace εf with ε∞f (cf. (4.3)).
(iii) Given a tolerance εtol > 0, the method may stop if

ψ0(ẑ
k) ≥ fk

û − εtol and ψi(ẑ
k) ≥ −εtol, i = 1: n.

Then ψ0(ẑ
k) ≥ ψmax

0 − εf − εtol from fk
û ≥ f∗ − εf (cf. (2.2)) and f∗ ≥ ψmax

0 (weak
duality), so that the point ẑk ∈ Z is an approximate primal solution of (5.1). This
stopping criterion will be satisfied for some k if f∗ > −∞ (cf. (5.7) and Theorem
5.2).

5.3. Primal recovery with aggregation. Let us now consider the variant with
aggregation based on (4.9), where each linearization fj has an associated primal point
zj , with fj := f̄−j and zj := ẑ−j for j < 0. Letting z0 := z1, suppose for induction

that (fj , z
j) ∈ co{(fi, zi)}|j|i=0 for j ∈ Jk. For the convex weights νkj satisfying (4.7),

let z−k := ẑk for the aggregate primal solution ẑk given by (5.6). Since a convex
combination of convex combinations of given points is a convex combination of those
points, we deduce the existence of convex weights ν̄kj such that

(f−k, z
−k, 1) := (f̄k, ẑ

k, 1) =
∑

0≤j≤k

ν̄kj (fj , z
j , 1) with ν̄kj ≥ 0, j = 0: k.(5.9)
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In other words, (f−k, z
−k) ∈ co{(fi, zi)}ki=0, as required for induction. Replacing (5.6)

by (5.9) for Lemma 5.1, we conclude that the preceding convergence results remain
valid.

5.4. Handling primal equality constraints. Consider the primal problem
(5.1) with additional equality constraints of the form

ψmax
0 := max ψ0(z) s.t. ψI(z) ≥ 0, ψE(z) = 0, z ∈ Z,(5.10)

where I∪E = {1: n}, I∩E = ∅, and ψE is affine. For C := R
|I|
+ ×R|E|, the final bound

in Lemma 5.1 becomes ψI(ẑk) ≥ pkf,I ≥ pkI , ψE(ẑk) = pkf,E = pkE (using pkC,I ≤ 0,

pkC,E = 0, 〈pkC , uk+1〉 = 0 as before); the final inequalities in (5.7) are replaced by

mini∈I ψi(ẑ
k) ≥ −Vk, maxi∈E |ψi(ẑ

k)| ≤ Vk, and ψ(z) ≥ 0 in (5.8) by ψI(z) ≥ 0,
ψE(z) = 0. With these replacements, the proof of Theorem 5.2 extends easily (since
limk∈K′ maxi∈E |ψi(ẑ

k)| = 0 yields ψE(ẑ∞) = 0 in (ii)).
Remark 5.4. We add that the ideas of sections 4.2, 5.3, and 5.4 can be translated

into additional properties of the method of [Kiw06b]. Further, a simplified variant of
the latter method is obtained by modifying relations (2.5)–(2.8) as follows. Letting
uk+1 solve the prox subproblem (2.3), for the subgradients pkf ∈ ∂f̌k(u

k+1) and pkC ∈
∂iC(uk+1) such that pkf + pkC = (ûk − uk+1)/tk, define f̄k by (2.6) with ǔk+1 := uk+1

and ı̄kC by (2.8). Then Lemma 2.2 holds by construction, and the proof of Lemma
3.2 simplifies to that of [Kiw06b, Lem. 3.3]. In effect, except for section 4.1, all the
preceding results hold for this variant as well.

5.5. Nonpolyhedral objective models. In addition to the assumptions of
section 5.1, suppose ψ is affine: ψ(z) := b − Az for some given b ∈ Rn and a linear
mapping A : Z → Rn. Then the Lagrangian of (5.1) has the form

L(z, u) := ψ0(z) + 〈u, ψ(z)〉 = ψ0(z) + 〈u, b−Az〉(5.11)

and f(·) := maxz∈Z L(z, ·). Suppose Step 1 selects the (possibly) nonpolyhedral model

f̌k(·) := max
z∈Zk

L(z, ·) with zk ∈ Zk ⊂ Z,(5.12)

where the set Zk is closed convex. Since fk(·) = L(zk, ·) by (5.4), we have fk ≤ f̌k ≤ f .
Thus, to meet the requirement of (4.4), we need only show how to choose a set
Zk+1 � zk+1 so that f̄k ≤ f̌k+1. First, for solving subproblem (2.5) with the model
f̌k given by (5.12), we employ the Lagrangian L̄ : Rn × Zk → R of subproblem (2.5)
defined by

L̄(u, z) := L(z;u) + 〈pk−1
C , u− uk〉 +

1

2tk
|u− ûk|2,(5.13)

so that

φk
f (·) = max

{
L̄(·, z) : z ∈ Zk

}
.(5.14)

For each primal point z ∈ Zk, the (unique) Lagrangian solution

uz := arg min L̄(·, z) = ûk − tk
[
ψ(z) + pk−1

C

]
(5.15)



PROXIMAL-PROJECTION BUNDLE METHOD 1031

substituted for u in (5.13) gives the value of the dual function q : Zk → R defined by

q(z) := min L̄(·, z) = ψ0(z) + 〈ψ(z), ûk〉 + 〈pk−1
C , ûk − uk〉 − tk

2
|ψ(z) + pk−1

C |2.
(5.16)

Since q is closed and Zk is compact, the dual problem maxZk
q has at least one solution:

ẑk ∈ Arg max
{
q(z) : z ∈ Zk

}
.(5.17)

Lemma 5.5. Given a dual solution ẑ := ẑk of (5.17), define the Lagrangian
solution ǔ := uẑ by (5.15). Then we have the following statements:

(i) The pair (ǔ, ẑ) is a saddle-point of the Lagrangian L̄ defined by (5.13):

L̄(ǔ, z) ≤ L̄(ǔ, ẑ) ≤ L̄(u, ẑ) ∀u ∈ Rn, z ∈ Zk.(5.18)

(ii) For ǔk+1, f̄k, and pkf defined by (2.5)–(2.6), we have ǔk+1 = ǔ, pkf = ψ(ẑk),

ǔk+1 = ûk − tk
[
ψ(ẑk) + pk−1

C

]
,(5.19)

f̄k(·) = ψ0(ẑ
k) + 〈·, ψ(ẑk)〉.(5.20)

Proof. (i) L̄ is convex-concave on Rn × Zk, Zk is compact, and for each z ∈ Zk,
L̄(u, z) → ∞ when |u| → ∞. Hence L̄ has a saddle-point (ū, z̄) [HUL93, Thm.
VII.4.3.1]. Since ẑ ∈ Arg maxZk

minu L̄(u, ·) by (5.16)–(5.17), (ū, ẑ) is a saddle-point
as well [HUL93, Thm. VII.4.2.5]. Then L̄(ū, ẑ) ≤ L̄(u, ẑ) ∀u yields ū = uẑ = ǔ by
(5.15), so that (5.18) holds.

(ii) By (2.5) and (5.14), (5.18) implies ǔk+1 = ǔ [HUL93, Thm. VII.4.2.5]. Then
(2.6) and (5.15) with z = ẑ yield pkf = ψ(ẑk). The left inequality in (5.18) combined

with (5.11)–(5.13) gives f̌k(ǔ
k+1) = ψ0(ẑ

k) + 〈ǔk+1, ψ(ẑk)〉, and then (2.6) yields
(5.20).

In view of (5.12) and (5.20), the requirement of (4.4) is met if the set Zk+1 satisfies

Zk+1 ⊃
{
ẑk, zk+1

}
,(5.21)

in addition to being a closed convex subset of Z. Further, condition (3.1) holds (with
pkf = ψ(ẑk), ẑk ∈ Zk, Zk compact, ψ continuous), and the aggregate representation

(5.20) can be seen as a special case of (5.6) (with Ĵk := {k} and zk replaced by ẑk in
(5.4)). In effect, the results of section 5.2 hold for this variant as well.

Remark 5.6. (i) We add that for pkf = ψ(ẑk) (and C := Rn
+), (2.7)–(2.8) simplify

to

uk+1 = max
{
ûk − tk(b−Aẑk), 0

}
and pkC = min

{
1

tk
ûk − b + Aẑk, 0

}
.(5.22)

In general, 〈pk−1
C , uk〉 = 0 from pk−1

C ∈ ∂iC(uk), so we can omit uk in (5.13) and
(5.16). A dual interpretation of (5.22) follows. Since iC(·) = sup{−〈η, ·〉 : η ∈ Rn

+},
using a dual variable η ∈ Rn

+ for subproblem (2.3), its Lagrangian L̄(u, z, η), relaxed
solution uz,η, and dual function q(z, η) are given by (5.13), (5.15), and (5.16) with
pk−1
C replaced by −η. Let ηk := −pk−1

C . The dual problem maxZk×R
n
+
q is treated

in a Gauss–Seidel fashion by finding ẑk ∈ Arg maxZk
q(·, ηk) (cf. (5.17)) and then

ηk+1 := arg maxR
n
+
q(ẑk, ·), for which uk+1 = uẑk,ηk+1 and ηk+1 = −pkC by (5.22).
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Thus alternating linearizations of subproblem (2.3) correspond to coordinatewise max-
imizations of its dual function.

(ii) Suppose that ψ0 is linear and Zk := co{zj}kj=1. Then z ∈ Zk iff z =
∑

j νjz
j

for a weight vector ν in N := {ν ∈ Rk
+ :

∑
j νj = 1}. For F := [ψ0(z

1), . . . , ψ0(z
k)] and

G := [g1, . . . , gk], we have ψ0(z) = Fν and ψ(z) = Gν. Using these representations
in (5.16)–(5.17), we may take ẑk =

∑
j ν

k
j z

j for any solution νk to the dual QP
subproblem

νk ∈ Arg max

{
Fν + νTGT ûk − tk

2
|Gν − pk−1

C |2 : ν ∈ N

}
.(5.23)

In effect, our framework comprises the method of [FGRS06, sect. 3.2], which requires
exact evaluations. Note that the similarity of ẑk above to (5.5) is not accidental: the
model (5.12) with Zk := co{zj}kj=1 is equivalent to the polyhedral model (4.5) with
Jk := {1: k} (cf. (5.11) and (5.4)). Other choices of Jk from section 4.4 correspond
to Zk := co{zj}j∈Jk

.
(iii) For problem (5.10) with mixed constraints, formula (5.22) is valid for com-

ponents indexed by I, whereas uk+1
E = ûk

E − tk(b − Aẑk)E and pkC,E = 0. Then the
setting of (ii) above comprises the method of [ReS06, sect. 3] (for exact evaluations).

(iv) By Remark 4.1, the results of section 5.2 hold when Step 5′ is used as well,
since each f̌k has bounded subgradients (by (5.11)–(5.12) and the compactness of
Zk ⊂ Z).

5.6. SDP via eigenvalue optimization. To discuss applications in SDP, we
need the following notation.

We consider the Euclidean space Sm of m×m real symmetric matrices with the
Frobenius inner product 〈x, y〉 = trxy (we use lowercase notation for the elements of
Sm for consistency with the rest of the text). Sm

+ is the cone of positive semidefinite
matrices. The maximum eigenvalue λmax(y) of a matrix y ∈ Sm and its positive part
λ+

max(y) := max{λmax(y), 0} satisfy (see, e.g., [LeO96, Tod01])

λmax(y) = max
{
〈y, x〉 : x ∈ Σm

}
with Σm :=

{
x ∈ Sm

+ : trx = 1
}
,(5.24a)

λ+
max(y) = max

{
〈y, x〉 : x ∈ Σm

≤
}

with Σm
≤ :=

{
x ∈ Sm

+ : trx ≤ 1
}
.(5.24b)

Let a > 0, b ∈ Rn, c ∈ Sm, and A : Sm → Rn be linear. Consider the SDPs

(P=) : max 〈c, x〉 s.t. Ax ≤ b, x ∈ Sm
+ , trx = a,(5.25)

(P≤) : max 〈c, x〉 s.t. Ax ≤ b, x ∈ Sm
+ , trx ≤ a.(5.26)

Any SDP can be formulated as (P≤) without the final trace condition. If we know
or simply guess an upper bound a on the trace of some optimal solution, we may use
(P≤). (For a wrong guess, our method will produce dual values going to −∞, thus
indicating primal infeasibility.) Of course, (P≤) can be formulated as (P=) by adding a
slack variable, but this is not really necessary, since our method can handle both. (P=)
is natural in many combinatorial applications, where the trace of all feasible solutions
is known [HeR00]; (P≤) is employed in [Nay06] for equality-constrained SDPs.

We can regard (P=) as an instance of (5.1) with Z := Sm, ψ0(z) := 〈c, z〉,
ψ(z) := b − Az, and Z := aΣm. Then, by (5.2) and (5.24a), the dual function f
satisfies

f(u) = aλmax(c−A∗u) + 〈b, u〉 ∀ u,(5.27)
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where A∗ is the adjoint of A (defined by 〈z,A∗u〉 = 〈Az, u〉 ∀ z ∈ Sm, u ∈ Rn).
For each u, the approximate evaluation condition (5.3) is met by z(u) := ar(u)r(u)T ,
where r(u) ∈ Rm is an (εf/a)-eigenvector of the matrix s(u) := c − A∗u ∈ Sm

satisfying

r(u)T s(u)r(u) ≥ λmax(s(u)) − εf
a
, r(u)T r(u) = 1.(5.28)

Then the εf -subgradient mapping u → gu := ψ(z(u)) = b−Az(u) is bounded on Rn.
Thus we can use the setting of section 5.5 with models f̌k given by (5.12) for sets

Zk satisfying (5.21). In effect, the results of section 5.2 and Remark 5.6 hold for this
variant as well.

Remark 5.7. (i) Our dual problem f∗ := infC f is equivalent to the standard dual
of (P=), which is strictly feasible. Hence (cf. [Tod01, Thm. 4.1]) if (P=) is feasible,
then its optimal value is finite and equals f∗, although the dual problem need not
have solutions. Thus, even for exact evaluations, Theorem 5.2 improves upon [Hel04,
Thm. 3.6], which assumes that Arg minC f �= ∅. We show elsewhere [Kiw06a] how
to extend a related result of [Hel04, Thm. 4.8], without assuming that Arg minC f is
nonempty and bounded.

(ii) Condition (5.28) is particularly useful when approximate eigenvectors are
found by iterative methods (such as the Lanczos method [Hel03, Nay06]) that em-
ploy only matrix-vector multiplications to exploit the structure of the matrix s(u) :=
c − A∗u. This condition has the following meaning in the setting of Example 4.2
with u = uk+1, sk+1 := s(uk+1). Suppose that an iterative method generates ap-
proximate eigenvectors r(i) ∈ Rm, |r(i)| = 1, i = 1, 2, . . . , stopping for some i to

deliver zk+1 := ar(i)r(i)T . To meet the relaxed null-step requirements, the method

may stop when ar(i)T sk+1r(i) + 〈b, uk+1〉 > fk
û − κ̄vk. If a descent step occurs, then

εk+1
f = aλmax(s

k+1) − ar(i)T sk+1r(i) may potentially determine the asymptotic error

ε∞f of (4.3). To ensure that εk+1
f is not “too large,” we can employ additional stopping

criteria based on upper estimates of λmax(s
k+1) generated as in [Nay06].

(iii) We may employ the following choice of the set Zk due to [Nay99, Nay06]:

Zk :=

⎧⎨⎩
ǰ∑

j=1

νj ž
j + pvpT : ν ∈ R

ǰ
+, v ∈ Sr

+,

ǰ∑
j=1

νj + tr v = a

⎫⎬⎭ ,(5.29)

where each žj ∈ Σm and p is an m× r orthonormal matrix. The resulting model

f̌k(u) = amax
{

max
j=1: ǰ

〈c−A∗u, žj〉, λmax

(
pT (c−A∗u)p

)}
+ 〈b, u〉(5.30)

attempts to strike a balance between being easy to handle (the polyhedral part) and
accurate enough for fast convergence (the semidefinite part). Then the dual subprob-
lem (5.17) can be cast as a conic optimization problem and handled by specialized
solvers. Two efficient updates of Zk satisfying (5.21) are given in [Nay99, sect. 4.4.2]
(although they update AZk, they can update Zk as well). For ǰ = 1, (5.29) reduces
to the original choice of [HeR00]; again, (5.17) can be solved efficiently as a quadratic
SDP [HeK02], and efficient updates of Zk are given in [Hel03, HeK02].

(iv) For problem (P≤) of (5.26), we can take Z := aΣm
≤ . Then (cf. (5.24)), λ+

max

replaces λmax in (5.27), and we can take r(u) := 0 if λmax(s(u)) < 0, using (5.28)
otherwise. We can thus stop an iterative eigenvalue computation whenever an upper
bound indicates that λmax(s(u)) < 0. Of course, the final “=” in (5.29) is replaced
by “≤”.
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TRANSPOSITION THEOREMS AND QUALIFICATION-FREE
OPTIMALITY CONDITIONS∗

HERMANN SCHICHL† AND ARNOLD NEUMAIER†

Abstract. New theorems of the alternative for polynomial constraints (based on the Posi-
tivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposi-
tion theorems of Motzkin and Tucker) are proved. Based on these, two Karush–John optimality
conditions—holding without any constraint qualification—are proved for single- or multiobjective
constrained optimization problems. The first condition applies to polynomial optimization problems
only, and gives for the first time necessary and sufficient global optimality conditions for polyno-
mial problems. The second condition applies to smooth local optimization problems and strengthens
known local conditions. If some linear or concave constraints are present, the new version reduces
the number of constraints for which a constraint qualification is needed to get the Kuhn–Tucker
conditions.

Key words. certificate of global optimality, first order optimality conditions, Fritz John con-
ditions, Karush–John conditions, global optimality condition, global optimization, Kuhn–Tucker
conditions, Mangasarian–Fromovitz constraint qualification, necessary and sufficient conditions, Pos-
itivstellensatz, second order optimality conditions, theorem of the alternative, transposition theorem
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1. Introduction. In this paper, we present a number of theorems that are useful
for the global analysis of optimization problems, i.e., the assessment of their feasibility,
and the construction and verification of a global solution. Several of the results are,
however, also relevant for local optimization.

In constrained optimization, first and second order optimality conditions play a
central role, as they give necessary and/or sufficient conditions for a point to attain
a local or global minimum of the problem considered, and thus define the goals that
numerical methods should try to satisfy.

The various conditions currently available usually depend on qualitative condi-
tions (concerning smoothness, linearity, convexity, etc.) that delineate the problem
class, and on technical conditions, so-called constraint qualifications, that allow one
to avoid certain difficulties in proofs or certain known counterexamples.

The proof of the optimality conditions depends crucially on the availability of
certain theorems of the alternative, which state that among two alternative existence
statements, exactly one can be satisfied. Thus a theorem of the alternative may serve
to define certificates whose presence implies the solvability of one alternative and the
unsolvability of the other alternative.

Recent advances in global optimization [27, 30] make it possible in many cases
to find and verify the global optimality of a solution, or to verify that no feasible
point exists. Certificates acquire in this case a special importance, particularly in the
context of computer-assisted proofs.

However, in order to apply a necessary optimality condition to rule out candidate
solutions, or a sufficient optimality condition to verify the existence of a solution,
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it is important that these conditions are valid under conditions that can be checked
explicitly. Therefore the optimality conditions should not depend on any constraint
qualification.

Optimality conditions characterizing the solutions of smooth nonlinear program-
ming problems by first order necessary conditions are often called Fritz John condi-
tions if they apply without constraint qualification, after Fritz John [15], who rediscov-
ered unpublished earlier results of Karush [16]; see Kuhn [18, section 6] for a history.
Therefore, we shall refer to such conditions as Karush–John optimality conditions.

The importance of the Karush–John conditions stems from the fact that they ap-
ply without any hypothesis on the optimization problem (apart from smoothness). For
the known (second order) sufficient conditions, a similar result was not known before,
sufficiency requiring very strong nondegeneracy conditions. It is therefore remark-
able that, for polynomial optimization problems, it is possible to formulate necessary
and sufficient conditions for (global) optimality, valid without any restriction. These
strong results are based on the so-called Positivstellensatz, a polynomial analogue of
the transposition theorem for linear systems. The Positivstellensatz is a highly non-
trivial tool from real algebraic geometry which has been applied recently also in an
algorithmic way for the solution of global polynomial optimization problems. Some of
the consequences of the Positivstellensatz are implemented in the packages GloptiPoly
(Henrion and Lasserre [12, 13, 14]) and SOSTOOLS (Prajna, Papachristodoulou, and
Parrilo [32]).

Related results in this direction are in Lasserre [20]. He proved in his Theorem
4.2 a sufficient condition for global optimality in polynomial optimization problems,
which is a special case of our necessary and sufficient conditions. (The unconstrained
minimization of the Motzkin polynomial shows that Lasserre’s condition is not suf-
ficient.) He shows that his certificates can be interpreted as polynomial multipliers
in a fashion analogous to the Kuhn–Tucker optimality conditions. Instead of neces-
sary conditions he obtains under some compactness assumption an infinite sequence
of semidefinite relaxations whose optimal values converge to the global optimum.

In this article we derive in section 2 polynomial transposition theorems and de-
duce from them a global Karush–John condition which is a necessary and sufficient
condition for global optimality of polynomial programs.

Section 3 then proves a very general transposition theorem for linear constraints,
establishing a theorem of the alternative from which the transposition theorems of
Motzkin [24] and of Tucker [34] (as well as many weaker ones) can be obtained as
corollaries. This level of generality is necessary to deduce in section 4 a form of
the constraint qualifications for the Kuhn–Tucker optimality conditions for general
smooth nonlinear programming problems which is stronger (i.e., makes more stringent
assertions about the multipliers) than the known Karush–John conditions and also
applies for multiple objectives.

Our Karush–John conditions imply derived Kuhn–Tucker conditions with linear
independence constraint qualifications for fewer constraints than the conditions found
in the literature. In particular, they imply the known result that for concavely (or
linearly) constrained problems no constraint qualification is needed.

The new conditions will be incorporated in the COCONUT environment [9] for
deterministic global optimization; the local Karush–John conditions from section 4
are already in place.

Notation. In the following, R is the field of real numbers, and N0 the set of
nonnegative integers. To denote monomials and their degrees, we use the multi-index
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notation

xα = xα1
1 . . . xαn

n , |α| = α1 + · · · + αn

(x ∈ Rn, α ∈ Nn
0 ). Inequalities (≤, ≥) and strict inequalities (<, >) between vectors

and matrices are interpreted componentwise. However, disequality (�=) is the negation
of equality (=) and hence not interpreted componentwise. The infimum inf{x, y} of
two vectors x, y of the same size is taken in the partial order ≤, and is equivalent
to the componentwise minimum. In particular, the condition inf{x, y} = 0 is just
the complementarity condition x ≥ 0, y ≥ 0, xiyi = 0 for all i. By e we denote a
column vector of arbitrary size all of whose entries have the value 1. [A,B] denotes
the m× (n+p)-matrix formed by juxtaposition of the m×n-matrix A and the m×p-
matrix B. Zero dimensional vectors and matrices (needed to avoid stating many
special cases) are handled according to the conventions in de Boor [7]; in addition, any
of the relations =, <, ≤ (but not �=) between zero dimensional objects is considered
to be valid.

2. Global optimality conditions for polynomials. It is well known that
first order (Kuhn–Tucker) optimality conditions for constrained (single-objective) op-
timization are sufficient for convex problems, but not in general. For nonconvex
problems, they must be complemented by second order conditions, which come in two
forms—as necessary conditions and as sufficient conditions—and they apply to local
optimality only. Moreover, between necessary and sufficient conditions is a theoretical
gap, in which various degenerate exceptional situations are possible. It is therefore
remarkable that, for polynomial systems, it is possible to bridge this gap and for-
mulate necessary and sufficient conditions for (global) optimality, valid without any
restriction.

The following discussion is based on a polynomial analogue of the transposition
theorem (Theorem 3.4), the so-called Positivstellensatz, a highly nontrivial result from
real algebraic geometry. To present this result, we need some definitions.

N0 denotes the set of nonnegative integers. R[x1:n] := R[x1, . . . , xn] denotes the
algebra of polynomials in the indeterminates x1, . . . , xn with real coefficients. Let
Ri ∈ R[x1:n] (i = 1 : k) be a finite family of polynomials, combined in the vector
R = (R1, . . . , Rk)

T . The ideal generated by the Ri is the vector space

I〈R〉 = I〈R1, . . . , Rk〉 :=

{
k∑

i=1

aiRi

∣∣∣ ai ∈ R[x1:n]

}
.

The multiplicative monoid generated by the Ri is the semigroup

(1) M〈R〉 = M〈R1, . . . , Rk〉 :=

{
k∏

i=1

Rei
i

∣∣∣ ei ∈ N0

}
.

A polynomial cone C is a subset of R[x1:n] containing all squares a2 with a ∈ R[x1:n],
such that r+s, rs ∈ C whenever r, s ∈ C. The smallest polynomial cone is the set SOS
of polynomials which can be represented as sums of squares; we call such polynomials
SOS polynomials. The polynomial cone generated by the Ri is the smallest polynomial
cone containing R1, . . . , Rk; it is given by

(2) C〈R〉 = C〈R1, . . . , Rk〉 =
{
y0 + Y TRS

∣∣ y0 ∈ SOS, Y ∈ SOS2k}
,
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where RS denotes the vector containing the 2k polynomials in the squarefree part

(3) S〈R〉 = S〈R1, . . . , Rk〉 :=

{
k∏

i=1

Rei
i

∣∣∣ ei ∈ {0, 1}
}

of M〈R1, . . . , Rk〉.
Theorem 2.1 (polynomial transposition theorem I). Let P , Q, and R be vectors

of polynomials. Then exactly one of the following holds:
(i) P (x) ≥ 0, Q(x) = 0, Ri(x) �= 0 for i = 1, . . . , k, for some x ∈ Rn,
(ii) f + g + h = 0 for some f ∈ C〈P 〉, g ∈ I〈Q〉, and h ∈ M〈R2

1, . . . , R
2
k〉.

Proof. That conditions (i) and (ii) are mutually inconsistent can easily be seen.
Indeed, if (i) holds then for any f ∈ C〈P 〉, g ∈ I〈Q〉, and h ∈ M〈R2

1, . . . , R
2
k〉, we

have f(x) ≥ 0, g(x) = 0, and h(x) > 0, whence f(x) + g(x) + h(x) > 0, contradicting
(ii). That one of the two conditions can always be satisfied is the hard part. It follows
from the statement that the inconsistency of (i) implies the solvability of (ii), which
is equivalent to the weak Positivstellensatz stated and proved as Theorem 4.4.2 in
Bochnak, Coste, and Roy [4].

For our application to optimality conditions, we need the following slightly dif-
ferent formulation.

Theorem 2.2 (polynomial transposition theorem II). Let P , Q, and R be vectors
of polynomials. Then exactly one of the following holds:

(i) P (x) ≥ 0, Q(x) = 0, and R(x) > 0 for some x ∈ Rn,
(ii) f + g + h = 0 for some f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R〉.
Proof. That conditions (i) and (ii) are mutually inconsistent can again easily be

seen. Indeed, if (i) holds then for any f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R〉, we
have f(x) ≥ 0, g(x) = 0, and h(x) > 0, whence f(x) + g(x) + h(x) > 0, contradicting
(ii).

If, on the other hand, (i) is inconsistent, this implies that the system
(
P (x), R(x)

)
≥ 0, Q(x) = 0, and R(x) �= 0 is inconsistent, and by Theorem 2.1, there exist f ∈
C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R2

1, . . . , R
2
k〉 with f+g+h = 0. Since M〈R2

1, . . . , R
2
k〉 ⊂

M〈R〉, the result follows.
Both versions have the following common generalization.
Theorem 2.3 (general polynomial transposition theorem). Let P , Q, R, and

S1, . . . , Sk be vectors of polynomials. Then exactly one of the following holds:
(i) P (x) ≥ 0, Q(x) = 0, R(x) > 0, and Si(x) �= 0 for i = 1, . . . , k, for some

x ∈ Rn,
(ii) f+g+h = 0 for some f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R,ST

1 S1, . . . , S
T
k Sk〉.

Proof. That conditions (i) and (ii) are mutually inconsistent can be proved
as before. Given that (i) holds, then for any f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈
M〈R,ST

1 S1, . . . ,
ST
k Sk〉, we have f(x) ≥ 0, g(x) = 0, and h(x) > 0, leading to f(x) + g(x) + h(x) > 0,

contradicting (ii).
The fact that (i) is inconsistent implies that the system of constraints R(x) ≥ 0,

Q(x) = 0, and
(
R(x), S1(x)TS1(x), . . . , Sk(x)TSk(x)

)
> 0 is inconsistent, and by

Theorem 2.2, there exist polynomials f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R,ST
1 S1, . . . ,

ST
k Sk〉 with f + g + h = 0.

The equivalence of the three transposition theorems, Theorems 2.1, 2.2, and 2.3,
can be seen by taking R(x) ≡ 1 ∈ R in Theorem 2.3 and noting that C〈P, 1〉 = C〈P 〉
and M〈1, ST

1 S1, . . . , S
T
k Sk〉 = M〈S2

1 , . . . , S
2
k〉 when all Sj are scalars.

The following result gives necessary and sufficient conditions for the global opti-
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mality of a feasible point of an optimization problem defined in terms of a polynomial
objective function f and polynomial constraints. In most applications, f will be a
real-valued function.

However, it is not difficult to state and prove analogous conditions for multi-
objective optimization problems, by allowing f to be vector-valued. In this case,
optimality is replaced by Pareto optimality, defined as follows. The point x̂ is called
weakly Pareto minimal with respect to the continuous function f : X ⊆ Rn → Rm for
f on X if x ∈ X and there exists a neighborhood of x̂ in X which does not contain a
point y with f(y) < f(x̂).

Theorem 2.4 (global Karush–John conditions). Let x̂ be a feasible point of the
polynomial Pareto optimization problem

(4)

min f(x)

s.t . C(x) ≥ 0,

F (x) = 0,

where f ∈ R[x1:n]k and C ∈ R[x1:n]m, F ∈ R[x1:n]r are vectors of polynomials in x1:n.
Write B for the vector obtained by concatenating C with the vector G(x) = f(x̂)−f(x),
so that Bk = Ck for k ≤ m, and define BS as indicated by (3). Then the following
are equivalent:

(i) The point x̂ is a global weak Pareto minimum of (4).

(ii) There are a polynomial y0 ∈ SOS, polynomial vectors Y ∈ SOS2m+1

, and
Z ∈ R[x1:n]r, and a multi-index α ∈ Nk

0 with |α| > 0 such that

(5) G(x)α + y0(x) + Y (x)TBS(x) + Z(x)TF (x) = 0

identically in x.
Moreover, any solution of (5) satisfies

(6) y0(x̂) = 0, inf{Y (x̂), BS(x̂)} = 0, F (x̂) = 0,

(7) δ|α| 1f
′
i(x̂)T = BS

′(x̂)TY (x̂) + F ′(x̂)TZ(x̂),

where αi = 1 and δik is the Kronecker symbol.
Proof. x̂ is a global weak Pareto minimum of (4) iff the conditions

C(x) ≥ 0, F (x) = 0, f(x) < f(x̂)

are inconsistent. Because f(x) < f(x̂) iff G > 0, the polynomial transposition the-
orem, Theorem 2.2, applies and shows that this is equivalent to the existence of
polynomials q ∈ C〈B〉, r ∈ I〈F 〉, and s ∈ M〈G〉 with q + r + s = 0. Expressing this
more explicitly using (1) and (2) shows this to be equivalent to (ii) without the con-
straint (6), and α only restricted to being a nonnegative multi-index. The equivalence
of (i) and (ii) follows if we show that |α| �= 0.

Since x̂ is feasible, we have B(x̂) ≥ 0, F (x̂) = 0, and by construction, G(x̂) = 0.
Moreover, as a sum of squares, y0(x̂) ≥ 0 and Y (x̂) ≥ 0. Inserting x = x̂ into (5)
gives, with the Kronecker δ,

δ0 |α| ≤ δ0 |α| + y0(x̂) + Y (x̂)TBS(x̂) = 0.

This indeed forces |α| > 0.
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We also get y0(x̂) = 0 and Y (x̂)TBS(x̂) = 0. But the latter inner product is a
sum of nonnegative terms; hence each product vanishes, giving the complementarity
conditions (6). Differentiating the relation (5) and evaluating the result at x̂ yield

(8)
0 =

k∑
i=1
αi>0

αiG
α−ei(x̂)G′

i(x̂)T + y′0(x̂) + Y ′(x̂)TBS(x̂) + BS
′(x̂)TY (x̂)

+ Z ′(x̂)TF (x̂) + F ′(x̂)TZ(x̂).

We now note that y′0(x̂) = 0 because y0(x̂) = 0 and y0 is SOS. Together with the facts
that |α| > 0, G(x̂) = 0, and F (x̂) = 0, we can simplify (8) and get

(9) 0 = δ|α| 1G
′
i(x̂)T + Y ′(x̂)TBS(x̂) + BS

′(x̂)TY (x̂) + F ′(x̂)TZ(x̂)

for that i with αi = 1. Finally, whenever (BS)j(x̂) �= 0, the complementarity conditions
in (6) imply Yj(x̂) = 0 and then Y ′

j (x̂)T = 0 since Yj is an SOS. Thus, Y ′(x̂)TBS(x̂) = 0,
and (9) simplifies further to (7), upon noting that G′

i(x̂) = −f ′
i(x̂).

We may interpret the polynomials in (5) as a certificate that x̂ is a global optimizer
of (4). For applications in practice, one would first try to find x̂ by local optimization
or a heuristic global search, and then try to prove its globality by solving (5) with the
side constraints (6). Note that the conditions are linear, except for the SOS conditions
which give semidefinite constraints. Since the degree of the polynomials involved is not
known a priori, one would solve a sequence of linear semidefinite feasibility problems
on the finite-dimensional spaces of polynomials defined by limiting the total degree
of the terms in (5) to d = 1, 2, 3, . . . . Once a certificate is found one can stop.

Our theorem guarantees that this procedure will be finite (though worst case ex-
ponential because of the size of Y and BS) iff x̂ is indeed a global minimizer. In
contrast, the method of Lasserre [20] yields an infinite sequence of semidefinite relax-
ations whose optimal values converge (under some compactness assumption) to the
global optimum. There is no guarantee that the global optimum is found after finitely
many steps. It would be interesting to combine the approaches to a constructive pro-
cedure for finding and verifying a global optimizer in finitely many steps.

Of course, an efficient implementation would try to avoid the exponential work
in the majority of cases, by using suitable heuristics. For rigorous certification, one
would have the additional problem of verifying the existence of an exact certificate
close to the computed approximation.

We now relate the global Karush–John conditions to the traditional local condi-
tions.

Corollary 2.5 (Kuhn–Tucker conditions). If x̂ is a global optimum of problem
(4) with k = 1 and (5) holds with α = (1) then there are vectors y ≥ 0 and z with

(10) ∇f(x̂) = C ′(x̂)T y + F ′(x̂)T z

and

(11) inf{y, C(x̂)} = 0.

Proof. We already know by Theorem 2.4 (7) that

∇f(x̂) = BS
′(x̂)TY (x̂) + F ′(x̂)TZ(x̂).
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We can write that in a slightly expanded way as follows:

∇f(x̂) = C ′
S(x̂)TY (1)(x̂) + G′

1(x̂)TCS(x̂)Y (2)(x̂) + F ′(x̂)TZ(x̂).

Noting that CS(x̂)Y (2)(x̂) ≥ 0 and G′
1(x̂)T = −∇f(x̂) and expanding further we see

that

γ∇f(x̂) =
∑

β∈{0,1}m

m∑
i=1
βi=1

C ′
i(x̂)TCβ−ei(x̂)Y

(1)
β (x̂) + F ′(x̂)TZ(x̂) = 0,

where γ = 1 + CS(x̂)Y (2)(x̂) > 0. We reorder the sums and get

γ∇f(x̂) =

m∑
i=1

C ′
i(x̂)T

∑
β∈{0,1}m

βi=1

Cβ−ei(x̂)Y
(1)
β (x̂) + F ′(x̂)TZ(x̂) = 0.

If we now set

(12) yi =
1

γ

∑
β∈{0,1}m

βi=1

Cβ−ei(x̂)Y
(1)
β (x̂), z =

1

γ
Z(x̂),

we get the required equality (10). For the complementarity conditions we calculate

Ci(x̂)yi =
1

γ

∑
β∈{0,1}m

βi=1

Cβ(x̂)Y
(1)
β (x̂) = 0,

since by (6) all terms in the sum vanish.
Example 2.6. We consider the simple optimization problem

min 2x− x2

s.t. x ∈ [−1, 1].

Clearly, the objective function is concave; hence the global minimum f̂ = − 3 is
attained at the bound x̂ = −1. We can write

f(x) − f(x̂) = 2x− x2 + 3 = (1 + x)(3 − x) = 1(1 + x)(1 − x) + 2(1 + x).

Obviously, each term on the right is nonnegative, showing again that x̂ is a global
minimizer.

From this representation one reads off the certificate (α = 1, y0 = 0, Y T =
(0, 0, 2, 0, 1, 0, 0, 0), Z = ( )) satisfying (5), where the components of BS are arranged
in the order 1, 1 + x, 1 − x, x2 − 2x− 3, 1 − x2, . . ..

While this example is trivial, it shows the essentials. Higher dimensional examples
differ only in the complexity of what has to be written. In many other situations,
as, e.g., in Example 2.7, the certificate will be very sparse and of low degree, thus
simplifying the search for it.

By Theorem 2.4, for every global minimizer all terms in (5) have to vanish, i.e.,
for every global minimizer x̂ we have that G(x̂) = 0 and (6) and (7) are valid. Using
this information frequently allows the identification of all global minimizers of an
optimization problem when a certificate is available.
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034567   12

Fig. 1. Feasible set (grey) and lines of constant value of f for Example 2.7, after eliminating z.

Example 2.7. We consider the optimization problem

(13)

min z − x

s.t. x− y + z = 0,

x2 − 10x + y2 ≥ 0,

x ∈ [0, 2], y ≥ 0.

As Figure 1 shows, the point (0, 0, 0) is a global optimizer with objective func-
tion value 0. This can be validated formally by Theorem 2.4, using the following
polynomial identity:

(x− z) + 1
2y(2 − x) + 1

4y(x− z) + 1
4x(2 − x) + 1

4 (x2 − 10x + y2)

+ 1
4 (4 + y)(x− y + z) = 0.

By checking when in this identity all terms vanish, we see that for the point (2, 4, 2)
(and no third point), all terms of the certificate vanish as well. Hence (cf. also the
figure), this point is another global minimizer of (13), and no other global minimizers
exist.

Example 2.8. For the problem

min x + y + z

s.t. y − y2 + z ≥ 0,

2x + y + y2 + z − 2 ≥ 0,

x ≥ 0,



QUALIFICATION-FREE OPTIMALITY CONDITIONS 1043

we can find the polynomial identity

1 − (x + y + z) + 1
2 · (y − y2 + z) + 1

2 · (2x + y + y2 + z − 2) = 0,

which implies that the global minimum value of the objective function is 1. By the
complementarity conditions, we find that the two nonlinear inequality constraints
must be active at every global minimum, i.e.,

y − y2 + z = 0,

2x + y + y2 + z − 2 = 0,

which implies that all

x̂ ∈

⎧⎨⎩
⎛⎝ 1 − s2

s
s(s− 1)

⎞⎠∣∣∣∣∣ s ∈ [−1, 1]

⎫⎬⎭
are global optima.

Finally, the following example shows that in (5), the possibility |α| > 1 may
indeed be necessary.

Example 2.9. For every nonnegative integer k the optimization problem

min x

s.t. x2k+1 ≥ 0

admits the unique global optimizer x̂ = 0. The required polynomial identity of small-
est degree is

(−x)α + 1 · x2k+1 = 0, α = 2k + 1.

In the GloptLab package [28], an optimization package currently developed in MAT-
LAB, methods are being implemented and tested, which work along the lines presented
in this section. They use the SeDuMi [33] package for the semidefinite programming
part and combine the present techniques with branch-and-bound, constraint propaga-
tion, interval techniques [25, 26, 27], and linear relaxations. They have produced very
promising results. At a later stage, the most successful techniques will be implemented
as inference modules for the COCONUT environment [10].

3. Refined linear theorems of the alternative. In the linear case, there is
a long tradition of theorems of the alternative, beginning with the lemma of Farkas
[11], and culminating in the transposition theorems of Motzkin [24] and Tucker [34].
These transposition theorems are concerned with the solvability of linear constraints
of various forms (equations, inequalities, strict inequalities, disequalities); see, e.g.,
Broyden [6] for some history.

As we shall show, there is a single general transposition theorem, which contains
the others as special cases. As for the latter, our starting point is the lemma of Farkas.

Lemma 3.1 (Farkas). Let A ∈ Rm×n and g ∈ Rn. Then exactly one of the
following conditions can be satisfied.

(i) gT p < 0, Ap ≥ 0 for some p ∈ Rn.
(ii) g = AT q, q ≥ 0 for some q ∈ Rm.
For the formulation of the transposition theorem and the constraint qualification

we define [1,−u] =: Eu ∈ Rk×(k+1) with 0 < u ∈ Rk and 1 being the identity matrix.
We get the following result.
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Lemma 3.2. For X ∈ Rn×k with rkX = n, 0 < u ∈ Rk, 0 < v ∈ R�, and
Y ∈ Rn×� there exists a matrix 0 ≤ S ∈ R(k+1)×(�+1) with

XEuS = Y Ev.

Proof. Since rkX = n every y ∈ Rn can be written as a linear combination of the
columns xi of X:

y =

k∑
i=1

λixi.

Define

μ =
k

max
i=1

{
−λi

ui
, 0

}
.

Then

y =
k∑

i=1

(λi + μui)xi + μ

(
−

k∑
i=1

uixi

)
= XEus,

with 0 ≥ si := λi + μui and sk+1 := μ. Since all columns of Y Ev ∈ Rn, the result
follows.

We prove the following general theorem of the alternative, and deduce from it the
transposition theorems of Motzkin and Tucker.

Theorem 3.3 (general linear transposition theorem). Consider matrices A ∈
RmA×n, B ∈ RmB×n, C ∈ RmC×n, and Dj ∈ Rmj×n with mj > 0 for j = 1, . . . , N .
Then exactly one of the following holds.

(i) Ax = 0, Bx ≥ 0, Cx > 0, and Djx �= 0 for j = 1, . . . , N , for some x ∈ Rn.
(ii) We have mC > 0 and there exist q ∈ RmA , r ∈ RmB , and s ∈ RmC with

(14) AT q + BT r + CT s = 0, r ≥ 0, s ≥ 0, s �= 0,

or for some j ∈ {1, . . . , N} there exist matrices Q ∈ RmA×(mj+1) and R ∈
RmB×(mj+1) with

(15) ATQ + BTR = DT
j Eu, R ≥ 0,

for some u > 0. Moreover, the same alternative holds if in (ii) a fixed vector
u > 0 (such as the all-one vector u = e) is prescribed.

Proof. If (i) and (ii) hold simultaneously then multiplying (14) with xT yields

(Bx)T r + (Cx)T s = 0.

Since Bx ≥ 0 and r ≥ 0 we have (Cx)T s ≤ 0, which is a contradiction to Cx > 0 and
s ≥ 0, s �= 0. Multiplying, on the other hand, (15) by xT we get

0 ≤ (Bx)TR = [(Djx)T ,−(Djx)Tu],

whence Djx ≥ 0 and uTDjx < 0 forces Djx = 0, which is a contradiction.
Now assume that (i) cannot be solved. Then, for all j = 1, . . . , N and all vj ∈ Rmj ,

there is no x ∈ Rn with

(16) Ax = 0, Bx ≥ 0, Cx > 0, and vTj Djx > 0.
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Writing

g :=

(
0

1

)
, F :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0
−A 0
B 0
C e

vT1 D1 1
...

...
vTNDN 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, p :=

(
x

−λ

)
,

we find that

(17) gT p < 0, Fp ≥ 0

is unsolvable for p∈Rn+1. By the Lemma of Farkas, Lemma 3.1, we can find
q ∈R2mA+mB+mC+N with

(18) FT q = g, q =

⎛⎜⎜⎜⎜⎝
â
ā
b
c
μ

⎞⎟⎟⎟⎟⎠ ≥ 0.

Writing a := â− ā, we find the existence of vectors a ∈ RmA , b ∈ RmB , c ∈ RmC , and
μ ∈ RN (depending on the choice of the vj) such that

(19) ATa + BT b + CT c +

N∑
j=1

μjD
T
j vj = 0, eT

(
c

μ

)
= 1, b, c, μ ≥ 0.

For M ≤ N , we consider the set SM consisting of all (v1, . . . , vM−1) ∈ Rm1 × · · · ×
RmM−1 for which (19) holds with μj = 0 for j ≥ M . Let S1 := ∅. Let M be maximal
with SM �= Rm1 × · · · × RmM−1 . If M = 1 we get c �= 0, and hence mC > 0, and by
setting q := a, r := b, and s := c we find (14).

Hence we may assume that M > 1 and pick (v1, . . . , vM−1) /∈ SM . Take an
arbitrary vM ∈ RmM . We can find vectors a, a′, b ≥ 0, b′ ≥ 0, c ≥ 0, c′ ≥ 0,
0 ≤ ξ, ξ′ ∈ RM−1, and numbers λ > 0 and λ̃ > 0 with

ATa + BT b + CT c +

M−1∑
j=1

ξjD
T
j vj + λDT

MvM = 0, eT
(
c

ξ

)
+ λ = 1,(20)

ATa′ + BT b′ + CT c′ +

M−1∑
j=1

ξ′jD
T
j vj + λ′DT

M (−vM ) = 0, eT
(
c′

ξ′

)
+ λ′ = 1.(21)

Indeed, assume that we cannot find a, b, c, ξ, and λ with (20). We can get vectors
a, b, c, μ satisfying (19). If there are only combinations with μM+1:N �= 0, then
(v1, . . . , vM ) /∈ SM+1, contradicting the maximality of M . If there is a combination
with μM = 0, we find (v1, . . . , vM−1) ∈ SM , which is another contradiction. Thus
μM �= 0, and we set ξ := μ1:M−1 and λ := μM . The same argument gives (21).
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Combining (20) and (21) leads to

(22)

AT
(

1
λa + 1

λ′ a
′︸ ︷︷ ︸

:= q

)
+ BT

(
1
λb + 1

λ′ b
′︸ ︷︷ ︸

:= r

)
+ CT

(
1
λc + 1

λ′ c
′︸ ︷︷ ︸

:= s

)
+

M−1∑
j=1

( ξj
λ +

ξ′j
λ′︸ ︷︷ ︸

:= νj

)
DT

j vj = 0,

eT
(
s

ν

)
=

λ + λ′

λλ′ − 2 =: σ.

If s �= 0 or ν �= 0 the combination (μ1, . . . , μM−1) := σ−1ν ≥ 0, a := σ−1q,
b := σ−1r ≥ 0, and c := σ−1s ≥ 0 proves that (v1, . . . , vM−1) ∈ SM , which is a
contradiction. Thus s = 0, implying c = c′ = 0, and ν = 0, hence ξ1 = ξ′1 = · · · =
ξN−1 = ξ′N−1 = 0, and λ = 1. Since vM was arbitrary, we have shown that for all
vM ∈ RmM there exist vectors a ∈ RmA and b ∈ RmB with

(23) ATa + BT b + DT
MvM = 0.

We set j := M and choose for vM in turn an arbitrary u > 0 and the vectors wk := −ek
(k = 1, . . . ,mj). This gives vectors q′ and r′ ≥ 0 with

AT q′ + BT r′ = −DT
j u

and vectors qk and rk ≥ 0 (k = 1, . . . ,mj) with

AT qj + BT rj = −DT
j wj .

Forming the matrices Q :=
[
q1, . . . , qmj , q

′] and R :=
[
r1, . . . , rmj , r

′] finally gives
(15).

The well-known theorems of the alternative by Motzkin [24] and Tucker [34] are
consequences of this theorem.

Theorem 3.4 (Motzkin’s linear transposition theorem). Let B ∈ Rm×n, and let
(I, J,K) be a partition of {1, . . . ,m} with K �= ∅. Then exactly one of the following
holds:

(i) (Bp)I = 0, (Bp)J ≥ 0, (Bp)K > 0 for some p ∈ Rn,
(ii) BT q = 0, qJ∪K ≥ 0, qK �= 0 for some q ∈ Rm.
Proof. We set Ã :=BI:, B̃ :=BJ:, C̃ :=CK:, N = 0 and apply Theorem 3.3.
Theorem 3.5 (Tucker’s linear transposition theorem). Let B ∈ Rm×n, and let

(I, J,K) be a partition of {1, . . . ,m} with K �= ∅. Then exactly one of the following
holds:

(i) (Bp)I = 0, (Bp)J∪K ≥ 0, (Bp)K �= 0 for some p ∈ Rn,
(ii) BT q = 0, qJ ≥ 0, qK > 0 for some q ∈ Rm.
Proof. Set Ã = −BT , define the matrix B̃ whose rows are indexed by I ∪ J ∪K

and whose columns are indexed by J with B̃J: = 1, B̃I∪K,: = 0, and introduce the

matrix C̃ whose rows are indexed by I ∪ J ∪K with C̃K: = 1, C̃I∪J,: = 0, and N = 0.
Clearly, case (i) of Theorem 3.3 is equivalent to the solvability of the present (ii). On
the other hand, case (ii) of Theorem 3.3 is here equivalent to the existence of vectors
q, r ≥ 0, and s ≥ 0, s �= 0 with

ÃT q + B̃T r + C̃T s = 0.

Plugging in the definitions of Ã, B̃, and C̃ this becomes

−BI:q = 0, −BJ:q + r = 0, −BK:q + s = 0,

which is clearly equivalent to (i).
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For the applications in the next section we need the following corollary of Theo-
rem 3.3.

Corollary 3.6. Let B ∈ Rm×n, and let (I, J,K) be a partition of {1, . . . ,m} of
i = |I|, j = |J |, and k = |K| > 0 elements. Then exactly one of the following holds:

(i) If A = BT
K:Eu for any 0 < u ∈ Rk, then rk A = k and for some matrix

P ∈ Rn×(k+1)

(B(A + P ))I: = 0, (B(A + P ))J: ≥ 0, and (BP )K: = 0.

(ii) BT q = 0, qJ ≥ 0, qK �= 0 for some q ∈ Rm.
Proof. We set Ã = −BT , define B̃ ∈ R|I∪J∪K|×|J| with B̃J: = 1, B̃I∪K,: = 0,

construct D̃ ∈ R|I∪J∪K|×|K| with D̃K: = 1, D̃I∪J,: = 0, and set N = 1, mC = 0, and
k = |K|. Clearly, case (i) in Theorem 3.3 is equivalent to the present (ii).

On the other hand, (ii) in Theorem 3.3 is here equivalent to the existence of
matrices Q and R ≥ 0 with

(24) BI:Q = 0, BJ:Q = R, BK:Q = Eu.

This, in turn, is equivalent to (i) by the following argument, for which we introduce

the pseudoinverse B†
K: = BT

K:(BK:B
T
K:)

−1 of BK:.
Let us assume (i). By Lemma 3.2 we can find a matrix S ≥ 0 with (BK:B

T
K:)EuS =

Eu, and we set Q := B†
K:Eu + PS. Then

BI:Q = BI:

(
BT

K:(BK:B
T
K:)

−1Eu + PS
)

= BI:(B
T
K:Eu + P )S = 0,

BJ:Q = BJ:

(
BT

K:(BK:B
T
K:)

−1Eu + PS
)

= BJ:(B
T
K:Eu + P )S =: R ≥ 0,

BK:Q = BK:B
†
K:Eu + BK:PS = Eu + 0.

Now assume (24). The last equation implies rkBK: = rkA = k, and so the

pseudoinverse of BK: exists and Q is of the form Q = B†
K:Eu + P ′ for some P ′ with

BK:P
′ = 0. By Lemma 3.2 we can find S ≥ 0 with (BK:B

T
K:)

−1EuS = Eu and set
P := P ′S. Calculating

BI:(A + P ) = BI:(B
T
K:Eu + P ′S) = BI:(B

†
K:Eu + P ′)S = BI:QS = 0,

BJ:(A + P ) = BJ:(B
T
K:Eu + P ′S) = BJ:(B

†
K:Eu + P ′)S = BJ:QS = RS ≥ 0,

BK:P = BK:P
′S = 0,

we prove (ii).

4. A refinement of the Karush–John conditions. Karush–John conditions
were originally derived—for single-objective optimization with inequality constraints
only—by Karush [16], and were rediscovered by John [15]. They were subsequently
generalized to mixed equality and inequality constraints, and to multiobjective opti-
mization problems; there is a large literature on the subject, which can be accessed
from the references below.

However, the Karush–John conditions in their most general form pose difficulties
in applications, because the factor in front of the gradient term may be zero or very
small. Therefore, most of the local solvers require a constraint qualification, like that
of Mangasarian and Fromovitz [22] (MFCQ), to be able to reduce the Karush–John
conditions to the much more convenient Kuhn–Tucker conditions [19]. Thorough
discussions of such constraint qualifications can be found for single-objective opti-
mization in Bazaraa, Sherali, and Shetty [3] and Mangasarian [21]. A more recent
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account is in Bonnans and Shapiro [5, section 5.2]; there one can also find extensions
to conic programming, semi-infinite programming, and infinite-dimensional problems
(not considered in the present work). The Karush–John conditions have been in-
vestigated in the case of multiobjective optimization in Marusciac [23], though the
result implicitly contains a constraint qualification. Further reference can be found in
Arrow, Hurwicz, and Uzawa [2], Khanh and Luu [31], and Aghezzaf and Hachimi [1],
especially for connections to the constraint qualifications and, e.g., in Cambini [8] for
second order conditions.

Deterministic global optimization algorithms cannot take this course, since it is
not known beforehand whether the global optimum satisfies an assumed constraint
qualification. Therefore, they have to use the Karush–John conditions in their general
form (cf., e.g., Kearfott [17]). Unfortunately, the additional constraints needed involve
all multipliers and are very inconvenient for the solution process.

In this section we prove a strong version of the Karush–John conditions for non-
linear programming and multiobjective optimization, and a corresponding relaxation
of the Mangasarian–Fromovitz constraint qualification (MFCQ). Apart from the in-
verse function theorem, our main tools are the transposition theorems of the previous
section. The treatment is along the lines of the special case of a single objective
discussed in our unpublished paper [29].

We consider concave and nonconcave constraints separately, and introduce slack
variables to transform all nonconcave constraints into equations. Thus we may write
a general nonlinear optimization problem without loss of generality in the form

(25)
min f(x)

s.t. C(x) ≥ 0, F (x) = 0.

In many applications, the objective function f will be a real-valued function. How-
ever, we allow f to be vector-valued; in this case, optimality is replaced by Pareto
optimality.

The form (25), which separates the concave constraints (including bound con-
straints and general linear constraints) and the remaining nonlinear constraints, is
most useful to prove our strong form of the Karush–John conditions. However, in
computer implementations, a transformation to this form is not ideal, and the slack
variables should be eliminated again from the optimality conditions.

Theorem 4.1 (general first order optimality conditions). Let f : U → Rk, C :
U → Rm, and F : U → Rr be functions continuously differentiable on a neighborhood
U of x̂ ∈ Rn. If C is convex on U and x̂ is a weakly Pareto minimal point of the
nonlinear program (25), then there are vectors ŵ ≥ 0 ∈ Rk, ŷ ∈ Rm, ẑ ∈ Rr such that

(26) f ′(x̂)T ŵ = C ′(x̂)T ŷ + F ′(x̂)T ẑ,

(27) inf(ŷ, C(x̂)) = 0,

(28) F (x̂) = 0,

and

(29) ŵ, ẑ are not both zero.

Proof. We begin by noting that a feasible point x̂ of (25) is also a feasible point
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for the optimization problem

(30)

min f(x)

s.t. Ax ≥ b,

F (x) = 0,

where J is the set of all components j for which C(x̂)j = 0 and

A = C ′(x̂)J:, b = C ′(x̂)J:x̂.

For the indices k corresponding to the set N of inactive constraints, we choose yN = 0
to satisfy condition (27). Since C is convex, we have C(x) ≥ C(x̂) + C ′(x̂)(x − x̂).
Restricted to the rows J we get C(x)J ≥ C ′(x̂)J:(x − x̂). This fact implies that
problem (25) is a relaxation of problem (30) on a neighborhood U of x̂. Note that
since C is continuous we know that C(x)j > 0 for k ∈ N in a neighborhood of x̂ for
all constraints with C(x̂)j > 0. Since, by assumption, x̂ is weakly Pareto minimal for
a relaxation of (30) and a feasible point of (30), it is weakly Pareto minimal for (30)
as well. Together with the choice yN = 0 the Karush–John conditions of problem (30)
are again conditions (26)–(28). So we have successfully reduced the problem to the
case where C is an affine function and all constraints are active at x̂.

Thus, in the following, we consider a weakly Pareto minimal point x̂ of the opti-
mization problem (30) satisfying

(31) Ax̂ = b.

If rk F ′(x̂) < r then zTF ′(x̂) = 0 has a solution z �= 0, and we can solve (26)–(29)
with ŷ = 0, ŵ = 0. Hence we may assume that rk F ′(x̂) = r. This allows us to select a
set R of r column indices such that F ′(x̂):R is nonsingular. Let B be the (0, 1)-matrix
such that Bs is the vector obtained from s ∈ Rn by discarding the entries indexed by
R. Then the function Φ : C → Rn defined by

Φ(x) :=

(
F (x)

Bx−Bx̂

)
has at x = x̂ a nonsingular derivative

Φ′(x̂) =

(
F ′(x̂)

B

)
.

Hence, by the inverse function theorem, Φ defines in a neighborhood of 0 = Φ(x̂) a
unique continuously differentiable inverse function Φ−1 with Φ−1(0) = x̂. Using Φ we
can define a curved search path with tangent vector p ∈ Rn tangent to the nonlinear
constraints satisfying F ′(x̂)p = 0. Indeed, the function defined by

sp(α) := Φ−1

(
0

αBp

)
− x̂

for sufficiently small α ≥ 0 is continuously differentiable, with

sp(0) = Φ−1(0) − x̂ = 0,

(
F (x̂ + sp(α))

Bsp(α)

)
= Φ

(
Φ−1

(
0

αBp

))
=

(
0

αBp

)
;
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hence

(32) sp(0) = 0, F (x̂ + sp(α)) = 0, Bsp(α) = αBp.

Differentiation of (32) at α = 0 yields(
F ′(x̂)

B

)
ṡp(0) =

(
F ′(x̂)ṡp(0)

Bṡp(0)

)
=

(
0

Bp

)
=

(
F ′(x̂)

B

)
p;

hence ṡp(0) = p, i.e., p is indeed a tangent vector to x̂ + sp(α) at α = 0.
Since x̂ is weakly Pareto minimal, we know that there exists a neighborhood V of

x̂ in the set of feasible points containing no y with f(x̂) > f(y). Thus, for every y ∈ V
there exists an index j with fj(x̂) ≤ fj(y). Taking an arbitrary curved path γ in the
feasible set with γ(0) = x̂ we conclude that there is an index j with f ′

j(x̂)γ̇(0) ≥ 0.

Hence, there is no direction p along such a curved search path, for which f ′(x̂)T .p < 0.
Now we consider a direction p ∈ Rn such that

(33) Ap > 0,

(34) F ′(x̂)p = 0.

(In contrast to the purely concave case, we need the strict inequality in (33) to take
care of curvature terms.) Since Ax̂ ≥ b and (33) imply

A(x̂ + sp(α)) = A(x̂ + αṡp(0) + o(α)) = Ax̂ + α(Ap + o(1)) ≥ b

for sufficiently small α ≥ 0, (32) implies feasibility of the points x̂ + sp(α) for small
α ≥ 0.

Thus, sp is a curved search path in the feasible set, and we conclude from the
discussion above that there is no such p with f ′(x̂)T p < 0. Thus, (33), (34), and

(35) f ′(x̂)T p < 0

are inconsistent.
Therefore, the transposition theorem, Theorem 3.4, applies with⎛⎝ −f ′(x̂)

A
F ′(x̂)

⎞⎠ ,

⎛⎝ w
y
z

⎞⎠ in place of B, q,

and shows the solvability of

−f ′(x̂)Tw + AT y + F ′(x̂)T z = 0, w ≥ 0, y ≥ 0,

(
w

y

)
�= 0.

If we put ẑ = z, let ŷ be the vector with ŷJ = y and zero entries elsewhere, and note
that x̂ is feasible, we find (26)–(28).

Because of (29), it now suffices to discuss the case where w = 0 and z = 0, and
therefore

(36) AT y = 0, y �= 0.

In this case, bT y = (Ax̂)T y = x̂TAT y = 0. Therefore any point x ∈ U satisfies
(Ax− b)T y = xTAT y − bT y = 0, and since y ≥ 0, Ax− b ≥ 0, we see that the set

(37) K := {i | (Ax)i = bi for all x ∈ V with Ax− b ≥ 0}
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contains all indices i with yi �= 0 and hence is nonempty.
Since V is nonempty, the system AK:x = bK is consistent, and hence equivalent

to AL:x = bL, where L is a maximal subset of K such that the rows of A indexed by
L are linearly independent. If M denotes the set of indices complementary to K, we
can describe the feasible set equivalently by the constraints

AM :x ≥ bM ,

(
AL:x− bL

F (x)

)
= 0.

This modified description of the feasible set has no equality constraints implicit in the
inequality AM :x ≥ bM . For a solution x̂ of the equivalent optimization problem with
these constraints, we find as before vectors w ≥ 0, ỹM , and

(
ỹL

z

)
such that

(38) f ′(x̂)Tw = AT
M :ỹM +

(
AL:

F ′(x̂)

)T(
ỹL
z

)
,

(39) inf(ỹM , AM :x̂− bM ) = 0,

(40) F (x) = 0, AK:x̂− bK = 0,

(41) w,

(
ỹL
z

)
are not both zero.

Clearly, this yields vectors ŵ = w, ŷ = ỹ, and ẑ = z satisfying (26) and (27), but now
ỹK\L = 0. The exceptional situation w = 0, z = 0 can no longer occur. Indeed, as
before, all indices i with ỹi �= 0 lie in K; hence ỹM = 0 and (38) gives AT

L:ỹL = 0.
Since, by construction, the rows of AL: are linearly independent, this implies ỹL = 0,
contradicting (41). Hence, we have that w and z are not both zero.

It remains to show that we can choose y ≥ 0 with AT y = AT
M :ỹM +AT

L:ỹL. From
the definition (37) of K we know that the two relations Ap ≥ 0 and AK:p �= 0 are
inconsistent (set x = x̂ + p). In particular, the relations Ap ≥ 0 and ỹTKAK:p < 0
are inconsistent. By the lemma of Farkas, Lemma 3.1, we conclude the existence of
a vector q ≥ 0 with AT q = AT

K:ỹK = AT
L:ỹL. Setting yM = ỹM + qM and yK = qK

completes the proof.
In contrast to our version of the Karush–John condition, the standard Karush–

John condition asserts under our assumptions only that ŵ, ŷ, and ẑ are not simul-
taneously zero. Thus the present version gives more information in case that ŵ = 0.
Therefore, weaker constraint qualifications are needed to ensure that ŵ �= 0. In that
case, the multipliers in (26) can be rescaled so that ‖ŵ‖ = 1. However, from a nu-
merical perspective, it may be better to keep the homogeneous formulations, since a
tiny w in a well-scaled multiplier vector implies near degeneracy and would give huge
multipliers if normalized to ‖ŵ‖ = 1.

Note that in view of (27), the condition (29) can be written (after rescaling) in
the equivalent form

(42) ŵ ≥ 0, vT ŵ + uT ŷ + ẑTDẑ = 1,

where v �= 0 is an arbitrary nonnegative vector, u is an arbitrary nonnegative vector
with uJ > 0, uN = 0, and D is an arbitrary diagonal matrix with positive diagonal
entries. This form is numerically stable in that all multipliers are bounded and near
degeneracies—which would produce huge multipliers in the Kuhn–Tucker conditions—
are revealed by a small norm of ŵ. The lack of a constraint qualification (which
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generally cannot be established in finite precision arithmetic anyway) therefore simply
appears as the limit ŵ = 0.

The formulation (42) is particularly useful for the rigorous verification of the
existence of a solution of our refined Karush–John conditions in the vicinity of an
approximate solution; cf. Kearfott [17, section 5.2.5] for the corresponding use of the
standard Karush–John conditions. The advantage of our stronger formulation is that
in case there are only a few nonconcave constraints, condition (42) involves only a few
variables and hence is a much stronger constraint if constraint propagation techniques
[17, 35] are applied to the optimality conditions.

Let B := F ′(x̂)TEu for some u > 0. We say that the constraint qualification (CQ)
is satisfied if rkF ′(x̂) = r and there exists a matrix Q ∈ Rn×(r+1) with

(43)
C ′(x̂)J:(B + Q) ≥ 0,

F ′(x̂)Q = 0.

Corollary 4.2. If, under the assumptions of Theorem 4.1, the constraint qual-
ification (CQ) is satisfied then the conclusion of Theorem 4.1 holds with ŵ �= 0.

Proof. It is obvious that the conclusion of Theorem 4.1 holds with ŵ �= 0 if

(44) C ′(x̂)TJ:yJ + F ′(x̂)T z = 0, yJ ≥ 0 =⇒ z = 0.

If (44) is satisfied, we have that z �= 0, yJ ≥ 0, and C ′(x̂)TJ:yJ + F ′(x̂)T z = 0 are
inconsistent. By Corollary 3.6 this is equivalent to the constraint qualification.

Theorem 4.3 (Kuhn–Tucker conditions). Under the assumption of Theorem 4.1
with f one-dimensional, if the constraint qualification (CQ) is satisfied, then there are
vectors ŷ ∈ Rm, ẑ ∈ Rr such that

(45) f ′(x̂)T = C ′(x̂)T ŷ + F ′(x̂)T ẑ,

(46) inf(ŷ, C(x̂)) = 0,

(47) F (x̂) = 0.

Equations (45)–(47) are the Kuhn–Tucker conditions for the nonlinear program
(25); cf. [19]. The traditional linear independence constraint qualification requires
in place of the assumptions in Theorem 4.3 the stronger condition that the rows of(

F ′(x̂)
C′(x̂)J:

)
are independent. In contrast, our condition allows arbitrary dependence

among the rows of C ′(x̂).
Weaker than the constraint qualification (CQ) is the Mangasarian–Fromowitz con-

straint qualification (MFCQ), which asserts the existence of a vector q with C ′(x̂)J:q >
0 and F ′(x̂)q = 0. It implies our constraint qualification (CQ), because Q = qλT sat-
isfies (43) for λ large enough. We now show that (MFCQ) is more restrictive than
our new constraint qualification (CQ).

Example 4.4. We reconsider Example 2.7. As we have seen there, the point
x̂ = (0, 0, 0)T is a local (even global) optimum of (13). Figure 1 reveals that there is
a degeneracy since the two activities have a common tangent. Thus the constraint
qualifications are nontrivial. Clearly, the mapping C defined by transforming the
inequality constraints of C(x) ≥ 0 is convex; hence we can use Theorem 4.1. We have

f ′(x̂) =
(
−1 0 1

)
, F ′(x̂) =

(
1 −1 1

)
,
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B =

⎛⎝ 1 −1
−1 1
1 −1

⎞⎠ , C ′
J:(x̂) =

⎛⎝−10 0 0
0 1 0
1 0 0

⎞⎠ .

We can use the formulas (12) to calculate the multipliers

ŷ =
1

4

⎛⎝1
4
2

⎞⎠ , ẑ = 1;

then (45) reduces to the identity

1

⎛⎝−1
0
1

⎞⎠ =
1

4

⎛⎝−10 0 1
0 1 0
0 0 0

⎞⎠⎛⎝1
4
2

⎞⎠ + 1 ·

⎛⎝ 1
−1
1

⎞⎠ .

This shows that we can choose ŵ = 1 in the Karush–John conditions. Indeed, our
constraint qualification (CQ) is valid. For

Q =
1

19

⎛⎝−1 1
1 −1
2 −2

⎞⎠
we have

C ′
J:(x̂)(B + Q) = 0, F ′(x̂)Q = 0.

However, (MFCQ) is not satisfied since there is no vector q with C ′
J:(x̂)q > 0.

5. Conclusions. We presented various theorems of the alternative, and, based
on them, derived new optimality conditions that hold without any constraint qualifi-
cation. These results strengthen known local conditions, but they are also suitable for
use in a global optimization context, which was our main motivation for this work.

New and exciting is the fact that, for the first time, it is possible to give necessary
and sufficient (global) optimality conditions for polynomial problems. In particular,
it is possible to produce (under the idealized assumptions that all semidefinite pro-
grams can be solved exactly) certificates for global optimality of a putative solution
x̂. However, these global results are probably not the best possible.

The failure to find a certificate after all problems up to some maximum degree d
have been solved makes it likely that x̂ is not a global optimizer of (4). In this case,
one would like to have a procedure that guarantees (for sufficiently large but a priori
unknown d) to find a feasible point x with a better objective function value than the
value at x̂. Then a new local optimization could be started from x, resulting in a
better candidate for a global optimizer. Work on this is in progress.

Also, at present we have no simple constraint qualification which would guarantee
in the single-objective case that the exponent α in the global Karush–John condition
of Theorem 2.4 takes the value 1, which is needed to construct from the certificate
multipliers satisfying the Kuhn–Tucker conditions. We conjecture that the exponent
e = 1 is possible iff the Kuhn–Tucker conditions can be satisfied at x̂, in particu-
lar, under the same (weakened Mangasarian–Fromovitz) constraint qualification as
in our Theorem 4.3. This would strengthen the currently weak connections between
sections 2 and 3.
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LYAPUNOV STABILITY OF COMPLEMENTARITY AND
EXTENDED SYSTEMS∗

M. KANAT CAMLIBEL† , JONG-SHI PANG‡ , AND JINGLAI SHEN§

Abstract. A linear complementarity system (LCS) is a piecewise linear dynamical system
consisting of a linear time-invariant ordinary differential equation (ODE) parameterized by an alge-
braic variable that is required to be a solution to a finite-dimensional linear complementarity problem
(LCP), whose constant vector is a linear function of the differential variable. Continuing the authors’
recent investigation of the LCS from the combined point of view of system theory and mathematical
programming, this paper addresses the important system-theoretic properties of exponential and
asymptotic stability for an LCS with a C1 state trajectory. The novelty of our approach lies in our
employment of a quadratic Lyapunov function that involves the auxiliary algebraic variable of the
LCS; when expressed in the state variable alone, the Lyapunov function is piecewise quadratic, and
thus nonsmooth. The nonsmoothness feature invalidates standard stability analysis that is based on
smooth Lyapunov functions. In addition to providing sufficient conditions for exponential stability,
we establish a generalization of the well-known LaSalle invariance theorem for the asymptotic stabil-
ity of a smooth dynamical system to the LCS, which is intrinsically a nonsmooth system. Sufficient
matrix-theoretic copositivity conditions are introduced to facilitate the verification of the stability
properties. Properly specialized, the latter conditions are satisfied by a passive-like LCS and cer-
tain hybrid linear systems having common quadratic Lyapunov functions. We provide numerical
examples to illustrate the stability results. We also develop an extended local exponential stability
theory for nonlinear complementarity systems and differential variational inequalities, based on a
new converse theorem for ODEs with B-differentiable right-hand sides. The latter theorem asserts
that the existence of a “B-differentiable Lyapunov function” is a necessary and sufficient condition
for the exponential stability of an equilibrium of such a differential system.

Key words. complementarity systems, Lyapunov stability, LaSalle’s invariance principle, asymp-
totic and exponential stability
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1. Introduction. Fundamentally linked to a linear hybrid system, a linear com-
plementarity system (LCS) is a piecewise linear dynamical system defined by a linear
time-invariant ordinary differential equation (ODE) parameterized by solutions of a
finite-dimensional linear complementarity problem (LCP) linearly coupled with the
state of the differential equation. LCSs, and also nonlinear complementarity systems
(NCSs), belong to the more general class of differential variational inequalities (DVIs)
[38]. In the last few years there has been a rapidly growing interest in complementarity
systems and DVIs from the mathematical programming community and the systems
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and control community, due to their applications in many areas such as robotics, non-
smooth mechanics, economics, and finance and traffic systems; see the recent review
papers [3, 50] and [4, 5, 6, 7, 8, 9, 11, 19, 20, 21, 22, 37, 51, 53, 54] for studies on
specific issues pertaining to the LCS.

Stability is a classical issue in dynamical system theory. One of the most widely
adopted stability concepts is Lyapunov stability, which plays important roles in sys-
tem and control theory and in the analysis of engineering systems. In the classical
Lyapunov stability theory, we assume that the ODE in consideration has a smooth (at
least C1) right-hand side and the origin is an equilibrium. Furthermore, we assume
that there exists a continuously differentiable, positive definite, and coercive function
of the system states, which is called a Lyapunov function. If the Lie derivative of such
a function along the vector field of the system is nonpositive at all states (in a small
neighborhood of the origin), then one can establish stability of the origin in the sense
of Lyapunov. On the other hand, if the Lie derivative of such a Lyapunov function
along the vector field of the system is negative at all nonzero states (in a small neigh-
borhood of the origin), then the system is asymptotically stable at the origin. In the
setting of linear systems, this leads to the well-known Lyapunov equation.

An important extension of the above results is LaSalle’s invariance principle [28],
which plays a fundamental role in the stability analysis of smooth systems. This
theorem says that if the largest invariant set of the zero level of the Lie derivative
of the Lyapunov function along the system vector field is a singleton and contains
the origin only, then the system is asymptotically stable at the origin. It is known
that the singleton condition can be further expressed in terms of certain observability
conditions. Thus checking the singleton condition is closely related to the observability
analysis of the system.

Extending classical smooth system theory to stability analysis of hybrid and
switched systems has received growing attention in recent years. Among the exten-
sive literature on the stability of linear switched systems, we mention a few relevant
papers. A multiple-Lyapunov-function approach was proposed in [2]; see also [56]
for related discussion. Uniform (asymptotic) stability of switched linear systems is
studied in [23] where an extension of LaSalle’s invariance principle to certain classes
of switched linear systems is addressed. The latter result is further generalized to the
stability analysis of switched nonlinear systems [24], where several nonlinear norm-
observability notions generalizing classical observability concepts are introduced to
obtain sufficient conditions for asymptotic stability using arguments of the LaSalle
type. For surveys of recent results, including extensive references, on stability and
stabilization of switched linear systems, see [14, 29]. Typically, the mentioned results
assume that a Lyapunov-like function exists for each mode’s vector field and holds
for the entire state space. In many hybrid and switched systems, however, each mode
holds only over a subset of the state space, especially for those systems whose switch-
ings are triggered by state evolution, such as the LCS. Hence, the above results are
rather restrictive, even for linear switched systems. Due to this concern, the paper
[12] had proposed copositive Lyapunov functions for “conewise linear systems” for
which the feasible region of each mode is a polyhedral cone. This proposal leads to an
interesting study of copositive matrices that satisfy the Lyapunov equation. Similar
ideas and relevant results for piecewise linear systems can also be found in [26]. Also
employing a copositivity theory, the authors of several recent papers [1, 16, 17, 18]
have developed an extensive stability theory for evolutionary variational inequalities
(EVIs), including an extension of LaSalle’s invariance principle to such systems, nec-
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essary conditions for asymptotic stability, application to mechanical systems under
frictional contact, and matrix conditions for stability and instability for linear EVIs
(LEVIs). The EVIs belong to the class of differential inclusions and are dynamic
generalizations of a finite-dimensional variational inequality [15]. In this paper, as
an example of a DVI, we briefly discuss the “functional evolutionary variational in-
equality” (FEVI) as another dynamic generalization of a static finite-dimensional
variational inequality (VI); see the system (5.8). In contrast to the EVI, the FEVI
always has continuously differentiable solution trajectories, whose stability properties
can be established without resorting to the framework of differential inclusions (DIs).
Last, we mention [52, section 8.2], which studies the stability of “linear selectionable”
DIs. While an LCS is related to such a DI, the two are quite different; consequently,
the results from this reference are not applicable to the LCS. See the discussion at
the end of subsection 3.3 for details.

It should be emphasized that while complementarity systems, and more generally,
differential variational systems via their Karush–Kuhn–Tucker formulations, could be
considered as special switched systems, LCSs, NCSs, and DVIs occupy a significant
niche in many practical applications and have several distinguished features: inequal-
ity constraints on states, state-triggered mode switchings, and an endogenous control
variable. These features invalidate much of the known theory of hybrid systems, which
often allow arbitrary switchings, and necessitate the employment of the copositivity
theory pioneered by such authors as Brogliato, Goeleven, and Schumacher. Another
noteworthy point about the switched system theory is that it takes for granted a fun-
damental “non-Zenoness assumption” (i.e., finite number of switches in finite time)
whose satisfaction is the starting point for stability analysis; for complementarity sys-
tems, this issue of finite switches is nontrivial and has been rigorously analyzed only
very recently [37, 51]; see also [10].

Complementing the aforementioned works, this paper aims at analyzing the asymp-
totic and exponential stability of classes of nonsmooth differential systems, focusing
in particular on the LCSs, NCSs, and DVIs. For an early work on the asymptotic
behavior of solutions to the evolutionary nonlinear complementarity problem, see
Chapter 3 in the Ph.D. thesis [25]. A key assumption for the class of LCSs treated
in our work is that they have C1 state trajectories for all initial states. Since the
right-hand side of such an LCS is a Lipschitz function of state, the results for the
LEVIs are not applicable to this class of LCSs; see [16, Remark 10]. Nevertheless,
there are LCSs that fall within the framework of the LEVI, and which are therefore
amenable to the treatment in the cited reference (see, e.g., Corollary 2 therein) but
which cannot be handled by our approach. In contrast to a set-valued approach, our
analysis is based to a large extent on the theory of “B-differentiable” functions (see
section 2 for a formal definition of such a nonsmooth function). Specifically, unlike
many stability results in the literature where the candidate Lyapunov functions are
chosen to be continuously differentiable in the state, the nontraditional Lyapunov-like
function in our consideration is, in the case of the LCS, quadratic in both the state
and the associated algebraic variable; thus it is piecewise quadratic when expressed in
the system state only. The nonsmoothness of the resulting Lyapunov function is the
novelty of our work, as a result of which mathematical tools that go beyond the scope
of the classical Lyapunov stability theory are needed. In this regard, our analysis is
in the spirit of [52, Chapter 8]; yet the differential systems considered in our work are
of a particular type, whose structure is fully exploited in designing the class of Lya-
punov functions. Consequently, we are able to obtain much sharper results than those
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derived from the general theory of differential inclusions. In particular, combining
LCP theory and stability methods, we obtain asymptotic stability results via an ex-
tension of LaSalle’s invariance principle; moreover, our stability results for the LCS
are expressed in terms of matrix copositivity conditions. Several special cases are
highlighted and numerical examples are given. We further extend these results to
inhomogeneous LCSs, NCSs, and DVIs, with the latter two classes of systems sat-
isfying the strong regularity condition [43, 15]. The noteworthy point of the latter
extension is that it is based on a “converse theorem” of the exponential stability of an
equilibrium of an ODE with a “B-differentiable” right-hand side. The latter theorem
asserts that the existence of a “B-differentiable Lyapunov function” is a necessary
and sufficient condition for the exponential stability of an equilibrium to such a dif-
ferential system. Incidentally, there is an extensive literature on converse theorems
for switched systems, some of which even involve discontinuous Lyapunov functions;
see, e.g., [30, 33, 34, 42]. Our main result, Theorem 5.2, differs from the common
treatment in switched systems in a major way; namely, our theorem is established
for a general ODE with a B-differentiable right-hand side and thus potentially has
broader applicability than those restricted to switched systems.

The organization of the rest of the paper is as follows. In the next section,
we formally define the LCS, review the notions of stability, asymptotic stability, and
exponential stability, and briefly examine some matrix classes related to the LCP [13].
The stability results for the equilibrium xe = 0 of the LCS are presented in section 3,
first for the “P-case” which is then extended to a non-P system. Numerical examples
illustrating these results and the special case of a single-input-single-output (SISO)
system are also given. Sections 4 and 5 address the stability issues of the extended
systems; the former section treats the inhomogeneous LCS and the latter the NCS
and the DVI, via the above-mentioned converse theorem for a B-differentiable ODE.

2. Linear complementarity systems. An LCS is defined by a tuple of four
constant matrices A ∈ �n×n, B ∈ �n×m, C ∈ �m×n, and D ∈ �m×m; it seeks
two time-dependent trajectories x(t) ∈ �n and u(t) ∈ �m for t ∈ [0, T ] for some
0 < T ≤ ∞ such that

ẋ = Ax + Bu,

0 ≤ u ⊥ Cx + Du ≥ 0,

x(0) = x0,

(2.1)

where ẋ ≡ dx/dt denotes the time derivative of the trajectory x(t), x0 is the initial
condition, and a ⊥ b means that the two vectors a and b are orthogonal, i.e., aT b = 0.
We denote the above LCS by the tuple (A,B,C,D). Obviously, the LCP of finding a
vector u ∈ �m satisfying

0 ≤ u ⊥ q + Du ≥ 0,

which we denote by the pair (q,D) and whose solution set we denote SOL(q,D), has
a lot to do with various properties of the above LCS. We refer the reader to [13] for
a comprehensive study of the LCP and also to the two-volume monograph [15] for
many advanced solution properties of the LCP that we will freely use throughout this
paper. In particular, under the blanket assumption that BSOL(Cx,D) is a singleton
for all x ∈ �n, an assumption which was introduced in [51] and used subsequently in
[39], it follows that the LCS (2.1) is equivalent to the ODE

ẋ = Ax + BSOL(Cx,D), x(0) = x0,(2.2)
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whose right-hand side Ax + BSOL(Cx,D) is a (single-valued) piecewise linear, and
hence Lipschitz continuous and directionally differentiable (i.e., B(ouligand)-differen-
tiable [35]) function of x ∈ �n. (A word about notation: we identify the single vector
in BSOL(Cx,D) with the set itself; thus we talk about the piecewise linear function
x 	→ BSOL(Cx,D) directly without referring to the element in BSOL(Cx,D). The
same usage applies to other similar contexts.) The class of B-differentiable functions
will play a central role throughout this work. Formally, a function Φ : D ⊆ �n → �m

is B-differentiable at a point x in the open set D if Φ is Lipschitz continuous in
a neighborhood of x contained in D and directionally differentiable at x; Φ is B-
differentiable in D if it is B-differentiable at every point therein. We refer the reader
to [15, Chapter 3] for basic properties of B-differentiable functions.

It follows from the ODE formulation (2.2) that the LCS (2.1) has a unique so-
lution, which we denote x(t, x0), for all initial conditions x0 ∈ �n. If the initial
condition x0 is clear from the context, we will simply write x(t) to de-emphasize the
dependence of the solution trajectory on the initial condition. Even in this case where
the x-trajectory is unique, there is no guarantee that there is a unique u-trajectory,
unless D is a P-matrix [13], which implies that SOL(q,D) is a singleton for all q ∈ �m,
or unless the quadruple (A,B,C,D) satisfies the passifiability by pole shifting prop-
erty and a rank condition [7]. See Proposition 2.2 for a unification of these uniqueness
conditions. For our purpose, we are interested in the LCS (2.1) where the x-trajectory
is unique and C1 in time. It turns out that this condition is equivalent to the single-
valuedness of BSOL(Cx,D) as made precise in the following result.

Proposition 2.1. Let (A,B,C,D) be given. The following two statements are
equivalent.

(a) For every x0 ∈ �n, the LCS (2.1) has a unique C1 trajectory x(t, x0) defined
for all t ≥ 0.

(b) For every x0 ∈ �n, the set BSOL(Cx0, D) is a singleton.
Proof. It remains to show (a) ⇒ (b). This is clear because for any u0 ∈

SOL(Cx0, D), we have Bu0 = ẋ(0, x0)−Ax0, where ẋ(0, x0) is the time derivative of
the unique trajectory x(t, x0) evaluated at the initial time t = 0.

Throughout the discussion of the LCS (2.1), we assume that condition (b) holds.
There are simple instances where this condition holds easily. Statement (a) of the
following result identifies one such instance; see [51]. The notation a ◦ b denotes the
Hadamard product of two vectors; i.e., the ith component of a ◦ b is equal to aibi.

Proposition 2.2. Suppose that SOL(Cx,D) �= ∅ for all x ∈ �n. The following
two statements hold.

(a) If u ◦Du ≤ 0 ⇒ Bu = 0, then BSOL(Cx,D) is a singleton for all x ∈ �n.
(b) If [u ◦ Du ≤ 0, Bu = 0] ⇒ u = 0, then BSOL(Cx,D) is a singleton for

all x ∈ �n if and only if for every x0 ∈ �n, there exists a unique pair of
trajectories (x(t, x0), u(t, x0)) defined for all t ≥ 0 satisfying (2.1) such that
x(·, x0) is C1.

Proof. For statement (a), it suffices to show that Bu1 = Bu2 for any two solutions
u1 and u2 in SOL(Cx,D). This is easy because any two such solutions must satisfy
u ◦ Du ≤ 0 for u ≡ u1 − u2. For statement (b), it suffices to show the “only if”
assertion; in turn it suffices to show the uniqueness of the u(t, x0) trajectory. But
this is also clear in view of the uniqueness of the C1 trajectory x(t, x0), which follows
from Proposition 2.1.

Remark 2.1. If D is positive semidefinite, then u◦Du ≤ 0 implies (D+DT )u = 0.

Thus, if the matrix [D + DT

B
] has full column rank, then the implication [u ◦Du ≤ 0,
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Bu = 0] ⇒ u = 0 holds. The former rank condition is used in [7] along with the
passifiability condition, which implies the positive semidefiniteness of D, to yield the
uniqueness of the u-trajectory.

There are many matrix classes in LCP theory; among these, the following are
most relevant to this work. A matrix D ∈ �m×m is a P-matrix if u◦Du ≤ 0 ⇒ u = 0;
the matrix D is an R0-matrix if SOL(0, D) = {0}; the matrix D is (strictly) copositive
on a cone C ⊆ �m if uTDu ≥ 0 for all u ∈ C (uTDu > 0 for all nonzero u ∈ C); a
copositive matrix D is copositive plus on C if [uTDu = 0, u ∈ C] ⇒ (D + DT )u = 0.
Properties of these matrices will be used freely in the paper; see [13]. In particular, it
is known that a matrix D is P if and only if SOL(q,D) is a singleton for all q ∈ �m;
moreover a constant cD > 0 exists such that ‖u‖ ≤ cD‖q‖ for all q ∈ �m, where u is
the unique solution of the LCP (q,D). It is further known that D is an R0-matrix if
and only if SOL(q,D) is bounded (possibly empty) for all q ∈ �m. Clearly a P-matrix
must be R0. Last, note that if D is copositive on a convex cone C, then

[uTDu = 0, u ∈ C ] ⇒ (D + DT )u ∈ C∗,

where C∗ denotes the dual cone of C. Consequently, if D is a symmetric matrix
copositive on a convex cone C, then

[uTDu = 0, u ∈ C ] ⇒ [ C � u ⊥ Du ∈ C∗ ].(2.3)

We say that (D, C) is an R0-pair if the unique vector satisfying the right-hand com-
plementarity conditions in the above implication is u = 0.

The condition that BSOL(Cx,D) is a singleton is not as restrictive as it seems.
Indeed, consider a homogeneous differential affine variational inequality (DAVI)

ẋ = Ax + Bu,

u ∈ SOL(K,Cx,D),
(2.4)

where u ∈ SOL(K,Cx,D) means that u ∈ K and

(u ′ − u)T (Cx + Du) ≥ 0 ∀u ′ ∈ K,

with K being the polyhedral cone {u ∈ �m : Eu ≤ 0} for some matrix E of appro-
priate dimension. Introducing a multiplier λ for the constraint in K, we deduce that
u ∈ SOL(K,Cx,D) if and only if

0 = Cx + Du + ETλ,

0 ≤ −Eu ⊥ λ ≥ 0.

If D is positive definite, we can solve for u from the first equation, obtaining u =
−D−1[Cx+ETλ], which we can substitute into Eu and Bu. This results in the LCS

ẋ = [A−BD−1C ]x−BD−1ETλ,

0 ≤ λ ⊥ −ED−1Cx + ED−1ETλ ≥ 0.

It is easy to see that the triple of matrices (B ′, C ′, D ′) ≡ (−BD−1ET ,−ED−1C,
ED−1ET ) satisfies the property that B ′SOL(C ′x,D ′) is a singleton for all x, due
to the positive definiteness of D. More generally, if D is only positive semidefinite
(but not necessarily symmetric), it is still possible to convert (2.4) into an LCS (2.1)
satisfying the desired singleton property, under suitable conditions; we refer the reader
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to [15, Exercise 1.8.10] for a general conversion scheme. In what follows, we illustrate
how this conversion can be carried out by assuming that the matrix[

D ET

−E 0

]

is nonsingular. Letting w = −Eu, we can show that (2.4) is equivalent to

ẋ = Âx + B̂w,

0 ≤ w ⊥ Ĉx + D̂w ≥ 0,

where

Â ≡ A−
[
B 0

] [ D ET

−E 0

]−1 [
C

0

]
, B̂ ≡

[
B 0

] [ D ET

−E 0

]−1 [
0

I

]
,

Ĉ ≡ −
[
0 I

] [ D ET

−E 0

]−1 [
C

0

]
, D̂ ≡

[
0 I

] [ D ET

−E 0

]−1 [
0

I

]
.

It is not difficult to show that if SOL(K,Cx,D) �= ∅ for all x ∈ �n and if (D+DT )u =

0 ⇒ Bu = 0, then the triple (B̂, Ĉ, D̂) is such that B̂SOL(Ĉx, D̂) is a singleton for
all x ∈ �n.

2.1. Stability concepts. An important goal of this paper is to derive sufficient
conditions for the “equilibrium solution” x = 0 of the LCS (2.1) to be “exponentially
stable” and “asymptotically stable.” While these are well-known concepts in systems
theory [28], we offer their formal definitions below for completeness. The setting is a
time-invariant system on �n,

ẋ = f(x), x(0) = x0,(2.5)

where f : �n → �n is Lipschitz continuous. Let xe ∈ �n be an equilibrium of the
system (2.5), i.e., f(xe) = 0, and let x(t, x0) denote the unique trajectory of (2.5).

Definition 2.3. The equilibrium xe of (2.5) is
(a) stable in the sense of Lyapunov if, for each ε > 0, there is δε > 0 such that

‖x0 − xe ‖ < δε ⇒ ‖x(t, x0) − xe ‖ < ε ∀ t ≥ 0;

unstable otherwise;
(b) asymptotically stable if it is stable and δ > 0 exists such that

‖x0 − xe ‖ < δ ⇒ lim
t→∞

x(t, x0) = xe;

(c) exponentially stable if there exist scalars δ > 0, c > 0, and μ > 0 such that

‖x0 − xe ‖ < δ ⇒ ‖x(t, x0) − xe ‖ ≤ c ‖x0 − xe ‖ e−μt ∀ t ≥ 0.

Clearly, exponential stability implies asymptotic stability, which further implies
stability, but not vice versa. For a Lipschitz function f(x) that is positively homoge-
neous in x, i.e., f(τx) = τf(x) for all τ ≥ 0, we will be interested in the particular
equilibrium xe = 0. For the system (2.5) with such an f , we have x(t, τx0) = τx(t, x0)
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for all τ ≥ 0 and all pairs (t, x0) ∈ [0,∞) × �n. For such a function f , stability of
xe = 0 is equivalent to linearly bounded stability, which means the existence of a
constant η > 0 such that ‖x(t, x0)‖ ≤ η‖x0‖ for all (t, x0) ∈ [0,∞) × �n; asymptotic
stability is equivalent to global asymptotic stability, which means limt→∞ x(t, x0) = 0
for all x0 ∈ �n; and exponential stability is equivalent to global exponential stability,
which means the existence of scalars c > 0 and μ > 0 such that ‖x(t, x0)‖ ≤ c‖x0‖e−μt

for all (t, x0) ∈ [0,∞)×�n. Throughout the paper, we will omit the adjective “global”
when we deal with the equilibrium xe = 0 for an ODE with a positively homogenous
right-hand side.

Returning to the LCS (2.1), we note that, under our blanket assumption, the
above definition is applicable to the equivalent system (2.2). Furthermore, since
BSOL(0, D) = {0}, xe = 0 is indeed an equilibrium of (2.2). Due to its piecewise
linearity, the right-hand function f(x) ≡ Ax+BSOL(Cx,D) is in general not Fréchet
differentiable (but is indeed positively homogeneous). Although f(x) is (globally)
Lipschitz continuous, the nonsmoothness of f(x) invalidates much of the standard
analysis of well-known stability results for smooth dynamical systems; see, e.g., the
book [28]. Our goal is to undertake a generalized stability analysis of the system (2.2),
taking advantage of the special piecewise linear structure of the function f(x). The
resulting theory is a significant advance from the classical linear systems theory and
involves matrix-theoretic properties that are based on LCP theory.

Before proceeding to derive sufficient conditions for the asymptotic stability of
the equilibrium x = 0, we state and prove a necessary condition for the said stability.

Proposition 2.4. Suppose that BSOL(Cx,D) is a singleton for all x ∈ �n. A
necessary condition for xe = 0 to be an asymptotically stable equilibrium for the LCS
(2.1) is that for all scalars λ ≥ 0, the following implication holds:

λx = Ax + Bu

0 ≤ u ⊥ Cx + Du ≥ 0

}
⇒ x = 0.(2.6)

If D is an R0-matrix, then (2.6) holds if and only if

λx = Ax + Bu

0 ≤ u ⊥ Cx + Du ≥ 0

}
⇒ (x, u ) = 0.(2.7)

Proof. Indeed, if (x∗, u∗) is a solution of the system at the left-hand side of (2.6)
for some λ∗ ≥ 0, then defining the trajectory (x(t, x∗), u(t, x∗)) = (eλ

∗tx∗, eλ
∗tu∗) for

all t ≥ 0, we deduce that, limt→∞ x(t, x∗) = 0 only if x∗ = 0. This establishes the
implication (2.6). Clearly (2.7) implies (2.6). The converse is also clear, provided that
D is an R0-matrix.

Remark 2.2. By the implication (2.6), which holds for all λ ≥ 0, and by the
homotopy invariance of the degree of a continuous mapping [31], it follows that the
index of the map x 	→ −Ax−BSOL(Cx,D) at the origin is well defined and equal to 1.
(The index of a continuous map at an isolated zero is a well-known topological concept;
see the reference.) The latter degree-theoretic necessary condition for asymptotic
stability is a special case of a more general result due to Mawhin [32]. The implication
(2.7) defines the “mixed R0”-property of the matrix[

A− λI B

C D

]
.
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If A − λI is nonsingular, then this property is equivalent to the R0-property of the
Schur complement D − C(A − λI)−1B. In this regard, the left-hand system of (2.6)
is an instance of a homogeneous “mixed LCP,” where there is a mixture of linear
equations and standard linear complementarity conditions.

3. Stability results for xe = 0. As in the classical analysis, our approach
to the stability analysis of the system (2.1) is based on the existence of a Lyapunov
function of a special kind. The novelty of our approach lies in the choice of the
Lyapunov function: it is a quadratic function in the pair (x, u), which when expressed
in the state variable x alone, is piecewise quadratic, and thus not smooth. At this
point, we refer to the habilitation thesis of Scholtes [49] for the precise definition
and an extensive study of piecewise differentiable functions; see also [15, Chapter 4].
Results from these references will be used freely in our discussion.

We first consider the case where D is a P-matrix. It follows that SOL(Cx,D) is
a singleton for all x ∈ �n, whose unique element we denote u(x). A constant c ′

D > 0
exists such that

‖u(x) ‖ ≤ c ′
D ‖x ‖ ∀x ∈ �m.(3.1)

Define three fundamental index sets:

α(x) ≡ { i : ui(x) > 0 = (Cx + Du(x) )i },
β(x) ≡ { i : ui(x) = 0 = (Cx + Du(x) )i },
γ(x) ≡ { i : ui(x) = 0 < (Cx + Du(x) )i }.

In terms of these index sets, we have

uα(x) = −(Dαα )−1Cα•x, uᾱ(x) = 0,

where α = α(x) and ᾱ = β(x)∪γ(x). Let Gr SOLCD denote the graph of the solution
function u(x); i.e., Gr SOLCD, which is a closed (albeit not necessarily convex) cone,
consists of all pairs (x, u(x)) for all x ∈ �n. This graph can be described as follows.
For each subset α of {1, . . . ,m} with complement ᾱ, define

Cα ≡
{
x ∈ �n :

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0

}
and the matrix

Eα ≡

⎡⎢⎣ I

−(Dαα )−1Cα•

0

⎤⎥⎦ ∈ �(n+m)×n.

We then have

�n =
⋃
α

Cα and Gr SOLCD =
⋃
α

{Eαx : x ∈ Cα } .(3.2)

The solution function u(x) is piecewise linear in x and thus has directional derivatives
given as follows: with

u ′(x; d) ≡ lim
τ↓0

u(x + τd) − u(x)

τ
(3.3)
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denoting the directional derivative of u at x along the direction d, u ′(x; d) is the
unique vector v such that

free vi (Cd + Dv)i = 0, i ∈ α(x),

0 ≤ vi ⊥ (Cd + Dv)i ≥ 0, i ∈ β(x),

0 = vi, i ∈ γ(x).

Thus there exists a subset βd ⊆ β(x) such that the directional derivative u ′(x; d) is
given by

u ′
αd

(x; d) = −(Dαdαd
)−1Cαd• d, u ′

ᾱd
(x; d) = 0,

where αd = α(x) ∪ βd and ᾱd = {1, . . . ,m} \ αd. Note that we also have

uαd
(x) = −(Dαdαd

)−1Cαd• x, uᾱd
(x) = 0.

Since there are only finitely many subsets αd, a constant ĉ ′ > 0 exists such that

‖u ′(x; d) ‖ ≤ ĉ ′ ‖ d ‖ ∀ (x, d ) ∈ �2n.(3.4)

Based on the LCP functions, we define the LCS map SOL ′
LCS : x ∈ �n → �2m by

SOL ′
LCS(x) ≡

(
u(x)

u ′(x; dx)

)
, where dx ≡ Ax + Bu(x),

and let Gr SOL ′
LCS denote its graph. Unlike Gr SOLCD, which has a fairly simple

representation in terms of the index subsets of {1, . . . ,m} (cf. (3.2)), Gr SOL ′
LCS is

somewhat more complicated to describe using index sets; for one thing, the latter
graph is not closed because the function u ′(x; d) is in general not continuous in x.
We denote the closure of Gr SOL ′

LCS by cl Gr SOL ′
LCS. Like Gr SOLCD, Gr SOL ′

LCS

is a cone, albeit not necessarily convex.
In terms of u(x), the LCS (2.1) becomes the ODE ẋ = Ax+Bu(x) with a piecewise

linear right-hand side which vanishes at the origin. In order to analyze the stability
properties of the latter equilibrium xe = 0, we postulate the existence of a symmetric
matrix

M ≡
[

P Q

QT R

]
∈ �(n+m)×(n+m)

that is strictly copositive on the cone Gr SOLCD; i.e., yTMy > 0 for all nonzero
y ∈ Gr SOLCD. Since the latter is a closed cone, the strict copositivity condition is
equivalent to the existence of a scalar cM > 0 such that

yTMy ≥ cM yT y ∀ y ∈ Gr SOLCD.(3.5)

In fact, one such choice is cM ≡ min{yTMy : y ∈ Gr SOLCD, ‖y‖ = 1}, which is well
defined and positive. Let

V (x, u) ≡
(
x

u

)T [
P Q

QT R

](
x

u

)
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be the quadratic form associated with the matrix M . The composite function

V̂ (x) ≡ V (x, u(x)) = xTPx + 2xTQu(x) + u(x)TRu(x)

is locally Lipschitz continuous and directional differentiable with

V̂ ′(x; v) = 2xTPv + 2vTQu(x) + 2xTQu ′(x; v) + 2u(x)TRu ′(x; v).

Associated with the trajectories (x(t, x0), u(t, x0)) of the LCS (2.1), where u(t, x0) ≡
u(x(t, x0)), define

ϕx0(t) ≡ V̂ (x(t, x0)) ∀ t ≥ 0.

By the chain rule of directional differentiation, the one-sided derivative of ϕx0(t) is
given by

ϕ ′
x0(t+) = lim

τ↓0

ϕx0(t + τ) − ϕx0(t)

τ
= V̂ ′(x(t, x0); ẋ(t, x0))

= 2x(t, x0)TPẋ(t, x0) + 2ẋ(t, x0)TQu(t, x0) + 2xTQu ′(x(t, x0); ẋ(t, x0))

+ 2u(t, x0)TRu ′(x(t, x0); ẋ(t, x0)).

Letting v(t, x0) ≡ u ′(x(t, x0); ẋ(t, x0)) and substituting ẋ(t, x0) = Ax(t, x0)+Bu(t, x0),
we deduce ϕ ′

x0(t+) = v(t, x0)TN(t, x0), where

N ≡

⎡⎢⎣ ATP + PA PB + ATQ Q

BTP + QTA QTB + BTQ R

QT R 0

⎤⎥⎦ and z(t, x0) ≡

⎛⎜⎝x(t, x0)

u(t, x0)

v(t, x0)

⎞⎟⎠ ∈ Gr SOL ′
LCS.

(3.6)

Note that, by (3.4),

‖ v(t, x0) ‖ ≤ ĉ ′ ‖ ẋ(t, x0) ‖ ≤ cv ‖ (x(t, x0), u(t, x0) )‖(3.7)

∀ ( t, x0 ) ∈ [ 0,∞ ) × �n,

for some constant cv > 0. Employing the notation introduced thus far, the following
result provides sufficient conditions for the various kinds of stability to hold for the
equilibrium xe = 0 of the LCS (2.1) with a P-matrix D.

Theorem 3.1. Let D be a P-matrix. Suppose that matrices P , Q, and R, with
P and R symmetric, exist such that M is strictly copositive on Gr SOLCD. The
following four statements hold for the equilibrium xe = 0 of (2.1).

(a) If −N is copositive on Gr SOL ′
LCS, then xe is linearly bounded stable.

(b) If −N is strictly copositive on cl Gr SOL ′
LCS, then xe is exponentially stable.

(c) If −N is copositive on Gr SOL ′
LCS and

[ z(t, ξ)TNz(t, ξ) = 0 ∀ t ≥ 0 ] ⇒ ξ = 0,(3.8)

then xe is asymptotically stable.
(d) If −N is copositive-plus on Gr SOL ′

LCS and

[Nz(t, ξ) = 0 ∀ t ≥ 0 ] ⇒ ξ = 0,(3.9)

then xe is asymptotically stable.
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Proof. Let x0 ∈ �n be arbitrary and let u0 ≡ u(x0). Since ϕx0(t) ≡ V̂ (x(t, x0)) is
locally Lipschitz continuous for t ≥ 0, it is almost everywhere differentiable on [0,∞),
by Radamacher’s theorem [48]. Hence for almost all t ≥ 0, ϕ ′

x0(t) exists and is equal
to ϕ ′

x0(t+), which is nonpositive, by the copositivity of −N on Gr SOL ′
LCS. On the

one hand, we have, for some constant ρM > 0 independent of x0,

ϕx0(t) = ϕx0(0) +

∫ t

0

ϕ ′
x0(s+) ds ≤ ϕx0(0) = V (x0, u0) ≤ ρM ‖ (x0, u0) ‖2.

Hence by (3.1), we deduce that, for some constant ρ ′
M > 0 independent of x0,

ϕx0(t) ≤ ρ ′
M ‖x0 ‖2 ∀ t ≥ 0.(3.10)

On the other hand, by (3.5),

ϕx0(t) = V (x(t, x0), u(t, x0)) ≥ cM ‖ (x(t, x0), u(t, x0) ) ‖2 ≥ cM ‖x(t, x0) ‖2.

Combining the two inequalities, we obtain ‖x(t, x0)‖ ≤
√

ρ ′
M/cM‖x0‖, establishing

the desired linearly bounded stability of xe = 0.
The strictly copositivity of −N on cl Gr SOL ′

LCS implies the existence of a scalar
cN > 0 such that zTNz ≤ −cNzT z for all z ∈ GrSOL ′

LCS. Hence, for all x0 ∈ �n and
for all t ≥ 0, ϕ ′

x0(t+) ≤ −cN‖(x(t, x0), u(t, x0), v(t, x0))‖2. By (3.7), we deduce the
existence of a constant c ′

M > 0 such that

ϕx0(t) ≥ c ′
M ‖ (x(t, x0), u(t, x0), v(t, x0)) ‖2.

Therefore, we obtain, for some constant c > 0,

‖ z(t, x0) ‖2 ≤ c

[
ϕx0(0) −

∫ t

0

‖ z(s, x0) ‖2 ds

]
∀ ( t, x0 ) ∈ [ 0,∞ ) ×�n,

where z(t, x0) ≡ (x(t, x0), u(t, x0), v(t, x0)). By Gronwall’s inequality, we therefore
deduce

‖x(t, x0) ‖2 ≤ ‖ z(t, x0) ‖2 ≤ c ϕx0(0) e−ct ≤ c ρ ′
M ‖x0 ‖2 e−ct,

where the last inequality is by (3.10). Consequently, ‖x(t, x0)‖ ≤
√
cρ ′

M ‖x0‖ e−ct/2.
This establishes part (b) of the theorem. We will postpone the proof of part (c) be-
cause it requires an auxiliary result that is of independent interest; see Proposition 3.2
below. Since N is symmetric, it follows that if −N is copositive-plus on Gr SOL ′

LCS,
then (3.8) and (3.9) are equivalent implications. Hence (d) follows from (c).

Part (c) of Theorem 3.1 is a generalized LaSalle’s theorem for the LCS (2.1). The
assumed implication (3.8) resembles a “generalized long-time observability condition”
on the zero state of the LCS. Subsequently, we will discuss more about this condition;
see subsection 3.1. For now, we note that if −N is copositive on Gr SOL ′

LCS and if
(−N, C), where C is the closure of the convex hull of Gr SOL ′

LCS, is an R0-pair, then
(3.8) holds. Indeed, in this case, by (2.3), it follows that z(t, ξ)TNz(t, ξ) = 0 implies
z(t, ξ) = 0. In particular ξ = x(0, ξ) = 0; hence (3.8) holds.

To prove part (c) of Theorem 3.1, we define for each fixed x0 ∈ �n the positive
limit set

Ω(x0) ≡
{
x∞ ∈ �n : ∃ { tk} ↑ ∞ such that x∞ = lim

k→∞
x(tk, x

0)
}
.
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If M is strictly copositive on Gr SOLCD and −N is copositive on cl Gr SOL ′
LCS, then

Ω(x0) is nonempty, by part (a) of Theorem 3.1. Additional properties of this set are
summarized below.

Proposition 3.2. Let D be a P-matrix. If M is strictly copositive on cl Gr
SOLLCS and −N is copositive on cl Gr SOL ′

LCS, then for every x0 ∈ �n, the following
three statements hold:

(a) for every x∞ ∈ Ω(x0), the trajectory {x(t, x∞)}t≥0 ⊂ Ω(x0);
(b) a constant σx0 exists such that V (x∞,SOL(Cx∞, D)) = σx0 for all x∞ ∈

Ω(x0);
(c) ϕ ′

x∞(t) = 0 for all x∞ ∈ Ω(x0).
Proof. Suppose x∞ = limk→∞ x(tk, x

0) for some sequence {tk} ↑ ∞. For any
t ≥ 0, we have x(t + tk, x

0) = x(t, x(tk, x
0)); hence taking limits as k ↑ ∞ and using

the continuity of x(t, ·) in the second argument, we deduce

lim
k→∞

x(t + tk, x
0) = x(t, x∞),

which establishes part (a). To prove part (b), note that since ϕ ′
x0(t+) ≤ 0 for all

t ≥ 0, it follows that ϕx0(t) is nonincreasing. Since

ϕx0(t) = V (x(t, x0), u(t, x0)) =

(
x(t, x0)

u(t, x0)

)[
P Q

QT R

](
x(t, x0)

u(t, x0)

)
≥ 0,

by the copositivity of M on Gr GCD(x(t, x0)), it follows that

lim
t→∞

ϕx0(t)

exists. With σx0 denoting the above limit, it follows that V (x∞, u(x∞)) = σx0 for all
x∞ ∈ Ω(x0). Combining (a) and (b), we deduce that for all x∞ ∈ Ω(x0), we have

ϕx∞(t) = V (x(t, x∞), u(t, x∞)) = σx0 ∀ t ≥ 0.

Thus, ϕx∞(t) is a constant function on [0,∞). Part (c) is therefore trivial.
Proof of Theorem 3.1(c). It suffices to show that Ω(x0) = {0} for all x0 ∈ �n.

Let x∞ ∈ Ω(x0) be given. By part (c) of Proposition 3.2, we have 0 = ϕ ′
x∞(t) =

z(t, x∞)TNz(t, x∞) for all t ≥ 0. Hence (3.8) implies x∞ = 0 as desired.
Admittedly, the conditions in Theorem 3.1 are in general not easy to verify. This

is inevitable because most matrix properties in LCP theory are already so. Neverthe-
less, such difficulties have not prevented the fruitful development of the theory and
applications of the LCP and its extensions. Thus we fully expect that Theorem 3.1
is of fundamental importance in the stability theory of the LCS. In what follows, we
provide evidence for this optimism by deriving various special results and by giving
examples to illustrate the broad applicability of this theorem. We begin by consid-
ering the case where both Q and R are taken to be zero. Proposition 3.3 below
provides succinct matrix-theoretic conditions that ensure the existence of a “common
Lyapunov function” for the LCS. (The study of copositivity has recently received
renewed interest in the mathematical programming community; see, e.g., the Ph.D.
thesis [41] and the paper [55]. It would be of interest to investigate how these works
can be used to help check the conditions obtained herein.)

Proposition 3.3. Let D be a P-matrix and P be a symmetric positive definite
matrix.
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(a) If, for every α ⊆ {1, . . . ,m},

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0 ⇒ xT [A−B•α(Dαα )−1Cα• ]TPx ≤ 0,

(3.11)

then xe = 0 is a linearly bounded stable equilibrium of the LCS (2.1),
(b) If, for every α ⊆ {1, . . . ,m},{[

−(Dαα)−1Cα•

Cᾱ• −Dᾱα(Dαα)−1Cα•

]
x ≥ 0, x �= 0

}
⇒ xT [A−B•α(Dαα)−1Cα• ]TPx < 0,(3.12)

then xe = 0 is an exponentially stable equilibrium of the LCS (2.1).
(c) If, for every α ⊆ {1, . . . ,m}, (3.11) holds and[

−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0

xT [A−B•α(Dαα )−1Cα• ]TPx = 0

⎫⎪⎪⎬⎪⎪⎭ ⇒ x = 0,(3.13)

then xe = 0 is an asymptotically stable equilibrium of the LCS (2.1).
Proof. With Q = 0 and R = 0, the matrices M and N become

M =

[
P 0

0 0

]
and N =

⎡⎢⎣A
TP + PA PB 0

BTP 0 0

0 0 0

⎤⎥⎦ .
By (3.1) and the positive definiteness of P , it follows that M is strictly copositive on
Gr SOLCD. For any triple z ≡ (x, u(x), v) ∈ cl Gr SOL ′

LCS with x ∈ Cα, we have

zTNz = 2xT [A−B•α(Dαα)−1Cα• ]TPx.

Hence, the proposition follows easily from Theorem 3.1.
Remark 3.1. It should be noted that the resulting matrix M in the above propo-

sition is not positive definite. This illustrates the fact that the strict copositivity of
M on Gr SOLCD is not as restrictive as it seems.

A special case of Proposition 3.3 pertains to a “passive-like” LCS for which there
exists a symmetric positive definite K such that

−
[
ATK + KA KB − CT

BTK − C −D −DT

]
(3.14)

is positive semidefinite. This class of LCSs is closely related to the class of passive
LCSs defined in [4, 7] and to the class of positive real transfer functions via the
well-known Kalman–Yakubovich–Popov lemma [28]. In essence, we have bypassed
the transfer functions and the “minimality” of the tuple (A,B,C,D) and worked
directly with the positive semidefinite matrix (3.14). Note that if (3.14) is positive
semidefinite, then the matrix D must be positive semidefinite albeit not necessarily
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symmetric. It is possible for such a D to be also P without being positive definite; a
trivial example is

D ≡
[

1 −2
0 1

]
.

The next result shows how Proposition 3.3 (b) can be applied to such an LCS. This
result complements Theorem 11.2 [7] in providing a sufficient condition for a passive-
like LCS to be asymptotically stable.

Corollary 3.4. Suppose that D is a P-matrix and there exists a symmetric
positive definite matrix K such that (3.14) is positive semidefinite. If for every α ⊆
{1, . . . ,m}, [

−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0[

ATK + KA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−(Dαα )−1Cα•

]
x = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒ x = 0,

then xe is asymptotically stable.
Proof. It suffices to verify the implication (3.13). Let x satisfy the left-hand

condition in the latter implication. Proceeding as before, we deduce

0 =

(
x

u

)T
[
ATK + KA KB − CT

BTK − C −D −DT

](
x

u

)

= xT

[
I

−(Dαα )−1Cα•

]T [
ATK + PA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

]

×
[

I

−(Dαα )−1Cα•

]
x,

which implies, since (3.14) is symmetric positive semidefinite,[
ATK + PA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−(Dαα )−1Cα•

]
x = 0.

The desired implication (3.13) follows easily from the assumption of part (b) here-
in.

The assumption in Proposition 3.3(b) is significantly weaker than the passivity
[4, 7] of the LCS tuple (A,B,C,D). The next two examples illustrate this point. The
first example has a matrix A that is not negatively stable and the matrix D is not
positive semidefinite.

Example 3.1. Consider the tuple with n = 1 and m = 2:

A = 1, B = [ 2 −2 ], C =

[
1

−1

]
, and D =

[
1 3
0 1

]
.

By an easy calculation, we have

A−B•α(Dαα )−1Cα• =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if α = ∅,

−1 if α = { 1 },
−1 if α = { 2 },
−9 if α = { 1, 2 },

and Cα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ 0 } if α = ∅,
(−∞, 0 ] if α = { 1 },
[ 0,∞ ) if α = { 2 },
{ 0 } if α = { 1, 2 }.
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Note that with P = 1, the matrix A − B•∅(D∅∅ )−1C∅• is not negative definite; nev-
ertheless, the assumption in Proposition 3.3(b) is satisfied.

The next example has the same matrix D but has A = −1 so that A is negatively
stable. Yet the LCS (A,B,C,D) is still not passive because D is not positive semidef-
inite. This example shows that passivity is not a necessary condition for exponential
stability, even with a negatively stable matrix A.

Example 3.2. Consider the tuple with n = 1 and m = 2:

A = −1, B = [ 0 1 ], C =

[
1

1

]
, and D =

[
1 3
0 1

]
.

By an easy calculation, we have

A−B•α(Dαα)−1Cα• =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if α = ∅,
−1 if α = {1},
−2 if α = {2},
−2 if α = {1, 2},

and Cα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ 0,∞ ) if α = ∅,
{0} if α = {1},
(−∞, 0 ] if α = {2},
{0} if α = {1, 2}.

Again, the assumption in Proposition 3.3(b) is satisfied with P = 1.
As noted in the proof of Theorem 3.1(b), the strict copositivity of −N on

cl Gr SOL ′
LCS is equivalent to the existence of a constant ρN > 0 such that

−zTNz ≥ ρN ‖ z ‖2 ∀ z ∈ Gr SOL ′
LCS.

Involving only Gr SOL ′
LCS, the latter inequality avoids the explicit description of

the closure of this graph, which is a nontrivial task. We employ this equivalent
condition for the strict copositivity of −N in the example below, for which we establish
the asymptotic stability of the equilibrium with the choice of a nonzero pair (Q,R)
satisfying part (b) of Theorem 3.1, and to which we cannot apply Proposition 3.3(b).
This example combines Example 3.1 and the one in [27, section IV]. As such, the
matrix A is not negatively stable.

Example 3.3. Consider the LCS

ẋ =

⎡⎣ −5 −4 0
−1 −2 0

0 0 1

⎤⎦x +

⎡⎣ −3 0 0
−21 0 0

0 2 −2

⎤⎦u,
0 ≤ u ⊥

⎡⎣ 1 0 0
0 0 1
0 0 −1

⎤⎦x +

⎡⎣ 1 0 0
0 1 3
0 0 1

⎤⎦u ≥ 0.

We claim that there exists no symmetric positive definite matrix P satisfying the
assumptions of Proposition 3.3. Consider the two index sets α = ∅ and α = {1}. For
these sets, we have

C∅ = {x ∈ �3 : x1 ≥ 0 = x3 }, C{1} = {x ∈ �3 : x1 ≤ 0 = x3 }

and

A−B•∅(D∅∅)
−1C∅• =

⎡⎣ −5 −4 0
−1 −2 0

0 0 1

⎤⎦
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and

A−B•{1}(D{1}{1})
−1C{1}• =

⎡⎣ −2 −4 0
20 −2 0
0 0 1

⎤⎦ .
By way of contradiction, suppose that there exists a symmetric and positive definite
matrix P such that the assumption in Proposition 3.3(b) is satisfied. This would
mean that there exists a symmetric positive definite matrix P̄ such that

x̄T (ĀT
i P̄ + P̄ Āi)x̄ < 0 ∀ x̄ ∈ C̄i,(3.15)

for i = 1, 2, where C̄1 ≡ {x̄ ∈ �2 | x̄1 ≥ 0}, C̄2 = {x̄ ∈ �2 | x̄1 ≤ 0}, and

Ā1 ≡
[

−5 −4
−1 −2

]
, Ā2 ≡

[
−2 −4
20 −2

]
.

Since C̄i are both half-spaces, the relations (3.15) hold if and only if ĀT
i P̄ + P̄ Āi are

both negative definite for i = 1, 2. As shown in [27, section IV], however, this cannot
happen. Next, we claim that xe = 0 is an exponentially stable equilibrium of the LCS
by verifying that with

P ≡

⎡⎣ 1 0 0
0 3 0
0 0 1

⎤⎦ , Q ≡ 0, and R ≡

⎡⎣ 9 0 0
0 0 0
0 0 0

⎤⎦ ,
the assumptions in Theorem 3.1 are satisfied. The strict copositivity of M on Gr
SOLCD, is not difficult to verify. We briefly sketch the proof of the strict copositivity
of the matrix

−N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 3 0 0 | 0 0 0
7 12 0 | 63 0 0 | 0 0 0
0 0 −2 | 0 −2 2 | 0 0 0
− − − | − − − | − − −
3 63 0 | 0 0 0 | 9 0 0
0 0 −2 | 0 0 0 | 0 0 0
0 0 2 | 0 0 0 | 0 0 0
− − − | − − − | − − −
0 0 0 | 9 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
on the closure of Gr SOL ′

LCS. We have u1(x) = max(0,−x1), u2(x) = max(0,−x3),
and u3(x) = max(0, x3), With the last two rows and columns of N being identically
equal to zero, we need not deal with the directional derivatives of u2 and u3. Instead,
we focus on

u ′
1(x1; dx1) =

⎧⎪⎨⎪⎩
0 if x1 > 0,

−dx1 if x1 < 0,

max(0,−dx1) if x1 = 0,

where dx1 = C1•Ax + C1•Bu(x) = −5x1 − 4x2 − 3 max(0,−x1). It suffices to show
the existence of a constant ρN > 0 such that
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• x1 > 0 implies

⎛⎜⎜⎜⎜⎝
x1

x2

x3

max(0,−x3)
max(0, x3)

⎞⎟⎟⎟⎟⎠
T
⎡⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 0 0
7 12 0 | 0 0
0 0 −2 | −2 2
− − − | − −
0 0 −2 | 0 0
0 0 2 | 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝
x1

x2

x3

max(0,−x3)
max(0, x3)

⎞⎟⎟⎟⎟⎠ ≥ ρN ‖x ‖2,

• x1 < 0 implies

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

−x1

max(0,−x3)
max(0, x3)
2x1 + 4x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 3 0 0 | 0
7 12 0 | 63 0 0 | 0
0 0 −2 | 0 −2 2 | 0
− − − | − − − | −
3 63 0 | 0 0 0 | 9
0 0 −2 | 0 0 0 | 0
0 0 2 | 0 0 0 | 0
− − − | − − − | −
0 0 0 | 9 0 0 | 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

−x1

max(0,−x3)
max(0, x3)
2x1 + 4x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ ρN‖x‖2,

• and (x1 = 0 implies)

⎛⎜⎜⎜⎜⎝
x2

x3

max(0,−x3)
max(0, x3)
max(0, 4x2)

⎞⎟⎟⎟⎟⎠
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 | 0 0 | 0
0 −2 | −2 2 | 0
− − | − − | −
0 −2 | 0 0 | 0
0 2 | 0 0 | 0
− − | − − | −
0 0 | 0 0 | 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝
x2

x3

max(0,−x3)
max(0, x3)
max(0, 4x2)

⎞⎟⎟⎟⎟⎠

≥ ρN

∥∥∥∥(x2

x3

)∥∥∥∥2 .
We will leave it to the reader to verify that the desired constant ρN indeed exists in
view of the positive definiteness of certain appropriate matrices.

3.1. Role of observability. The implication (3.8) can be refined by employ-
ing an explicit analytic expansion for the vector z(t, ξ) for t > 0 sufficiently small.
The expansion enables the application of the following known fact about an analytic
function expressed in series form.

Lemma 3.5. Consider the univariate real-analytic function

ψ(t) ≡
∞∑
j=0

aj t
j , t ≥ 0,

where {aj}j≥0 is a given sequence of scalars. The following three statements are valid:
(a) in order for ψ(t) > 0 for all t > 0 sufficiently small, it is necessary and

sufficient that the sequence of coefficients {aj}j≥0 be lexicographically posi-
tive; i.e., these coefficients are not all zero and the first nonzero coefficient is
positive;
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(b) in order for ψ(t) ≥ 0 for all t > 0 sufficiently small, it is necessary and suffi-
cient that the sequence of coefficients {aj}j≥0 be lexicographically nonnegative;
i.e., either all coefficients are zero or the sequence is lexicographically positive;

(c) in order for ψ(t) = 0 for all t > 0 sufficiently small, it is necessary and
sufficient that aj = 0 for all j ≥ 0.

If the coefficients aj are given by eTGjξ for some n-vectors e and ξ and n×n matrix
G, the above conditions on the infinite sequence {aj}j≥0 can be replaced by the finite
sequence {aj}n−1

j=0 .

For a given pair of matrices G ∈ �k×k and H ∈ ��×k, the unobservable space
of (H,G), denoted O(H,G), is the set of vectors ξ ∈ �k such that HGjξ = 0 for
all j = 0, 1, . . . , k − 1. In contrast to this linear subspace, the semiunobservable
cone of (H,G), denoted SO(H,G), is the set of vectors ξ ∈ �n such that the family of
scalars {Hi•G

jξ}k−1
j=0 is lexicographically nonnegative for all i = 1, . . . , �. The two sets

O(H,G) and SO(H,G) have played an important role in the observability analysis
of the LCS [37]; they have an equally important role here in the asymptotic stability
analysis of the LCS. We also define the open subset SO(H,G) of SO(H,G) consisting
of vectors ξ ∈ �n such that the family of scalars {Hi•G

jξ}k−1
j=0 is lexicographically

positive for all i = 1, . . . , �. Note that 0 �∈ SO(H,G).
The one-sided directional derivative u ′(x(t, x0);CAx(t, x0) + CBu(t, x0)) is the

unique vector v(t, x0) satisfying

free vi(t, x
0) (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i = 0, i ∈ α(x(t, x0)),

0 ≤ vi(t, x
0) ⊥ (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i ≥ 0, i ∈ β(x(t, x0)),

0 = vi(t, x
0), (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i free, i ∈ γ(x(t, x0)).

(3.16)

By a strong non-Zeno result for an LCS with a P-matrix D [37], we deduce the
existence of a time τ0 > 0 and a triple of index sets (αn, βn, γn), both dependent on
the initial condition x0, such that (α(x(t, x0)), β(x(t, x0)), γ(x(t, x0))) = (αn, βn, γn)
for all t ∈ (0, τ0]. For all such times t, the system (3.16) becomes

(CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i = 0, i ∈ αn,

0 ≤ vi(t, x
0) ⊥ (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i ≥ 0, i ∈ βn,

0 = vi(t, x
0), i ∈ γn.

The latter is a mixed LCP of the P-type. As explained in [37], there exist a scalar τ̂ ∈
(0, τ0] and a subset βa ⊆ βn with complement β̄a ≡ βn \βa such that for all t ∈ (0, τ̂ ],
the unique solution v(t, x0) of the above mixed LCP satisfies (where K ≡ αn ∪ βa)

vK(t, x0) = −(DKK )−1CK•
[
A B

]( x(t, x0)

u(t, x0)

)
.

Note that vβa(t, x0) ≥ 0, vβ̄a
(t, x0) = 0, and

{
Cβ̄a• −Dβ̄aK(DKK )−1CK•

} [
A B

]( x(t, x0)

u(t, x0)

)
≥ 0.

Provided that τ0 is sufficiently small, we have

supp(u(x0)) ⊆ αn ⊆ K ⊆ αn ∪ βn ⊆ { i : (Cx0 + Du(x0) )i = 0 }.
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In terms of the index set K, we have

0 <

0 =

(
uαn(t, x0)

uβa(t, x0)

)
= −

[
Dαnαn Dαnβa

Dβaαn Dβaβa

]−1 [
Cαn•

Cβa•

]
x(t, x0)

and

0 =

0 <

⎧⎨⎩
[
Cβ̄a•

Cγn•

]
−
[
Dβ̄aαn Dβ̄aβt

Dγnαn Dγnβt

][
Dαnαn Dαnβa

Dβaαn Dβaβa

]−1 [
Cαn•

Cβa•

]⎫⎬⎭x(t, x0).

Substituting the expression for uK(t, x0) into the ODE ẋ = Ax+Bu and noting that
ui(t, x

0) = 0 for all i �∈ K, we deduce

x(t, x0) =

∞∑
j=0

tj

j !
A(K)jx0, C(K)x(t, x0) =

∞∑
j=0

tj

j !
C(K)A(K)jx0,

[
A B

]( x(t, x0)

u(t, x0)

)
=

∞∑
j=0

tj

j !

[
A B•K

] [ I

CK•(K)

]
A(K)jx0,

where A(K) ≡ A−B•K(DKK)−1CK•, and with K̄ ≡ {1, . . . ,m} \ K,

C(K) ≡
[

−(DKK )−1CK•

CK̄• −DK̄K(DKK )−1CK•

]

and

D(K) ≡ C(K)
[
A B•K

] [ I

CK•(K)

]
.

By Lemma 3.5, in order for vβa(t, x0) ≥ 0 = uβa(t, x0) to hold for all t > 0 sufficiently
small, it is necessary and sufficient that x0 ∈ SO(Dβa•(K), A(K))∩O(Cβa•(K), A(K)).
Moreover, if αn �= ∅, then since uαn(t, x0) > 0 for all t > 0 sufficiently small,
we must have x0 ∈ SO(Cαn•(K), A(K)). Similarly, if γn �= ∅, we also have x0 ∈
SO(Cγn•(K), A(K)).

Turning our attention to the implication (3.8), we note that Nz(t, x0) is equal to⎡⎢⎣ ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤⎥⎦
⎛⎜⎝ x(t, x0)

uK(t, x0)

vK(t, x0)

⎞⎟⎠

=

∞∑
j=0

tj

j !

⎡⎢⎣ ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤⎥⎦

×

⎡⎢⎣ I

CK•(K)

DK•(K)

⎤⎥⎦A(K)jx0.
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Define

N(K) ≡

⎡⎢⎣ ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤⎥⎦
⎡⎢⎣ I

CK•(K)

DK•(K)

⎤⎥⎦ .
By Lemma 3.5, in order for Nz(t, x0) = 0 for all t ≥ 0 sufficiently small, it is necessary
and sufficient that x0 ∈ O(N(K), A(K)).

Based on the above discussion, we state and prove the following result which is
derived from a refinement of the implication (3.8).

Proposition 3.6. Let D be a P-matrix. Suppose there exist symmetric matrices
P and R and a matrix Q such that M is strictly copositive on Gr SOLCD and −N is
copositive-plus on Gr SOL ′

LCS. Assume further that the following two conditions hold
for all triples of index sets (α, β, γ) partitioning {1, . . . ,m} and for all subsets βa of
β, with K ≡ α ∪ βa:

(a) for α = γ = ∅,

SO(DK•(K), A(K)) ∩ O(CK•(K), A(K)) ∩ O(N(K), A(K)) = { 0 },(3.17)

(b) for α ∪ γ �= ∅,

SO(Cα∪γ•(K), A(K)) ∩ SO(Dβa•(K), A(K))(3.18)

∩O(Cβa•(K), A(K)) ∩O(N(K), A(K)) = ∅;

then xe = 0 is an asymptotically stable equilibrium of the LCS (2.1).
Proof. It suffices to show that the implication (3.8) holds. Let ξ satisfy the

left-hand side of (3.8). Thus, in particular, Nz(t, ξ) = 0 for all t > 0 sufficiently
small. Following the above argument, we consider the pair of index sets (αn,K)
associated with the trajectories u(x(t, ξ)) and u ′(x(t, ξ); dx(t, ξ)), where dx(t, ξ) ≡
CAx(t, ξ) + CBu(x(t, ξ)). The empty intersection (3.18) implies that αn = γn = ∅.
Since ξ belongs to the intersection of the three sets in the left-hand side of (3.17), the
latter condition then yields ξ = 0 as desired.

3.2. A SISO system. We illustrate Proposition 3.6 for a single-input-single-
output (SISO) system, which has m = 1 and D = 1 (the latter is assumed without
loss of generality). We write cT for C and b for B. Thus the SISO LCS is of the form

ẋ = Ax + bmax(0,−cTx).(3.19)

In this case, we have u(x) = max(0,−cTx) and

SOL ′
LCS(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
0
0

)}
if cTx > 0,{(

0
max( 0,−cTAx )

)}
if cTx = 0,{(

−cTx
−cT (A− bcT )x

)}
if cTx < 0.
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The reader can easily check that Gr SOL ′
LCS is not closed; nevertheless, one can verify

that

cl Gr SOL ′
LCS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
0
0

)}
if cTx > 0,{(

0
0

)
,

(
0

−cTAx

)}
if cTx = 0,{(

−cTx
−cT (A− bcT )x

)}
if cTx < 0.

The matrix M ≡
[

P q

qT r

]
is strictly copositive on Gr SOLCD if and only if{

[cTx ≥ 0, x �= 0] ⇒ xTPx> 0
}

and
{
[cTx< 0] ⇒ xT [P − qcT − cqT + rccT ]x> 0

}
.

In turn, this holds if and only if P and P −qcT −cqT +rccT are both positive definite.
To see this, suppose that the above two implications hold. If cTx < 0, then cT (−x) >
0; thus 0 < (−x)TP (−x) = xTPx. Hence P must be positive definite. This together
with the second implication establishes the positive definiteness of P−qcT−cqT +rccT .
The converse is obvious.

The matrix

−N ≡ −

⎡⎢⎣ ATP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤⎥⎦
is copositive on Gr SOL ′

LCS if and only if

cTx ≥ 0 ⇒ xT (ATP + PA )x ≤ 0,

cTx≤ 0 ⇒

⎛⎜⎝ x

−cTx

−cT (A− bcT )x

⎞⎟⎠
T⎡⎢⎣A

TP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤⎥⎦
⎛⎜⎝ x

−cTx

−cT (A− bcT )x

⎞⎟⎠≤ 0.

In turn the above implications hold if and only if −(ATP + PA) and

−
[
I −c −(AT − cbT )c

] ⎡⎢⎣ ATP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤⎥⎦
⎡⎢⎣ I

−cT

−cT (A− bcT )

⎤⎥⎦
(3.20)

are both positive semidefinite and thus copositive-plus. We examine the two condi-
tions (3.17) and (3.18) in Proposition 3.6. For (3.17) where α = γ = ∅, there are two
cases: K = ∅ or {1}. For K = ∅, (3.17) stipulates that O(ATP + PA,A) = {0}. For
K = {1}, we have

N(1) = N

⎡⎢⎣ I

−cT

−cT (A− bcT )

⎤⎥⎦ ,
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and the condition (3.17) stipulates that

{ 0 } = SO(−cT (A− bcT ), A− bcT ) ∩ O(−cT , A− bcT ) ∩ O(N(1), A− bcT )

= O(cT , A) ∩ O(N(1), A− bcT ) = O(cT , A) ∩ O(ATP + PA,A),

which is implied by the former case. For (3.18), there are 2 subcases: α = {1} or
γ = {1}. For α = {1}, the condition (3.18) stipulates that SO(−cT , A − bcT ) ∩
O(N(1), A− bcT ) = ∅. For γ = {1}, the condition (3.18) stipulates that SO(cT , A−
bcT ) ∩ O(ATP + PA,A) = ∅, which is implied by O(ATP + PA,A) = {0} because
0 �∈ SO(cT , A− bcT ).

Summarizing the above analysis, we present a sufficient condition for xe = 0 to
be an asymptotically stable equilibrium of the SISO LCS (3.19).

Proposition 3.7. If there exist a symmetric positive definite matrix P , a vector
q, and a scalar r such that

(a) P − qcT − cqT + rccT is positive definite,
(b) −(ATP + PA) and (3.20) are both positive semidefinite,
(c) O(ATP + PA,A) = {0},
(d) SO(−cT , A− bcT ) ∩O(N(1), A− bcT ) = ∅,

then xe = 0 is an asymptotically stable equilibrium of the SISO LCS (3.19). If the
two matrices in (b) are positive definite, then xe = 0 is exponentially stable.

3.3. Extension to non-P systems. In this subsection, we extend Theorem 3.1
to the case where D is not a P-matrix; but we assume the blanket condition that
BSOL(Cx,D) is a singleton for all x ∈ �n. The extension turns out to be technically
nontrivial; for one thing, Gr SOL ′

LCS ceases to exist because SOL(Cx,D) is no longer a
single-valued function, and thus we cannot employ its directional derivatives as defined
by (3.3). In addition to the main result, Theorem 3.12, we also obtain a stability result
for a passive LCS without assuming the P-property of D; see Corollary 3.13.

To carry out the extended analysis, we assume that the matrices Q and R are
such that QSOL(Cx,D) and RSOL(Cx,D) are both singletons for all x ∈ �n. Among
other things, the single-valuedness of RSOL(Cx,D) yields the following important
property of the quadratic term SOL(Cx,D)TRSOL(Cx,D).

Proposition 3.8. Let R be a symmetric matrix. Suppose that RSOL(Cx,D)
is a singleton for all x ∈ �n. The function x 	→ SOL(Cx,D)TRSOL(Cx,D) is a
single-valued piecewise quadratic function on �n. In other words, for any four vectors
ui ∈ SOL(Cx,D), i = 1, 2, 3, 4, it holds that (u1)TRu2 = (u3)TRu4; moreover, this
function is continuous in x and there exist finitely many matrices {Ej}Kj=1 ⊂ �n×n

for some integer K > 0 such that SOL(Cx,D)TRSOL(Cx,D) ∈ {xTEjx}Kj=1 for
every x ∈ �n.

Proof. For any ui ∈ SOL(Cx,D), i = 1, 2, 3, 4, we have Ru1 = Ru2 = Ru3 = Ru4.
Hence by the symmetry of R, we have

(u1)TRu2 = (u3)TRu2 = (u3)TRu4.

Next, we show that the function x 	→ SOL(Cx,D)TRSOL(Cx,D) is continuous. This
follows easily from the single-valuedness of this map and the fact that the LCP solution
map q 	→ SOL(q,D) is pointwise upper Lipschitz continuous [13, 15, 44] on �m; i.e.,
for every q ∈ �m, there exist positive scalars c and ε such that

‖ q ′ − q ‖ < ε ⇒ SOL(q ′, D) ⊆ SOL(q,D) + c ‖ q ′ − q ‖B,
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where B is the unit ball in �m. Indeed, let {xk} ⊂ �n be any sequence of vec-
tors converging to some vector x∞ ∈ �n. Let {uk} ⊂ �m be such that uk ∈
SOL(Cxk, D) for every k. By the above continuity property of the LCP solution
map, it follows that there exists a corresponding sequence {ûk} such that ûk ∈
SOL(Cx∞, D) for every k and limk→∞ ‖uk − ûk‖ = 0. By the single-valuedness of
SOL(Cx∞, D)TRSOL(Cx∞, D) and RSOL(Cx∞, D), we can write

(uk)TRuk = (ûk)TRûk + 2(uk − ûk)TRûk + (uk − ûk)TR(uk − ûk)

= SOL(Cx∞, D)TRSOL(Cx∞, D) + 2(uk − ûk)TRSOL(Cx∞, D)

+ (uk − ûk)TR(uk − ûk).

Passing to the limit k → ∞ easily establishes limk→∞(uk)TRuk = SOL(Cx∞, D)T

RSOL (Cx∞, D). Finally, we postpone the identification of the matrices Ej after our
description of the structure of SOL(Cx,D) that immediately follows this proof.

It is well known that the graph of the set-valued LCP solution map SD : q 	→
SOL(q,D) is the union of finitely many polyhedra in �m; this property is the basis
for proving the upper Lipschitz continuity of this map used in the above proof. For
the purpose of introducing a closed graph that plays the role of Gr SOL ′

LCS, which is
not available in the non-P case, we first define certain subsets of the polyhedra that
compose the graph Gr SOLCD. The derivation below is closely related to the devel-
opment in [39, section 5.1] where we have identified a “linear Newton approximation”
for the single-valued map BSOL(Cx,D).

For every vector x ∈ �n, let L(x) be the (necessarily nonempty) family of pairs
of index subsets α and J of {1, . . . ,m} such that (a) α ⊆ J , (b) the columns of DJα

are linearly independent, and (c) there exists u ∈ SOL(Cx,D) such that supp(u) ⊆ α
and J ⊆ {i : (Cx + Du)i = 0}, where supp(u) ≡ {i : ui > 0} is the support of
the vector u. Here, we adopt the convention that an empty set of vectors is linearly
independent; under this convention, if 0 ∈ SOL(Cx,D), then L(x) includes all pairs
(∅,J ) for all subsets J ⊆ {i : (Cx)i = 0}. For a given pair (α,J ) in L(x), by (b),
the solution u in (c) is unique and given by

uα = −
[
(DJα )T DJα

]−1
(DJα )TCJ•x, uᾱ = 0,(3.21)

where ᾱ is the complement of α in {1, . . . ,m}. Notice that the converse is not true;
namely, for a given solution u ∈ SOL(Cx,D), it is possible for multiple pairs (α,J )
in L(x) to give rise to the same u, via (3.21). Define the set-valued map

GCD : x 	→ GCD(x) ≡
{(

−
[
(DJα)TDJα

]−1
(DJα)TCJ•x

0

)
: (α,J ) ∈ L(x)

}
.

Clearly, Gr GCD ⊆ Gr SOLCD. It is easily seen that Gr GCD is a cone in �n+m;
subsequently, we will show that it is closed. Like the LCP solution graph, Gr GCD

is not necessarily convex. In general, Gr GCD is a proper subset of Gr SOLCD; for
instance, if D is a singular matrix, then any positive vector that is a solution of the
LCP (Cx,D) is not an element of the former graph. Moreover, due to the finite
number of index sets, a positive constant ρG > 0 exists such that

sup{ ‖u ‖ : u ∈ GCD(x) } ≤ ρG ‖x ‖ ∀x ∈ �n.(3.22)

For any matrix W ∈ �p×m, define the family

TW (x) ≡
{
−W•α

[
(DJα)TDJα

]−1
(DJα)TCJ• : (α,J ) ∈ L(x)

}
,
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where, by convention, we define W•α[(DJα)TDJα]−1(DJα)TCJ• to be the zero ma-
trix if α = ∅. In general,

{Ex : E ∈ TW (x) } ⊆ WSOL(Cx,D)

with equality holding if WSOL(Cx,D) is a singleton. Suppose that WSOL(Cx,D)
is a singleton for all x ∈ �n. It then follows that the piecewise linear map hW (x) ≡
WSOL(Cx,D) is B-differentiable everywhere on �n. Thus the directional derivative
h ′
W (x; v) of hW at x along the direction v is well defined and, according to standard

theory [49], is an element of the set {Ev : E ∈ AW (x)}, where AW (x) ≡ {E : Ex =
hW (x)} is the set of active pieces of hW at x. The following result sharpens this
representation of h ′

W (x; v) by restricting to the pieces in TW (x), which is clearly a
subfamily of AW (x).

Proposition 3.9. Let W ∈ �p×m be such that WSOL(Cx,D) is a singleton for
all x ∈ �n. For the piecewise linear function hW (x) ≡ WSOL(Cx,D), it holds that
h ′
W (x; v) ∈ {Ev : E ∈ TW (x)} for all x and v in �n.

Proof. For each τ > 0, hW (x+τv) = Eτ (x+τv), where, for any pair of index sets
(ατ ,Jτ ) in L(x+τv), Eτ ≡ −W•ατ

[(DJτατ
)TDJτατ

]−1(DJτατ
)TCJτ•. Thus we have

(a) ατ ⊆ Jτ , (b) the columns of DJτατ
are linearly independent, and (c) there exists

uτ ∈ SOL(C(x+τv), D) such that supp(uτ ) ⊆ ατ and Jτ ⊆ {i : [C(x+τv)+Duτ ]i =
0}. In fact, uτ is given by (3.21),

uτ
ατ

= −
[
(DJτατ

)TDJτατ

]−1
(DJτατ )TCJτ•(x + τv), uτ

ᾱτ
= 0,

where ᾱτ is the complement of ατ in {1, . . . ,m}. Let {τk} be an arbitrary sequence
of positive scalars converging to zero for which there exists a pair (α∞,J∞) such that
(ατk ,Jτk) = (α∞,J∞) for all k (there must be at least one such sequence for every
pair (x, v) because there are only finitely many pairs of index sets). The corresponding
sequence of solutions {uτk} converges to a vector, say, u∞, which must be a solution
of the LCP (Cx,D), by the continuity of the latter solution with respect to Cx.
Moreover, for all k sufficiently large, we have

supp(u∞) ⊆ supp(uτk) ⊆ α∞ ⊆ J∞ ⊆ {i : (Cx + Du∞)i = 0}

by a simple limiting argument. Thus the pair (α∞,J∞) belongs to L(x) and Eτk ∈
TW (x) for all k sufficiently large. Writing E∞ ≡ Eτk for all such k, we have

hW (x + τkv) − hW (x) = Eτk(x + τkv) − E∞x = τk E
∞v,

from which we obtain h ′
W (x; v) = E∞v, where E∞ ∈ TW (x), as desired.

Dealing with a symmetric matrix, the next result completes the proof of Propo-
sition 3.8. For a symmetric m × m matrix R, define the finite family of symmetric
matrices T̂R(x) ⊂ �n×n:{
− (CJ•)

TDJα

[
(DJα)TDJα

]−1
Rαα

[
(DJα)TDJα

]−1
(DJα)T CJ• : (α,J ) ∈ L(x)

}
.

Proposition 3.10. Let R ∈ �m×m be symmetric such that RSOL(Cx,D) is a

singleton for all x ∈ �n. For the piecewise quadratic function ĥR(x) ≡ SOL(Cx,D)T

RSOL(Cx,D), it holds that

(a) ĥR(x) = xT Êx for all Ê ∈ T̂R(x);

(b) ĥ ′
R(x; v) ∈ {2xT Êv : Ê ∈ T̂R(x)} for all x and v in �n.
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Proof. It suffices to prove part (b). As a piecewise quadratic function, the direc-

tional derivative ĥ ′
R(x; v) exists. For each τ > 0, ĥR(x+ τv) = (x+ τv)T Êτ (x+ τv),

where

Êτ ≡ (CJτ•)
TDJτατ

[
(DJτατ )TDJτατ

]−1
Rατατ

[
(DJτατ )TDJτατ

]−1
(DJτατ )TCJτ•

for any pair of index sets (ατ ,Jτ ) ∈ L(x + τv). As in the proof of Proposition 3.9,
we can take a sequence of positive scalars {τk} converging to zero and a fixed pair
(α∞,J∞) such that (ατk ,Jτk) = (α∞,J∞) for all k. It is now easy to complete the
proof.

We apply the above results to the singled-valued function:

V̂ (x) ≡ V (x,SOL(Cx,D)) =xTPx + 2xTQSOL(Cx,D) + SOL(Cx,D)TRSOL(Cx,D),

assuming that QSOL(Cx,D) and RSOL(Cx,D) are both singletons for all x ∈ �n.

Under this assumption, V̂ (x) = V (x,GCD(x)) is piecewise quadratic and

V̂ ′(x; v) = 2xTPv + 2vTQSOL(Cx,D) + 2xTEQv + 2xT ÊRv,

where EQ ≡ −Q•α
[
(DJα)TDJα

]−1
(DJα)TCJ• ∈ TQ(x) and

ÊR ≡ (CJ• )TDJα

[
(DJα )TDJα

]−1
Rαα

[
(DJα )TDJα

]−1
(DJα )TCJ• ∈ T̂R(x)

for some pair (α,J ) ∈ L(x); note that we can choose the same pair (α,J ) for
the directional derivatives of QSOL(Cx,D) and SOL(Cx,D)TRSOL(Cx,D) because
(cf. the proofs of Propositions 3.9 and 3.10) both derivatives were derived from
SOL(C(x+τv), D) corresponding to the same v. Since QSOL(Cx,D) = EQx, we have

V̂ ′(x; v) = 2xT [P +EQ +(EQ)T + ÊR]v. Note that the matrix P +EQ +(EQ)T + ÊR

is symmetric. With ϕx0(t) ≡ V̂ (x(t, x0)), we have

ϕ ′
x0(t+) = V̂ ′(x(t, x0); ẋ(t, x0))

= 2x(t, x0)T
[
P + EQ

t + (EQ
t )T + ÊR

t

] (
Ax(t, x0) + BSOL(Cx(t, x0), D)

)
,

where the equality in the second line is by a simple substitution, and for each t > 0,

EQ
t ≡ −Q•αt(DαtJt

DJtαt
)−1DαtJt

CJt• ∈ TQ(x(t, x0)),

and

ÊR
t ≡ (CJt•)

TDJtαt

[
(DJtαt

)TDJtαt

]−1
Rαtαt

[
(DJtαt

)TDJtαt

]−1

×(DJtαt)
TCJt• ∈ T̂R(x(t, x0))

for some pair (αt,Jt) ∈ L(x(t, x0)). Corresponding to any such pair of index sets,
letting z(t, x0) ≡ (x(t, x0), u(t, x0), v(t, x0)),(
uαt(t, x

0)

uᾱt(t, x
0)

)
≡
(
−
[
(DJtαt

)TDJtαt

]−1
(DJtαt

)TCJt•x(t, x0)

0

)
∈ GrGCD(x(t, x0)),

(
vαt(t, x

0)

vᾱt(t, x
0)

)

≡
(

−
[
(DJtαt)

TDJtαt

]−1
(DJtαt)

TCJt•(Ax(t, x0) + BSOL(Cx(t, x0), D))

0

)
,
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where ᾱt is the complement of αt in {1, . . . ,m}, we obtain

Qu(t, x0) = EQ
t x(t, x0), Bu(t, x0) = BSOL(Cx(t, x0), D),

x(t, x0)T ÊR
t (Ax(t, x0) + BSOL(Cx(t, x0), D)) = u(t, x0)TRv(t, x0),

x(t, x0)TEQ
t (Ax(t, x0) + BSOL(Cx(t, x0), D)) = x(t, x0)TQv(t, x0),

and ϕ ′
x0(t+) = z(t, x0)TNz(t, x0), where N is the same matrix defined by (3.6). Note

that a constant ρĜ > 0 exists satisfying

‖ v(t, x0) ‖ ≤ ρĜ ‖ (x(t, x0), u(t, x0)) ‖ ∀ (t, x0) ∈ [ 0,∞ ) ×�n.(3.23)

Augmenting the map GCD, define

ĜLCS : x

	→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
−
[
(DJα )TDJα

]−1
(DJα )TCJ•x

0

−
[
(DJα)TDJα

]−1
(DJα)TCJ•(Ax + BSOL(Cx,D))

0

⎞⎟⎟⎟⎟⎟⎠ : (α,J ) ∈ L(x)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Note that the pair (u(t, x0), v(t, x0)) defined above belongs to ĜLCS(x(t, x0)) ⊂ �2m.

In what follows, we let z(t, x0) denote any triple in Gr ĜLCS such that ϕ ′
x0(t+) =

z(t, x0)TNz(t, x0). We next show that the two graphs Gr GCD and Gr ĜLCS are
closed.

Proposition 3.11. Both maps GCD and ĜLCS have closed graphs.
Proof. We prove the claim only for ĜLCS. Let {xk} be a sequence converging to

x∞. For each k, let (αk,Jk) ∈ L(xk) be such that

lim
k→∞

⎛⎜⎜⎜⎜⎝
−
[
(DJkαk

)TDJkαk

]−1
(DJkαk

)TCJk•x
k

0

−
[
(DJkαk

)TDJkαk

]−1
(DJkαk

)TCJk•(Axk + BSOL(Cxk, D))

0

⎞⎟⎟⎟⎟⎠
exists. As in the proof of Proposition 3.9, there exist an infinite subset κ of {1, 2, . . . }
and a pair (α∞,J∞) ∈ L(x∞) such that (αk,Jk) = (α∞,J∞) for all k ∈ κ. Since
BSOL(Cx,D) is continuous in x, the displayed limit is therefore equal to⎛⎜⎜⎜⎜⎝

−
[
(DJ∞α∞)TDJ∞α∞

]−1
(DJ∞α∞)TCJ∞•x

∞

0

−
[
(DJ∞α∞)TDJ∞α∞

]−1
(DJ∞α∞)TCJ∞•(Ax∞ + BSOL(Cx∞, D))

0

⎞⎟⎟⎟⎟⎠ .

The closedness of the graph Gr ĜLCS follows.
The above discussion makes it clear that the LCS (2.1) is related to a “linear

selectionable DI”; see Smirnov [52, section 8.2]. Nevertheless, there are significant
differences between the two kinds of systems; such differences therefore dismiss the
applicability of the stability results in the cited reference to the LCS. If x(t) is a
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solution of (2.1), then ẋ(t) ∈ A(x(t)), where the set-valued map A : �n → �n is given
by

A(x) ≡ {(A + E)x : E ∈ TB(x)},

with the family TB(x) being finite and dependent on the state. In contrast, in order

for the DI ẋ(t) ∈ Â(x(t)) to be linear selectionable, there must exist a constant convex

compact set M of real n×n matrices such that Â(x) ≡ {Mx : M ∈ M}. Clearly, there

are noticeable differences between the two sets A(x) and Â(x); for instance, the latter
is always convex, whereas the former consists of only finitely many vectors. In fact,
linear selectionable DIs are like hybrid systems with “state independent switchings”
[23], and the LCS is a hybrid system with state-triggered switchings.

The following result extends Theorem 3.1 to a non-P matrix D. The same proof
applies.

Theorem 3.12. Suppose that BSOL(Cx,D) is a singleton for all x ∈ �n. As-
sume further matrices P , Q, and R, with P and R symmetric, exist such that

(A1) QSOL(Cx,D) and RSOL(Cx,D) are singletons for all x ∈ �n;
(A2) M is strictly copositive on Gr GCD.

Let z(t, x0) denote any triple in Gr ĜLCS such that ϕ ′
x0(t+) = z(t, x0)TNz(t, x0). The

following four statements hold for the equilibrium xe = 0 of (2.1).

(a) If −N is copositive on Gr ĜLCS, then xe is linearly bounded stable.

(b) If −N is strictly copositive on cl Gr ĜLCS, then xe is exponentially stable.

(c) If −N is copositive on Gr ĜLCS and (3.8) holds, then xe is asymptotically
stable.

(d) If −N is copositive-plus on Gr ĜLCS and (3.9) holds, then xe is asymptotically
stable.

Complementing Corollary 3.4, the next result is a specialization of the above
theorem to a passive LCS.

Corollary 3.13. Assume that SOL(Cx,D) �= ∅ for all x ∈ �n and that (D +
DT )u = 0 ⇒ Bu = 0. If the quadruple (A,B,C,D) is passive with a passifying matrix
K such that the only vector x for which[

ATK + KA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−
[
(DJα)TDJα

]−1
(DJα)TCJ•

]
x = 0

for some pair (α,J ) ∈ L(x) is the zero vector, then xe = 0 is an asymptotically stable
equilibrium of the LCS (2.1).

Proof. Since D is positive semidefinite, the assumption (D+DT )u = 0 ⇒ Bu = 0
implies that BSOL(Cx,D) is a singleton for all x ∈ �n. The remaining proof is similar
to that of part (b) of Corollary 3.4 and is not repeated.

4. An inhomogeneous extension. The stability results in the last section can
be extended to a “generalized LCS” [38], which has exactly the same structure as the
LCS except that the nonnegative orthant is replaced by an arbitrary polyhedral cone
and its dual. Such an extension is significant because the generalized LCS is a much
broader class of nonsmooth dynamical system than the LCS; for instance, it includes
the case of a mixed LCP to be satisfied by the algebraic variable and also the case of
more general linear constraints on the latter variable than nonnegativity. The gener-
alized LCS also arises from the approximation of inhomogeneous (cf. Corollary 4.6)
and nonlinear systems (see section 5). All the piecewise linearity properties that we
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have employed for the LCP have known extensions to the generalized LCP defined
over a polyhedral cone. Based on these extended LCP results, we can easily generalize
the Lyapunov stability theory to the generalized LCS without difficulty. The reason
we have chosen to focus on the LCS is because this is a fundamental system in its
own right with important applications in diverse fields.

Instead of presenting the details of the extended stability results, which will not
involve significantly new ideas, we present below a Lyapunov stability theory for an
inhomogeneous differential affine system, via a reduction to an equivalent homoge-
neous system. At the end of the section, we introduce a general reduction approach
that paves the way to the treatment of differential nonlinear systems that is the topic
of section 5.

Consider the following inhomogeneous LCS with D being a P-matrix:

ẋ = p + Ax + Bu,

0 ≤ u ⊥ q + Cx + Du ≥ 0,

x(0) = x0,

(4.1)

where p ∈ �n and q ∈ �m are constant vectors and the other matrices are defined in
the same way as before. To avoid triviality, we assume throughout that (p, q) �= 0.
By the P-property of the matrix D, we deduce that the unique solution u(x) to the
LCP (q + Cx,D) is globally Lipschitz continuous in x; hence, for any x0 ∈ �n, there
exists a unique continuously differentiable solution x(t, x0) for all t ≥ 0 satisfying
ẋ = p+Ax+Bu(x) and x(0) = x0. Since the right-hand side of the latter ODE is not
positively homogeneous in x, the solution x(t, ·) is no longer positively homogeneous
in the initial condition. Therefore, the local asymptotic/exponential stability of an
equilibrium of (4.1) does not imply its global asymptotic/exponential stability. Such
an equilibrium is a vector xe ∈ �n such that 0 = p + Axe + Bu(xe). In order to
analyze the stability of such a vector xe, let

αe ≡ { i : ue
i > 0 = ( q + Cxe + Due )i },

βe ≡ { i : ue
i = 0 = ( q + Cxe + Due )i },

γe ≡ { i : ue
i = 0 < ( q + Cxe + Due )i }

be the three fundamental index sets corresponding to the pair (xe, ue), where ue ≡
u(xe) and define the matrices

Â ≡ A−B•αe
(Dαeαe

)−1Cαe•, B̂•βe
≡ B•βe

−B•αe
(Dαeαe

)−1Dαeβe
,

Ĉβe• ≡ Cβe• −Dβeαe(Dαeαe)
−1Cαe•, D̂βeβe ≡ Dβeβe −Dβeαe(Dαeαe)

−1Dαeβe .

We say that xe is an isolated zero of the equation 0 = p+Ax+Bu(x) if a neighborhood
of xe exists within which xe is the only zero of the equation. A similar definition
applies to the “isolatedness” of the pair (xe, ue) in part (b) of the proposition below.

Proposition 4.1. Let D be a P-matrix. The following three statements are
equivalent.

(a) xe is an isolated zero of the equation 0 = p + Ax + Bu(x);
(b) the pair (xe, ue) is an isolated solution of the mixed LCP in the variables

(x, u) ∈ �n+m:

0 = p + Ax + Bu,

0 ≤ u ⊥ q + Cx + Du ≥ 0;
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(c) the following homogeneous mixed LCP has a unique solution (z, v) = (0, 0):

0 = Âz + B̂•βev,

0 ≤ v ⊥ Ĉβe•z + D̂βeβev ≥ 0.

Any one of the above three conditions is necessary for xe to be an asymptotically stable
equilibrium of (4.1).

Proof. (a) ⇔ (b). Clearly (a) implies (b). The converse holds by the P-property
of D.

(b) ⇔ (c). This follows from [15, Corollary 3.3.9] and the fact that Dαeαe is
nonsingular.

To see that any one of the three conditions (a)–(c) is necessary for xe to be an
asymptotically stable equilibrium of (4.1), assume for the sake of contradiction that
there exists a sequence {xk} of zeros of the equation 0 = p + Ax + Bu(x) such that
xk �= xe for all k and limk→∞ xk = xe. Each such zero xk, for k sufficiently large,
defines a stationary trajectory xk(t, xk) = xk for all t ≥ 0 that violates the asymptotic
stability of xe.

Next we show that the stability (resp., asymptotic/exponential stability) of the
equilibrium xe of the inhomogeneous LCS (4.1) is equivalent to the linearly bounded
stability (resp., global asymptotic/exponential stability) of the equilibrium z = 0 of
the homogeneous LCS

ż = Âz + B̂•βev,

0 ≤ v ⊥ Ĉβe•z + D̂βeβe
v ≥ 0,

(4.2)

which has a C1 solution trajectory z(t, z0) for every initial condition z0 = z(0). Via
this equivalence, the results in the previous sections can then be applied to yield suf-
ficient conditions for the respective stability properties to hold for the inhomogeneous
LCS (4.1).

Proposition 4.2. Let D be a P-matrix. The equilibrium xe of the LCS (4.1) is
stable (resp., asymptotically/exponentially stable) if and only if ze = 0 is a linearly
boundedly stable (resp., global asymptotically/exponentially stable) equilibrium of the
homogeneous LCS (4.2).

Proof. Sufficiency. Suppose that ze = 0 is a linearly boundedly stable equilibrium
of the homogeneous LCS (4.2). Hence there exists a constant η > 0 such that for all
solution trajectory z(t, z0) of (4.2) satisfying z(0, z0) = z0, it holds that ‖z(t, z0)‖ ≤
η‖z0‖ for all (t, z0) ∈ [0,∞) × �n. We need to show that for every ε > 0, a constant
δε > 0 exists such that for all ‖x0 − xe‖ < δε ⇒ lim supt≥0 ‖x(t, x0) − xe‖ < ε. The
proof lies in showing that for x0 sufficiently close to xe, the trajectory ẑ(t, z0) ≡
x(t, x0) − xe, which has ẑ(0, z0) = x0 − xe ≡ z0, is a solution of the homogeneous
LCS (4.2). Once the latter claim is established, the stability of xe follows; so do the
asymptotic and exponential stability. To prove the claim, let x0 be given and let
(z(t, z0), v(t, z0)) be the unique solution trajectory of (4.2) satisfying z(0, z0) = z0;
it suffices to show that for all x0 sufficiently close to xe, ẑ(t, z0) = z(t, z0) for all
t ≥ 0. We do this by producing a suitable trajectory û(t, x0) such that the pair
(z(t, z0) + xe, û(t, x0)) satisfies (4.1); by the uniqueness of the solution to the latter
LCS, we then deduce ẑ(t, z0) = z(t, z0) for all t ≥ 0 as desired. In turn, to produce



1086 M. KANAT CAMLIBEL, JONG-SHI PANG, AND JINGLAI SHEN

the û(t, x0) trajectory, let ûβe
(t, x0) ≡ v(t, z0), ûγe

(t, x0) ≡ 0, and

ûαe(t, x
0) ≡ −(Dαeαe)

−1
[
qαe + Cαe•(z(t, z

0) + xe) + Dαeβe ûβe(t, x
0)
]

= ue
αe

− (Dαeαe
)−1
[
Cαe•z(t, z

0) + Dαeβe
v(t, x0)

]
.

We have

qβe
+ Cβe•(z(t, z

0) + xe) + Dβeαe
ûαe

(t, x0) + Dβeβe
ûβe

(t, x0)

= Ĉβe•z(t, z
0) + D̂βeβe

v(t, z0)

and

qγe
+ Cγe•(z(t, z

0) + xe) + Dγeαe
ûαe

(t, x0) + Dγeβe
ûβe

(t, x0)

= qγe + Cγe•x
e + Dγeαeu

e
αe

+ Ĉγe•z(t, z
0) + D̂γeβev(t, x

0),

where Ĉγe• ≡ Cγe• − Dγeαe
(Dαeαe

)−1Cαe• and D̂γeβe
≡ Dγeβe

− (Dαeαe
)−1Dαeβe

.
Note that both ue

αe
and qγe + Cγe•x

e + Dγeαe
ue
αe

are positive. Being the Schur

complement of a P-matrix, D̂βeβe
is itself a P-matrix. Hence there exists a constant

Lv > 0 such that

‖ v(t, z0)‖ ≤ Lv ‖ z(t, z0) ‖ ≤ Lv η ‖ z0 ‖ ∀ t ≥ 0,

where the second inequality is by the linearly bounded stability of the equilibrium
ze = 0 for the homogeneous LCS (4.2). Consequently, provided that x0 is sufficiently
close to xe, or equivalently, that z0 is sufficiently close to the origin, ûαe

(t, x0) and
qγe + Cγe•(z(t, z

0) + xe) + Dγeαe
ûαe(t, x

0) + Dγeβe
ûβe(t, x

0) remain positive for all
t ≥ 0. Hence for all such x0, û(t, x0) ∈ SOL(q + C(z(t, z0) + xe), D) for all t ≥ 0.

Since 0 = p+Axe+Bue = p+Axe+B•αeu
e
αe

= p+Axe−B•αe(Dαeαe)
−1Cαe•x

e,
we have

d(z(t, z0) + xe)

dt
= Âz(t, z0) + B̂v(t, z0)

= [A−B•αe(Dαeαe )−1Cαe• ]z(t, z0)

+ [B•βe −B•αe(Dαeαe )−1Dαeβe
]v(t, z0)

= p + A( z(t, z0) + xe) + Bû(t, x0).

We have therefore verified all the required conditions for the pair (z(t, z0)+xe, û(t, x0))
to be a solution of (4.1). This establishes the sufficiency part of the proposition.

Necessity. Suppose that xe is a stable equilibrium of the LCS (4.1). We may
choose ε > 0 sufficiently small such that for all x satisfying ‖x − xe‖ < ε, we have
uαe(x) > 0 and (q + Cx + Du(x))γe > 0. Corresponding to such an ε, let δε > 0 be
such that ‖x0 − xe‖ < δε ⇒ ‖x(t, x0) − xe‖ < ε for all t ≥ 0. Consequently, for any
such x0, we have [q + Cx(t, x0) + Du(x(t, x0))]αe = 0 and uγe(x(t, x0)) = 0. Since
(q + Cxe + Due)αe = 0, we deduce

Cαe•(x(t, x0) − xe) + Dαeαe(u(x(t, x0)) − ue )αe + Dαeβeuβe(t, x
0) = 0,

which yields

(u(x(t, x0)) − ue)αe = −(Dαeαe)
−1
[
Cαe•(x(t, x0) − xe) + Dαeβeuβe(t, x

0)
]
.(4.3)
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Substituting this and using (q + Cxe + Due)βe
= 0, we deduce

[ q + Cx(t, x0) + Du(x(t, x0)) ]βe = Ĉβe•(x(t, x0) − xe) + D̂βeβeuβe(t, x
0).

Hence uβe(t, x
0) satisfies

0 ≤ uβe
(t, x0) ⊥ Ĉβe•(x(t, x0) − xe) + D̂βeβeuβe(t, x

0) ≥ 0

for all t ≥ 0. Furthermore,

d(x(t, x0) − xe)

dt
= p + Ax(t, x0) + Bu(x(t, x0))

= A(x(t, x0) − xe) + B•αe(u(t, x0) − ue)αe + B•βeuβe(t, x
0)

= Â(x(t, x0) − xe) + B̂•βeuβe(t, x
0).

Therefore, by the uniqueness of the solution trajectory to (4.2), we deduce that
z(t, z0) ≡ x(t, x0)−xe is the unique solution trajectory satisfying (4.2) and z(0, z0) =
z0 ≡ x0 − xe, along with the auxiliary algebraic trajectory v(t, z0) ≡ uβe

(x(t, x0)).
Consequently, the stability, and thus the linearly bounded stability, of the equilibrium
ze = 0 for (4.2) follows readily; so do the global asymptotic and global exponential
stability, provided that the equilibrium xe is, respectively, asymptotically and expo-
nentially stable for (4.1).

An interesting special case occurs when xe is nondegenerate; i.e., when the index
set βe is empty. In this case, for all x sufficiently close to xe, the LCP (q + Cx,D) is
equivalent to a system of linear equations. As such, intuitively speaking, the stability
of xe can be established via classical system-theoretic results. A formal statement of
this assertion is presented below whose proof follows easily from Proposition 4.2.

Corollary 4.3. Let D be a P-matrix. Suppose that the equilibrium xe of the
LCS (4.1) is nondegenerate. The following statements are equivalent.

(a) xe is asymptotically stable;
(b) xe is exponentially stable;

(c) the matrix Â is negatively stable, i.e., there exists a symmetric positive definite

matrix K such that ÂTK + KÂ is negative definite.
Proof. If xe is nondegenerate, then the system (4.2) becomes the ODE: ż = Âz,

whose unique solution is given by z(t, z0) = etÂz0 for all t ≥ 0. The conclusion of the
corollary now follows from classical linear systems theory and Proposition 4.2.

The proof of Proposition 4.2 can be significantly simplified, and in fact, the propo-
sition itself can be extended considerably, by exploiting an approximation property of
a piecewise affine function. In spite of the generalization discussed below, the proof
given above is of interest for several reasons: one, it helps us to understand the gen-
eralized result; two, it expresses the reduced homogeneous system (4.2) in a form
that enables a direct application of the results in section 3, and three, this reduction
argument can be extended to a nonlinear complementarity system.

The following lemma is the cornerstone of the generalization of Proposition 4.2. It
extends an obvious global property of affine functions to a local property of piecewise
affine functions. For a proof of the lemma, see section 2.2.2 (particularly expression
(2.2)) in [49] and [15, Exercise 4.8.10].

Lemma 4.4 (Scholtes). () Let f : �n → �m be a piecewise affine function. For
every x ∈ �n, there exists a neighborhood Nx of x such that f(y) = f(x)+f ′(x; y−x)
for all y ∈ Nx.



1088 M. KANAT CAMLIBEL, JONG-SHI PANG, AND JINGLAI SHEN

Notice that the directional derivative f ′(x; ·) is a piecewise linear function of the
second argument; in particular, it is positively homogeneous. In general, a piecewise
affine function is not differentiable. Thus the ODE ẋ = f(x) has a nonsmooth right-
hand side. The following result is the promised generalization of Proposition 4.2; the
proof is essentially an abstraction of that of the cited proposition.

Proposition 4.5. Let f : �n → �n be a piecewise affine function with f(xe) = 0.
The equilibrium xe is stable (resp., asymptotically/exponentially stable) for the ODE
ẋ = f(x) if and only if ze = 0 is a linearly boundedly stable (resp., asymptoti-
cally/exponentially stable) equilibrium of the ODE ż = f ′(xe; z).

Proof. Since f is piecewise affine on �n, it is globally Lipschitz continuous there.
Hence the initial-value ODE

ẋ = f(x), x(0) = x0(4.4)

has a unique solution x(t, x0) for all x0 ∈ �n. The same is true of the ODE

ż = f ′(xe; z), z(0) = z0(4.5)

for all z0 ∈ �n. Suppose that xe is a locally stable equilibrium of the ODE ẋ = f(x).
Let ε > 0 be such that f(x) = f ′(xe;x − xe) for all x satisfying ‖x − xe‖ < ε.
Corresponding to this ε, let δε > 0 be such that ‖x0 − xe‖ < δε ⇒ ‖x(t, x0)− xe‖ < ε
for all t ≥ 0. It follows that z(t, z0) ≡ x(t, x0) − xe is the unique solution trajectory
of (4.5) satisfying z(0, z0) = z0 ≡ x0 − xe. Hence ze = 0 is a linearly bounded stable
equilibrium of (4.5), by the positive homogeneity of f ′(xe; ·). The other assertions of
the proposition can be proved similarly.

Instead of showing how Proposition 4.2 is a special instance of Proposition 4.5,
we consider the more general inhomogeneous DAVI,

ẋ = p + Ax + Bu,

u ∈ SOL(K, q + Cx,D),
(4.6)

where K is a polyhedron in �m. We assume that the pair (K,D) is “coherently
oriented” [46, 15]. This condition is necessary and sufficient for the AVI (K, q̂,D) to
have a unique solution for all vectors q̂ ∈ �m; moreover, under this condition, such
a solution function is necessarily a piecewise affine function of q̂. Hence, letting u(x)
be the unique element of SOL(K, q + Cx,D), the DAVI (4.6) is equivalent to the
ODE with a piecewise affine right-hand side: ẋ = p+Ax+Bu(x). (Incidentally, this
equivalence remains valid if the coherent orientation of the pair (K,D) is weakened
to the condition that BSOL(K, q + Cx,D) is a singleton for all x ∈ �n; nevertheless
this weakening necessitates a modification of the following discussion about the direc-
tional derivatives, which becomes much more involved. For simplicity, we continue to
assume the coherent orientation condition.) If (K,D) is coherently oriented, then the
directional derivative u ′(x; dx) of the solution function u(x) along a direction dx ∈ �n

is the unique solution v to the generalized LCP

C(x) � v ⊥ Cdx + Dv ∈ C(x)∗,

where C(x) is the “critical cone” of the AVI (K, q + Cx,D) at the solution u(x), and
C(x)∗ is the dual of C(x); specifically, C(x) ≡ T (K;u(x))∩ (q+Cx+Du(x))⊥, where
T (K;u(x)) denotes the tangent cone of K at u(x) ∈ K (as in convex analysis [47])
and the superscript denotes the orthogonal complement. It should be pointed out
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that both C(x) and its dual are polyhedral cones. For details of these results, we refer
the reader to [15, Volume I, section 4.3].

Applying Proposition 4.5 to the DAVI (4.6), we obtain the following result, which
requires no further proof.

Corollary 4.6. Let K be a polyhedron in �m. Suppose that the pair (K,D)
is coherently oriented. Let xe satisfy 0 = p + Axe + Bu(xe). The equilibrium xe

of (4.6) is stable (resp., asymptotically/exponentially stable) if and only if ze = 0 is
a linearly boundedly stable (resp., asymptotically/exponentially stable) equilibrium of
the differential complementarity system

ż = Az + Bv,

C(xe) � v ⊥ Cz + Dv ∈ C(xe)∗,
(4.7)

where C(xe) ≡ T (K;u(xe)) ∩ (q + Cxe + u(xe))⊥.
As mentioned in the beginning of this section, it is possible to extend the Lya-

punov stability results for the LCS to the generalized LCS (4.7). Instead of repeating
the derivation, we proceed to the other major topic of this paper, to be addressed
in the next section. There, we establish a partial generalization of Proposition 4.2
and Corollary 4.6 that deals with the exponential stability of nonlinear systems; see
Propositions 5.7 and 5.10.

5. Exponential stability of nonlinear systems via a converse theorem.
So far our development has been restricted to systems with linear structures. In this
section, we extend our treatment to nonlinear systems via the so-called Lyapunov
indirect method of “first-order approximation.” The results in this section are of the
exponential stability type. Due to the nonsmoothness of the solution function to the
LCP/AVI, it seems difficult to develop an asymptotic stability theory for nonlinear
systems without relying on exponential stability.

The cornerstone of the extended treatment of nonlinear systems is a converse the-
orem for the exponential stability of an equilibrium to an ODE with a B-differentiable
right-hand side that is not F(réchet)-differentiable. In general, if the right-hand side
of the ODE is not F-differentiable, the solution map of the ODE is not a differentiable
function of the initial condition; nevertheless, the latter map remains B-differentiable,
provided that the right-hand function of the ODE is so. This is formally stated in the
following result whose proof can be found in the recent paper [39, Theorem 7].

Lemma 5.1. Suppose that for a given ξ ∈ �n, f is B-differentiable in a neigh-
borhood of a solution trajectory x(t, ξ) of the ODE (4.4) for t ∈ [0, T ]. For each
t ∈ [0, T ], the solution map x(t, ·) of the ODE (4.4) is B-differentiable at ξ; the direc-
tional derivative

x ′
ξ(t, ξ; η) ≡ lim

τ↓0

x(t, ξ + τη) − x(t, ξ)

τ

of x(t, ·) at ξ along the direction η is the unique solution y(t) to the variational equation
ẏ(t) = f ′(x(t, ξ); y(t)), y(0) = η.

The following result gives a necessary and sufficient condition for an equilibrium
of the ODE (4.4) to be exponentially stable in terms of the existence of a nonsmooth
Lyapunov function satisfying certain conditions. Since the latter function is not nec-
essarily differentiable, the result does not follow from standard system theory; see,
e.g., [28, Chapter 3]. Moreover, whereas the proof is inspired by that of Theorem
3.12 in the cited reference, some details are different as the Lyapunov function is not
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continuously differentiable. In particular, conditions (b) and (c) are normally stated
in terms of the F-derivatives of V ; here they are expressed in terms of directional
derivatives.

Theorem 5.2. Suppose that f is Lipschitz continuous in a neighborhood N0 of
the origin and that f(0) = 0. The following two statements hold.

(I) If there exist positive constants c1 < c2, and c3, a neighborhood N ⊆ N0 of
xe = 0, and a Lipschitz continuous and directionally differentiable function
V in N such that
(a) c1‖x0‖2 ≤ V (x0) ≤ c2‖x0‖2 for all x0 ∈ N ,
(b) V ′(x0; f(x0)) ≤ −c3‖x0‖2 for all t ≥ 0 and all x0 ∈ N ,

then xe = 0 is an exponentially stable equilibrium of the ODE (4.4).
(II) Conversely, if xe = 0 is an exponentially stable equilibrium of the ODE (4.4)

and if f is additionally directionally differentiable in N0, then there exist
positive constants c1, c2, c3, and c4, a neighborhood N ⊆ N0 of xe = 0, and
a Lipschitz continuous and directionally differentiable function V in N such
that (a), (b), and (c) hold, where
(c) |V ′(x0; z)− V ′(x0; z ′)| ≤ c4‖x0‖‖z− z ′‖ for all x0 ∈ N and all z, z ′ in

�n.
Proof. Without loss of generality, we take N to be an open ball centered at the

origin and with radius r > 0. We claim that under the assumption in (I), by defining
the neighborhood

N ′ ≡ { z ∈ �n : ‖ z ‖ ≤
√
c1/c2 r/2 },

a unique solution trajectory x(t, x0) exists satisfying the ODE (4.4) for all t ≥ 0
and all x0 ∈ N ′; moreover, ‖x(t, x0)‖ < r/2 for all such pairs (t, x0). Notice that
the existence and uniqueness of such a trajectory do not follow directly from basic
ODE theory because f is assumed to be Lipschitz continuous only in N0 and not
everywhere. Let x0 ∈ N ′; clearly ‖x0‖ < r/2 because c1 < c2. Hence there is a time
t0 > 0 such that the trajectory x(t, x0) exists and is unique for all t ∈ [0, t0]. We claim
that ‖x(t, x0)‖ < r/2 for all t in the domain of definition of the trajectory. Assume
for the sake of contradiction that there exists t̃ ∈ (0, t0] such that ‖x(t̃, x0)‖ = r/2
and that ‖x(t, x0)‖ < r/2 for all t ∈ [0, t̃ ). For all ε > 0 sufficiently small, we can
write

V (x(t̃, x0)) − V (x0) =

∫ t̃−ε

0

V ′(x(s, x0); f(x(s, x0))) ds

+

∫ t̃

t̃−ε

V ′(x(s, x0); f(x(s, x0))) ds < 0,

where the first summand in the right-hand side is nonpositive by (b) and the second
summand is negative because ‖x(s, x0)‖ is near r/2 > 0 for all s ∈ [t̃− ε, t̃]. Hence,

c1 ‖x(t̃, x0) ‖2 ≤ V (x(t̃, x0)) < V (x0) ≤ c2 ‖x0 ‖2,

which implies ‖x(t̃, x0)‖2 < r2/4, which is a contradiction. Thus, ‖x(t, x0)‖ < r/2 for
all t ∈ [0, t0]. Let

t∗ ≡ sup{ t̄ ≥ t0 : the trajectory x(t, x0) exists, is unique,

and satisfies ‖x(t, x0)‖ < r/2 for all t ∈ [ 0, t̄ ] }.
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It follows that there exists ε > 0 such that for all t̃ ∈ [0, t∗), the trajectory x(t, x0) can
be continued beyond time t̃ for at least ε duration. Since ε is independent of t̃, we must
have t∗ = ∞. Hence, the trajectory x(t, x0) exists, is unique, and remains in N for all
t ≥ 0. By condition (b), the trajectory x(t, x0) must satisfy V ′(x(t, x0); f(x(t, x0))) ≤
−c3‖x(t, x0)‖2 for all t ≥ 0 and all x0 ∈ N ′. From this point on, we can follow
the same line of proof as in Theorem 3.1(b) to complete the proof of the exponential
stability of xe. This establishes part (I) of the theorem.

Conversely, to show (II), let N ⊆ N0 be a subneighborhood of the equilibrium
such that for some positive constants ν and κ, ‖x(t, x0)‖ ≤ κe−νt‖x0‖ for all t ≥ 0
and all x0 ∈ N and that x(t, x0) ∈ N0 for all such pairs (t, x0). Define

V (z) ≡
∫ T

0

x(τ, z)Tx(τ, z) dτ, z ∈ N ,

where the upper limit T > 0 will be determined later. It is clear that V is Lipschitz
continuous in N . To show that V is directionally differentiable, we need to show that
the limit

lim
τ↓0

V (z + τh) − V (z)

τ

exists for all h ∈ �n. We have

V (z + τh) − V (z) =

∫ T

0

[
(x(s, z + τh) − x(s, z) )T (x(s, z + τh) + x(s, z) )

]
ds.

By the Lipschitz property of x(τ, ·) and the exponential bound of x(τ, z), it follows
by the Lebesgue convergence theorem that we can interchange the integral with the
limit as τ ↓ 0 and obtain

lim
τ↓0

V (z + τh) − V (z)

τ
= 2

∫ T

0

x ′
ξ(s, z;h)Tx(s, z) ds,

where we have used Lemma 5.1 to justify the well-definedness of the directional deriva-
tive x ′

ξ(τ, z;h) (this is where the directional differentiability of f is needed). In par-
ticular, we have

V ′(x0; f(x0)) = 2

∫ T

0

x ′
ξ(s, x

0; f(x0))Tx(s, x0) ds.

By Lemma 5.1, x ′
ξ(s, x

0; f(x0)) is the unique function y(s) satisfying ẏ(s) = f ′(x(s, x0);

y(s)) and y(0) = f(x0). It is easy to verify that the function y(s) ≡ f(x(s, x0)) satisfies
the latter initial-value ODE because ẋ(s, x0) = f(x(s, x0)). Hence x ′

ξ(s, x
0; f(x0)) =

f(x(s, x0)); thus

V ′(x0; f(x0)) = 2

∫ T

0

f(x(τ, x0))Tx(τ, x0) dτ

= 2

∫ T

0

ẋ(τ, x0)Tx(τ, x0) dτ =
[
‖x(T, x0) ‖2 − ‖x0 ‖2

]
≤ −(1 − κ2 e−2νT ) ‖x0 ‖2.
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Choosing T ≡ (ln(2κ2))/(2ν), we deduce V ′(x0; f(x0)) ≤ −‖x0‖2/2. Hence (b) holds
with c3 ≡ 1/2. To prove (a), note that

V (z) ≤
∫ T

0

κ2 e−2ντ‖ z ‖2 dτ ≤ κ2

2ν

(
1 − e−2νT

)
‖ z ‖2.

Moreover, letting L > 0 be a Lipschitz constant of f in N , and by shrinking N if
necessary, we have ‖x(t, x0)‖ ≥ e−Lt‖x0‖ for all (t, x0) ∈ [0,∞) ×N . Consequently,
we can deduce

V (z) ≥ 1 − e−2LT

2L
‖ z ‖2 ∀ z ∈ N .

Hence (a) holds with appropriate positive constants c1 and c2. To prove (c), note that

V ′(x; z) − V ′(x; z ′) = lim
τ↓0

V (x + τz) − V (x + τz ′)

τ
.

Substituting the definition of the function V and taking absolute values, we deduce

|V ′(x0; z) − V ′(x0; z ′) |

≤
∫ T

0

lim
τ↓0

‖x(s, x0 + τz) − x(s, x0 + τz ′) ‖ ‖x(s, x0 + τz) + x(s, x0 + τz ′) ‖
τ

ds

≤ c4 ‖ z − z ′ ‖ ‖x0 ‖
for some constant c4 > 0, where we have used the Lipschitz continuity of the solution
map x(t, ·) and the finiteness of the time T .

We call a B-differentiable function V satisfying conditions (a), (b), and (c) in
Theorem 5.2 a B-differentiable Lyapunov function for the nonsmooth ODE (4.4) at its
equilibrium. An important consequence of Theorem 5.2 is the next perturbation result
pertaining to the persistence of the exponential stability property. Notice that while
the nominal function f is required to be B- (and thus directionally) differentiable,
the perturbed function g is required to be only locally Lipschitz continuous. This
observation is important as we see in the subsequent Corollary 5.5 that not requiring
the perturbed function g to be directionally differentiable has its benefit.

Corollary 5.3. Let f be Lipschitz continuous and directionally differentiable in
a neighborhood N0 of an equilibrium xe of f . Suppose that xe is exponentially stable
for the ODE (4.4). For every function g such that g(xe) = 0, g is Lipschitz continuous
in N0, and

lim
x→xe

f(x) − g(x)

‖x− xe ‖ = 0;(5.1)

xe is an exponentially stable equilibrium of the ODE: ẋ = g(x).
Proof. Without loss of generality, we may take xe = 0. Let V be a B-differentiable

Lyapunov function for the ODE (4.4). According to part (I) of Theorem 5.2 applied
to the function g, it suffices to show that a neighborhood N ′ ⊆ N and a constant
c ′
3 > 0 exist such that V ′(x0; g(x0)) ≤ −c ′

3‖x0‖2 for all x0 ∈ N ′. By properties (b)
and (c) of V , we have

V ′(x0; g(x0)) = V ′(x0; f(x0)) + [V ′(x0; g(x0)) − V ′(x0; f(x0)) ]

≤ −c3 ‖x0 ‖2 + c4 ‖x0 ‖ ‖ f(x0) − g(x0) ‖

= −c3 ‖x0 ‖2

(
1 − c4

c3

‖ f(x0) − g(x0) ‖
‖x0 ‖

)
.
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By (5.1), the existence of N ′ and c ′
3 with the desired property is clear.

Remark 5.1. The limit condition (5.1) postulates that f and g are “first-order
approximations” of each other near xe. This condition, along with the directional
differentiability of f at xe, implies that the perturbed function g is directionally
differentiable at xe also, but not necessarily at other points.

We present a consequence of Corollary 5.3 that pertains to the ODE where the
right-hand side is a “composite nonsmooth” function of a particular kind. Specifically,
let f(x) ≡ Φ(x, u(x)), where Φ(x, y) is a B-differentiable function of two arguments
(x, y) ∈ �n+m and u(x) is a B-differentiable function of x. We first state a lemma
pertaining to the B-differentiability of such a function f .

Lemma 5.4. Let Φ : �n+m → �� be Lipschitz continuous in a neighborhood of
(x0, y0) ∈ �n+m. Suppose that Φ(·, y0) and Φ(x0, ·) are directionally (and thus B-)
differentiable at x0 and y0, respectively. If

lim
(x0,y0) �=(x,y)→(x0,y0)

Φ(x, y) − Φ(x0, y) − ( Φ(·, y0) ) ′(x0;x− x0)

‖x− x0 ‖ = 0,(5.2)

then Φ is directionally (and thus B-) differentiable at (x0, y0) and

Φ ′((x0, y0); (dx, dy)) = ( Φ(·, y0) ) ′(x0; dx) + ( Φ(x0, ·) ) ′(y0; dy).(5.3)

Thus, if u : �n → �m is B-differentiable at x0, then so is f(x) ≡ Φ(x, u(x)) and

f ′(x0; z) = ( Φ(·, u(x0)) ) ′(x0; z) + ( Φ(x0, ·)) ′(u(x0);u ′(x0; z)).

Proof. The B-differentiability of Φ at (x0, y0) and the directional derivative for-
mula (5.3) follow from [45]; see also [15, Exercise 3.7.4]. The B-differentiability of the
composite function f and the formula for its directional derivative f ′(x0; z) follow
from the chain rule of B-differentiation; see [15, Proposition 3.1.6].

Remark 5.2. The limit (5.2) is essential for (5.3) to hold; without the former, the
latter need not hold. See [15].

The next result formally establishes the above-mentioned consequence of Corol-
lary 5.3.

Corollary 5.5. Let u : �n → �m be B-differentiable at xe ∈ �n and let
Φ : �n+m → �n be Lipschitz continuous in a neighborhood of (xe, ue) ∈ �n+m, where
ue ≡ u(xe) and (xe, ue) satisfies Φ(xe, ue) = 0. Suppose that Φ(·, ue) and Φ(xe, ·) are
directionally differentiable at xe and ue, respectively, and that

lim
(xe,ue) �=(x,u)→(xe,ue)

Φ(x, u) − Φ(xe, u) − ( Φ(·, ue) ) ′(xe;x− xe)

‖x− xe ‖ = 0.

If the equilibrium xe is exponentially stable for the ODE (4.4), where f(x) ≡ Φ(x, u(x)),
then ze = 0 is an exponentially stable equilibrium of the homogeneous ODE ż =
(Φ(·, ue)) ′(xe; z) + (Φ(xe, ·)) ′(ue;u ′(xe; z)). The converse is valid if additionally the
right-hand side of the latter ODE is directionally differentiable in z.

Proof. We have

f(x) = f ′(xe;x− xe) + e(x) = (Φ(·, ue)) ′(xe;x− xe)

+(Φ(xe, ·)) ′(ue;u ′(xe;x− xe)) + e(x),

where limx→xe e(x)/‖x−xe‖ = 0. Since xe is locally exponentially stable for the ODE

(4.4) if and only if x̃e ≡ 0 is locally exponentially stable for the ODE ˙̃x = f(x̃ + xe),
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and since f(xe) = Φ(xe, ue) = 0, we have

lim
x̃→0

[ f(x̃ + xe) − ( Φ(·, ue) ) ′(xe; x̃) + ( Φ(xe, ·)) ′(ue;u ′(xe; x̃)) ]/‖ x̃ ‖ = 0,

and since the function z 	→ (Φ(·, ue)) ′(xe; z) + (Φ(xe, ·)) ′(ue;u ′(xe; z)) is positively
homogeneous and Lipschitz continuous, the first assertion of the corollary follows from
Corollary 5.3. So does the second.

We further specialize Corollary 5.5 to the case where Φ is F-differentiable and
u is piecewise smooth. Specifically, we say that a function Ψ : �n → �m is PC1

(piecewise C1) near a point x0 ∈ �n if there exist a neighborhood N of x0 and
finitely many C1 functions {f1, . . . , fk} near x0 for some positive integer k such that
Ψ(x) ∈ {f1(x), . . . , fk(x)} for all x ∈ N . Basic properties of the family of PC1

functions can be found in [49, 15]. In particular, it is known that a PC1 function
must be B-differentiable. Based on this remark, the result below does not require
further proof.

Corollary 5.6. Let u : �n → �m be PC1 near xe ∈ �n and let Φ : �n+m → �n

be F-differentiable in a neighborhood of (xe, ue) ∈ �n+m, where ue ≡ u(xe) and
(xe, ue) satisfies Φ(xe, ue) = 0. Let f(x) ≡ Φ(x, u(x)). The following statements are
equivalent.

(a) xe is an exponentially stable equilibrium of the ODE (4.4).
(b) The ODE (4.4) has a B-differentiable Lyapunov function at xe.
(c) ze = 0 is an exponentially stable equilibrium of the ODE

ż = JxΦ(xe, ue)z + JyΦ(xe, ue)u ′(xe; z).(5.4)

(d) The ODE (5.4) has a B-differentiable Lyapunov function at the origin.
It is interesting to compare Corollary 5.6 with Proposition 4.5. The corollary

pertains only to exponential stability, whereas the proposition deals with asymptotic
stability as well. The difference between the two results is that the former proposition
concerns a piecewise linear ODE, whereas the corollary concerns an ODE with a PC1

right-hand side, for which there is no such exact approximation result as Lemma 4.4.

5.1. Strongly regular DVIs. We wish to apply Corollary 5.6 to the following
differential variational inequality (DVI) [38]:

ẋ = F (x, u),

u ∈ SOL(K,H(x, ·)),
(5.5)

where K is a closed convex set in �m and F : �n+m → �n and H : �n+m → �m are
continuously differentiable functions in a neighborhood of a given pair (xe, ue) ∈ �n+m

that satisfies F (xe, ue) = 0 and ue ∈ SOL(K,H(xe, ·)), with the latter notation
meaning that ue is a solution of the variational inequality (VI) defined by the pair
(K,H(xe, ·)); i.e., ue ∈ K and

(u− ue )TH(xe, ue) ≥ 0 ∀u ∈ K.

The key assumption to be made here is that ue is a “strongly regular” solution of
the VI (K,H(xe, ·)). The latter is a well-known property in the theory of finite-
dimensional VIs/CPs; it was introduced by Robinson [43]; see also [15]. We have
employed this property in several recent studies of the DVI [39, 37] and will use
it here as the main setting to facilitate the application of the previous results in the
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stability analysis of the given equilibrium pair (xe, ue). Notice that we avoid assuming
the strong monotonicity of the function H(x, ·), which is unnecessarily restrictive in
general; see nevertheless the discussion about the functional evolutionary variational
inequality (5.8).

Under the strong regularity assumption, it follows that there exist neighborhoods
U of ue and V of xe, and a Lipschitz continuous function u : V → U such that for
every x ∈ V, u(x) is the unique solution of the VI (K,H(x, ·)) belonging to U and
u(xe) = ue. Without further restricting the set K, the VI solution map u(x) is not
necessarily directionally differentiable; nevertheless, for a large class of closed convex
sets K (such as a polyhedron), u(x) is a PC1 [36] (or a “semismooth” [40]) function
near xe. For these special sets, the DVI (5.5) is therefore, locally near the pair (xe, ue),
equivalent to an ODE with a composite nonsmooth right-hand side, ẋ = F (x, u(x)),
to which Corollary 5.5 is applicable. Before detailing this application, we make an
important remark regarding this approach. Namely, corresponding to a given xe ∈ �n,
there may be multiple vectors ue satisfying the above-mentioned properties, each of
which leads to a particular ODE that could be quite distinct from another. More
interestingly, xe may be exponentially stable with respect to one resulting ODE but
not to another. (This is illustrated in Example 5.1.) In other words, the “stability”
of xe is linked to the particular solution of the VI (K,H(xe, ·)). For future research,
it may be of interest to extend this individual ODE-based stability theory for the
nonlinear DVI (5.5) to a broader theory analogous to that for the LCS (2.1) or its
affine generalization, the DAVI (4.6), where we have relied on the key assumption that
BSOL(K, q +Cx,D) is a singleton for all x ∈ �n. In such affine cases, in spite of the
possible multiplicity of solutions to the AVIs (K, q+Cx,D), the singleton assumption,
or equivalently, the assumption of a unique C1 trajectory x(t, x0), leads to a unique
ODE with a piecewise linear (thus Lipschitz) right-hand side to which Definition 2.3
applies. Incidentally, there are multiple C1 x-trajectories in the example below.

Example 5.1. Consider the following nonlinear complementarity system (NCS):

ẋ = x(−1 + 2 sinu ),

0 ≤ u ⊥ (x + 1 )( 1 − sinu ) ≥ 0,
(5.6)

where x ∈ � and u ∈ �. It is clear that xe = 0 is an equilibrium. For any x > −1,
the solutions of the associated nonlinear complementarity problem (NCP) 0 ≤ u ⊥
(x + 1)(1 − sinu) ≥ 0 are u = 0 and u = (2k + 1/2)π for k ≥ 0. Each of these
solutions is strongly regular. The unique solution trajectory to (5.6) that is near the
pair (xe, ue) = (0, 0) initially is (x(t, x0), u(t, x0)) = (x0e−t, 0) for all t ≥ 0. The
equilibrium xe = 0 is clearly exponentially stable for the resulting ODE, which is
ẋ = −x. In contrast, the unique solution trajectory to (5.6) that is near the pair
(xe, ûe) = (0, π/2) initially is (x(t, x0), u(t, x0)) = (x0et, π/2) for all t ≥ 0. The same
equilibrium xe = 0 is clearly unstable for the resulting ODE, which is ẋ = x.

Returning to the general discussion, we fix an implicit VI solution function u(x)
as defined above. For simplicity, we focus on the case where K is a polyhedron. It
follows that u(x) is a PC1 function of x ∈ V. Let C(xe) ≡ T (K;u(xe)) ∩H(xe, ue)⊥

be the critical cone of the linearly constrained VI (K,H(xe, ·)). It is known that the
directional derivative u ′(xe; z) of the VI solution map u(x) along the direction z is
the unique solution v of the generalized LCP:

C(xe) � v ⊥ JxH(xe, ue)z + JuH(xe, ue)v ∈ C(xe)∗.

Based on this characterization of the directional derivative, define the following gen-
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eralized LCS that extends (4.7) to the nonlinear case:

ż = JxF (xe, ue)z + JuF (xe, ue)v,

C(xe) � v ⊥ JxH(xe, ue)z + JuH(xe, ue)v ∈ C(xe)∗.
(5.7)

Proposition 5.7. Let K be polyhedral and let F and H be C1 in a neighborhood
of the pair (xe, ue), where F (xe, ue) = 0 and ue is a strongly regular solution of the VI
(K,H(xe, ·)). Let V × U and u : V → U be, respectively, the neighborhood of (xe, ue)
and the solution map associated with the strong regularity of ue. The two statements
below are equivalent.

(a) xe is an exponentially stable equilibrium of the ODE: ẋ = F (x, u(x)).
(b) ze = 0 is an exponentially stable equilibrium of the generalized LCS (5.7).
Proof. This follows readily from Corollary 5.6.
We illustrate Proposition 5.7 with a functional evolutionary variational inequality

(FEVI) of the following kind:

ẋ = ΠK(x− Φ(x)) − x,(5.8)

where ΠK denotes the Euclidean projection onto the polyhedron K and Φ is a C1

function defined on �n. The equilibria of this DVI are precisely the solutions of
the finite-dimensional VI (K,Φ). Incidentally, there are other dynamical systems
whose equilibria are solutions of the VI. The above FEVI is different from the kind
of evolutionary variational problems studied in the literature of differential inclusions
which rely on a “generalized equation” formulation of the VI; see, e.g., [16]. A distinct
advantage of the FEVI (5.8) over the latter kind is that the solution trajectories of
(5.8) are all C1 because the right-hand side is a Lipschitz function of x, whereas those
based on the differential inclusion formulation need not be so. In addition, when
started at a vector in K, a trajectory of (5.8) will remain in K. The last assertion is
established in the result below.

Proposition 5.8. Let K be a closed convex set and Φ be Lipschitz continuous on
K. Let x(t, x0) denote the unique solution trajectory of (5.8) initiated at x(0) = x0.
If x0 ∈ K, then x(t, x0) ∈ K for all t ≥ 0.

Proof. Considering (5.8) as an ODE with an inhomogeneous right-hand side, we
have

x(t, x0) = e−tx0 +

∫ t

0

e−(t−τ) ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

= e−t x0 + ( 1 − e−t )

∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

et − 1

= e−t x0 + ( 1 − e−t )

∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ∫ t

0
eτ dτ

.(5.9)

Since x(t, x0) is well defined for all t, ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
is continuous in τ .

Hence, we can represent the integrals in (5.9) by Riemann sums:

I ≡
∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ∫ t

0
eτ dτ

= lim
k→∞

∑k
i=1 e

si ΠK

(
x(si, x

0) − Φ(x(si, x
0))
) t
k∑k

i=1 e
si

t

k

,
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where si is any point in the subinterval [ (i−1)
k t, i

k t]. Since K is a convex set, the
vector (

k∑
i=1

esi
t

k

)−1 [ k∑
i=1

esi ΠK

(
x(si, x

0) − Φ(x(si, x
0))
) t
k

]
,

which is a convex combination of vectors in K, belongs to K for all positive integers
k. By the closedness of K, it follows that the vector I, and thus x(t, x0), also belongs
to K.

The system (5.8) is a special DVI with F (x, u) ≡ u−x and H(x, u) ≡ u−x+Φ(x).
Since H(x, ·) is strongly monotone, the strong regularity condition holds trivially.
Moreover, by the chain rule of B-differentiation, we have, letting u(x) ≡ ΠK(x−Φ(x)),

u ′(x; z) = ΠC(z − JΦ(x)z),

where C ≡ T (K;u(x)) ∩ (u(x) − x + Φ(x))⊥ is the critical cone of the polyhedron K
at the projected vector u(x); see [15, Chapter 4]. Consequently, the first-order LCS
(5.7), which becomes ż = ΠC(z − JΦ(x)z) − z, is a functional evolutionary version
of the finite-dimensional generalized LCP C � z ⊥ JΦ(x)z ∈ C∗ of the same kind as
(5.8). Notice that if x ∈ SOL(K,Φ) so that u(x) = x, then C = T (K,x) ∩ Φ(x)⊥

coincides with the critical cone of the VI (K,Φ) at the solution x.
Summarizing the above discussion and invoking Proposition 5.7, we obtain the

following result for the FEVI (5.8).
Corollary 5.9. Let K be a polyhedron and let Φ : �n → �n be C1. A solution

xe ∈ SOL(K,Φ) is exponentially stable for the FEVI (5.8) if and only if the origin is
an exponentially stable equilibrium for the linearized FEVI: ż = ΠC(z−JΦ(xe)z)− z,
where C ≡ T (K;xe) ∩ Φ(xe)⊥.

Next, we specialize Proposition 5.7 to the NCS

ẋ(t) = F (x(t), u(t)),

0 ≤ u(t) ⊥ H(x(t), u(t)) ≥ 0,
(5.10)

which is a special case of (5.5) with K = �m
+ . Let (xe, ue) be as specified above. The

strong regularity of ue can be characterized by introducing the three fundamental
index sets (αe, βe, γe) associated with the pair (xe, ue) (cf. the LCS with a P-matrix
in section 3):

αe = { i : ue
i > 0 = Hi(x

e, ue) },

βe = { i : ue
i = 0 = Hi(x

e, ue) },

γe = { i : ue
i = 0 < Hi(x

e, ue) }.

According to these sets, we can partition the (partial) Jacobian matrix JuH(xe, ue)
as follows:

JuH(xe, ue) ≡

⎡⎢⎣ Juαe
Hαe(x

e, ue) Juβe
Hαe(x

e, ue) Juγe
Hαe(x

e, ue)

Juαe
Hβe(x

e, ue) Juβe
Hβe(x

e, ue) Juγe
Hβe(x

e, ue)

Juαe
Hγe(x

e, ue) Juβe
Hγe(x

e, ue) Juγe
Hγe(x

e, ue)

⎤⎥⎦ ,
where Juα

Hβ denotes the matrix of partial derivatives [∂Hj/∂ui](i,j)∈α×β . It is known
that ue is a strongly regular solution of the NCP

0 ≤ u ⊥ H(xe, u) ≥ 0(5.11)
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if and only if (a) the principal submatrix Juαe
Hαe

(xe, ue) is nonsingular, and (b) the
Schur complement

D̂βeβe ≡ Juβe
Hβe

(xe, ue) − Juαe
Hβe(x

e, ue)
[
Juαe

Hαe(x
e, ue)

]−1
Juβe

Hαe(x
e, ue)

(5.12)

is a P-matrix. Moreover, for every z ∈ �n, the directional derivative u ′(xe; z) is the
unique vector û satisfying ûγe = 0 and

JxHαe(x
e, ue)z + Jαe

Hαe
(xe, ue)ûαe

+ Jαe
Hβe

(xe, ue)ûβe
= 0,

0 ≤ ûβe ⊥ JxHβe
(xe, ue)z + Jβe

Hαe
(xe, ue)ûαe

+ Jβe
Hβe

(xe, ue)ûβe
≥ 0,

which, by the nonsingularity of JαeHαe(x
e, ue), is equivalent to the standard LCP

0 ≤ ûβe ⊥ Ĉβe•z + D̂βeβe ûβe ≥ 0,

where Ĉβe• ≡ JxHβe(x
e, ue)−Juαe

Hβe(x
e, ue)[Juαe

Hαe(x
e, ue) ]−1JxHαe(x

e, ue). De-
fine the matrices

Â ≡ JxF (xe, ue) − Juαe
F (xe, ue)[Juαe

Hαe
(xe, ue) ]−1JxHαe

(xe, ue),

B̂•βe
≡ Juβe

F (xe, ue) − Juαe
F (xe, ue)[Juαe

Hαe
(xe, ue) ]−1Juβe

Hαe
(xe, ue);

consider the homogeneous LCS where the algebraic variable involves only the βe-
components:

ż = Âz + B̂•βe
ûβe ,

0 ≤ ûβe
⊥ Ĉβe•z + D̂βeβe

ûβe
≥ 0.

(5.13)

The results in section 3 can surely be applied to (5.13) to yield sufficient conditions
for statement (b) of the following proposition to hold, whose proof follows readily
from Proposition 5.7.

Proposition 5.10. Let F and H be C1 in a neighborhood of the pair (xe, ue),
where F (xe, ue) = 0 and ue is a strongly regular solution of the NCP (5.11). Let
V × U and u : V → U be, respectively, the neighborhood of (xe, ue) and the solution
map associated with the strong regularity of ue. The following two statements are
equivalent.

(a) xe is an exponentially stable equilibrium of the ODE ẋ = F (x, u(x)).
(b) ze = 0 is an exponentially stable equilibrium of the homogeneous LCS (5.13).

6. Concluding remarks. Based on the combined tools of contemporary finite
dimensional LCPs and VIs/CPs and classical Lyapunov stability theory for smooth
dynamical systems, we have obtained many stability results for the LCS and its non-
linear generalizations. Part of the novelty of our analysis is the employment of a non-
traditional Lyapunov function in both the system state and the auxiliary algebraic
variable, which leads to a nondifferentiable Lyapunov function of the state alone. We
speculate that this approach might be useful in other contexts, such as in the con-
vergence analysis of iterative algorithms for solving finite-dimensional variational and
optimization problems.

The results in this paper have left open some questions that are worthy of further
investigation. Foremost among these is the question of whether asymptotic stability
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would imply exponential stability for an LCS satisfying the P-property. In this vein,
we recall [52, Lemma 8.2] which establishes such an implication for a linear selection-
able DI. Yet, as we have noted a few times, the DI result is not applicable to the
LCS. Nevertheless, the same implication may be valid for the LCS. Another interest-
ing question is the persistence of asymptotic stability of a B-differentiable differential
system under small perturbations; related to the latter question is whether there are
analogues of the results in subsection 5.1 for asymptotic stability. Finally, the authors
in [16] have established a very interesting necessary degree-theoretic condition for the
asymptotic stability of an evolutionary variational inequality. We feel that a further
degree-theoretic exploration of the LCS and the DVI is warranted.

Acknowledgment. We are grateful to two referees who have offered many con-
structive comments that have significantly improved the presentation of the paper.
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[7] M. K. Çamlibel, W. P. M. H. Heemels, and J. M. Schumacher, On linear passive comple-
mentarity systems, European J. Control, 8 (2002), pp. 220–237.
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[10] M. K. Çamlibel, J. S. Pang, and J. L. Shen, Conewise Linear Systems: NonZenoness
and Observability, Preprint, Department of Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY, 2005.
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Abstract. An adaptive rule-based algorithm, SpaseLoc, is described to solve localization prob-
lems for ad hoc wireless sensor networks. A large problem is solved as a sequence of very small
subproblems, each of which is solved by semidefinite programming relaxation of a geometric opti-
mization model. The subproblems are generated according to a set of sensor/anchor selection rules.
Computational results compared with existing approaches show that the SpaseLoc algorithm scales
well and provides excellent localization accuracy.
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1. Introduction. Ad hoc wireless sensor networks may contain hundreds or
even tens of thousands of inexpensive devices (sensors) that can communicate with
their neighbors within a limited radio range. By relaying information to each other,
they can transmit signals to a command post anywhere within the network. They
have many practical uses in areas such as military applications [15], environment or
industrial control and monitoring [7, 9], wildlife monitoring [24], and security moni-
toring [15]. For example, Southern California Edison’s Nuclear Generating Station in
San Onofre, CA, has deployed wireless mesh networked sensors from Dust Networks,
Inc. to obtain real-time trend data [9]. These data are used to predict which motors
are about to fail, so they could be preemptively rebuilt or replaced during scheduled
maintenance periods. The use of a wireless sensor network saves the station money
and avoids potential machine shutdown. Implementation of a sensor localization al-
gorithm would provide a service that eliminates the need to record every sensor’s
location and its associated ID number in the network.

Wireless sensor networks are potentially important enablers for many other ad-
vanced applications. A huge variety of applications lie ahead. By 2008, there could
be 100 million wireless sensors in use, up from about 200,000 in 2005, according to
the market-research company Harbor Research. The worldwide market for wireless
sensors, it says, will grow from $100 million in 2005 to more than $1 billion by 2009
[18]. This is motivating great effort in academia and industry to explore effective ways
to build sensor networks with feature-rich services [12].

One of the important inputs these services build upon is the exact locations of
all sensors in the network. The need for sensor localization arises because accurate
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1 ≤ i < j ≤ s|s+1 ≤ k ≤ n

︸ ︷︷ ︸|︸ ︷︷ ︸
s sensors m anchors

Fig. 1.1. Indexing of sensors and anchors.

locations are known for only some of the sensors (which are called anchors). If the
networks are to achieve their purpose, the locations of the remaining sensors must
be determined. One approach to localizing these sensors with unknown locations is
to use known anchor locations and distance measurements that neighboring sensors
and anchors obtain among themselves. The mathematical problem is to estimate all
sensors’ locations using a sparse data matrix of noisy distance measurements. This
leads to a large, nonconvex, constrained optimization problem. Large networks may
contain many thousands of sensors, whose locations should be determined accurately
and quickly.

1.1. Problem definition. Sensor localization for ad hoc wireless sensor net-
works aims to find the locations of all sensors in the network, given pairwise distance
measurements among some of the sensors and known locations of some of the sensors.
The sensors with known locations are called anchors. From now on, sensor generally
means unlocalized sensor, excluding anchors. A node is any sensor or anchor.

We use a constrained optimization approach to estimate the sensors’ locations.
The following input, output, and objectives are considered.

Input
Total points: n, the total number of nodes in the network.
Unknown points : s sensors, whose locations xi ∈ R2, i = 1, . . . , s, are to be de-

termined. (We assume the points are on a plane here, but the approach is
extended to three dimensions in Jin’s thesis [14].)

Known points: m anchors, whose locations ak ∈ R2, k = s + 1, . . . , n, are known.
(Note that we put anchors at the end of the total points’ list without loss
of generality, and that n = s + m. Index k is specific for indexing anchors.
Refer to Figure 1.1 for node indexing.)

Known distance measurements: The nonzero elements of a sparse matrix d̂ con-
taining the readings of certain ranging devices for estimating the distance
between two points. d̂ij is the distance measurement between two sensors xi

and xj (i < j ≤ s), and d̂ik is the distance measurement between some sensor
xi and anchor ak (i ≤ s < k). The distance measurements are constant data
and generally have errors.

Output
Locations: Estimated locations xi for s sensors.

Objectives
Accuracy : Minimal errors in the estimated sensor locations.
Speed : Fast enough for real-time applications (e.g., networks with moving sensors).
Scalability : Suitable for large-scale deployment (with tens of thousands of nodes).

1.2. Notation. The Euclidean distance between two vectors v and w is defined
to be ‖v −w‖, where ‖ · ‖ always means the 2-norm. Nodes are said to be connected

if the associated measurements d̂ij or d̂ik exist. The remaining elements of d̂ are zero.
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If a measurement does exist between node i and j but it is zero (i and j are at the

same spot), we do not set d̂ij to zero: we set it to machine precision ε instead to

distinguish from the case of d̂ij = 0 when two nodes’ distance is beyond the sensor
device’s measuring range.

1.3. Related research work. Sensor localization in ad hoc wireless networks
has been a booming research area recently. Hightower and Boriello [12] give an ex-
tensive review of the area and available methods. There are many ways to solve the
localization problem [6, 8, 10, 13, 17, 19, 20, 21, 22], with two main ones based on
triangulation and optimization.

Triangulation methods estimate node locations based on distance measurements
between neighboring nodes, and some algorithms use iterative steps to localize all
sensors.

Early work using optimization techniques is reported by Doherty, El Ghaoui, and
Pister [8]. Ideally the Euclidean distance between neighboring nodes should be fitted
in some near-equality sense to the distance measurements:

‖xi − xj‖ ≈ d̂ij and ‖xi − ak‖ ≈ d̂ik.(1.1)

Doherty, El Ghaoui, and Pister formulate a convex optimization model by treating
the constraints as ‖xi−xj‖ ≤ d̂ij and ‖xi−ak‖ ≤ d̂ik, and by including certain other
convex constraints. This formulation takes advantage of available optimization algo-
rithms, including those for convex optimization. However, the method needs sufficient
anchors to be on the boundary of the localization area for it to work effectively.

Biswas and Ye [2] work with the near-equality constraints (1.1), and more im-
portantly introduced a semidefinite programming (SDP) relaxation method in order
to retain the benefits of convex optimization. They report that their method yields
more accuracy than the approach in [8].

The SDP relaxation approach can solve small problems effectively. The paper
[2] reports a few seconds of laptop execution time for a 50-node localization problem.
However, the number of constraints in the SDP model is O(n2), where n is the number
of nodes in the network. Even a few-hundred-node problem leads to excessive memory
and computation time by available SDP solvers such as DSDP (Benson, Ye, and
Zhang [1]) and SeDuMi (Sturm [23]). These solvers are effective for SDP problems
with dimension and number of constraints up to a few thousand.

Tseng [25] has presented a second-order cone programming (SOCP) relaxation
model that permits solution for problem sizes up to a few thousand using available
SOCP solvers. However, the additional relaxation of the original model usually gen-
erates larger error rates, and the run-times are high. The author reports CPU times
of 330 seconds for 1000 nodes and 3 hours for 2000 nodes using SeDuMi 1.05 [23] and
MATLAB 6.1 on a Linux PC.

Biswas and Ye [3] propose a decomposition scheme to overcome the scalability
issue with SDP solvers. The anchors in the network are first partitioned into many
clusters according to their physical locations, and sensors are assigned to these clus-
ters if they have a direct connection to one of the anchors. Each cluster formulates
a subproblem, and the subproblems are solved independently on each cluster using
the SDP relaxation of [2]. The paper reports results for randomly generated sensor
networks of 4000 sensors partitioned into 100 clusters strictly according to their ge-
ographic locations. Sensors with distance connections to more than one cluster are
included in multiple clusters. The final estimation of their locations is determined
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by the cluster that gives the least estimated errors. An execution time of about
4 minutes on a 1.2GHz Pentium laptop is reported for a problem of this size. Thus,
the decomposition approach makes large-scale sensor network localization possible on
a single processor. The further advantage is that multiple CPUs can be used in a
natural way.

1.4. SpaseLoc. A basic tool that we have developed during this research is
a rule-based iterative algorithm named SpaseLoc (subproblem algorithm for sensor
localization). It is effective for networks involving tens of thousands of sensors and
beyond, using a single CPU.

To solve a large localization problem (defined as the full problem), SpaseLoc pro-
ceeds iteratively by estimating only a portion of the total sensors’ locations at each
iteration. Some anchors and sensors are chosen according to a set of rules. They
form a sensor localization subproblem that can be treated similarly to the basic SDP
formulation of Biswas and Ye [2]. The solution from the subproblem is fed back to
the full problem and the algorithm iterates again until all sensors are localized.

Computational results show that SpaseLoc can solve small or large problems with
excellent accuracy and scalability. It is capable of localizing 4000 nodes with great
accuracy in under 20 seconds, and 10000 nodes in under a minute on a 2.4 GHz laptop.

2. The subproblem SDP model. This section reviews the quadratic program-
ming formulation of the sensor localization problem and the SDP relaxation model of
Biswas and Ye [2] that the SpaseLoc subproblem is based on. Error analysis is also
reviewed here as a reference for later sections.

2.1. Euclidean distance model. Consider a network of sensors and anchors
labeled as in Figure 1.1. For any point in the network, there could be three types
of distance measurements. Since we generally do not need the distance information
between two anchor points, we exclude this type of measurement from now on.

The other types of distance measurements are the two we need for the localization
model. First is the distance measurement between two sensors (i and j) with unknown
locations; second is the distance measurement between a sensor (i) and an anchor (k)
with known location. Corresponding to these two types of distances, we define sets
N1, N1, N2, and N2 as follows:

• N1 includes pairwise sensors (i, j) if i < j and there exists a distance mea-

surement d̂ij :

N1 = {(i, j) with known d̂ij and i < j}.
• N1 includes pairwise sensors (i, j) with unknown measurement d̂ij and i < j:

N1 = {(i, j) with unknown d̂ij and i < j}.
• N2 includes pairs of sensor i and anchor k if there exists a measurement d̂ik:

N2 = {(i, k) with known d̂ik}.
• N2 includes pairs of sensor i and anchor k with unknown measurement d̂ik:

N2 = {(i, k) with unknown d̂ik}.
The full set of nodes and pairwise distance measurements form a graph G = {V,E},
where V = {1, 2, . . . , s, s + 1, . . . , n} and E = N1 ∪N2.

Introduce αij to be the difference between the measured squared distance (d̂ij)
2

and the squared Euclidean distance ‖xi − xj‖2 from sensor i to sensor j. Also, let

αik be the difference between the measured squared distance (d̂ik)
2 and the squared

Euclidean distance ‖xi−ak‖2 from sensor i to anchor k. Intuitively, we seek a solution
for which the magnitude of these differences is small.
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Lower bounds rij or rik are imposed if (i, j) ∈ N1 or if (i, k) ∈ N2. Typically each
rij or rik value is the radio range (also known as radius) within which the associated
sensors can detect each other.

Biswas and Ye [2] formulate the sensor localization problem as minimizing the
�1-norm of the squared-distance errors αij and αik subject to mixed equality and
inequality constraints:

minimize
xi,xj ,αij ,αik

∑
(i,j)∈N1

|αij | +
∑

(i,k)∈N2

|αik|

subject to ‖xi − xj‖2 − αij = (d̂ij)
2 ∀ (i, j) ∈ N1,

‖xi − ak‖2 − αik = (d̂ik)
2 ∀ (i, k) ∈ N2,

‖xi − xj‖2 ≥ r2
ij ∀ (i, j) ∈ N1,

‖xi − ak‖2 ≥ r2
ik ∀ (i, k) ∈ N2,

xi, xj ∈ R2, αij , αik ∈ R,

i, j = 1, . . . , s, k = s + 1, . . . , n.

(2.1)

The above model is a nonconvex constrained optimization problem. As yet there
is no effective solution method. In the following subsections, we review Biswas and
Ye’s [2] relaxation method for solving this problem approximately.

2.2. The Euclidean distance model in matrix form. The distance model
(2.1) is reformulated into (2.2) (refer to Biswas and Ye [2]) by introducing matrix
variables as follows:

minimize
∑

(i,j)∈N1

(α+
ij + α−

ij) +
∑

(i,k)∈N2

(α+
ik + α−

ik)

subject to eTij Y eij − α+
ij + α−

ij = (d̂ij)
2 ∀ (i, j) ∈ N1,(

ei
−ak

)T(
Y XT

X I

)(
ei

−ak

)
− α+

ik + α−
ik = (d̂ik)

2 ∀ (i, k) ∈ N2,

eTij Y eij ≥ r2
ij ∀ (i, j) ∈ N1,(

ei
−ak

)T(
Y XT

X I

)(
ei

−ak

)
≥ r2

ik ∀ (i, k) ∈ N2,

Y = XTX,

α+
ij , α−

ij , α+
ik, α−

ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.2)

where
• X = (x1 x2 . . . xs) is a 2 × s matrix to be determined;
• eij is a zero column vector except for 1 in location i and −1 in location j, so

that

‖xi − xj‖2 = eTij XTX eij ;
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• ei is a zero column vector except for 1 in position i, so that

‖xi − ak‖2 =

(
ei

−ak

)T (
X I

)T (
X I

)( ei
−ak

)
;

• Y is defined to be XTX;
• The substitutions αij = α+

ij − α−
ij and αik = α+

ik − α−
ik are made to deal with

|αij | and |αik| in the normal way.

2.3. The SDP relaxation model. The approach of Biswas and Ye [2] is to
relax the constraint Y = XTX to be Y 	 XTX, for which an equivalent matrix
inequality is (Boyd et al. [5])

ZI ≡
(
Y XT

X I

)
	 0.(2.3)

With the definitions

AI =

⎛⎝0 0 0
1 0 1
0 1 1

⎞⎠ , bI =

⎛⎝1
1
2

⎞⎠ ,

where 0 in AI is a zero column vector of dimension s, problem (2.2) is relaxed to a
linear SDP:

minimize
∑

(i,j)∈N1

(α+
ij + α−

ij) +
∑

(i,k)∈N2

(α+
ik + α−

ik)

subject to diag(AT
I Z AI) = bI ,(

eij
0

)T

Z

(
eij
0

)
− α+

ij + α−
ij = (d̂ij)

2 ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
− α+

ik + α−
ik = (d̂ik)

2 ∀ (i, k) ∈ N2,

(
eij
0

)T

Z

(
eij
0

)
≥ r2

ij ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
≥ r2

ik ∀ (i, k) ∈ N2,

Z 	 0, α+
ij , α−

ij , α+
ik, α−

ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.4)

where the constraint diag(AT
I ZAI) = bI ensures that the matrix variable Z’s lower

right corner is a 2 × 2 identity matrix I, so that Z takes the form of ZI in (2.3).
Initially, Biswas and Ye [2, 3] omit the ≥ inequalities involving rij and rik and

solve the resulting problem to obtain an initial solution Z1. (The inequality constraints
increase the problem size dramatically, and Z1 is likely to satisfy most of them.) They
then adopt an “iterative active-constraint generation technique” in which inequalities
violated by Zk are added to the problem and the resulting SDP is solved to give Zk+1

(k = 1, 2, . . . ). The process usually terminates before all constraints are included.
Further study of this approach is presented in section 4.1.
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2.4. SDP model analysis. Let Z̄ =

(
Ȳ X̄T

X̄ I

)

be a feasible solution of the
relaxed SDP (2.4). Assuming the distance measurements are exact (no noise), Biswas
and Ye [2] give conditions under which X̄ and Ȳ solve problem (2.2) exactly as follows:

• Z̄ is the unique optimal solution of (2.4), including all inequality constraints.
• In (2.4), there are 2n + n(n + 1)/2 exact pairwise distance measurements.

These conditions ensure that Ȳ = X̄T X̄. In practice, distance measurements have
noise and we only know that the SDP solution satisfies Ȳ −X̄T X̄ 	 0. This inequality
can be used for error analysis of the location estimates provided by the relaxation.
For example, trace(Ȳ − X̄T X̄) =

∑
τi, where

τi ≡ Ȳii − ‖x̄i‖2 ≥ 0,(2.5)

is a measure of deviation of the SDP solution from the desired constraint Y = XTX
(ignoring off-diagonal elements). The individual trace τi can be used to evaluate the
location estimate x̄i for sensor i. In particular, we interpret a smaller τi to mean
higher accuracy in the estimated location xi. Further explanation is given in [2].

3. SpaseLoc: A scalable localization algorithm. When the number of nodes
in (2.4) is large, applying a general SDP solver such as DSDP5.0 [1] or SeDuMi [23]
would not scale well. In this section, we present a sequential subproblem approach
named SpaseLoc to solve the full localization problem iteratively.

3.1. Adaptive subproblem approach. We call the overall sensor localization
problem including all sensors and anchors the full problem. At each iteration, Spase-
Loc selects from the full problem a subset of the unlocalized sensors and a subset of
the anchors to form a localization subproblem. We call the selected sensors in the sub-
problem subsensors, and the selected anchors in the subproblem subanchors, These
subsensors and subanchors, together with their known distance measurements and
known anchors’ locations, form a sub-SDP relaxation model to be solved using the
same formulation as in (2.4).

In our adaptive approach, the subsensors and subanchors for each subproblem are
chosen dynamically according to rule sets. (Rather than using predefined data, every
new iteration’s subproblem generation is based on the previous iteration’s results.)
The resulting SDP subproblems are of varying but limited size. Currently they are
solved by Benson, Ye, and Zhang’s SDP solver DSDP5.0 [1].

SpaseLoc is a greedy algorithm in the sense that each subproblem determines the
final estimate of the associated sensor locations.

3.2. The SpaseLoc algorithm. The main steps of SpaseLoc are listed below,
followed by explanations of the steps and definitions of new terms used therein.

A0. Set subproblem size.
A1. Subproblem creation: Select subsensors and subanchors to be included in the

subproblem.
A2. Formulate SDP relaxation model (2.4) based on the chosen subsensors and

subanchors, together with the known distances among them and the suban-
chors’ known locations.

A3. Call SDP solver to obtain a solution for the subsensors’ locations.
A4. Classify localized subsensors according to their τi value.
A5. If all sensors in the network become localized or are determined to be outliers,

go to step A6. Otherwise, return to step A1 for the next iteration.
A6. Output all sensor locations and report outliers if any. Stop.
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Fig. 3.1. SpaseLoc execution time as a function of subproblem size: total nodes = 10000,
anchors = 100, radius = 0.0226.

In step A0, subproblem size specifies a limit on the number of unlocalized sensors
to be included in each subproblem. It can range from 1 to an upper limit value
that is potentially solvable by the SDP solver. In our experiments, the upper limit
is 150. The most effective subproblem size seems to change with the full problem
size, the model parameters such as radius, and the SDP solver used. We perform
an approximate linesearch to find subproblem size that corresponds to the minimum
time because, empirically, the total execution time with all other parameters fixed is
essentially a convex function of subproblem size.

For example, when full problem size is 10000 with 100 anchors, radius 0.0226, and
no noise, subproblem size 7 seems to give the best execution time with the DSDP5.0
solver (refer to Figure 3.1). The search time for subproblem size is not included as
part of the SpaseLoc execution time.

Step A1 involves choosing a subset of unlocalized sensors (no more than subprob-
lem size) and an associated subset of nodes with known locations. The latter can
include a subset of the original anchors and/or a subset of sensors already localized
by a previous subproblem (we define them as acting anchors). The rules for choosing
subsensors and subanchors in this iteration are discussed in sections 3.4–3.5.

In step A4, the error in sensor i’s location is estimated by its individual trace τi
as discussed in section 2.4. Subsensors whose τi value is within a given tolerance τ
are labeled as localized and treated as acting anchors for the next iteration, whereas
subsensors whose localization error is higher than the tolerance are also labeled as
localized but are not used as acting anchors in later iterations. These new acting
anchors are labeled with different acting levels as explained in section 3.4. The value
of τ has an impact on the localization accuracy. Bigger values allow more localized
sensors to be acting anchors, but with possibly greater transitive errors. Smaller
values may increase the estimation accuracy for some of the sensors, but could lead to
fewer connections to anchors for some unlocalized sensors. A rule of thumb is to use
a small τ for networks with high anchor density to achieve potentially more accuracy,
and a bigger τ for networks with low anchor density to avoid lacking connections to
anchors. In order to avoid the side effect of a bigger τ eliminating too many potential
acting anchors, at some later iteration we utilize all localized sensors as acting anchors
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(including those whose τi value is bigger than the given tolerance τ). This change
only starts when the remaining unlocalized sensors are connected to fewer than three
anchors. It makes sure that we use acting anchors with higher accuracy first, but if
no such acting anchors are available, we use localized points whose locations might
be less accurate. In most cases, this is better than using no reference points at all.

In step A5, an unlocalized sensor is called an outlier when it does not have any
distance information for the algorithm to decide its location. If a sensor has no
connection to any anchor, it is classified as an outlier. In addition, if a connected
cluster of sensors has no connection to any anchors, then all sensors in the cluster will
be outliers.

The next sections explain the subproblem creation procedure used by step A1.
Section 3.3 lists steps S1–S8 of the creation procedure itself. Section 3.4 presents rules
RS1–RS4 for subsensor selection in step S5. Section 3.5 presents rules RA1–RA3 for
subanchor selection in step S7. Section 3.6 illustrates the method for independent
subanchor selection used in rules RA2–RA3. Sections 3.7–3.8 discuss the routines
used in step S8 to localize sensors that have fewer than 3 connected anchors.

3.3. Subproblem creation procedure. As explained, subproblem size is a
predetermined parameter that represents the maximum number of unlocalized sen-
sors that can be selected as subsensors in a subproblem. When there are more than
subproblem size unlocalized sensors, we have a choice to make among them.

The subproblem creation procedure makes sure that the choice of subsensors is
based first on the number of connected anchors they have, and second on the type
of connected anchors such as original anchors and different levels of acting anchors
as defined in section 3.4, and that the choice of subanchors is based on a set of rules
(section 3.5). The main steps are listed below, followed by explanations of the steps
and definitions of new terms used.

S1. Specify MaxAnchorReq.
S2. Initialize AnchorReq = MaxAnchorReq.
S3. Loop through unlocalized sensors, finding all that are connected to at least

AnchorReq anchors. If AnchorReq ≥ 3, determine if there are 3 independent
subanchors; if not, go to the next sensor.1 Enter each found sensor into a
candidate subsensor list, and enter its connected anchors into a corresponding
candidate subanchor list. Each sensor in the candidate subsensor list has its
own candidate subanchor list (so there are as many candidate subanchor lists
as the number of sensors in the candidate subsensor list). Let sub s candidate
be the length of the candidate subsensor list.

S4. If 0 < sub s candidate ≤ subproblem size, the candidate subsensor list be-
comes the chosen subsensors list. Go to step S7.

S5. If sub s candidate > subproblem size, the choice of subsensors is further based
on subsensor selection rules RS1–RS4 described in section 3.4. After ex-
actly subproblem size subsensors are selected from the candidate list accord-
ing these rules, go to step S7.

S6. Now sub s candidate = 0. Reduce AnchorReq by 1.
If AnchorReq > 0, go to step S3 for another round of subproblem creation.
Otherwise, AnchorReq = 0 and sub s candidate = 0 indicates that there are
still unlocalized sensors left that are not connected to any localized node. We
classify them as outliers and exit this procedure to continue at step A6 of

1See section 3.6 for dependency definition and independent anchor selection.
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section 3.2.
S7. Now that we have a subsensor list and the candidate subanchor lists, choose

subanchors using selection rules RA1–RA3 presented in section 3.5.
S8. The subsensors and subanchors are selected and the subproblem creation

routine finishes here.
If AnchorReq ≥ 3, go to step A2 in section 3.2.
If AnchorReq = 2, apply the procedure in section 3.7 and go to step A5.
If AnchorReq = 1, apply the procedure in section 3.8 and go to step A5.

In step S1, MaxAnchorReq determines the initial (maximum) value of AnchorReq.
It is useful for scalability when connectivity is dense. A smaller MaxAnchorReq would
generally cause fewer subanchors to be included in the subproblem, thus reducing the
number of distance constraints in each SDP subproblem and hence reducing execution
time for each iteration. For instance, under ideal conditions (where there is no noise),
even if a sensor has 10 distance measurements to 10 anchors, we don’t need to include
all 10 anchors because we can use 3 to localize that sensor accurately.

In the presence of noise, a bigger MaxAnchorReq should reduce the average esti-
mation error. For example, if there is a large distance measurement error from one
particular anchor, since MaxAnchorReq anchors are all taken into consideration for
deciding the sensor’s actual location, the large error would be averaged out. Another
consideration for setting MaxAnchorReq is the trade-off between estimation accu-
racy and execution speed. If we are in a static environment and would like to have
localization as accurate as possible under noise conditions, we might choose a large
MaxAnchorReq. However, in a real-time environment involving moving sensors, where
speed might take priority, we would consider a smaller MaxAnchorReq.

In step S2, AnchorReq is a dynamic parameter that may decrease in later steps.
In step S4, the subproblem may contain fewer than subproblem size subsensors,

which is perfectly acceptable. The alternative is to reduce AnchorReq by 1 and
find more subsensor candidates that have fewer distance connections. However, this
approach might reduce the accuracy of the algorithm, because we do want to localize
the subsensors as accurately as possible as the iteration progresses, and the newly
localized subsensors could be further used as acting anchors for the next iteration.

In step S6, AnchorReq is iteratively reduced by 1 from MaxAnchorReq to 0 even-
tually. This approach allows sensors with at least AnchorReq connections to anchors
to be localized before sensors with fewer connections to anchors.

As we know, under no-noise conditions, a sensor’s location can be uniquely deter-
mined by connections to at least 3 independent anchors. If a sensor has connections
to only 2 anchors, there are two possible locations; and if there is only 1 connection
to an anchor, the sensor can be anywhere on a circle. In step S8, we use heuristic
subroutines described in sections 3.7–3.8 to include the sensor’s anchors’ connected
neighboring nodes in the subproblem in order to improve the estimation accuracy.

3.4. Subsensor selection. In step S5, when the number of sensors in the can-
didate subsensor list is bigger than subproblem size, the choice of subsensors is further
based on the types of anchors each sensor is connected to.

First, we introduce the concept of sensor priority. We assign a priority to each
sensor in the candidate subsensor list. A sensor with a smaller priority value is
selected to be localized before one with a bigger priority value. A sensor’s priority is
based on the types of anchors the sensor is directly connected to. Next, in order to
define different types of anchors, we introduce the concept of anchor acting levels. All
anchors including acting anchors are assigned certain acting levels. Original anchors
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Table 3.1

An example: priority list when MaxAnchorReq = 3.

Priority Level 1 Level 3 Level 5 Level 7 Level 9 . . . Resulting
value anchor anchor anchor anchor anchor anchor level

1 ≥ 3 any 3
2 = 2 ≥ 1 any 5
3 = 1 ≥ 2 any 7
3 = 2 = 0 ≥ 1 any 7
4 = 1 = 1 ≥ 1 any 9
4 = 2 = 0 = 0 ≥ 1 any 9
5 = 1 = 1 = 0 ≥ 1 any 11
5 = 2 = 0 = 0 = 0 ≥ 1 any 11
· · · = 0 total ≥ 3 (11, bigN)
bigN total = 2 bigN

bigN+1 total = 1 bigN+1

are always set to acting level 1. Every acting anchor is set to an acting level after it
has been localized as a sensor. Essentially, acting anchors are set with acting levels
depending on the levels of the anchors that localized them.

The priority rules for selecting subsensors from a candidate subsensor list are as
follows:

RS1. When AnchorReq ≥ 3 and a sensor has at least 3 connected anchors that are
independent, the sensor’s priority depends on the 3 connected anchors that
have the lowest acting levels among all its connected anchors. The sensor’s
priority value is defined as the summation of these 3 connected anchors’ acting
levels.

RS2. If the sensor has 3 connected anchors that are dependent, it is ranked with
the same priority as when the sensor is connected to only 2 anchors.

RS3. Sensors with 2 anchor connections are ranked with equal priority, independent
of the acting levels of the 2 connected anchors. (This can be easily expanded
to be more granular according to the connected anchors’ acting levels.) Sen-
sors in this category are assigned lower priority than any sensors that have
at least 3 independent anchor connections.

RS4. Sensors with 1 anchor connection are ranked with equal priority, indepen-
dent of the acting level of the connected anchor. (Again, this can be more
granular according to the connected anchor’s acting level.) Sensors in this
category are assigned lower priority than any sensors that have at least 2
anchor connections.

Table 3.1 illustrates the priority list for an example where MaxAnchorReq = 3 and
the sensor’s priority is determined by the 3 anchors that have the lowest acting levels
among all the sensor’s connected anchors. We can certainly add more granularity by
further classifying the acting levels of the sensor’s fourth or fifth connected anchors
(if any). Although more categorization of the priorities should increase localization
accuracy under most noise conditions, more computational effort is required to handle
more levels of priorities.

Each item in the table represents the number of anchors with different acting lev-
els that are needed at each priority. The last column represents the resulting acting
anchors’ acting levels for subsequent iterations. For example, if a sensor has at least
three independent connections to anchors, and if 3 of the anchors are original anchors
(acting level 1), this sensor belongs to priority 1 as listed in row 1 of the table. Also,
when this sensor is localized, it becomes acting anchor level 3 (the summation of the
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anchor levels of the three anchors that localized it). Similarly, if a sensor has at least
three independent connections to anchors, and if 2 of the anchors are original anchors
(acting level 1) and at least 1 of the connected anchors is at acting level 3, then this
sensor belongs to priority 2 as listed in row 2 of the table. Also, when this sensor is
localized, it becomes acting anchor level 5. The sensors that connect to two anchors
belong to the second to last priority, and sensors that connect to only one anchor
belong to the last priority. We use a big enough number bigN in the implementa-
tion to ensure that sensors connected to fewer than 3 anchors are given the lowest
priority.

3.5. Subanchor selection. In step S7, for each unlocalized subsensor in the
subsensor list, only AnchorReq of the connected anchors are allowed to be included
in the subproblem. We use the following rules to select subanchors from a candidate
subanchor list that contains more than AnchorReq anchors.

RA1. Original anchors are selected first, followed by acting anchors with lower
acting level.

RA2. The subanchors chosen should be linearly independent.
RA3. Among independent anchors in the candidate subanchor list, we use distance

scale-factors to encourage selection of the closest subanchors.

Rules RA2 and RA3 are implemented as in section 3.6. Rule RA3 is based on the
assumption that under noise conditions, we trust the shorter distance measurements
more than the longer ones.

3.6. Independent subanchors selection. Suppose sensor i is connected to
K (K > 3) anchors at locations aik with corresponding distance measurements d̂ik
(k = 1, . . . ,K). Define the matrices

A =

(
1 1 . . . 1

−ai1 −ai2 . . . −aiK

)
, D1 = diag(1/

√
1 + ‖aik‖2), D2 = diag(1/d̂ik).

We select an independent subset by a QR factorization with column interchanges
[11]: B = AD1D2, BP = QR, where Q is orthogonal, R is upper-trapezoidal, and
P is a permutation chosen to maximize the next diagonal of R at each stage of
the factorization. (D1 normalizes the columns of A, and D2 biases them in favor
of anchors that are closer to sensor i.) If the 3rd diagonal of R is larger than a
predefined threshold (10−4 is used in our simulation), then the first 3 columns of AP
are regarded as independent, and the associated anchors are chosen. Otherwise, all
subsets of 3 among the K anchors are regarded as dependent. (In MATLAB, R and
P are obtained by a command of the form [Q,R,P] = qr(B).)

3.7. Geometric subroutine (two connected anchors). This section illus-
trates the heuristic techniques used in step S8 of section 3.3 to localize sensors con-
nected to only two anchors.

When a sensor’s connected anchors are also connected to other anchors, this
subroutine may improve the accuracy of the sensor’s localization, as illustrated by an
example in Figure 3.2.

In this example, assume s1 and s2 are sensors with unknown locations, and
a3(1, 3), a4(1, 2), a5(2, 2), a6(4, 1), a7(5, 1) are anchors with known locations in brack-
ets. Assume that the sensors’ radio range is

√
2, and we are also given two distance

measurements d̂13 = 1 and d̂14 =
√

2 for sensor s1 and one measurement d̂27 = 1 for
sensor s2.
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Fig. 3.3. (a) Sensor with two anchors’ circles intersecting. (b) Sensor with two anchors, a2’s
circle in a3’s. (c) Sensor with two anchors’ circles disjoint.

Given two distances d̂13 and d̂14 to two anchors a3(1, 3) and a4(1, 2), we know
that s1 should be at either (0, 3) or (2, 3). If we only use s1, a3(1, 3), a4(1, 2) in an
SDP subproblem, then SDP relaxation will give a solution near the middle of the two
possible points, which would be very close to point (1, 3). If there is any anchor (a5)
that is near s1’s connected anchors (a3 and a4) with any of the two possible sensor
points within their radio range (point (2, 3) is within a5’s range), that point (2, 3)
must not be the real location of s1, or else s1 would be connected to this anchor (a5)
as well. Thus we can infer that s1 must be at the other point (0, 3).

Inspired by the above observation, when a sensor has at most 2 connected anchors,
we include these anchors’ connected anchors in the subproblem (we call them the
connected anchors’ neighboring anchors) together with the sensor and its directly
connected anchors. By including the neighboring anchors, we might hope that the
inequality constraints in the SDP relaxation model (2.4) would push the estimation
towards the right point. However, because of the relaxation, enforcing inequalities
in (2.4) is not equivalent to enforcing them in the distance model (2.2). The added
inequality constraints only push the original solution near (1, 3) a tiny bit towards
s1’s real location (0, 3), and the solution essentially stays at around (1, 3).

Given the ineffectiveness of the SDP relaxation approach under this condition, we
propose instead a geometric approach as illustrated in Figure 3.3. Assume s1(xx, xy)

has measurements d̂12 to anchor a2(a2x, a2y) and d̂13 to anchor a3(a3x, a3y). We also

assume d̂12 ≤ d̂13 (we can always swap the two indexes otherwise). Let al (l = 4, . . . , k)
be a2 and/or a3’s neighboring anchors with radio range r1l (l = 4, . . . , k), and let d23

be the known (exact) Euclidean distance between a2 and a3.

• If two circles centered at a2 and a3 with radii d̂12 and d̂13 intersect each other
(d̂12 + d̂13 ≥ d23 and d̂13 − d̂12 ≤ d23) as in Figure 3.3(a):

– Two possible locations of s1 are given by solutions x∗ and x∗∗ of the
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equations

‖x− a2‖2 = d̂ 2
12, ‖x− a3‖2 = d̂ 2

13.

– Sensor s1’s location is selected from x∗ and x∗∗, whichever is further
away from any neighboring anchor. Thus, for l = 4 to k,

if ‖x∗ − al‖2 < r2
1l, then x = x∗∗ and stop

else if ‖x∗∗ − al‖2 < r2
1l, then x = x∗ and stop.

Otherwise, x = (x∗ + x∗∗)/2 and stop.

• Under noise conditions, the a2 circle may be inside the a3 circle (d̂12 + d̂13 ≥
d23 and d̂13 − d̂12 > d23) as in Figure 3.3(b).

– The solutions x∗ and x∗∗ of the following equations give two possible
points for s1 on the a2 circle:

(xx − a2x)2 + (xy − a2y)
2 = d̂ 2

12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second
equation.

– If ‖x∗ − a3‖ < ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This
guarantees that the point further from a3 is chosen. Note that we base
the sensor’s estimation on the closest anchor (a2 here since d̂13 ≥ d̂12),
assuming that a shorter measurement is generally more accurate than
longer ones, given similar anchor properties.

The same approach applies when the a3 circle is inside the a2 circle (d̂12 −
d̂13 > d23).

• Under noise conditions, the a2 and a3 circles may again have no intersection
(d̂12 + d̂13 < d23) as in Figure 3.3(c).

– The solutions x∗ and x∗∗ of the following equations give two possible
points for s1 on the circle for the anchor with smaller radius. Let us
assume d̂12 ≤ d̂13:

(xx − a2x)2 + (xy − a2y)
2 = d̂ 2

12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second
equation.

– If ‖x∗ − a3‖ > ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This
guarantees that the point closer to a3 (in between a2 and a3) is chosen.

3.8. Geometric subroutine (one connected anchor). Similar inefficiency
occurs in the SDP solution when a sensor connects to only one anchor. The SDP
solver under this condition gives a solution for the sensor to be in the same location as
the sensor’s connected anchor. In reality, the sensor could be anywhere on the circle.
The SDP gives an average point, at the center of the circle, and that is where the
connected anchor is. Even if the anchor’s neighboring anchor is included in the SDP
subproblem, the inequality constraints are not active most of the time because the
SDP solution may not provide optimal solutions all the time.

We propose a heuristic for estimating a sensor’s location with only one connect-
ing anchor. The idea is to use one neighboring anchor’s radio range information to
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Fig. 3.4. (a) Sensor with one anchor connection a and one neighboring anchor b. (b) Sensor
with one anchor connection a and two neighboring anchors b, c.

eliminate the portion of the circle that the sensor would not be on, and then cal-
culate the middle of the other portion of the circle to be the sensor’s location. For
the example in Figure 3.2, because we know the distance between s2 and a7 is 1, we
know that s2 could be anywhere on the circle surrounding a7 with radius 1. Knowing
a7’s neighboring anchor node a6 is not connected to s2, we know that s2 would not
be in the area surrounding a6 with radius

√
2. Thus, s2 could be anywhere around

the half circle including points (5, 2), (6, 1), (5, 0). The heuristic chooses the middle
point between the two circles’ intersection points (5, 2) and (5, 0), which happens to
be (6, 1) in this example. The heuristic gives better accuracy for the sensor’s location
than the SDP solution under most conditions. The procedure follows.

• Assume s has one distance measurement d̂ to anchor a, and b is the closest
connected neighboring anchor to a with radio range r (refer to Figure 3.4(a)).
We assume a = (ax, ay), b = (bx, by), x = (xx, xy).

• The solutions x∗ and x∗∗ of the following equations give two possible points
s on the circle:

(xx − ax)2 + (xy − ay)
2 = d̂ 2,

(ax − bx)(xy − ay) = (ay − by)(xx − ax),

where x is on the line through a and b represented by the second equation.
• If ‖x∗ − b‖ < r, then x = x∗∗; otherwise x = x∗. This guarantees that the

point further from b is chosen.
The above heuristic provides a simple way of estimating a sensor’s location when

the sensor connects to only one anchor. A more complicated approach can be adopted
when the connected anchor has more than one neighboring anchor, which can increase
the accuracy of the sensor’s location. We call it an arc elimination heuristic. The idea
is to loop through each of the neighboring anchors and find the portion of the circle
that the sensor won’t be on, and eliminate that arc as a possible location of the
sensor. Eventually, when one or more plausible arcs remain, we choose the middle of
the largest arc to be the sensor’s location. For example, assume we add one more
neighboring anchor c to sensor s’s anchor a from the previous example in Figure
3.4(a). The new scenario is shown in Figure 3.4(b). First, we find the intersections

(points 1 and 2) of two circles: one at a with radius d̂, the other at b with radius r.
We know that the 1–2 portion of the arc closer to point b won’t be the location of
s. Second, we find the intersections (points 3 and 4) of two circles: one at a with

radius d̂, the other at c with radius r. We know that the arc 3–4 closer to point c
won’t be the location of s. Thus we deduce that s must be somewhere on the arc 1–4
further away from b or c. The estimation of s is given in the middle of the arc 1–4. As
we see, this method should provide more accuracy than the one-neighboring-anchor
approach.
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3.9. Subproblem optimality. For the case of one sensor connected to three
independent anchors, Biswas and Ye [2] prove when there is no noise that the SDP
relaxation (2.4) gives an optimal solution to (2.2). The proof depends on the fact that
there are three independent equations and only three variables.

In SpaseLoc, the subproblems are constructed from sensors that have three in-
dependent anchors (or acting anchors) where possible. If each of these subsensors
(say total s) were included in separate subproblems together with their connected
3 independent anchors, the proof in [2] shows that they would be localized exactly
by the SDP approach. If these s subsensors and their connected anchors are treated
together in a single subproblem, the larger SDP relaxation contains sets of the same
three equations that would arise in the separate SDP relaxations. The equations
form a block-diagonal system in the larger SDP. There are 3s independent equations
and the same number of variables containing only xi and yii, i = 1, . . . , s. The d̂ik
equation in (2.4) reduces under no noise conditions to yii = xTi xi for all relevant pairs
(i, k). The constraint Y −XTX 	 0 then guarantees yij = xTi xj for all j = 1, . . . , s.
Hence, the SDP solution for the SpaseLoc subproblem is also rank 2 and gives an
exact locations for all subsensors.

4. Computational results. This section explains the simulation method and
the setup for experimenting with the SpaseLoc algorithm, then presents results for
various parameter settings.

For the simulation, a total number of nodes n (including s sensors and m anchors)
is specified in the range 4 to 10000. The locations of these nodes are assigned with
a uniform random distribution on a square region of size r × r where r = 1, or put
on the grid-points of a regular topology such as a square or an equilateral triangle on
the same region. The m anchors are randomly chosen from the given n nodes. We
assume all sensors have the same radio range (radius) for any given test case. Various
radio ranges were tested in the simulation.

Euclidean distances dij = ‖xi − xj‖ are calculated among all sensor pairs (i, j)

for i < j. We then use d̂ij to simulate measured distances, where d̂ij is dij times
a random error simulated by noise factor ∈ [0, 1]. For a given radius ⊆ [0, 1] it is
defined as follows:

• If dij ≤ radius, then d̂ij = dij(1+rn∗noise factor), where rn is normally dis-
tributed with mean zero and variance one. (Any numbers generated outside
(−1, 1) are regenerated.)
In practical networks, depending on the technologies that are being used to
obtain the distance measurements, there may be many factors that contribute
to the noise level. For example, one way to obtain the distance measurement
is to use the received radio signal strength between two sensors. The signal
strength could be affected by media or obstacles in between the two sensors.
In this study, noise factor is a normally distributed random variable with
mean zero and variance one. This model could be replaced by any other
noise model in practice.

• If dij > radius, then d̂ij = 0, and the bound rij = 1.001 ∗ radius is used in
the SDP model.

In the simulation, we define the average estimation error to be 1
s

∑s
i=1 ‖x̄i−xi‖, where

x̄i is from the SDP solution and xi is the ith node’s true location. In a practical setting,
we wouldn’t know the node’s true location xi. Instead, we would use the node’s trace
τi (2.5) to gauge the estimation error.

To convey the distribution of estimation errors and trace, we also give the 95%
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quartile.

Factors such as noise level, radio range, and anchor densities can directly impact
localization accuracy. The sensors’ estimated locations are derived directly from the
given distance measurements. If the noise level in these measurements is high, the
estimation accuracy cannot be high. We also need sufficiently large radio range to
achieve accurate localization, because too small a range could cause many sensors to
have low connectivity or even be unreachable. Finally, more anchors in the network
should help with the estimation accuracy because there are more reference points.

In the following subsections, we present simulation results (most results averaged
over 10 runs) to show the accuracy and scalability of the SpaseLoc algorithm. We
observe the impact of various radio ranges, anchor densities, and noise levels on the
accuracy and performance of the algorithm. Computations were performed on a
laptop computer with 2.4 GHz CPU and 1GB system memory, using MATLAB 6.5
[16] for SpaseLoc and a Mex interface to DSDP5.0 (Benson, Ye, and Zhang [1]) for
the SDP solutions.

4.1. Effect of inequality constraints in SDP relaxation model. As we
discussed in section 3.7, because of the Y 	 XTX constraint relaxation, enforcing the
r2
ij and r2

ik inequality constraints in (2.4) is not equivalent to enforcing them in the
distance model (2.2). In order to observe the effectiveness of including these inequality
constraints, we conduct simulations with the following three strategies, according to
the number of times we check for violated inequality constraints and then include
them to obtain a new solution.

I0. This corresponds to solving the SDP problem with equality constraints only.
(No inequality constraints are ever added.) The final solution is optimal for
problem (2.4) without the inequality constraints involving r2

ij and r2
ik.

I1. This corresponds to solving the SDP problem with all equalities (and no in-
equalities) first, and then adding violated inequality constraints and resolving
it at most once.

I2. This corresponds to solving the SDP problem with all equalities (and no in-
equalities) first, and then adding violated inequality constraints and resolving
one or more times until all inequalities are satisfied. The final solution is an
optimal solution to problem (2.4).

Our experimental results show that the added inequality constraints do not always
provide better localization accuracy, but can greatly increase the execution time. In
this section, we illustrate the inequality constraints’ impact through two simulation
examples: one with no noise but low connectivity; the other with full connectivity
but with noise.

In our first example, we run simulation results on a network of 100 randomly
uniform-distributed sensors with radius 0.2275 and 10 randomly selected anchors.
One of the sensors happens to be connected to only two other nodes. The sensors are
localized with the full SDP and with SpaseLoc, using each of the I0, I1, I2 strategies
in turn. In addition, we examine each case with or without our geometric routines
for SpaseLoc. The results are shown in Figure 4.1 and Table 4.1.

Figure 4.1 shows there is a sensor connected to only 2 anchors. For full SDP
shown in (a), no violated inequalities are ever found, so full SDP with I0, I1, or
I2 has only one SDP call and always generates the same results. For SpaseLoc in
(b) with I0 and no geometric routine, SDP is called 47 times (with no subsequent
check for violated constraints). It produces the similar estimation accuracy as the
full SDP approach but with much improved performance. In (c), SpaseLoc with I1 or
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Fig. 4.1. Inequality impact on accuracy: 100 nodes, 10 anchors, no noise, radius 0.2275.

Table 4.1

Inequality impact on accuracy and speed: 100 nodes, 10 anchors, no noise, radius 0.2275.

Methods Error 95% Error Time SDP’s
Full SDP with I0 or I1 or I2 1.7877e-3 1.7483e-10 11.97 1
SpaseLoc with I0 and no geometric routines 1.7890e-3 1.1684e-7 0.38 47
SpaseLoc with I1 or I2 and no geometric routines 1.7134e-3 1.1684e-7 0.42 48
SpaseLoc with I0 and geometric routines 1.4679e-7 1.1523e-7 0.35 46

I2 produces the same results, which means violated inequalities are found only once.
Comparing (b) and (c), we see that including violated inequalities does improve the
estimation accuracy a little. Best of all in (d), SpaseLoc with I0 and our geometric
routines localizes all sensors with virtually no error.

Table 4.1 shows that adding violated inequalities increases execution time slightly
for SpaseLoc.

In our second example, in order to observe the effectiveness of the inequality
constraints under noise conditions, we run simulations for a network of 100 nodes
whose true locations are at the vertices of an equilateral triangle grid. Ten anchors
are placed at the middle grid-point of each row, and the radius is 0.25. A noise factor
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Fig. 4.2. Inequality impact on accuracy: 100 nodes, 10 anchors, noise factor 0.1, radius 0.25.

Table 4.2

Inequality impact on accuracy and speed: 100 nodes, 10 anchors, noise factor 0.1, radius 0.25.

Methods Error Time SDP’s
Full SDP with I0 0.1268 13.87 1
Full SDP with I1 0.1292 34.20 2
Full SDP with I2 0.1403 134.50 4
SpaseLoc with I0 0.0231 0.45 54

SpaseLoc with I1 or I2 0.0203 0.51 56

of 0.1 is applied to the distance measurements. The sensors are localized with either
full SDP or SpaseLoc using I0, I1, I2 in turn without geometric routines. (Although
we do not activate the geometric routines in this experiment, they are not a factor
here because the localization error is not caused by low connectivity but by the noisy
measurements.) The results are shown in Figure 4.2 and Table 4.2. Figure 4.2(b) and
(d) correspond to strategy I1 or I2 for full SDP and SpaseLoc.

As we can see, adding violated inequalities for full SDP not only increases the
execution times dramatically, but also increases the localization error. For SpaseLoc,
adding violated inequalities improves the estimation accuracy slightly. Note that I1
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and I2 produce the same results for SpaseLoc.
In summary, the first experiment shows that when the errors are caused by low

connectivity, SpaseLoc with geometric routines and no inequality constraints (I0) out-
performs SpaseLoc with inequalities (I1 or I2) and all of the full SDP options. Given
this observation, from now on we only use SpaseLoc with geometric routines, which
means the geometric routines are used instead of SDP to localize sensors connected
to less than 3 anchors.

The second experiment indicates that under noise conditions, although adding
violated inequalities does not seem to improve the estimation accuracy for full SDP,
it does improve accuracy for SpaseLoc.

In the subsequent sections, we continue to examine the inequality constraints’
effects on accuracy and speed.

4.2. Accuracy and speed comparison: Full SDP versus SpaseLoc. For
very small networks, the SDP approach is both accurate and efficient. (This is vital
to SpaseLoc, as many small subproblems must be solved using SDP.) However, the
performance of the full SDP approach deteriorates rapidly with network size.

Table 4.3 shows the localization results using full SDP (a) and using SpaseLoc
(b) for a range of examples with various numbers of nodes whose true locations in
the network are at the vertices of an equilateral triangle grid. Anchors are placed at
the middle grid-point of each row. A noise factor of 0.1 is applied to the distance
measurements.

Let us first look at the impact of I0, I1, and I2 on estimation accuracy. Table 4.3
(a) shows that for full SDP, 8 errors with I1 are bigger than with I2, and 5 errors
with I2 are bigger than with I1. Comparing I0 with I2, we see that for each strategy,
9 errors in I0 are bigger than the errors for the other strategy. It appears that full
SDP with added inequalities does not always improve the estimation accuracy. For
SpaseLoc, I1 and I2 generate almost equivalent estimation accuracy; I0 has 8 errors
that are bigger than with I1, while I1 has 5 errors bigger than with I0. Therefore, the
added inequalities provide only marginal accuracy improvement for SpaseLoc.

Now let us compare full SDP with SpaseLoc. Figures 4.3–4.4 plot results for
full SDP with I0 and SpaseLoc with I0 for two of these examples: 9 and 49 nodes,
including 3 and 7 anchors placed at the grid-point in the middle of each row. As
we can see from these two figures and Table 4.3, for localizing 4 and 9 nodes, full
SDP and SpaseLoc show comparable performance. Beyond that size, the contrast
grows rapidly. For localizing 49 nodes, SpaseLoc is 10 times faster than the full SDP
method, with more than four times the accuracy. For 400 nodes, SpaseLoc with
strategies I0, I1, and I2 is, respectively, 800, 2500, and 8500 times faster than full
SDP with the same strategies, while achieving 10 times greater accuracy. Thus, the
full SDP model becomes less effective as problem size increases. In fact, for problem
sizes above 49 nodes, the average estimation error using full SDP becomes so large
that the computed solution is of little value.

It may seem nonintuitive that SpaseLoc’s greedy approach could produce smaller
errors than the full SDP method. However, all of the SDP problems and subproblems
of the form (2.4) are relaxations of Euclidean models of the form (2.2). As we discussed
in section 3.9, SpaseLoc always tries to create a subproblem whose subsensors have
three independent anchor connections, so that the SDP solution is exact. The same
conclusion cannot be drawn under noise conditions, but experimentally the relaxations
under noise conditions appear to be tighter in SpaseLoc’s subproblems than in the
single large SDP.



1122 M. W. CARTER, H. H. JIN, M. A. SAUNDERS, AND Y. YE

Table 4.3

Accuracy and speed comparison between full SDP and SpaseLoc.

(a) Full SDP

Number Radio Error Time (sec) SDP calls
of nodes range I0 I1 I2 I0 I1 I2 I0 I1 I2

4 2.24 0.0317 0.0317 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.1267 0.1203 0.1203 0.02 0.05 0.05 1 2 2

16 0.75 0.0837 0.0703 0.0680 0.10 0.21 0.35 1 2 3
25 0.56 0.0938 0.1170 0.1170 0.37 0.80 1.26 1 2 3
36 0.45 0.0719 0.0618 0.0561 0.81 1.88 3.02 1 2 3
49 0.40 0.1190 0.1190 0.1190 2.10 5.33 5.33 1 2 2
64 0.40 0.1218 0.0919 0.0954 3.43 9.21 21.60 1 2 4
81 0.40 0.1380 0.0894 0.0885 7.26 19.66 59.05 1 2 5

100 0.25 0.1268 0.1292 0.1403 13.87 34.20 140.26 1 2 4
121 0.40 0.1157 0.1088 0.1091 23.24 81.62 182.74 1 2 3
144 0.21 0.1480 0.1899 0.1891 37.76 168.43 584.23 1 2 4
169 0.40 0.1283 0.1141 0.1217 71.87 278.72 692.12 1 2 4
196 0.18 0.1404 0.1275 0.1286 151.52 461.97 1081.35 1 2 4
225 0.40 0.1568 0.1589 0.1571 232.31 752.75 2408.67 1 2 5
256 0.15 0.1429 0.1375 0.1370 356.86 1089.52 3260.33 1 2 5
324 0.14 0.1685 0.1685 0.1685 962.66 2620.20 2620.20 1 2 2
361 0.13 0.1734 0.1842 0.1833 1391.04 5051.05 15281.26 1 2 4
400 0.12 0.1819 0.1970 0.1968 1662.22 5950.34 20321.60 1 2 4

(b) SpaseLoc

Number Radio Error Time (sec) SDP calls
of nodes range I0 I1 I2 I0 I1 I2 I0 I1 I2

4 2.24 0.0317 0.0317 0.0317 0.02 0.02 0.02 1 1 1
9 1.12 0.0513 0.0513 0.0513 0.04 0.04 0.04 6 6 6

16 0.75 0.0615 0.0559 0.0559 0.06 0.19 0.09 8 9 9
25 0.56 0.0597 0.0608 0.0608 0.13 0.13 0.13 12 13 13
36 0.45 0.0364 0.0294 0.0294 0.17 0.20 0.20 20 23 23
49 0.40 0.0252 0.0252 0.0252 0.21 0.21 0.21 26 26 26
64 0.40 0.0272 0.0273 0.0273 0.30 0.34 0.34 38 42 42
81 0.40 0.0286 0.0295 0.0295 0.37 0.41 0.41 49 53 53

100 0.25 0.0232 0.0203 0.0203 0.46 0.49 0.49 54 56 56
121 0.40 0.0238 0.0227 0.0227 0.57 0.61 0.61 74 77 77
144 0.21 0.0230 0.0237 0.0237 0.69 0.70 0.70 84 89 89
169 0.40 0.0200 0.0190 0.0190 0.80 0.84 0.84 100 106 106
196 0.18 0.0177 0.0177 0.0177 0.98 1.08 1.08 84 90 90
225 0.40 0.0226 0.0207 0.0208 1.07 1.41 1.47 94 109 110
256 0.15 0.0208 0.0235 0.0249 1.21 1.44 1.50 118 131 132
324 0.14 0.0179 0.0178 0.0178 1.64 1.70 1.70 157 158 158
361 0.13 0.0218 0.0217 0.0217 1.89 2.01 2.01 177 181 181
400 0.12 0.0176 0.0175 0.0175 2.02 2.37 2.37 184 201 201

In the following sections, we run more simulations only with SpaseLoc.

4.3. Scalability. Table 4.4 shows simulation results for 49 to 10000 randomly
uniform-distributed sensors being localized using SpaseLoc with strategies I0, I1, and
I2. The node numbers 49, 100, 225, . . . are squares k2, and the radius is the minimum
value that permits localization on a regular k×k grid. The number of anchors changes
with the number of sensors and is chosen to be k. Noise is not included in this
simulation. When the items under I1, I2 are empty, it means that they are equal to
the values under I0 in the same row.
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Fig. 4.3. 9 nodes on equilateral-triangle grids, 3 anchors, 0.1 noise, radius 1.12.
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Fig. 4.4. 49 nodes on equilateral-triangle grids, 7 anchors, 0.1 noise, radius 0.40.

Table 4.4

SpaseLoc scalability. Strategies I1 and I2 generate same results.

Nodes An Ra Sub- Error 95% Error Time SDP’s
chors dius size I0 I1,I2 I0,I1,I2 I0 I1,I2 I0 I1,I2

49 7 0.3412 3 4.5840e-8 3.4449e-8 0.18 18
100 10 0.2275 3 1.4679e-7 1.1523e-7 0.35 46
225 15 0.1462 3 4.4940e-7 3.1248e-7 0.82 112
529 23 0.0931 3 2.1662e-6 8.9873e-7 2.02 278

1089 33 0.0620 3 1.1969e-4 7.1510e-5 4.48 587
2025 45 0.0451 4 1.4917e-4 1.4115e-4 9.6639e-5 8.85 9.28 1006 1007
3969 63 0.0334 4 1.2399e-4 7.2414e-5 18.79 1867
5041 71 0.0319 6 1.5172e-4 1.1918e-4 27.19 2210
6084 78 0.0290 6 1.7126e-4 1.1475e-4 33.66 2742
7056 84 0.0269 7 5.2369e-5 4.0388e-5 40.59 3117
8100 90 0.0251 7 2.7376e-4 2.7353e-4 1.7071e-4 47.87 49.71 3564 3566
9025 95 0.0238 7 2.1141e-4 2.1977e-4 1.6039e-4 54.41 56.03 3957 3958

10000 100 0.0226 7 2.0269e-4 1.5836e-4 59.33 4452

We find that strategies I1 and I2 produce the same results, and I0 gives essen-
tially the same. This is because the inaccuracy of the estimation is caused purely by
low connectivity, not by noisy distance measurements. Empirically we see that the
program scales well: almost linearly in the number of nodes in the network. Indeed,
the computational complexity of the SpaseLoc algorithm is of order n, the number of



1124 M. W. CARTER, H. H. JIN, M. A. SAUNDERS, AND Y. YE

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

n

ti
m

e

Full SDP times

SDP data
Quadratic
Cubic
Quartic

Fig. 4.5. SDP computational complexity.

sensors in the network, even though the full SDP approach has much greater com-
plexity, as we now show.

We know that in the full SDP model (2.4), the number of constraints is O(n2), and
in each iteration of its interior-point algorithm the SDP solver needs to solve a sparse
linear system of equations whose dimension is the number of constraints. Figure 4.5
plots the CPU time for strategy I0 from Table 4.3(a) as well as three curves of the
form time = apn

p for p = 2, 3, 4, where ap is determined by a least-squares fit. It
appears that the SDP complexity with strategy I0 lies somewhere between O(n3) and
O(n4).

In SpaseLoc, we partition the full problem into p subproblems of size q or less,
where p × q = n. We generally set q to be much smaller than n, ranging from 2 to
around 10 in most of our simulations. If t represents the execution time taken by the
full SDP method for a 10-node network, in the worst case the computation time for
SpaseLoc is t × O(p). Thus, SpaseLoc is really linear in p in theory. Since we can
assume q to be a parameter ranging from 2 to 10, with worst case 2, we know that
O(p) = O(n/q) ≤ O(n/2) = O(n). Now we can see that SpaseLoc’s computation time
is O(n).

In the remaining subsections we choose the middle network size from Table 4.4
(nodes = 3969) to observe the effect of varying radio range, number of anchors, and
noise.

4.4. Radio range impact. With a fixed total number of randomly uniform-
distributed nodes (3969, of which 63 are anchors), Table 4.5 shows the direct impact
of radius in the range 0.0304 to 0.0334 on accuracy and performance.

Strategies I1 and I2 produce essentially the same results, and with slightly better
accuracy than I0 for 8 of the 16 radius values, while I0 produces slightly better
accuracy than I1 or I2 in 4 cases. However, I1 and I2 take more time than I0 because
they need more SDP calls.
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Table 4.5

Radio range impact: nodes = 3969, anchors = 63, no noise, sub size = 5.

rad- Error 95% Error Time SDP’s
ius I0 I1 I2 I0 I1 I2 I0 I1 I2 I0 I1 I2

0.0304 2.444e-3 2.359e-3 2.359e-3 4.035e-4 5.757e-4 5.757e-4 18.03 18.60 18.60 1743 1688 1689
0.0306 1.122e-3 1.123e-3 1.123e-3 5.638e-4 5.644e-4 5.644e-4 18.13 18.70 18.70 1747 1749 1749
0.0308 2.460e-3 1.412e-3 1.412e-3 7.952e-4 6.039e-4 6.039e-4 18.64 19.39 19.51 1879 1895 1896
0.0310 1.087e-3 1.083e-3 1.083e-3 4.424e-4 4.397e-4 4.397e-4 18.39 19.05 19.05 1809 1814 1814
0.0312 2.480e-3 2.481e-3 2.481e-3 3.142e-4 3.146e-4 3.146e-4 18.30 18.93 18.93 1715 1717 1717
0.0314 5.464e-4 5.337e-4 5.337e-4 2.612e-4 2.612e-4 2.612e-4 18.90 19.53 19.53 1897 1900 1900
0.0316 4.828e-4 4.827e-4 4.827e-4 2.645e-4 2.645e-4 2.645e-4 18.95 19.54 19.54 1916 1917 1917
0.0318 3.018e-4 3.013e-4 3.013e-4 1.955e-4 1.955e-4 1.955e-4 19.06 19.65 19.65 1911 1913 1913
0.0320 4.214e-4 4.214e-4 4.214e-4 1.781e-4 1.781e-4 1.781e-4 18.91 19.49 19.49 1847 1848 1848
0.0322 2.842e-4 2.842e-4 2.842e-4 1.702e-4 1.702e-4 1.702e-4 18.89 19.45 19.45 1894 1895 1895
0.0324 5.213e-4 5.495e-4 5.495e-4 2.968e-4 3.020e-4 3.020e-4 18.91 19.58 19.71 1859 1865 1866
0.0326 4.091e-4 4.033e-4 4.033e-4 2.323e-4 2.315e-4 2.315e-4 18.96 19.51 19.51 1890 1893 1893
0.0328 2.299e-4 2.289e-4 2.289e-4 1.363e-4 1.363e-4 1.363e-4 18.87 19.46 19.46 1921 1922 1922
0.0330 2.057e-4 2.160e-4 2.161e-4 9.435e-5 9.450e-5 9.450e-5 18.83 19.52 19.64 1873 1875 1876
0.0332 6.192e-4 6.439e-4 6.439e-4 3.557e-4 3.557e-4 3.557e-4 19.37 20.04 20.04 1849 1853 1853
0.0334 1.240e-4 1.240e-4 1.240e-4 7.241e-5 7.241e-5 7.241e-5 18.79 18.79 18.79 1867 1867 1867

Table 4.6

Number of anchors impact: nodes = 3969, radius = 0.0334, no noise, sub size = 5.

Anchors Error 95% Error Time SDP’s
I0 I1,I2 I0 I1,I2 I0 I1,I2 I0 I1,I2

40 1.052e-3 1.052e-3 8.408e-4 8.409e-4 19.30 19.88 1906 1908
50 1.109e-3 1.128e-3 7.748e-4 7.745e-4 19.38 20.15 1861 1865

100 8.782e-4 7.280e-4 5.337e-4 5.115e-4 19.16 19.96 1870 1872
150 2.716e-4 2.717e-4 1.025e-4 1.025e-4 18.86 19.60 1806 1808
200 4.889e-5 4.872e-5 1.473e-5 1.473e-5 18.77 19.52 1795 1796
250 1.716e-5 1.699e-5 7.760e-6 7.760e-6 18.55 19.32 1748 1749
300 1.538e-5 1.521e-5 4.408e-6 4.408e-6 18.20 18.99 1750 1751
350 7.533e-6 7.365e-6 2.858e-6 2.858e-6 18.13 18.93 1684 1685
400 6.383e-6 6.215e-6 1.841e-6 1.841e-6 18.16 18.96 1560 1591

As we see, increasing radius leads to increased accuracy and only slightly more
computational time. The simulation could assist sensor network designers in select-
ing a radio range to achieve a desired estimation accuracy with little concern about
algorithm speed.

4.5. Number of anchors impact. With constant radius (0.0334) and the same
randomly distributed nodes (3969), Table 4.6 shows the impact of the number of
anchors, ranging from 1% to 10% of the total number of points. (Noise is not included.)

Strategies I1 and I2 produce identical results. Comparing I0 with I1 or I2, we
see that added inequalities slightly improve the average error consistently, although
the 95% error remains essentially the same. Increasing the number of anchors in
the network improves the estimation accuracy in general, with no obvious impact on
algorithm speed. However, we don’t see accuracy improvement when the number of
anchors reaches more than 10% of the total points. This analysis is beneficial for
designers to avoid the cost of deploying unnecessary anchors.

4.6. Noise impact. With constant radius (0.0334) and the same randomly dis-
tributed nodes (3969), Table 4.7 shows the impact of noise conditions on accuracy
and performance.

We see that strategies I1 and I2 do not provide consistent improvement over I0 for
both average and 95% error, yet they always increase execution time. Also, more noise
in the network has a direct impact on estimation accuracy. Simulations of this kind
may help designers determine the measurement noise level that will give an acceptable
estimation error.
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Table 4.7

Noise factor impact: nodes = 3969, anchors = 400, radius = 0.0334, sub size = 5.

Noise Error 95% Error Time SDP’s
factor I0 I1 I2 I0 I1 I2 I0 I1 I2 I0 I1 I2
0.01 9.60e-4 9.59e-4 9.59e-4 1.90e-6 3.16e-4 3.16e-4 20.38 21.18 21.20 1622 1623 1623
0.05 3.15e-3 8.33e-3 8.33e-3 3.16e-4 3.57e-3 3.57e-3 21.56 21.75 21.86 1479 1253 1256
0.10 6.87e-3 7.36e-3 1.03e-2 1.91e-3 5.17e-3 6.95e-3 21.46 24.73 22.94 1447 1592 1230
0.20 1.55e-2 1.57e-2 1.65e-2 4.95e-3 1.16e-2 1.25e-2 21.55 25.67 25.83 1208 1433 1390
0.30 1.51e-2 1.48e-2 1.46e-2 1.17e-2 1.27e-2 1.24e-2 21.09 29.76 31.78 1411 1829 1844
0.40 1.98e-2 1.79e-2 1.79e-2 1.32e-2 1.57e-2 1.57e-2 21.30 32.05 35.15 1523 1985 2073
0.50 3.05e-2 2.35e-2 2.28e-2 2.86e-2 2.16e-2 2.08e-2 22.07 35.27 39.26 1608 2157 2252

5. Summary and extensions. We have shown that SpaseLoc achieves the aims
of accuracy, speed, and scalability with a single processor on very large networks. It
takes full advantage of the recent SDP approach of Biswas and Ye [2]. The latter has
computational complexity O(np), where n is the network size and p is between 3 and
4, but we use it on multiple tiny subproblems to obtain an algorithm with essentially
linear complexity. On a 2.4GHz laptop with 1GB memory, SpaseLoc maintains effi-
ciency and provides accurate location estimation for networks with 10000 sensors and
beyond.
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Fig. 5.1. Accuracy and performance comparison.

Figure 5.1 compares localization results for our SpaseLoc algorithm and the full
SDP approach [2] for various sized networks. The left-hand figure shows a comparison
in terms of estimation accuracy for localizing various sizes of networks when sensors
are placed at the vertices of an equilateral triangle grid with 0.1 noise factor added to
distance measurements (data is taken from Table 4.3). It shows clearly that SpaseLoc
provides much improved localization accuracy.

The right-hand graph summarizes results in terms of execution time on various
network sizes. Data for the full SDP method is taken from Table 4.3, and data for
SpaseLoc is taken from Table 4.4. The figure confirms near-linear complexity for
SpaseLoc.

5.1. More general problems. In Jin [14], SpaseLoc is used as a building block
for more general localization algorithms. A dynamic version can estimate moving
sensors’ locations in real time, and a three-dimensional version extends its utility
further. For clustered and distributed environments, it is shown how to use SpaseLoc
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in parallel (on multiple large subproblems) to obtain essentially linear complexity on
clustered networks of unlimited size. Finally, a preprocessor for SpaseLoc has been
developed in [14] to localize sensors in anchorless networks.

5.2. A bootstrap procedure. SpaseLoc works effectively when Step A1 (sub-
problem creation) finds subsensors connected to at least 3 anchors. A difficult situa-
tion arises if there are more than 3 anchors in the network but no subsensor is directly
connected to 3 anchors. A network with anchors placed at the borders of the region
is such an example. SpaseLoc’s subproblems will involve sensors connected to only 2
or 1 anchors, leading to a less accurate final solution.

When there is sufficient connection information for sensors to be indirectly con-
nected to at least 3 anchors through other sensors, the full SDP approach can find a
solution. We are developing a procedure to choose a subproblem in the above situa-
tion. It will include the anchors, certain subsensors, and the sensors on each shortest
path from a subsensor to an anchor.

5.3. Alternative subproblem solvers. At present, most of the SpaseLoc sub-
problems are solved by the SDP approach of Biswas and Ye [2]. This is an approxima-
tion method that may produce large errors with noisy data. A recent development by
Biswas et al. [4] adds regularization terms to the SDP problem and uses a gradient-
descent method to refine the SDP solution. Significant accuracy improvement is
reported. An advantage of SpaseLoc is that it can solve each subproblem by any
method that is effective on small networks. Our next step is to experiment with such
approaches, including that of [4] and various triangulation-based methods.
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Abstract. We study the continuous trajectories for solving monotone nonlinear mixed com-
plementarity problems over symmetric cones. While the analysis in [L. Faybusovich, Positivity, 1
(1997), pp. 331–357] depends on the optimization theory of convex log-barrier functions, our ap-
proach is based on the paper of Monteiro and Pang [Math. Oper. Res., 23 (1998), pp. 39–60], where
a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity
problems over the cone of symmetric positive semidefinite matrices. As an application of the re-
sults, we propose a homogeneous model for standard monotone nonlinear complementarity problems
over symmetric cones and discuss its theoretical aspects. Consequently, we show the existence of
a path having the following properties: (a) The path is bounded and has a trivial starting point
without any regularity assumption concerning the existence of feasible or strictly feasible solutions.
(b) Any accumulation point of the path is a solution of the homogeneous model. (c) If the original
problem is solvable, then every accumulation point of the path gives us a finite solution. (d) If
the original problem is strongly infeasible, then, under the assumption of Lipschitz continuity, any
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1. Introduction. Let (V, ◦) be a Euclidean Jordan algebra with an identity
element e. We denote by K the symmetric cone of V which is a self-dual closed
convex cone such that for any two elements x ∈ intK and y ∈ intK, there exists
an invertible map Γ : V → V satisfying Γ(K) = K and Γ(x) = y. It is known
that a cone in V is symmetric if and only if it is the cone of squares of V given by
K = {x ◦ x : x ∈ V }.

Faybusovich [6] studied the linear monotone complementarity problem (LCP) over
symmetric cones of the form

(1.1)
(LCP) find (x, y) ∈ K ×K

s.t. (x, y) ∈ (a, b) + L, x ◦ y = 0,

where (a, b) ∈ V × V and L ⊆ K ×K is a linear subspace with dimL = dimV having
the monotone property, i.e., 〈x, y〉 ≥ 0 if (x, y) ∈ L. The author showed the existence
of the central path of the form

{(x, y) ∈ intK × intK : x ◦ y = μe, μ > 0}

whenever the LCP has an interior feasible solution (x, y) ∈ ((a, b)+L)∩(intK×intK),
based on primal-dual interior point methods for linear programs [14, 17].
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Note that the first extension of primal-dual methods to a more general setting
than linear programs was achieved by Nesterov and Todd [21, 22] who developed
the powerful theoretical concept of self-scaled barrier functions. It is known that
the self-scaled cones associated with the self-scaled barriers are closely related to the
symmetric cones [1, 10, 11, 27]. See also [15, 7, 23, 28, 25, 24, 3] for other extensions
of primal-dual methods to the positive semidefinite cones, the symmetric cones, the
self-scaled cones, or the homogeneous cones.

In most of the papers cited above, the analyses depend on the optimization theory
of convex barrier functions. In this paper, apart from the theories of barrier functions,
the trajectory of an interior point map is discussed in view of homeomorphisms of
continuous maps. There have been studies of various types of central paths using
the theory of homeomorphisms for some special cases of symmetric cones, i.e., the
non-negative orthant and the cone of symmetric positive semidefinite matrices (see
[9, 13, 29, 20]). We extend these results and set out basic properties concerning the
existence of central paths for the monotone nonlinear complementarity problems over
symmetric cones. Consequently, a first analysis of the trajectory for complementarity
problems over the second order cone is provided.

As an application of the results, we give a homogeneous model for solving the
problems. The homogeneous model for monotone complementarity problems was
first proposed by Andersen and Ye [2] for solving the problems over the n-dimensional
positive orthant. Unlike for linear optimization cases, the model is given by a nonlinear
system even if the original problems are linear. However, the path associated with
the model has some remarkable features as described below:

(a) The path exists, is bounded, and has a trivial starting point without any
regularity assumption concerning the existence of feasible or strictly feasible
solutions.

(b) Any accumulation point of the path is a solution of the homogeneous model.
(c) If the original problem is solvable, then every accumulation point of the path

gives us a finite certificate proving feasibility.
(d) If the original problem is strongly infeasible, then, under the assumption of

(scaled) Lipschitz continuity, every accumulation point of the path gives us a
finite certificate proving infeasibility.

We show that a path having the above properties also exists for the monotone com-
plementarity problems over symmetric cones.

Consider the following nonlinear and mixed complementarity problem:

(1.2)
(CP) Find (x, y, z) ∈ K ×K ×
m

s.t. F (x, y, z) = 0, x ◦ y = 0,

where F : K ×K ×
m → V ×
m is a continuous map. Many problems can be cast
into CPs having the monotone property, e.g., any primal and dual linear optimization
problems over symmetric cones, and the robust Nash equilibrium problem introduced
by Hayashi, Yamashita, and Fukushima [12].

The map F appearing in our homogeneous model is not necessarily defined on the
boundary of the set K ×K × 
m. Some asymptotic definitions are then introduced
as follows:

• The CP is asymptotically feasible if and only if there exists a bounded sequence
{x(k), y(k), z(k)} ⊆ intK × intK ×
m such that

lim
k→∞

F (x(k), y(k), z(k)) = 0.



INTERIOR POINT TRAJECTORIES FOR SYMMETRIC CONE CPS 1131

• The CP is asymptotically solvable if and only if there exists a bounded se-
quence {x(k), y(k), z(k)} ⊆ intK × intK ×
m such that

(1.3) lim
k→∞

F (x(k), y(k), z(k)) = 0 and lim
k→∞

x(k) ◦ y(k) = 0.

As long as the asymptotic property is discussed, the map F should be defined only
on the set intK × intK ×
m rather than on K ×K ×
m.

We also introduce the following definitions to discuss the infeasibility of CPs:
• The CP is infeasible if and only if there is no feasible point (x, y, z) ∈ K ×
K ×
m satisfying F (x, y, z) = 0.

• The CP is strongly infeasible if and only if there is no sequence {x(k), y(k), z(k)}
⊆ intK × intK ×
m such that limk→∞ F (x(k), y(k), z(k)) = 0.

We impose the following assumption on F .
Assumption 1.1.

(i) F is (x, y)-equilevel-monotone on its domain; i.e., if (x, y, z) and (x′, y′, z′) lie
in the domain of F and satisfy F (x, y, z) = F (x′, y′, z′), then 〈x−x′, y−y′〉 ≥
0 holds.

(ii) F is z-bounded on its domain; i.e., for any sequence {(x(k), y(k), z(k))} in
the domain of F , if {(x(k), y(k))} and {F (x(k), y(k), z(k))} are bounded, then
the sequence {z(k)} is also bounded.

(iii) F (x, y, z) is z-injective on its domain; i.e., if (x, y, z) and (x, y, z′) lie in the
domain of F and satisfy F (x, y, z) = F (x, y, z′), then z = z′ holds.

The above assumption is the same as the one imposed by Monteiro and Pang
[19] for the case of the cone of symmetric matrices. Note that, in contrast to the
paper [19], the domain of the map F is not given explicitly in the assumption. The
domain is set as the set intK×intK×
m for observing some basic properties required
in constructing a homogeneous model (section 3), and as the set K × K × 
m for
discussing the solvability of the CP (section 4).

The paper is organized as follows.
In section 2, some basic results for symmetric cones are summarized.
Section 3 is devoted to deriving a homeomorphism of the map H : intK× intK×


m → V × V ×
m given by

(1.4) H :=

(
x ◦ y

F (x, y, z)

)
.

The main result, Theorem 3.10, ensures that if Assumption 1.1 is satisfied with the
domain intK × intK × 
m, then the system H(x, y, z) = h has a solution (x, y, z) ∈
U × 
m for any h ∈ intK × F (U × 
m), where the set U is a subset of intK × intK
defined by

U := {(x, y) ∈ intK × intK : x ◦ y ∈ intK}.

Suppose that there exists a sequence {h(k)} ⊆ intK×F (U×
m) satisfying h(k) →
0. Theorem 3.10 implies that there exists a sequence {(x(k), y(k), z(k))} ⊆ U × 
m

that is the set of solutions of the system H(x(k), y(k), z(k)) = h(k) for any k. It is
easy to see that the sequence {(x(k), y(k), z(k))} ⊆ U × 
m satisfies (1.3). Thus, if
{(x(k), y(k), z(k))} is bounded, then the CP is asymptotically solvable. In section 4, the
asymptotic solvability of the CP is discussed under Assumption 1.1 with the domain
K ×K ×
m. The obtained results are direct extensions of the ones in [19].
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In section 5, as an application of the results in section 3, a homogeneous model
is provided for a special class of CPs. As we described above, a remarkable feature
of the model is that the associated trajectory gives certifications on the feasibility
or the (strong) infeasibility of the original problem. We show that the result can be
extended for the case of Euclidean Jordan algebras. To the best of our knowledge, this
is a first homogeneous model for CPs over the cone of symmetric matrices and/or the
second order cone, which are special cases of the symmetric cones. Note that for LCPs
over the n-dimensional positive orthant and for linear conic optimization problems,
several homogeneous models including the homogeneous self-dual embedding model
have been studied [32, 16, 30, 4].

Some concluding remarks are given in section 6.

2. Some key lemmas for the symmetric cone. We give a summary of the
theory of Euclidean Jordan algebra. Most of the results can be found in the book of
Faraut and Korányi [5] and the papers [6, 7, 8, 28].

Let (V, ◦) be a Euclidean Jordan algebra with the identity element e, where
(x, y) �→ x ◦ y : V × V → V is a bilinear map satisfying

(i) x ◦ y = y ◦ x,
(ii) x ◦ (y ◦ x2) = (x ◦ y) ◦ x2, where x2 = x ◦ x,
(iii) x ◦ e = e ◦ x = x

for all x, y, z ∈ V . Note that the Jordan algebra (V, ◦) is called Euclidean if there
exists a symmetric, positive definite quadratic form Q on V which is also associative,
i.e., Q(x ◦ y, z) = Q(x, y ◦ z) for all x, y, z ∈ V . Since (x, y) �→ x ◦ y is a bilinear map,
for each x ∈ V , the linear transformation L(x) is defined by L(x)y = x◦y. For x ∈ V ,
the degree of x is the smallest integer d such that the set {e, x, x2, . . . , xd} is linearly
independent. The rank r of V is the maximum of the degree of x over all x ∈ V . For
any element x in V of rank r, we can define the characteristic polynomial of x of the
form

px(λ) := λr − a1(x)λr−1 + · · · + (−1)rar(x)

(cf. section 2 of [28]). We call the roots λ1, . . . , λr of px(λ) the eigenvalues of x and
define

(2.1) tr(x) :=
r∑

i=1

λi = a1(x), det(x) :=

r∏
i=1

λi = ar(x).

Since (x, y) �→ x ◦ y is bilinear and tr(x ◦ y) is a symmetric positive definite quadratic
form which is associative, i.e., tr (x ◦ (y ◦ z)) = tr ((x ◦ y) ◦ z) for all x, y, z ∈ V , we
define below the canonical inner product 〈x, y〉 of x, y ∈ V and the canonical norm of
x ∈ V , which we use throughout the paper:

(2.2) 〈x, y〉 := tr(x ◦ y), ‖x‖ :=
√

tr(x ◦ x).

Note that ‖e‖ =
√
r. The property tr (x ◦ (y ◦ z)) = tr ((x ◦ y) ◦ z) implies that for

each x ∈ V , L(x) is self-adjoint with respect to 〈·, ·〉, i.e., 〈L(x)y, z〉 = 〈y, L(x)z〉 holds
for all y, z ∈ V . We use the notation L(u) � 0 to mean that L(u) is positive definite.

The set of squares K := {x2 : x ∈ V } is the symmetric cone of V , which is
self-dual (i.e., K = K∗ := {y : 〈x, y〉 ≥ 0 for all x ∈ K}) and has the following
properties.
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Proposition 2.1.

(i) intK = {u ∈ V : L(u) � 0} = {x2 : x ∈ V, det(x) �= 0}.
(ii) If y ∈ intK and η > 0, then the set {x ∈ K : 〈x, y〉 ≤ η} is compact.

Proof. See Theorem III.2.1 together with its proof and Proposition II.2.4 of [5]
for (i) and Corollary I.1.6 of [5] for (ii).

An idempotent c is an element of V such that c2 = c. An idempotent is primitive
if it is nonzero and not given by the sum of two nonzero idempotents. A complete
system of orthogonal idempotents is a set {c1, c2, . . . , ck}, where

cj ◦ cj = cj , ci ◦ cj = 0 (i �= j),

k∑
j=1

cj = e.

A complete system of orthogonal primitive idempotents is called a Jordan frame.

Theorem 2.2. Let r be the rank of V .

(i) If x ∈ V , then there exist real numbers λ1, . . . , λr and a Jordan frame c1, . . . , cr
such that x =

∑r
j=1 λjcj. Here the numbers λj (with their multiplicities) are

uniquely determined by x and λj’s are the eigenvalues (multiplicities included)
of x.

(ii) Let c be an idempotent in a Jordan algebra, c2 = c. The only possible eigen-
values of L(c) are 0, 1

2 , and 1.

Proof. See Theorem III.1.2 of [5] for (i) and Proposition III.1.3 of [5] for
(ii).

The corollary below follows from Proposition 2.1 and the above theorem.

Corollary 2.3. Let x ∈ V and let
∑r

j=1 λjcj be a decomposition of x given by
Theorem 2.2. Then

(i) x ∈ K if and only if λj ≥ 0 (j = 1, 2, . . . , r),
(ii) x ∈ intK if and only if λj > 0 (j = 1, 2, . . . , r).

For each x, y ∈ V , define P (x) := 2L(x)2 − L(x2) and

(2.3) P (x, y) :=
1

2
(P (x + y) − P (x) − P (y)) = L(x)L(y) + L(y)L(x) − L(x ◦ y).

P (x) is the quadratic representation of x and used in several characterizations of x.

Proposition 2.4.

(i) If x, y ∈ V , then P (x)e = x2 and P (P (y)x) = P (y)P (x)P (y).
(ii) If x, y ∈ V are invertible, then P (x)−1 = P (x−1) and P (x)intK = intK.
(iii) If x ∈ intK, then P (x)−1/2 = P (x−1/2).

Proof. See Proposition II.3.1, II.3.3, and III.2.2 of [5] for (i) and (ii). Using (i)
and (ii), we obtain (iii) as follows:

[P (x)−1/2]2 = P (x)−1 = P (x−1) = P (P (x−1/2)e)

= P (x−1/2)P (e)P (x−1/2) = [P (x−1/2)]2.

The following is a collection of technical facts which are often used in the suc-
ceeding sections. Before proceeding, we give a definition of the star-shaped set in a
vector space.

Definition 2.5. A subset C of a vector space is said to be star-shaped if there
exists c0 ∈ C such that the line segment connecting c0 to any other point in C is
contained entirely in C.
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Lemma 2.6.

(i) x ∈ K if and only if 〈x, y〉 ≥ 0 for all y ∈ K.
(ii) If x ∈ K and y ∈ K, then 〈x, y〉 = 0 if and only if x ◦ y = 0.
(iii) If x ∈ intK and y ∈ K, then 〈x, y〉 = 0 if and only if y = 0.
(iv) Define

(2.4) U := {(x, y) ∈ intK × intK : x ◦ y ∈ intK}.

Then U = {(x, y) ∈ K ×K : x ◦ y ∈ intK}.
(v) If (x, y) ∈ U , then L(x)L(y) + L(y)L(x) � 0.
(vi) If (x, y) ∈ U , (Δx,Δy) ∈ V × V , and

(2.5) 〈Δx,Δy〉 ≥ 0, x ◦ Δy + y ◦ Δx = 0

hold, then Δx = Δy = 0.
(vii) U is a nonempty and open subset of intK × intK which is star-shaped.
(viii) If x ∈ intK, then (x, x) ∈ U .
(ix) intK × {αe : α ∈ 
++} ⊆ U , {αe : α ∈ 
++} × intK ⊆ U ,

K × {αe : α ∈ 
+} ⊆ cl(U), {αe : α ∈ 
+} ×K ⊆ cl(U),
where 
+ := {α ∈ 
 : α ≥ 0} and 
++ := {α ∈ 
 : α > 0}.

Proof. (i) Since the set K is the symmetric cone, K is self-dual, and we obtain
(i).

(ii) See Lemma 2.2 of [7].
(iii) It follows from the fact that K is a self-dual convex cone with nonempty

interior. See, for example, Exercise 6.22 of [26].
(iv) Let Ū := {(x, y) ∈ K × K : x ◦ y ∈ intK}. It is obvious that U ⊆ Ū .

Suppose that (x, y) ∈ Ū and x ∈ K \ intK. Let x =
∑r

i=1 λiei and y =
∑r

j=1 μjfj be
decompositions of x and y given by (i) of Theorem 2.2. Since x ∈ K \ intK, by (i) and
(ii) of Corollary 2.3, there exists an index ī such that λī = 0. Define z :=

∑r
k=1 νkek,

where

νk =

{
1 if λk = 0,
0 otherwise.

Then x◦z2 = 0 and z �= 0. Thus, we see that 0 = 〈x◦z2, y〉 = 〈x◦y, z2〉 = 〈z, L(x◦y)z〉
for z �= 0, which implies that L(x ◦ y) is not positive definite; a contradiction to the
assumption (x, y) ∈ Ū . Similarly, we obtain y ∈ intK.

(v) We first show that P (x, y) defined by (2.3) is positive definite for any x, y ∈
intK. Suppose that x, y ∈ intK. Using the results of Proposition 2.4, we see that

P (x)−1/2P (x + y)P (x)−1/2 = P (x−1/2)P (x + y)P (x−1/2) (by (iii))
= P (P (x−1/2)(x + y)) (by (i))
= P (P (x−1/2)P (x1/2)e + P (x−1/2)y) (by (i))
= P (e + P (x−1/2)y) (by (iii)).

Similarly,

P (x)−1/2P (y)P (x)−1/2 = P (x−1/2)P (y)P (x−1/2) (by (iii))
= P (P (x−1/2)(y)) (by (i)).

Therefore, we have

P (x+ y)−P (x)−P (y) = P (x)1/2[P (e+P (x−1/2)y)−P (e)−P (P (x−1/2)y)]P (x)1/2.
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Let z := P (x−1/2)y. It follows from (2.3) that

P (e + z) − P (e) − P (z) = 2[L(e)L(z) + L(z)L(e) − L(e ◦ z)] = 2L(z).

Note that z = P (x−1/2)y ∈ intK since x−1/2 is invertible and y ∈ intK (see (ii) of
Proposition 2.4). Thus, P (x + y) − P (x) − P (y) = 2L(z) � 0. Since x ◦ y ∈ intK
implies that L(x ◦ y) is positive definite, using (2.3) again, we can conclude that

L(x)L(y) + L(y)L(x) = P (x, y) + L(x ◦ y)
= [P (x + y) − P (x) − P (y)] + L(x ◦ y) � 0.

(vi) Let (x, y) ∈ U . Since x ∈ intK, L(x) is invertible by (i) of Proposition
2.1. Suppose that (Δx,Δy) satisfy (2.5). The equation in (2.5) implies Δy +
L(x)−1L(y)Δx = 0 and 〈Δx,Δy〉 + 〈Δx, L(x)−1L(y)Δx〉 = 0. By the inequality
in (2.5), we have 〈Δx, L(x)−1L(y)Δx〉 ≤ 0. Define Δx̃ = L(x)−1Δx. Then

0 ≥ 〈Δx, L(x)−1L(y)Δx〉
= 〈Δx̃, L(y)L(x)Δx̃〉
= 〈Δx̃, (L(x)L(y) + L(y)L(x))Δx̃〉/2,

which implies that Δx̃ = 0 by the facts (x, y) ∈ U and (v) above. Finally, we see that

Δx = L(x)Δx̃ = 0 and Δy = −L(x)−1L(y)Δx = 0.

(vii) By the fact that (e, e) ∈ U and by the continuity of the operators x ◦ y
and L(x)L(y) + L(y)L(x), the set U is a nonempty open subset of intK × intK. Let
(x, y) ∈ U . For θ ∈ [0, 1], define

(x(θ), y(θ)) := (θe + (1 − θ)x, θe + (1 − θ)y) = θ(e, e) − (1 − θ)(x, y).

To see that the set U is star-shaped, it suffices to show that (x(θ), y(θ)) ∈ U for any
θ ∈ [0, 1]. Since the set intK × intK is convex, we have (x(θ), y(θ)) ∈ intK × intK for
any θ ∈ [0, 1]. In addition, x(θ) ◦ y(θ) turns out to be

x(θ) ◦ y(θ) = θ2e + θ(1 − θ)(x + y) + (1 − θ)2x ◦ y,

where e ∈ intK, x + y ∈ intK, and x ◦ y ∈ intK. By the convexity of the cone intK,
we see that x(θ) ◦ y(θ) ∈ intK and (x(θ), y(θ)) ∈ U for any θ ∈ [0, 1].

(viii) For any x ∈ intK, (i) of Proposition 2.1 implies x◦x ∈ intK and (x, x) ∈ U .
(ix) Since intK is a convex cone, for any x ∈ intK and α ∈ 
++, it must hold

that αe ∈ intK and x ◦ (αe) = αx ∈ intK. Thus intK × {αe : α ∈ 
++} ⊆ U
and K × {αe : α ∈ 
+} ⊆ cl(U). By the symmetricity x ◦ y = y ◦ x, we obtain the
assertion.

A Euclidean Jordan algebra is called simple if it cannot be represented as the
orthogonal direct sum of two Jordan algebras.

Proposition 2.7.

(i) Any Euclidean Jordan algebra V is, in a unique way, an orthogonal direct
sum of simple Euclidean Jordan algebras V1, V2, . . . , Vm. That is, any element
x ∈ V is uniquely represented by x =

∑m
i=1 xi, where xi ∈ Vi (i = 1, 2, . . . ,m)

and xi ◦ xj = 0 (i �= j).



1136 AKIKO YOSHISE

(ii) Let V be a simple Euclidean Jordan algebra. Then, for any u ∈ V ,

Tr(L(u)) =
n

r
tr(u).

(iii) Let V be a simple Euclidean Jordan algebra. Then, for any nonzero idempo-
tent c of V ,

0 <

√
r

2n
≤ ‖c‖ =

√
〈e, c〉 ≤

√
r.

(iv) Let V be a Euclidean Jordan algebra. Then, there exist ω1 > 0 and ω2 > 0
for which 0 < ω1 ≤ ‖c‖ =

√
〈e, c〉 ≤ ω2 holds for any nonzero idempotent c

of V .
Proof. See Propositions III.4.4 and III.4.2 of [5] for (i) and (ii), respectively.
(iii) Since any nonzero idempotent c is an element of K, by (i) of Corollary 2.3,

all eigenvalues of c are nonnegative and tr(c) is positive. The assertion (iii) follows
from (ii) of the proposition, (ii) of Theorem 2.2, and

0 < ‖c‖ =
√

tr(c2) =
√

tr(c) =

√
r

n
Tr(L(c)), 〈e, c〉 = tr(e ◦ c) = tr(c) = ‖c‖2.

(iv) Let V be a Euclidean Jordan algebra. By the assertion (i) above, V is
given by an orthogonal direct sum of simple Jordan algebras V1, V2, . . . , Vm. For
each i = 1, 2, . . . ,m, let us denote the dimension and the rank of Vi by ni and ri,
respectively.

Suppose that c is a nonzero idempotent of V . Then c is given by c =
∑m

i=1 ci
for some ci ∈ Vi (i = 1, 2, . . . ,m). The orthogonality of Vis and the fact that c2 = c
ensure that c = c2 =

∑m
i=1 c

2
i . Therefore, by the uniqueness of the representation,

we see that c2i = ci (i = 1, 2, . . . ,m); i.e., c is given by the sum of cis which are
idempotents of the simple Jordan algebras Vi (i = 1, 2, . . . ,m).

Note that the orthogonality of Vis also ensures that

‖c‖2 =

m∑
i=1

‖ci‖2 =

m∑
i=1

〈e, ci〉 = 〈e, c〉.

Since c �= 0, there exists ci �= 0 for some i, and by the assertion (iii) above, we obtain
the following inequalities:

0 < min
i

{√
ri
2ni

}
≤ ‖c‖ =

√
〈e, c〉 ≤

√√√√ m∑
i=1

ri.

3. Homeomorphism of an interior point map. In this section, we extend
the results in [19] to the case of symmetric cones and show the homeomorphism of an
interior point map using the results in section 2.

The arguments used in the section are quite analogous to the ones in [19] and we
omit some details in the proofs. Note that we restrict the domain of the map F to
intK × intK ×
m and it causes subtle differences in the results.

Here we introduce some notation and definitions. If M and N are two metric
spaces, we denote the set of continuous functions from M to N by C(M,N). For
given G ∈ C(M,N), D ⊆ M , and E ⊆ N , we define

G(D) := {G(u) : u ∈ D}, G−1(E) := {u ∈ M : G(u) ∈ E}.



INTERIOR POINT TRAJECTORIES FOR SYMMETRIC CONE CPS 1137

We also denote “G restricted to the pair (D,E)” by G|(D,E). G ∈ C(M,N) is called a
homeomorphism from M onto N if G is bijective from M onto N and G and G−1 are
continuous on M and N , respectively. We denote the set of homeomorphisms from
M onto N by Hom(M,N). G : M → N is called a local homeomorphism from M
onto N if for each x ∈ M , there exist open neighborhoods Mx of x and Nx of G(x)
such that G|(Mx,Nx) ∈ Hom(Mx, Nx). In addition, for a, b ∈ 
, [a, b] denotes the line
segment {x ∈ 
 : a ≤ x ≤ b}.

Definition 3.1 (section 2 of [18], section 2.2 of [19]).

(i) A metric space M is connected if there exists no partition (V1, V2) of M for
which V1 and V2 are nonempty and open.

(ii) A metric space M is path-connected if for any two points u0, u1 ∈ M , there
exists a path, i.e., a continuous function p : [0, 1] → M such that p(0) = u0

and p(1) = u1.
(iii) A metric space M is simply connected if it is path-connected and for any

path p : [0, 1] → M with p(0) = p(1) = u, there exists a continuous map
α : [0, 1]× [0, 1] → M such that α(s, 0) = p(s)and α(s, 1) = u for all s ∈ [0, 1]
and α(0, t) = α(1, t) = u for all t ∈ [0, 1].

(vi) The map G ∈ C(M,N) is said to be proper with respect to the set E ⊆ N if
the set G−1(K) ⊆ M is compact for any compact set K ⊆ E. If G is proper
with respect to N , we simply say that G is proper.

It is easy to see that any star-shaped set (see Definition 2.5) in a normed vector
space is simply connected.

The goal of this section is to show that the map H defined by (1.4) gives a
homeomorphism between U × 
m and intK × F (U × 
m) under Assumption 1.1
(cf. Theorem 3.8 for affine maps and Theorem 3.10 for general maps). The home-
omorphism ensures that there exists a unique path H−1(P ) ⊂ U × 
m for any
path P ⊆ intK × F (U × 
m). As we will see in Theorem 3.12, if an additional
assumption (Assumption 3.11) holds, then the set intK × F (U × 
m) is open and
convex. Therefore, if 0 ∈ cl(intK × F (U × 
m)) then we may choose the path as
P = {th : t ∈ (0, 1]} ⊆ intK × F (U × 
m) for any h ∈ intK × F (U × 
m). The set
H−1(P ) is a so-called (weighted) interior point trajectory which is an important ele-
ment in the development of interior point algorithms (cf. Corollary 4.4 and Theorems
5.4 and 5.5).

Proposition 3.2 (Theorem 1 of [18], Proposition 1 of [19]). Let M and N be
metric spaces such that M is path-connected and N is simply connected. Suppose
that G : M → N is a local homeomorphism. Then G is proper if and only if G ∈
Hom(M,N).

Proposition 3.3 (Corollary 1 of [18], Proposition 2 of [19]). Let G ∈ C(M,N),
M0 ⊆ M , and N0 ⊆ N .

(i) Suppose that G, M0 ⊆ M , and N0 ⊆ N satisfy the following conditions:
(a) G|(M0,N) is a local homeomorphism,
(b) G(M0) ∩N0 �= ∅,
(c) G(M \M0) ∩N0 = ∅, and
(d) G is proper with respect to a subset E such that N0 ⊆ E ⊆ N .

Then G|(M0∩G−1(N0),N0) is a proper local homeomorphism.
(ii) Suppose that G, M0 ⊆ M , and N0 ⊆ N satisfy the conditions (a)–(d) in (i)

above and the additional condition below:
(e) N0 is connected.

Then G(M0) ⊇ N0 and G(cl(M0)) ⊇ E ∩ cl(N0).
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Proposition 3.4 (Corollary 3 of [18], Proposition 3 of [19]). Let M be a path-
connected metric space and let V be an n-dimensional real vector space. Suppose that
G : M → V is a local homeomorphism and that G−1([y0, y1]) is compact for any pair
of points y0, y1 ∈ G(M). Then, G|(M,G(M)) ∈ Hom(M,G(M)) and G(M) is convex.

The following three lemmas are analogous to Lemmas 2–4 of [19]. See the proofs
in [19] for detailed arguments.

Lemma 3.5 (cf. Lemma 2 of [19]). Let F : intK × intK × 
m → V × 
m be a
continuous map which satisfies Assumption 1.1. Let H be the map defined by (1.4). If
the map H restricted to U ×
m is a local homeomorphism, then the map H is proper
with respect to intK × F (U × 
m).

Proof. Let C be a compact subset of intK × F (U × 
m). Then the set H−1(C)
is closed since H is continuous. The boundedness of the set H−1(C) can be obtained
by using (i) and (ii) of Assumption 1.1 and (ii) of Proposition 2.1, with 〈x, y〉 =
tr(x ◦ y).

Lemma 3.6 (cf. Lemma 3 of [19]). Let F : V × V × 
m → V × 
m be an affine
map and let F 0 be the linear part of F .

(i) F is (x, y)-equilevel-monotone if and only if for any (Δx,Δy,Δz) ∈ V ×
V ×
m, F 0(Δx,Δy,Δz) = 0 implies that 〈Δx,Δy〉 ≥ 0.

(ii) F is z-injective if and only if for any Δz ∈ 
m, F 0(0, 0,Δz) = 0 implies that
Δz = 0.

(iii) F is z-injective if and only if F is z-bounded.

Proof. See the proof of Lemma 3 in [19].

Lemma 3.7 (cf. Lemma 4 of [19]). Let F : V × V × 
m be an affine map which
is (x, y)-equilevel-monotone and z-injective. Then H restricted to U × 
m is a local
homeomorphism.

Proof. Since U × 
m is an open set ((vii) of Lemma 2.6), it suffices to show that
the derivative map H ′(x, y, z) : V × V × 
m → V × V × 
m is an isomorphism for
all (x, y, z) ∈ U × 
m. The isomorphism follows from (i) and (ii) of Lemma 3.6 and
(vi) of Lemma 2.6.

In the following theorem, we consider that F is affine. The theorem leads us to
an important technical lemma, Lemma 3.9.

Theorem 3.8 (cf. Theorem 1 of [19]). Let F : V ×V ×
m → V ×
m be an affine
map which is (x, y)-equilevel-monotone, z-injective, and z-bounded on V × V × 
m.
Then the map H defined by (1.4) satisfies

(i) H is proper with respect to intK × F (U × 
m),
(ii) H maps U × 
m homeomorphically onto intK × F (U × 
m).

Proof. Define

M := intK × intK ×
m, N := V × V ×
m, E := intK × F (U × 
m),

M0 := U × 
m, N0 := intK × F (U × 
m), G := H|(M,N).
(3.1)

We can easily see that

(3.2) N0 ⊆ E ⊆ N, M0 ⊆ H−1(N0).

(i) Since F is (x, y)-equilevel-bounded and z-injective, Lemma 3.7 and (iii) of
Lemma 3.6 ensure that H|(M0,N) = G|(M0,N) is a local homeomorphism and z-
bounded. Thus the map F satisfies Assumption 1.1 and by Lemma 3.5, H|(M,E)

is proper with respect to E = intK × F (U × 
m).
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(ii) Note that (i) above ensures that the requirement (d) of Proposition 3.3 is
satisfied. In addition, Lemma 3.7 implies that G|(M0,N) = H(M0,N) is a local home-
omorphism, i.e., the requirement (a) holds. By similar discussions in the proof of
Theorem 1 of [19], we can see that other requirements (b) and (c) are also satisfied.

Since (3.2) ensures the relation M0 ⊆ M0 ∩H−1(N0) = M0 ∩G−1(N0), we obtain
that the map H restricted to

(M0, N0) = (U × 
m, intK × F (U × 
m))

is a proper local homeomorphism. Next, we show that H(U×
m) = intK×F (U×
m)
by using (ii) of Proposition 3.3. It is clear that

G(M0) = H(U × 
m) ⊆ intK × F (U × 
m) = N0.

To obtain the inverse inclusion, we should mention that the set N0 is connected. In
fact, by (vii) of Lemma 2.6, U×
m is star-shaped and hence path-connected. Since F
is continuous, the sets F (U×
m) and N0 = intK×F (U×
m) are also path-connected,
and hence connected. Thus, applying (ii) of Proposition 3.3, we obtain

H(U × 
m) = G(M0) ⊇ N0 = intK × F (U × 
m).

Let us show that G ∈ H(M0, N0). In (vii) of Lemma 2.6, we have seen that the set U
is star-shaped. Since F is affine, both of the sets M0 and N0 are star-shaped and hence
simply connected. By the local homeomorphism of G, the assertion G ∈ H(M0, N0)
follows from Proposition 3.2.

Lemma 3.9 (cf. Lemma 5 of [19]). For any (x0, y0), (x1, y1) ∈ U , if 〈x0−x1, y0−
y1〉 ≥ 0 and x0 ◦ y0 = x1 ◦ y1, then (x0, y0) = (x1, y1).

Proof. See the proof of Lemma 5 of [19].
Since the set U is defined regardless of F , the above lemma is applicable to the

case where the map F is nonlinear. The following theorem is our main result.
Theorem 3.10 (cf. Theorem 2 of [19]). Suppose that a continuous map F :

intK × intK × 
m → V × 
m satisfies Assumption 1.1. Then the map H defined by
(1.4) satisfies the following properties:

(i) H is proper with respect to intK × F (U × 
m).
(ii) H maps U × 
m homeomorphically onto intK × F (U × 
m).
Proof. Define the sets M , N , E, M0, and N0 and the map G as in (3.1). Then

(3.2) holds even in this case.
(i) To show the local homeomorphism of H|(M0,N) = G|(M0,N), we use Lemma

3.9 instead of Lemma 3.7. Since H|(M0,N) is a continuous map from an open subset
of V × V ×
m into the same space, by the domain invariance theorem, it suffices to
show that H|(M0,N) is one-to-one.

Suppose that (x̂, ŷ, ẑ), (x̃, ỹ, z̃) ∈ U × 
m satisfy H(x̂, ŷ, ẑ) = H(x̃, ỹ, z̃), i.e.,

F (x̂, ŷ, ẑ) = F (x̃, ỹ, z̃), x̂ ◦ ŷ = x̃ ◦ ỹ.

Since F is (x, y)-equilevel-monotone, we see that

〈x̂− x̃, ŷ − ỹ〉 ≥ 0, x̂ ◦ ŷ = x̃ ◦ ỹ.

By Lemma 3.9, the above relations imply that (x̂, ŷ) = (x̃, ỹ) and by the z-injectivity
of F , we have (x̂, ŷ, ẑ) = (x̃, ỹ, z̃). Thus, H|(M0,N) is one-to-one and maps M0 home-
omorphically onto H(M0). By the local homeomorphism of H|(M0,N) together with
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the equilevel-monotonicity and the z-boundedness of the map F , Lemma 3.5 ensures
that H is proper with respect to the set E = intK × F (U × 
m).

(ii) In the proof of (i) above, we have already seen that (a) and (d) of Proposition
3.3 hold. By the same discussions as in the proof of (ii) of Theorem 3.8, we can see
that the assumptions (b) and (c) of Proposition 3.3 are also satisfied. Since F is
continuous, F (U ×
m) and N0 = intK ×F (U ×
m) are also path-connected. Thus,
as in the proof of (ii) of Theorem 3.8 again, we obtain that

H(U × 
m) = G(M0) = N0 = intK × F (U × 
m).

Next, we discuss the convexity of the set F (U × 
m), which is a key property in
section 5. We impose the additional assumption below on the map F (cf. [19]).

Assumption 3.11. F is (x, y)-everywhere-monotone on the domain with respect
to the set V × 
m, i.e., there exist continuous functions φ from the domain of F to
the set V × 
m and c : (V × 
m) × (V × 
m) → 
 such that c(r, r) = 0 for any
r ∈ V ×
m and

〈x− x′, y − y′〉 ≥ 〈r − r′, φ(x, y, z) − φ(x′, y′, z′)〉V×�m + c(r, r′)

holds for any (x, y, z) and (x′, y′, z′) in the domain of F satisfying F (x, y, z) = r and
F (x′, y′, z′) = r′. Here we define

〈(a, b), (a′, b′)〉V×�m = 〈a, a′〉 + bT b′

for any (a, b), (a′, b′) ∈ V ×
m.
It can be easily seen that if F is (x, y)-everywhere-monotone then r = r′ implies

that 〈x− x′, y − y′〉 ≥ 0 and F is (x, y)-equilevel-monotone.
Theorem 3.12 (cf. Theorem 3 of [19]). Suppose that a continuous map F :

intK × intK × 
m → V × 
m satisfies Assumptions 1.1 and 3.11. Then the set
F (U × 
m) is an open convex set.

Proof. It suffices to show that H(U ×
m) is open and convex since H(U ×
m) =
intK × F (U × 
m) holds by (ii) of Theorem 3.10. Since U × 
m is open ((vii) of
Lemma 2.6), (ii) of Theorem 3.10 implies that the set H(U ×
m) is also open. Define

M := U × 
m, N := V × V ×
m, G := H|(M,N).

Then the set M is path-connected by (vii) of Lemma 2.6 and G is a local homeomor-
phism by (ii) of Theorem 3.10. Using (ii) of Proposition 2.1 and (iv) of Lemma 2.6,
we can obtain the compactness of the set G−1([w0.w1]) by similar arguments as in
the proof of Theorem 3 of [19]. Therefore, the convexity of the set H(U ×
m) follows
from Proposition 3.4.

4. Solvability of the CP. In this section, we discuss the solvability of the CP
assuming that the map F is defined and continuous on the set K ×K × 
m instead
of intK× intK×
m. The following results are direct extensions of the ones in [19] to
the case of symmetric cones and obtained similarly as in the previous section. In the
proofs below, we give only the differences arising from the expansion of the domain
of F .

Lemma 4.1 (cf. Lemma 2 of [19] and Lemma 3.5). Let F : K×K×
m → V ×
m

be a continuous map which is (x, y)-equilevel-monotone and z-bounded on K×K×
m.
Let H be the map defined by (1.4). If the map H restricted to U × 
m is a local
homeomorphism, then the map H is proper with respect to V × F (U × 
m).
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Proof. Let C be a compact subset of V ×F (U×
m). Since the domain K×K×
m

of F is closed, by the continuity of H, the set H−1(C) is always closed. The argument
to obtain the boundedness of H−1(C) is the same as in the proof of Lemma 3.5.

Theorem 4.2 (cf. Theorem 2 of [19] and Theorem 3.10). Suppose that a contin-
uous map F : K × K × 
m → V × 
m satisfies Assumption 1.1. Then the map H
defined by (1.4) satisfies that

(i) H is proper with respect to V × F (U × 
m),
(ii) H maps U × 
m homeomorphically onto intK × F (U × 
m), and
(iii) H(K ×K ×
m) ⊇ K × F (U × 
m).
Proof. Define the sets M , N , M0, and N0 and the map G as in (3.1), and the

set E by

E := V × F (U × 
m).

(i) The continuity assumption on F is stricter than the one in Theorem 3.10.
Thus the local homeomorphism of H|(M0,N) = G|(M0,N) is similarly obtained from
Lemma 3.9. Using Lemma 4.1 instead of Lemma 3.5, we can see that H is proper
with respect to E = V × F (U × 
m), i.e., the assertion (i) holds.

(ii) In the above discussion, we have shown that (d) of Proposition 3.3 holds.
Since the sets M , N , and N0 are the same as in Theorem 3.10, we can see that the
assumptions (a)–(c) of Proposition 3.3 are also satisfied and that

H(U × 
m) = G(M0) = N0 = intK × F (U × 
m)

holds.
(iii) Since U is star-shaped ((vii) of Lemma 2.6), U ×
m is connected, and N0 is

also connected by the continuity of F . Combining this with the facts

K ×K ×
m = cl(M) ⊇ cl(M0) and E ∩ cl(N0) = K × F (U × 
m),

the assertion (iii) follows from (ii) of Proposition 3.3.
The following corollary is a direct consequence of Theorem 3.12.
Corollary 4.3 (cf. Theorem 3 of [19] and Theorem 3.12). Suppose that a

continuous map F : K×K×
m → V ×
m satisfies Assumptions 1.1 and 3.11. Then
the set F (U × 
m) is an open convex set.

Corollary 4.4 (cf. Corollary 1 of [19]). Suppose that the map F : K×K×
m →
V × 
m is continuous and that 0 ∈ F (U × 
m), which implies that the CP has
an interior feasible point (x̄, ȳ, z̄) ∈ intK × intK × 
m satisfying x̄ ◦ ȳ ∈ intK and
F (x̄, ȳ, z̄) = 0. Let p : [0, 1] → K×F (U∩
m) be a path for which p(0) = 0 and p(t) ∈
intK × F (U × 
m) hold.

(i) If the map F satisfies Assumption 1.1 then there exists a unique path (x, y, z) :
(0, 1] → intK× intK×
m such that H(x(t), y(t), z(t)) = p(t) for all t ∈ (0, 1]
and {(x(t), y(t), z(t)) : t ∈ (0, 1]} is bounded. Thus the CP is asymptotically
solvable. In addition, any accumulation point of {(x(t), y(t), z(t)) : t ∈ (0, 1]}
is a solution of the CP.

(ii) If F satisfies Assumptions 1.1 and 3.11 then for each h ∈ intK×F (U ∩
m),
we can take p(t) = th for all t ∈ [0, 1] as a path p : [0, 1] → K × F (U ∩ 
m)
satisfying the requirements above.

Proof. (i) Note that {p(t) : t ∈ [0, 1]} is bounded by (ii) of Definition 3.1 of
a path. The assertion follows from Theorem 4.2: (ii) of the theorem implies the
unique existence of (x(t), y(t), z(t)) for any t ∈ (0, 1], (i) implies the boundedness of
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(x(t), y(t), z(t)), and (iii) implies that any accumulation point of {(x(t), y(t), z(t))} is
a solution of the CP.

(ii) Since (0, 0) ∈ K × F (U × 
m), Corollary 4.3 ensures that {p(t) : p(t) =
th, t ∈ [0, 1]} ⊆ K × F (U × 
m) for any h ∈ intK × F (U ∩ 
m). It is obvious that
{p(t) : t ∈ [0, 1]} is bounded, p(0) = 0, and p(t) ∈ intK × F (U × 
m) for all t ∈
(0, 1].

5. A homogeneous model for the CP. In this section, we give a homogenous
model for solving a special class of CPs where the map F : K×K → V is of the form

(5.1) F (x, y) = y − ψ(x)

for a continuous map ψ : K → V .
Our model is a natural extension of the homogeneous model proposed by Ander-

sen and Ye [2] for solving CPs where K is the positive orthant in 
n. One of the
remarkable features of their model is that the associated trajectory gives certifications
on the strong feasibility or the strong infeasibility of the original problem. Our results,
Theorems 5.4 and 5.5, show that our homogeneous model inherits the property even
for the case of symmetric cones.

Throughout this section, we impose the following assumption on ψ.
Assumption 5.1. The map ψ : K → V in (5.1) is monotone on the set K, i.e.,

〈ψ(x) − ψ(x′), x− x′〉 ≥ 0 for all x, x′ ∈ K.

Proposition 5.2. Suppose that S ⊆ K and ψ : S → V is monotone on the set
S. Then the map F : S × K → V given by (5.1) is (x, y)-everywhere-monotone on
the set S ×K with m = 0.

Proof. Define φ : S × K → V and c : V × V → 
 by φ(x, y) := x and c := 0.
Let r := F (x, y) and r′ := F (x′, y′), where (x, y), (x′, y′) ∈ S ×K. Then we see that
ψ(x) − ψ(x′) = (y − y′) − (r − r′), and the monotonicity of ψ implies that

0 ≤ 〈ψ(x) − ψ(x′), x− x′〉
= 〈(y − y′) − (r − r′), x− x′〉
= 〈y − y′, x− x′〉 − 〈r − r′, x− x′〉
= 〈y − y′, x− x′〉 − 〈r − r′, φ(x, y) − φ(x′, y′)〉 + c(r, r′).

Thus, by the definition of (x, y)-everywhere-monotonicity in Assumption 3.11, the
map F is (x, y)-everywhere-monotone on the set S ×K with m = 0.

Define the sets 
+ := {τ ∈ 
 : τ ≥ 0} and 
++ := {τ ∈ 
 : τ > 0}. For a given
CP with a map F of the form (5.1), we consider the homogeneous model

(5.2)
(HCP) find (x, τ, y, κ) ∈ (K ×
++) × (K ×
+)

s.t. FH(x, τ, y, κ) = 0, (x, τ) ◦H (y, κ) = 0,

where FH : (K ×
++) × (K ×
+) → (V ×
) and (x, τ) ◦H (y, κ) are given by

(5.3) FH(x, τ, y, κ) :=

(
y − τψ(x/τ)

κ + 〈ψ(x/τ), x〉

)
and

(5.4) (x, τ) ◦H (y, κ) :=

(
x ◦ y
τκ

)
.
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For ease of notation, we use the following symbols:

(5.5) VH := V ×
, KH := K ×
+, xH := (x, τ) ∈ VH, yH := (y, κ) ∈ VH.

It should be noted that the set KH is a Cartesian product of two symmetric cones K
and 
+ and is given by

KH =

{
x2

H =

(
x2

τ2

)
: xH ∈ VH

}
.

Thus the closed convex cone KH is the symmetric cone of VH. It can be easily seen
that intKH = intK ×
++.

The scalar product 〈(x, τ), (y, κ)〉H associated to the bilinear product ◦H is given by

(5.6) 〈(x, τ), (y, κ)〉H := 〈x, y〉 + τκ.

For any xH = (x, τ) ∈ VH, the linear operator

LH(xH) :=

(
L(x) 0
0T τ

)
is self-adjoint with respect to 〈·, ·〉, i.e., 〈vH, LH(xH)wH〉 = 〈LH(xH)vH, wH〉 for any
vH, wH ∈ VH.

Let us define the map ψH by

(5.7) ψH(xH) = ψH(x, τ) :=

(
τψ(x/τ)

−〈ψ(x/τ), x〉

)
for any xH = (x, τ) ∈ K ×
++. Then the map FH is given by

(5.8) FH(xH, yH) = yH − ψH(xH).

We also define the set

(5.9) UH := {(xH, yH) ∈ intKH × intKH : xH ◦H yH ∈ intKH}.

It is clear that the set UH has the properties described in Lemma 2.6 with U = UH.
The following proposition shows that a monotonicity of the map FH on the set

intKH × intKH can be obtained if the map ψ is monotone on the set K.
Proposition 5.3. Suppose that ψ : K → V satisfies Assumption 5.1. Then
(i) the map ψH is monotone on intKH,
(ii) the map FH is (xH, yH)-everywhere-monotone on intKH × intKH.
Thus, FH with the domain intKH × intKH satisfies Assumptions 1.1 and 3.11 with

m = 0 whenever ψ is monotone on K.
Proof. (i) For any xH, x

′
H ∈ intKH, it follows from the definition (5.7) that

〈ψH(xH) − ψH(x′
H), xH − x′

H〉H
= 〈τψ(x/τ) − τ ′ψ(x′/τ ′), x− x′〉 − (τ − τ ′)[〈ψ(x/τ), x〉 − 〈ψ(x′/τ ′), x′〉]
= 〈τψ(x/τ), x− x′〉 −〈τ ′ψ(x′/τ ′), x− x′〉− (τ − τ ′)〈ψ(x/τ), x〉+ (τ − τ ′)〈ψ(x′/τ ′), x′〉
= −τ〈ψ(x/τ), x′〉 − τ ′〈ψ(x′/τ ′), x〉 + τ ′〈ψ(x/τ), x〉 + τ〈ψ(x′/τ ′), x′〉
= −ττ ′〈ψ(x/τ), x′/τ ′〉 − ττ ′〈ψ(x′/τ ′), x/τ〉 + ττ ′〈ψ(x/τ), x/τ〉 + ττ ′〈ψ(x′/τ ′), x′/τ ′〉
= ττ ′〈ψ(x/τ), (x/τ) − (x′/τ ′)〉 − ττ ′〈ψ(x′/τ ′), (x/τ) − (x′/τ ′)〉
= ττ ′〈ψ(x/τ) − ψ(x′/τ ′), (x/τ) − (x′/τ ′)〉
≥ 0,

where the last inequality follows from the monotonicity of ψ.
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(ii) The assertion follows from (i) above and Proposition 5.2 with S = int
KH.

In the theorem below, the assertions (i)–(iii) follow only from the construction
(5.7) of the map ψH. Note that the assertion (v) in the theorem ensures that if the
original CP is strongly infeasible, then, under the assumption of Lipschitz continuity,
a finite certificate proving infeasibility is given by an asymptotic solution of the HCP.

Theorem 5.4 (cf. Theorem 1 of [2]). Suppose that ψ : K → V satisfies Assump-
tion 5.1.

(i) For any xH ∈ intKH, 〈xH, ψH(xH)〉H = 0.
(ii) Any asymptotically feasible solution (x̂H, ŷH) of the HCP is an asymptotically

complementary solution.
(iii) The HCP is asymptotically feasible.
(iv) The CP has a solution if and only if the HCP has an asymptotic solution

(x∗
H, y

∗
H) = (x∗, τ∗, y∗, κ∗) with τ∗ > 0. In this case, (x∗/τ∗, y∗/τ∗) is a solution

of the CP.
(v) Suppose that ψ satisfies the Lipschitz condition on K; i.e., there exists a

constant γ ≥ 0 such that

‖ψ(x + h) − ψ(x)‖ ≤ γ‖h‖ for any x ∈ K and h ∈ V.

If the CP is strongly infeasible then the HCP has an asymptotic solution
(x∗, τ∗, y∗, κ∗) with κ∗ > 0. Conversely, if the HCP has an asymptotic solu-
tion (x∗, τ∗, y∗, κ∗) with κ∗ > 0 then the CP is infeasible. In the latter case,
(x∗/κ∗, y∗/κ∗) is a certificate to prove infeasibility of the CP.

Proof. (i) By a simple calculation, we have 〈xH, ψH(xH)〉H = 〈x, τψ(x/τ)〉 −
τ〈ψ(x/τ), x〉 = 0.

(ii) Suppose that (x̂H, ŷH) is an asymptotically feasible solution. Then there exists

a bounded sequence (x
(k)
H , y

(k)
H ) ∈ intKH × intKH such that

lim
k→∞

FH(x
(k)
H , y

(k)
H ) = lim

k→∞
(y

(k)
H − ψH(x

(k)
H )) = 0.

Here (i) above implies that

〈x(k)
H , y

(k)
H 〉H = 〈x(k)

H , y
(k)
H 〉H − 〈x(k)

H , ψH(x
(k)
H )〉H = 〈x(k)

H , y
(k)
H − ψH(x

(k)
H )〉H

holds for all k ≥ 0. Thus, we see that limk→∞〈x(k)
H , y

(k)
H 〉H = 0. By the definition

(5.6) of 〈·, ·〉H and (ii) of Lemma 2.6, we obtain that (x̂H, ŷH) is an asymptotically
complementary solution.

(iii) For each k ≥ 0, define

x(k) := (1/2)ke∈ intK, τk := (1/2)k ∈ 
++, y(k) := (1/2)ke ∈ intK,

κk := (1/2)k ∈ 
++.

Then the sequence {(x(k)
H , y

(k)
H )} = {(x(k), τk, y

(k), κk)} is bounded and

lim
k→∞

(y(k) − τkψ(x(k)/τk)) = 0 and lim
k→∞

(κk + 〈ψ(x(k)/τk), x
(k)〉) = 0.

Thus, the bounded sequence {(x(k)
H , y

(k)
H )} ⊆ intKH × intKH satisfies

lim
k→∞

(y
(k)
H − ψH(x

(k)
H )) = lim

k→∞
FH(x(k), y

(k)
H ) = 0,

which implies that the HCP is asymptotically feasible.
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(iv) It is easy to see that if (x∗, τ∗, y∗, κ∗) ∈ (K×
+)×(K×
+) is a solution of the
HCP with τ∗ > 0, then y∗/τ∗−ψ(x∗/τ∗) = 0, x∗◦y∗ = 0 and (x∗/τ∗, y∗/τ∗) ∈ K×K
is a solution of the CP.

Conversely, let (x̂, ŷ) ∈ K ×K be a solution of the CP. Then ŷ − 1 · ψ(x̂/1) = 0,
(x̂, 1) ◦H (ŷ, 0) = 0, and (x̂, 1, ŷ, 0) ∈ (K ×
++)× (K ×
+) is a solution of the HCP.

(v) By Proposition 5.2, the monotonicity of the map ψ on the set K implies that
the map F defined by (5.1) satisfies Assumptions 1.1 and 3.11 with the domain K×K
and m = 0. Thus the set F (U) is open and convex by Theorem 3.12.

If the CP is strongly infeasible, then we must have 0 �∈ cl(F (U)). Since the set
cl(F (U)) is a closed convex set, by the separating hyperplane theorem, there exist
a ∈ V with ‖a‖ = 1 and ξ ∈ 
 such that

(5.10) 〈a, b〉 ≥ ξ > 0 for all b ∈ cl(F (U)).

Since F is continuous on the set cl(U) ⊆ K×K, we can see that F (cl(U)) ⊆ cl(F (U)).
In fact, if b ∈ F (cl(U)) then there exists a sequence satisfying

(x(k), y(k)) ∈ U , lim
k→∞

(x(k), y(k)) = (x̄, ȳ) ∈ cl(U), F (x̄, ȳ) = b,

and the continuity of F on the set cl(U) implies that limk→∞ F (x(k), y(k)) = F (x̄, ȳ) =
b. Therefore (5.10) implies that

(5.11) 〈a, F (x, y)〉 = 〈a, y − ψ(x)〉 = 〈a, y〉 − 〈a, ψ(x)〉 ≥ ξ > 0

for any (x, y) ∈ cl(U). Note that (ix) of Lemma 2.6 ensures that the above relation
(5.11) holds at (x, y) = (0, αȳ) for any fixed ȳ ∈ K and any α > 0. Thus, it must
be true that 〈a, ȳ〉 ≥ 0 for all ȳ ∈ K, which implies that a ∈ K. Similarly, since
(x, 0) ∈ cl(U) for all x ∈ K, it follows from (5.11) that

(5.12) −〈a, ψ(x)〉 ≥ ξ > 0

for any x ∈ K. Thus, combining this with the fact that a ∈ K, we see that

(5.13) −〈a, ψ(βa)〉 ≥ ξ > 0 for all β ≥ 0.

From the monotonicity of the map ψ on the set K×K, we also see that for any x ∈ K
and β ≥ 0, 0 ≤ 〈βx− x, ψ(βx) − ψ(x)〉 = (β − 1)〈x, ψ(βx) − ψ(x)〉. Thus, for β ≥ 1,

(5.14) 〈x, ψ(βx) − ψ(x)〉 ≥ 0,

which implies that

(5.15) lim inf
β→∞

〈x, ψ(βx)〉/β ≥ 0.

Let {βk} be a sequence such that βk → +∞, and let

(5.16)
ψ(βka)

βk
=

r∑
i=1

λ
(k)
i c

(k)
i

be a decomposition given by (i) of Theorem 2.2 for each k. We also define

(5.17)
λk := min{λ(k)

i (i = 1, 2, . . . , r)},
jk ∈ arg min{λ(k)

i (i = 1, 2, . . . , r)}, c(k) := c
(k)
jk

.
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Note that {c(k)} is a sequence of primitive (i.e., nonzero) idempotents of a Euclidean
Jordan algebra (V, ◦). Thus, by (iv) of Proposition 2.7, there exist ω1, ω2 > 0 such
that

(5.18) 0 < ω1 ≤ ‖c(k)‖ ≤ ω2 for all k.

We first claim that lim infk→∞ λk ≥ 0. Suppose that lim infk→∞ λk < 0. Then, by
taking a subsequence if necessary, we may assume that there exists a δ > 0 satisfying
λk ≤ −δ for sufficiently large k’s. Define x(k) := a + εc(k) for ε > 0. We can see that

〈x(k), ψ(βkx
(k))〉/βk = 〈a + εc(k), ψ(βkx

(k))〉/βk

= 〈a, ψ(βkx
(k))〉/βk + ε〈c(k), ψ(βkx

(k))〉/βk

< ε〈c(k), ψ(βkx
(k))〉/βk (by (5.12))

= ε
(
〈c(k), ψ(βkx

(k)) − ψ(βka)〉/βk + 〈c(k), ψ(βka)〉/βk

)
.(5.19)

The definitions (5.16) and (5.17) and the boundedness (5.18) of {c(k)} ensure that
there exists k̄ for which

(5.20) 〈c(k), ψ(βka)〉/βk = λk〈c(k), c(k)〉 ≤ −δω2
1 < 0

holds for any k ≥ k̄. In addition, since we set x(k) = a + εc(k), by the Lipschitz
continuity of ψ and the boundedness of {c(k)}, there exist γ̄ > 0 and ε̄ > 0 independent
from k, for which

(5.21) 〈c(k), ψ(βkx
(k)) − ψ(βka)〉/βk ≤ γ̄ε ≤ δω2

1/2

holds for any ε ≤ ε̄. Thus, by (5.20) and (5.21),

〈c(k), ψ(βkx
(k)) − ψ(βka)〉/βk + 〈c(k), ψ(βka)〉/βk ≤ −δω2

1/2 < 0

holds for any k ≥ k̄ and ε ≤ ε̄. Therefore, by (5.19), we obtain

〈x(k), ψ(βkx
(k))〉/βk ≤ −εδω2

1/2 < 0

for all such k’s and ε’s. Since x(k) = a+εc(k) ∈ K, by fixing a suitably small ε ∈ (0, ε̄],
the above inequality contradicts (5.15) and we must have

(5.22) lim inf
k→∞

λk = lim inf
k→∞

[
min{λ(k)

i (i = 1, 2, . . . , r)}
]
≥ 0.

Next we claim that {λ(k)
i } is bounded for any i = 1, 2, . . . , r. By the facts βka ∈ K

for any k, e ∈ K, and ψ is monotone on K, we see that

0 ≤ 〈βka− e, ψ(βka) − ψ(e)〉/βk

= 〈a, ψ(βka)〉 − 〈e, ψ(βka)/βk〉 − 〈a, ψ(e)〉 + 〈e, ψ(e)/βk〉
< −〈e, ψ(βka)/βk〉 − 〈a, ψ(e)〉 + 〈e, ψ(e)/βk〉,

where the last inequality follows from (5.12). This implies the existence of a constant
σ > 0 such that

(5.23) 〈e, ψ(βka)/βk〉 ≤ σ
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holds for sufficiently large k’s. By the definition (5.16), the left-hand side of the above
inequality is given by

〈e, ψ(βka)/βk〉 =

〈
e,

r∑
i=1

λ
(k)
i c

(k)
i

〉
=

r∑
i=1

λ
(k)
i 〈e, c(k)

i 〉.

Combining the above with (5.23), we have

r∑
i=1

λ
(k)
i 〈e, c(k)

i 〉 ≤ σ.

Here, (iv) of Proposition 2.7 ensures the existence of ω1, ω2 > 0 such that

0 < ω2
1 ≤ 〈e, c(k)

i 〉 ≤ ω2
2 for all i and k.

Since we have shown the inequality (5.22), the set {λ(k)
i } must be bounded for any

i = 1, 2, . . . , r.

By using (iv) of Proposition 2.7 again, we also see that {c(k)
i } is bounded for

any i = 1, 2, . . . , r. Thus, {ψ(βka)/βk =
∑r

i=1 λ
(k)
i c

(k)
i } is bounded, and by (5.22),

any accumulation point ψ∞(a) of the sequence must satisfy ψ∞(a) ∈ K.

Note that 〈a, ψ(βka)〉 ≤ −ξ from (5.13) and 〈a, ψ(βka)〉 ≥ 〈a, ψ(a)〉 from (5.14).
Thus {〈a, ψ(βka)〉} is also bounded. To summarize, by taking an appropriate subse-
quence and setting

x̂(k) := a + (1/βk)e ∈ intK, τ̂k := 1/βk,

ŷ(k) :=

r∑
i=1

(max{λ(k)
i , 1/βk}c(k)

i ) ∈ intK, κ̂k := −〈a, ψ(βka)〉 ≥ ξ > 0,

then, by (5.18), (5.22), and the boundedness of {λ(k)
i } and {c(k)

i }, we have

lim
k→∞

r∑
i=1

(max{λ(k)
i , 1/βk}c(k)

i ) = ψ∞(a) ∈ K

and conclude that (x∗, τ∗, y∗, κ∗) given by

x∗ := a = lim
k→∞

x̂(k) ∈ K, τ∗ := 0 = lim
βk→∞

τ̂k,

y∗ := ψ∞(a) = lim
k→∞

ŷ(k) ∈ K, κ∗ := lim
k→∞

κ̂k ≥ ξ > 0

is an asymptotic solution of the HCP with κ∗ > 0.

Conversely, suppose that there exists a bounded sequence (x(k), τk, y
(k), κk) ∈

(intK ×
++) × (intK ×
++) such that

lim
k→∞

y(k) = lim
k→∞

τkψ(x(k)/τk) ∈ K, lim
k→∞

κk = lim
k→∞

−〈x(k), ψ(x(k)/τk)〉 ≥ ξ > 0.

Let us show that there is no feasible point (x, y) ∈ K × K satisfying y − ψ(x) =
0. Suppose that (x, y) ∈ K × K and y − ψ(x) = 0. Since ψH is monotone on
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(K ×
++) × (K ×
+), by the definition (5.7), we have

0 ≤ 〈(x(k), τk) − (x, 1), ψH(x(k), τk) − ψH(x, 1)〉
= 〈x(k) − x, τkψ(x(k)/τk) − ψ(x)〉 + (τk − 1)

(
〈x, ψ(x)〉 − 〈x(k), ψ(x(k)/τk)〉

)
= 〈x(k), τkψ(x(k)/τk)〉 + 〈x, ψ(x)〉

+(τk − 1)〈x, ψ(x)〉 − (τk − 1)〈x(k), ψ(x(k)/τk)〉
−〈x(k), ψ(x)〉 − 〈x, τkψ(x(k)/τk)〉

= τk〈x, ψ(x)〉 + 〈x(k), ψ(x(k)/τk)〉 − 〈x(k), ψ(x)〉 − 〈x, τkψ(x(k)/τk)〉
and hence

〈x(k), ψ(x(k)/τk)〉 ≥ 〈x(k), ψ(x)〉 + 〈x, τkψ(x(k)/τk)〉 − τk〈x, ψ(x)〉
= 〈x(k), y〉 + 〈x, τkψ(x(k)/τk)〉 − τk〈x, y〉.(5.24)

Here limk→∞ τk = 0 since limk→∞ κk ≥ ξ > 0. In addition, it follows from the
assumption that 〈x(k), y〉 ≥ 0 and that

lim
k→∞

〈x, y(k)〉 = 〈x, lim
k→∞

y(k)〉 = 〈x, lim
k→∞

τkψ(x(k)/τk)〉 ≥ 0.

Thus the relation (5.24) ensures that

lim
k→∞

〈x(k), ψ(x(k)/τk)〉 ≥ 0,

which contradicts

κk := −〈x(k), ψ(x(k)/τk)〉 ≥ ξ > 0.

In addition, any limit of x(k) gives a separating hyperplane, i.e., a certificate proving
infeasibility.

Note that the Lipschitz continuity of ψ on K in (v) of the above theorem seems
to be indispensable for showing the existence of a uniform bound γ̄ satisfying (5.21),
while only the differentiability (or the scaled Lipschitz continuity) of ψ is assumed in
[2]. The differentiability of ψ on K implies the Lipschitz continuity of ψ at a ∈ K.
However, the local Lipschitz continuity of ψ might be not enough since the sequence
{βka} ⊆ K is never bounded along βk → +∞.

We are going to show that a central path of the homogeneous model HCP is well
defined. As we will see in (iii) of Theorem 5.5, any limit point of the path lets us know
if the HCP has an asymptotically complementary solution (x∗

H, y
∗
H) = (x∗, τ∗, y∗, κ∗)

with τ∗ > 0 or if it has such a solution with κ∗ > 0.
Therefore, in view of (iv) and (v) of Theorem 5.4, if we find a limit of the path then

we can determine whether the CP is (asymptotically) solvable, strongly infeasible, or
of some other type.

Let us consider the map

(5.25) HH(xHyH) :=

(
xH ◦H yH

FH(xH, yH)

)
and choose an initial point (x

(0)
H , y

(0)
H ) such that (x

(0)
H , y

(0)
H ) ∈ intKH × intKH and

xH ◦H yH ∈ intKH. For simplicity, we set (x
(0)
H , y

(0)
H ) = (x(0), τ0, y

(0), κ0) = (e, 1, e, 1) ∈
intKH × intKH. Define

(5.26) h
(0)
H :=

(
p
(0)
H

f
(0)
H

)
:=

(
x

(0)
H ◦H y

(0)
H

FH(x
(0)
H , y

(0)
H )

)
=

(
eH

y
(0)
H − ψH(x

(0)
H )

)
,

where eH = (e, 1) ∈ intKH is the identity element in VH.
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Theorem 5.5 (cf. Theorem 2 of [2]). Suppose that ψ : K → V satisfies Assump-

tion 5.1. Define h
(0)
H by (5.26).

(i) For any t ∈ (0, 1], there exists a point (xH(t), yH(t)) ∈ intKH × intKH such

that HH(xH(t), yH(t)) = th
(0)
H .

(ii) The set

P := {(xH, yH) ∈ intKH × intKH : HH(xH(t), yH(t)) = th
(0)
H , t ∈ (0, 1]}

forms a bounded path in intKH×intKH. Any accumulation point (xH(0), yH(0))
is an asymptotically complementary solution of the HCP.

(iii) If the HCP has an asymptotically complementary solution (x∗
H, y

∗
H) = (x∗, τ∗,

y∗, κ∗) with τ∗ > 0 (κ∗ > 0, respectively), then any accumulation point
(xH(0), yH(0)) = (x(0), τ(0), y(0), κ(0)) of the bounded path P satisfies τ(0) >
0 (κ(0) > 0, respectively).

Proof. (i) It follows from Proposition 5.3 that the map FH defined by (5.3) satisfies
Assumptions 1.1 and 3.11. Thus, by Theorem 3.12, the set HH(UH) with

UH := {(xH, yH) ∈ intKH × intKH : xH ◦H yH ∈ intKH}

is an open convex subset of VH × VH. Here we have already seen that 0 ∈ cl(HH(UH))
in (ii) and (iii) of Theorem 5.4.

Since the set HH(UH) is convex, the fact above implies that th
(0)
H ∈ HH(UH) for

any t ∈ (0, 1]. Combining this with the homeomorphism of the map HH in Theorem
3.10, we obtain the assertion (i).

(ii) The homeomorphism of the map HH also ensures that the set P forms a path
in intKH × intKH. It suffices to show that the path P is bounded.

Let (xH, yH) = (x, τ, y, κ) ∈ P . Then there exists a t ∈ (0, 1] for which

(5.27) xH ◦H yH = teH and yH − ψH(xH) = tf
(0)
H

hold and

〈xH, f
(0)
H 〉H

= 〈xH, y
(0)
H 〉H − 〈xH, ψH(x

(0)
H )〉H (by (5.26))

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − 〈yH, x

(0)
H 〉H − 〈xH, ψH(x

(0)
H )〉H

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − 〈x(0)

H , tf
(0)
H + ψH(xH)〉H − 〈xH, ψH(x

(0)
H )〉H (by (5.27))

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H − 〈x(0)

H , ψH(xH)〉H − 〈xH, ψH(x
(0)
H )〉H

≥ 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H − 〈xH, ψH(xH)〉H − 〈x(0)

H , ψH(x
(0)
H )〉H

(by the monotonicity of ψH)

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , f
(0)
H 〉H (by (i) of Theorem 5.4)

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , y
(0)
H − ψH(x

(0)
H )〉H (by (5.26))

= 〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H − t〈x(0)

H , y
(0)
H 〉H (by (i) of Theorem 5.4).
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In addition, for the same t ∈ (0, 1], we have

t〈xH, f
(0)
H 〉H = 〈xH, tf

(0)
H 〉H

= 〈xH, yH − ψH(xH)〉H (by (5.27))

= 〈xH, yH〉H (by (i) of Theorem 5.4)

= t〈eH, eH〉H (by (5.27))

= t〈x(0)
H , y

(0)
H 〉H.

Therefore, we obtain that

〈xH, y
(0)
H 〉H + 〈yH, x

(0)
H 〉H ≤ 〈xH, f

(0)
H 〉H + t〈x(0)

H , y
(0)
H 〉H

= 〈x(0)
H , y

(0)
H 〉H + t〈x(0)

H , y
(0)
H 〉H

= (1 + t)〈x(0)
H , y

(0)
H 〉H = (1 + t)〈eH, eH〉H ≤ 2〈eH, eH〉H.

Thus, by (ii) of Proposition 2.1, the set P is bounded.

(iii) Let (x∗
H, y

∗
H) = (x∗, τ∗, y∗, κ∗) be an asymptotic solution for the HCP. Then

there exists a bounded sequence

{(x(k)
H , y

(k)
H )} = {(x(k), τk, y

(k), κk)} ⊆ intKH × intKH

such that

lim
k→∞

(x
(k)
H , y

(k)
H ) = (x∗

H, y
∗
H), lim

k→∞
y
(k)
H − ψH(x

(k)
H ) = 0, lim

k→∞
x

(k)
H ◦H y

(k)
H = 0.

Let (xH(t), yH(t)) = (x(t), τ(t), y(t), κ(t)) be any point on the path P . Then,

(5.28) xH(t) ◦H yH(t) = teH and yH(t) − ψH(xH(t)) = tf
(0)
H .

By the boundedness of the set P (see (ii) above), there exists an ε ∈ (0, 1] such that

(5.29) ‖xH(t)‖ ≤ 1/ε and ‖yH(t)‖ ≤ 1/ε

hold for any t ∈ (0, 1]. In addition, for each t ∈ (0, 1], there exists an index k(t) such
that for any k ≥ k(t), we have

(5.30) ‖x(k)
H − x∗

H‖ ≤ ε, ‖y(k)
H − y∗H‖ ≤ ε, and ‖y(k)

H − ψH(x
(k)
H )‖ ≤ tε.

Here, by the monotonicity of ψH,

〈xH(t) − x
(k)
H , yH(t) − y

(k)
H 〉H

= 〈xH(t) − x
(k)
H , ψH(xH(t)) − ψH(x

(k)
H )〉H

+ 〈xH(t) − x
(k)
H , yH(t) − ψH(xH(t))〉H − 〈xH(t) − x

(k)
H , y

(k)
H − ψH(x

(k)
H )〉H

≥ 〈xH(t) − x
(k)
H , yH(t) − ψH(xH(t))〉H − 〈xH(t) − x

(k)
H , y

(k)
H − ψH(x

(k)
H )〉H
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and hence, for any t ∈ (0, 1] and any k ≥ k(t),

〈xH(t), y
(k)
H 〉H + 〈yH(t), x

(k)
H 〉H

≤ 〈xH(t), yH(t)〉H + 〈x(k)
H , y

(k)
H 〉H

−〈xH(t) − x
(k)
H , yH(t) − ψH(xH(t))〉H

+ 〈xH(t) − x
(k)
H , y

(k)
H − ψH(x

(k)
H )〉H

= 〈xH(t), yH(t)〉H + 〈x(k)
H , y

(k)
H 〉H

−〈xH(t), yH(t) − ψH(xH(t))〉H − 〈x(k)
H , y

(k)
H − ψH(x

(k)
H )〉H

+ 〈x(k)
H , yH(t) − ψH(xH(t))〉H + 〈xH(t), y

(k)
H − ψH(x

(k)
H )〉H

= 〈x(k)
H , yH(t) − ψH(xH(t))〉H + 〈xH(t), y

(k)
H − ψH(x

(k)
H )〉H (by (i) of Theorem 5.4)

= 〈x(k)
H , tf

(0)
H 〉H + 〈xH(t), y

(k)
H − ψH(x

(k)
H )〉H (by (5.28))

≤ t‖x(k)
H ‖‖f (0)

H ‖ + ‖xH(t)‖‖y(k)
H − ψH(x

(k)
H )‖

≤ t(‖x∗
H‖ + ε)‖h(0)

H ‖ + t (by (5.29) and (5.30))

≤ tδ,

where δ := 1 + (‖x∗
H‖ + 1)‖h(0)

H ‖ > 0. Note that (5.28) implies xH(t) = tyH(t)−1 and
yH(t) = txH(t)−1. Combining them, it must hold that for any t ∈ (0, 1] and k ≥ k(t),

tδ ≥ 〈xH(t), y
(k)
H 〉H + 〈yH(t), x

(k)
H 〉H

= 〈tyH(t)−1, y
(k)
H 〉H + 〈txH(t)−1, x

(k)
H 〉H

= t

{
〈y(t)−1, y(k)〉 +

κk

κ(t)
+ 〈x(t)−1, x(k)〉 +

τk
τ(t)

}
.

Since 〈y(t)−1, y(k)〉 > 0 and 〈x(t)−1, x(k)〉 > 0, we finally obtain that

κk

κ(t)
< δ and

τk
τ(t)

< δ

for any t ∈ (0, 1] and k ≥ k(t). Thus, the assertion (iii) follows from the facts κk → κ∗,
τk → τ∗, and δ > 0.

6. Concluding remarks. In this paper, we studied the homeomorphism of the
interior point map defined by (1.4) for monotone complementarity problems (CPs)
over symmetric cones associated with Euclidean Jordan algebras. As an application
of our results, we provided a homogeneous model (HCP) for the problems and showed
the existence of a trajectory. In Theorem 5.4, we have shown that the following
implications hold under the Lipschitz continuity of the map:

[The original CP has a solution.]

⇐⇒ [The HCP has an asymptotic solution (x∗, τ∗, y∗, κ∗) with τ∗ > 0.]

[The original CP is strongly infeasible.]

=⇒ [The HCP has an asymptotic solution (x∗, τ∗, y∗, κ∗) with κ∗ > 0.]

=⇒ [The original CP is infeasible (with a finite certification of the infeasibility).]

To our knowledge, no better results have been provided even for the case of K = 
n
++.

It is still an open problem to find an exact certification proving strong infeasibility of
the original problem.
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Other issues to be investigated are the development of numerical algorithms and
their complexity analyses and discussing the existence of maximal complementarity
solutions for the problems. Concerning the second subject, we have already obtained
a partial result in the proof of (iii) of Theorem 5.5. As a related result, we should
refer to Chua’s work [3] for homogeneous conic programming: The author showed
that the paths defined by a class of optimal barriers converge to analytical centers of
optimal faces whenever the primal-dual pair of problems has strictly complementarity
solutions.

Recently, the concept of P-properties on Euclidean Jordan algebra was introduced
by Gowda, Sznajder, and Tao [8] and by Tao and Gowda [31], aiming to provide
nonmonotone properties on the algebra. For the case of the n-dimensional positive
orthant, a homogeneous model for P0 complementarity problems has been proposed
in [33]. In contrast to our results, however, the lack of the monotonicity of the
map prevents us from obtaining the convexity of the image as in Theorem 3.12.
The convexity of the set is a key property in obtaining a certificate proving strong
infeasibility of the original problem.

Acknowledgments. The author would like to thank Leonid Faybusovich for
many helpful comments and valuable suggestions. The author is also grateful to the
anonymous referees whose comments helped improve the paper considerably.
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BANACH SPACES∗

XI YIN ZHENG† AND KUNG FU NG‡

Abstract. We study general constrained multiobjective optimization problems with objectives
being closed multifunctions in Banach spaces. In terms of the coderivatives and normal cones,
we provide generalized Lagrange multiplier rules as necessary optimality conditions of the above
problems. In an Asplund space setting, sharper results are presented.
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1. Introduction. Let X be a Banach space and fi : X → R ∪ {+∞} be proper
lower semicontinuous functions (i = 0, 1, . . . ,m). Many authors (see [2, 3, 4, 16, 29,
30]) studied the following optimization problem with inequality and equality con-
straints:

min f0(x),(1.1)

fi(x) ≤ 0, i = 1, . . . , n,

fi(x) = 0, i = n + 1, . . . ,m,

x ∈ Ω.

Under some restricted conditions (e.g., each fi is locally Lipschitz), it is well known,
as the Lagrange multiplier rule, that if x̄ is a local solution of (1.1), then there exists
λi ∈ R (0 ≤ i ≤ m) such that

0 ∈
m∑
i=0

∂(λifi)(x̄) + N(Ω, x̄),(1.2)

m∑
i=0

|λi| = 1 and λi ≥ 0, 0 ≤ i ≤ n,

where ∂(λifi) and N(Ω, x̄) denote the subdifferential and the normal cone (see sec-
tion 2 for their definitions). Some authors established the so-called fuzzy Lagrange
multiplier rule (see [3, 14, 20] and the references therein). The main aim of this paper
is to establish the corresponding rules for multifunctions in Banach spaces.

Let X, Y0, Y1, . . . , Ym be Banach spaces, Ω be a closed subset of X, and Fi : X →
2Yi (i = 0, 1, . . . ,m) be closed multifunctions. Let C0 ⊂ Y0 be a closed convex cone
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such that C0 	= C0 ∩−C0 (i.e, C0 is not a linear subspace), which specifies a preorder
≤C0 on Y0 as follows: for y1, y2 ∈ Y0,

y1 ≤C0 y2 if and only if y2 − y1 ∈ C0.

For i = 1, . . . ,m, let Ci be a closed convex cone in Yi. Consider the following con-
strained multiobjective optimization problem:

C0 − minF0(x),(1.3)

Fi(x) ∩ −Ci 	= ∅, i = 1, . . . ,m,

x ∈ Ω.

Recall that ā ∈ A is said to be a Pareto efficient point if ā ≤C0
a whenever a ∈ A and

a ≤C0 ā, that is,

A ∩ (ā− C0) ⊂ ā + C0 ∩ −C0.

We use E(A,C0) to denote the set of all Pareto efficient points of A. In the case when
C0 is pointed (i.e., C0 ∩ −C0 = {0}),

ā ∈ E(A,C0) ⇐⇒ A ∩ (ā− C0) = {ā}.

For x̄ ∈ X and ȳ ∈ F0(x̄), we say that (x̄, ȳ) is a local Pareto solution of the mul-
tiobjective optimization problem (1.3) if there exists a neighborhood U of x̄ such
that

ȳ ∈ E

(
F0

[
U ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
, C0

)
.

In the case when each Fi is single-valued, many authors have established sufficient or
necessary optimality conditions for Pareto solutions and weak Pareto solutions under
some restricted conditions; e.g., the ordering cone has a nonempty interior, the spaces
are finite dimensional, and Ci = Rn

+ (see [1, 5, 7, 9, 10, 11, 12, 13, 22, 23, 24, 26, 27]
and the references therein). In the set-valued setting, in terms of cotangent derivatives
Götz and Jahn [8] provided the Lagrange multiplier rule for (1.3) under the convexity
assumption. Ye and Zhu [25] and Mordukhovich, Treiman, and Zhu [19] gave some
necessary optimality conditions for multiobjective optimization problems with respect
to an abstract order in a Euclidean space or Asplund space setting. Recently, the
authors [28] studied a unconstrained multiobjective problem with the objective being
multifunctions in Banach spaces and, as generalizations of the Fermat rule, presented
necessary optimization conditions. In this paper, in a general setting we provide the
following fuzzy Lagrange multiplier rule for constrained multiobjective optimization
problem (1.3).

Let X,Yi be Banach spaces, Ω be a closed subset of X, and Fi : X → 2Yi be a
closed multifunction (i = 0, 1, . . . ,m). Suppose that (x̄,ȳ0) is a local Pareto solution
of the constrained multiobjective optimization problem (1.3), and let ȳi ∈ Fi(x̄)∩−Ci

(i = 1, . . . ,m). Then one of the following two assertions holds.
(i) For any ε > 0 there exist xi ∈ x̄+ εBX , w ∈ Ω∩ (x̄+ εBX), yi ∈ Fi(xi)∩ (ȳi +

εBYi), and c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(xi, yi)(c

∗
i + εBY ∗

i
) + Nc(Ω, w) + εBX∗ ,
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where BX denotes the closed unit ball of X, C+
i := {y∗ ∈ Y ∗

i : 〈y∗, c〉 ≥ 0 ∀c ∈ Ci},
Nc(·, ·) denotes the Clarke normal cone, and D∗

cFi(·, ·) denotes the Mordukhovich
coderivative with respect to the Clarke normal cone.

(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), x

∗
i ∈ D∗

cFi(xi, yi)(εBY ∗
i
), and w∗ ∈ Nc(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.(1.4)

Using this result, we give some exact Lagrange multiplier rules for (1.3). In the case
when X,Yi are Asplund spaces, these results are sharpened; in particular, we prove
the following result (see section 2 for terms undefined).

Let (x̄, ȳ0) be a local Pareto solution of (1.3), and let ȳi ∈ Fi(x̄) ∩ −Ci. Suppose
that each Fi is pseudo-Lipschitz around (x̄, ȳi) and that each Ci is dually compact
(e.g., Ci has a nonempty interior). Then there exists c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄),(1.5)

where D∗Fi(·, ·) denotes the Mordukhovich coderivative with respect to the limiting
normal cone (see section 2 for its definition). Under the condition that X,Yi are finite
dimensional, we provide the following necessity optimality condition of constrained
multiobjective optimization problem (1.3).

Let each Fi be a closed multifunction and each Ci be a closed convex cone.
Suppose that (x̄, ȳ0) is a local Pareto solution of (1.3). Then, for any ȳi ∈ Fi(x̄)∩−Ci,
one of the following assertions holds.

(a) There exists c∗i ∈ C+
i such that (1.5) holds.

(b) There exist x∗
i ∈ D∗Fi(x̄, ȳi)(0) and w∗ ∈ N(Ω, x̄) such that (1.4) holds.

Let f0, f1, . . . , fm be as in (1.1). In the special case when Yi = R, Ci = {0} for
0 ≤ i ≤ m, Fi(x) = [fi(x), +∞) for 0 ≤ i ≤ n, and Fi(x) = fi(x) for n + 1 ≤ i ≤ m.
The above results can be applied to (1.1). In particular, under the assumption that X
is an Asplund space and that f0, f1, ·, fn are lower semicontinuous and fn+1, . . . , fm
are continuous, we prove that if x̄ is a local solution of (1.1), then one of the following
assertions holds.

(i) For any ε > 0 there exist λi ∈ R \ {0}, w ∈ (x̄+ εBX) ∩Ω, and xi ∈ x̄+ εBX

with |fi(xi) − fi(x̄)| < ε such that λi ≥ 0 for 0 ≤ i ≤ n,
∑m

i=0 |λi| = 1, and

0 ∈
m∑
i=0

∂̂(λifi)(xi) ∩MBX∗ + N̂(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist w ∈ (x̄+εBX)∩Ω, xi ∈ x̄+εBX with |fi(xi)−fi(x̄)| <

ε, εi ∈ (−ε, ε), w∗ ∈ N̂(Ω, w)+ εBX∗ , and x∗
i ∈ ∂̂(εifi)(xi) such that (1.4) holds and

εi > 0 for 0 ≤ i ≤ n.

2. Preliminaries. Throughout this section, we assume that Y is a Banach
space. Let f : Y → R ∪ {+∞} be a proper lower semicontinuous function, and
let epi(f) denote the epigraph of f , that is,

epi(f) := {(y, t) ∈ Y ×R : f(y) ≤ t}.
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Let y ∈ dom(f), let h ∈ Y , and let f◦(y, h) denote the generalized directional deriva-
tive given by Rockafellar (see [4]), that is,

f◦(y, h) := lim
ε↓0

lim sup

z
f→y,t↓0

inf
w∈h+εBY

f(z + tw) − f(z)

t
,

where BY denotes the closed unit ball of Y , and the expression z
f→ y means z →

y and f(z) → f(y). It is known that f◦(y, h) reduces to Clarke’s directional derivative
when f is locally Lipschitzian (see [4]). Let

∂cf(y) := {y∗ ∈ Y ∗ : 〈y∗, h〉 ≤ f◦(y, h) ∀h ∈ Y }.

Let A be a closed subset of Y , and let Nc(A, a) denote Clarke’s normal cone of A at
a, that is,

Nc(A, a) :=

{
∂cδA(a), a ∈ A,
∅, a 	∈ A,

where δA denotes the indicator function of A: δA(y) = 0 if y ∈ A and δA(y) =
+∞ otherwise. The following result (see [4, Corollary, p. 52]) presents an important
necessity optimality condition in terms of Clarke’s subdifferential and normal cone for
a nonsmooth constrained optimization problem.

Proposition 2.1. Let f : Y → R be a locally Lipschitz function and A be a
closed subset of Y . Suppose that f attains its minimum over A at a ∈ A. Then
0 ∈ ∂cf(a) + Nc(A, a).

We also need the notion of Fréchet normal cones and that of limiting normal
cones. For ε ≥ 0, the set of ε-normals to A at a is defined by

N̂ε(A, a) :=

⎧⎨⎩y∗ ∈ Y ∗ : lim sup

y
A→a

〈y∗, y − a〉
‖y − a‖ ≤ ε

⎫⎬⎭ ,

where y
A→ a means that y → a with y ∈ A. The set N̂0(A, a) is simply denoted by

N̂(A, a) and is called the Fréchet normal cone to A at a. The limiting Fréchet normal
cone to A at a is defined by

N(A, a) := {y∗ ∈ Y ∗ : ∃εn → 0+, yn
A→ a, y∗n

w∗
→ y∗ with y∗n ∈ N̂εn(A, yn)}.

In the case when A is convex, it is well known that

Nc(A, a) = N(A, a) = N̂(A, a).

Recall that the Fréchet subdifferential ∂̂f(y) and the limiting subdifferential ∂f(y) of
f at y ∈ dom(f) are defined by

∂̂f(y) = {y∗ : (y∗,−1) ∈ N̂(epi(f), (y, f(y))}

and

∂f(y) := {y∗ ∈ Y ∗ : (y∗,−1) ∈ N(epi(f), (y, f(y)))},
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respectively. It is known (see [18]) that

∂̂f(y) :=

{
y∗ ∈ Y ∗ : lim inf

v→y

f(v) − f(y) − 〈y∗, v − y〉
‖v − y‖ ≥ 0

}
.

Let ∂̂∞f(y) and ∂∞f(y) denote, respectively, the singular Fréchet subdifferential and
the singular limiting subdifferential of f at y, that is,

∂̂∞f(y) = {y∗ : (y∗, 0) ∈ N̂(epi(f), (y, f(y))}

and

∂∞f(y) := {y∗ ∈ Y ∗ : (y∗, 0) ∈ N(epi(f), (y, f(y)))}.

Recall that a Banach space Y is called an Asplund space if every continuous
convex function defined on an open convex subset D of Y is Fréchet differentiable at
each point of a dense Gδ subset of D. It is well known that Y is an Asplund space if
and only if every separable subspace of Y has a separable dual. The class of Asplund
spaces is well investigated in geometric theory of Banach spaces; see [21] and the
references therein. In the case when Y is an Asplund space, Mordukhovich and Shao
[18] proved that ∂f(y) = lim sup

v
f→y

∂̂f(v),

N(A, a) := {y∗ ∈ Y ∗ : ∃yn
A→ a, y∗n

w∗
→ y∗ with y∗n ∈ N̂(A, yn)},(2.1)

and Nc(A, a) is the weak∗ closed convex hull of N(A, a).
In the Asplund space setting, in terms of the Fréchet subdifferential and Fréchet

normal cone one has the following necessity optimality condition similar to Proposition
2.1.

Proposition 2.2. Let Y be an Asplund space and f : Y → R a locally Lipschitz
function, and let A be a closed subset of Y . Suppose that f attains its minimum over
A at a ∈ A. Then for any ε > 0 there exist aε ∈ a + εBY and uε ∈ A ∩ (a + εBY )
such that

0 ∈ ∂̂f(aε) + N̂(A, uε) + εBY ∗ .

Proposition 2.2 is due to Fabian [6] (also see [18] for the details).
For Φ : X → 2Y , a multifunction from another Banach space X to Y , let Gr(Φ)

denote the graph of Φ, that is,

Gr(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)}.

We say that Φ is closed if Gr(Φ) is a closed subset of X × Y and that Φ is convex if
Gr(Φ) is a convex subset of X × Y . Recall (see [15, 17]) that Φ is pseudo-Lipschitz
at (x̄, ȳ) ∈ Gr(Φ) if there exist a constant L > 0, a neighborhood U of x̄, and a
neighborhood V of ȳ such that

Φ(x1) ∩ V ⊂ Φ(x2) + ‖x1 − x2‖LBY ∀x1, x2 ∈ U.

For x ∈ X and y ∈ Φ(x), let D̂∗Φ(x, y), D∗Φ(x, y) and D∗
cΦ(x, y) : Y ∗ → 2X

∗
denote

the Mordukhovich coderivatives of Φ at (x, y) with respect to the Fréchet, limiting,
and Clarke normal cones, respectively, that is,

D̂∗Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗,(2.2)

D∗Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗,(2.3)
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and

D∗
cΦ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ Nc(Gr(Φ), (x, y))} ∀y∗ ∈ Y ∗

(see [17, 18]). We will need the following known result.
Proposition 2.3. Let Φ : X → 2Y be a closed multifunction. Suppose that Φ is

pseudo-Lipschitz at (x̄, ȳ) ∈ gr(Φ). Then there exist constants L, δ > 0 such that

sup{‖x∗‖ : x∗ ∈ D̂∗Φ(x, y)(y∗)} ≤ L‖y∗‖

for any (x, y) ∈ Gr(Φ) ∩ (B(x̄, δ) ×B(ȳ, δ)) and any y∗ ∈ Y ∗.
Proposition 2.3 can be found in Mordukhovich [15]. Moreover, readers can find a

simpler proof of Proposition 2.3 in Jourani and Thibault [11].
Let Si : Mi → 2Y (i = 1, . . . , n) be multifunctions from metric spaces Mi

with metrics di. Recall (see [19]) that x̄ is called an extremal point of the system
(S1, . . . , Sn) at (s̄1, . . . , s̄n), provided that x̄ ∈

⋂n
i=1 Si(s̄i) and there exists r > 0 such

that for any ε > 0 there exists (s1, . . . , sn) ∈ M1 × · · · ×Mn with

di(si, s̄i) ≤ ε, d(x̄, Si(si)) ≤ ε, i = 1, . . . , n, and

n⋂
i=1

Si(si) ∩ (x̄ + rBY ) = ∅.

Mordukhovich, Treiman, and Zhu [19] proved the following extended extremal prin-
ciple.

Theorem MTZ. Let Si : Mi → 2Y be multifunctions from metric spaces
(Mi, di) to an Asplund space Y , i = 1, . . . , n. Assume that x̄ is an extremal point
of the system (S1, . . . , Sn) at (s̄1, . . . , s̄n), where each Si is closed-valued around s̄i.
Then for any σ > 0 there exist si ∈ Mi, xi ∈ Si(si), and x∗

i ∈ Y ∗, i = 1, . . . , n, such
that

di(si, s̄i) ≤ σ, ‖xi−x̄‖ ≤ σ, x∗
i ∈ N̂(Si(si), xi)+σBY ∗ ,

n∑
i=1

‖x∗
i ‖ = 1, and

n∑
i=1

x∗
i = 0.

Next we provide a slight improvement of Theorem MTZ, which will be used in the
proofs of the main results.

For a natural number n and subsets A1, . . . , An of Y , we define the nonintersection
index γ(A1, . . . , An) of A1, . . . , An as

γ(A1, . . . , An) := inf

{
n−1∑
i=1

‖ai − an‖ : (a1, . . . , an) ∈ A1 × · · · ×An

}
.

Lemma 2.1. Let Y be an Asplund space and A1, . . . , An be closed subsets of Y
with

⋂n
i=1 Ai = ∅. Let ai ∈ Ai (i = 1, . . . , n) and ε > 0 such that

n−1∑
i=1

‖ai − an‖ < γ(A1, . . . , An) + ε.

Then for any λ > 0 there exist ãi ∈ Ai and a∗i ∈ Y ∗ such that

n∑
i=1

‖ai − ãi‖ < λ, a∗i ∈ N̂(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1 and

n∑
i=1

a∗i = 0.
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Proof. Let the product Y n be equipped with the norm ‖|(x1, . . . , xn)‖| =∑n
i=1 ‖xi‖ for any xi ∈ Y (i = 1, . . . , n), and define f : Y n → R ∪ {+∞} by

f(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ + δA1×···×An(x1, . . . , xn) ∀(x1, . . . , xn) ∈ Y n.

Then

inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} = γ(A1, . . . , An),

and so, by the assumption,

f(a1, . . . , an) < inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} + ε.

Take η ∈ (0, ε) and β ∈ (0, λ) such that

η

β
<

ε

λ
and f(a1, . . . , an) < inf{f(x1, . . . , xn) : (x1, . . . , xn) ∈ Y n} + η.

Then, by the Ekeland variational principle, there exists x̃i ∈ Ai such that

n∑
i=1

‖ai − x̃i‖ ≤ β(2.4)

and

f(x̃1, . . . , x̃n) ≤ f(x1, . . . , xn) +
η

β

n∑
i=1

‖xi − x̃i‖ ∀(x1, . . . , xn) ∈ Y n.(2.5)

This and the definition of f imply that (x̃1, . . . , x̃n) ∈ A1 × · · · ×An. It follows from⋂n
i=1 Ai = ∅ that

n−1∑
i=1

‖x̃i − x̃n‖ > 0.(2.6)

We define a continuous convex function ψ by

ψ(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ +
η

β

n∑
i=1

‖xi − x̃i‖ ∀(x1, . . . , xn) ∈ Y n.

It follows from (2.5) that ψ attains its minimum over A1 × · · · × An at (x̃1, . . . , x̃n).
By (2.6) and Proposition 2.2, there exist x̄i ∈ Y and ãi ∈ Ai (i = 1, . . . , n) such that

n−1∑
i=1

‖x̄i − x̄n‖ > 0,

n∑
i=1

‖ãi − x̃i‖ < λ− β

and

0 ∈ ∂ψ(x̄1, . . . , x̄n) + N̂(A1 × · · · ×An, (ã1, . . . , ãn)) +

(
ε

λ
− η

β

)
Bn

Y ∗ .(2.7)
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It follows from (2.4) that
∑n

i=1 ‖ãi − ai‖ ≤
∑n

i=1 ‖ãi − x̃i‖+
∑n

i=1 ‖x̃i − ai‖ < λ. Let

φ(x1, . . . , xn) :=

n−1∑
i=1

‖xi − xn‖ ∀(x1, . . . , xn) ∈ Y n.

Then

∂ψ(x̄1, . . . , x̄n) ⊂ ∂φ(x̄1, . . . , x̄n) +
η

β
B(Y n)∗ .

This and (2.7) imply that

0 ∈ ∂φ(x̄1, . . . , x̄n) + N̂(A1 × · · · ×An, (ã1, . . . , ãn)) +
ε

λ
B(Y n)∗ .(2.8)

We claim that

∂φ(x̄1, . . . , x̄n) ⊂
{

(x∗
1, . . . , x

∗
n) ∈ (Y ∗)n :

n∑
i=1

x∗
i = 0 and

n∑
i=1

‖x∗
i ‖ ≥ 1

}
.(2.9)

Granting this and noting that

N̂(A1 × · · · ×An, (ã1, . . . , ã)) = N̂(A1, ã1) × · · · × N̂(An, ãn)

is a cone, it follows from (2.8) that there exists (a∗1, . . . , a
∗
n) ∈ (Y ∗)n such that

a∗i ∈ N̂(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1, and

n∑
i=1

a∗i = 0.

It remains to show that (2.9) holds. Let (x∗
1, . . . , x

∗
n) ∈ ∂φ(x̄1, . . . , x̄n). It follows from

the convexity of φ that for any h ∈ Y ,

n∑
i=1

〈x∗
i , h〉 ≤ φ(x̄1 + h, . . . , x̄n + h) − φ(x̄1, . . . , x̄n) = 0.

This means that
∑n

i=1 x
∗
i = 0. On the other hand,

−
n−1∑
i=1

〈x∗
i , x̄i − x̄n〉 =

n∑
i=1

〈x∗
i ,−x̄i〉 ≤ φ(0, . . . , 0) − φ(x̄1, . . . , x̄n) = −

n−1∑
i=1

‖x̄i − x̄n‖.

Since, as in (2.6),
∑n−1

i=1 ‖x̄i− x̄n‖ > 0, it follows that
∑n

i=1 ‖x∗
i ‖ ≥ 1. This completes

the proof.
Remark. Lemma 2.1 recaptures Theorem MTZ. Indeed, by the assumption of

Theorem MTZ, there exists r > 0 such that for any σ ∈ (0, min{ r
2 , r

1
2 }) there exists

(s1, . . . , sn) ∈ M1 × · · · ×Mn such that each Si(si) is closed,

di(si, s̄i) < σ, d(x̄, Si(si)) <
σ2

2n
, i = 1, . . . , n, and

n⋂
i=1

Si(si) ∩ (x̄ + rBY ) = ∅.

Hence, there exists ui ∈ Si(si) such that ‖ui − x̄‖ < σ2

2n . This implies that

n−1∑
i=1

‖ui − un‖ ≤
n−1∑
i=1

(‖ui − x̄‖ + ‖x̄− un‖) < σ2,
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and so

n−1∑
i=1

‖ui − un‖ < γ(S1(s1) ∩ (x̄ + rBY ), . . . , Sn(sn) ∩ (x̄ + rBY )) + σ2.

Now with Ai = Si(si) ∩ (x̄ + rBY ), ai = ui, ε = σ2, and λ = σ, there exist ãi ∈ Ai

and a∗i ∈ Y ∗ satisfying the properties as stated in Lemma 2.1. Note that ãi lies in

the interior of x̄ + rBY , and it follows that a∗i ∈ N̂(Si(si), ãi). Thus Theorem MTZ
is seen to hold.

Similar to the proof of Lemma 2.1 but applying Proposition 2.1 in place of Propo-
sition 2.2, we have the following result applicable to the case when Y is a general
Banach space.

Lemma 2.2. Let Y be a Banach space and A1, . . . , An be closed subsets of Y with⋂n
i=1 Ai = ∅. Let ai ∈ Ai (i = 1, . . . , n) and ε > 0 such that

n−1∑
i=1

‖ai − an‖ ≤ γ(A1, . . . , An) + ε.

Then for any λ > 0 there exist ãi ∈ Ai and a∗i ∈ Y ∗ such that

n∑
i=1

‖ai − ãi‖ < λ, a∗i ∈ Nc(Ai, ãi) +
ε

λ
BY ∗ ,

n∑
i=1

‖a∗i ‖ = 1 and

n∑
i=1

a∗i = 0.

3. Fuzzy Lagrange multiplier rules. In this section, we always assume that
X,Yi are Banach spaces (unless stated otherwise), that Ci ⊂ Yi is a closed convex
cone, and that each multifunction Fi : X → 2Yi is closed. Further we assume that the
ordering cone C0 in Y0 is nontrivial (i.e., C0 is not a linear subspace). For convenience
we define the norm on the product X ×

∏m
i=0 Yi by

‖(x, y0, y1, . . . , ym)‖ = ‖x‖ +

m∑
i=0

‖yi‖.

In this section we present three fuzzy Lagrange multiplier rules. The first one works
on general Banach spaces, while the last two work on Asplund spaces dealing, respec-
tively, with the set-valued and the numeral-valued functions.

Theorem 3.1. Let (x̄, ȳ0) be a local Pareto solution of the constrained multiob-
jective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
Then one of the following assertions holds.

(i) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(xi, yi)(c

∗
i +εBY ∗

i
)∩MBX∗+Nc(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
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(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), x

∗
i ∈ D∗

cFi(xi, yi)(εBY ∗
i
), and w∗ ∈ Nc(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Proof. By the assumption there exists δ > 0 such that

ȳ0 ∈ E

(
F0

[
(x̄ + δBX) ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
, C0

)
.(3.1)

Since the ordering cone C0 is not a subspace of Y0, there exists c0 ∈ C0 with ‖c0‖ = 1
such that

c0 	∈ −C0.(3.2)

For any natural number k, let sk := 1
(m+2)k2 , and consider the following sets in the

product space X ×
∏m

j=0 Yj :

Ai :=

⎧⎨⎩(x, y0, y1, . . . , ym) ∈ X ×
m∏
j=0

Yj : (x, yi) ∈ Gr(Fi)

⎫⎬⎭ , i = 0, 1, . . . ,m,

and

Am+1 := ((x̄ + δBX) ∩ Ω) × (ȳ0 − skc0 − C0) ×
m∏
i=1

(ȳi − Ci).

Then
⋂m+1

i=0 Ai = ∅. Indeed, if this is not the case, then there exist x′ ∈ X and
y′i ∈ Fi(x

′) (i = 0, 1, . . . ,m) such that

x′ ∈ (x̄ + δBX) ∩ Ω, y′0 ≤C0
ȳ0 − skc0, and y′i ∈ ȳi − Ci(⊂ −Ci), i = 1, . . . ,m.

Hence, x′ ∈ (x̄ + δBX) ∩ Ω ∩
(⋂m

i=1 F
−1
i (−Ci)

)
, and so

y′0 ∈ F0

[
(x̄ + δBX) ∩ Ω ∩

(
m⋂
i=1

F−1
i (−Ci)

)]
.

It follows from (3.1) that ȳ0 ≤C0
y′0, and so ȳ0 ≤C0

ȳ0 − skc0. This implies that
c0 ∈ −C0, contradicting (3.2). Let

a0 = a1 = · · · = am = (x̄, ȳ0, ȳ1, . . . , ȳm) and am+1 = (x̄, ȳ0 − skc0, ȳ1, . . . , ȳm).

Then

m∑
i=0

‖ai − am+1‖ = (m + 1)sk <
1

k2
≤ γ(A0, A1, . . . , Am+1) +

1

k2
.

By Lemma 2.2 (applied to the family {A0, A1, . . . , Am+1} and the constants ε = 1
k2 ,

λ = 1
k ), there exist

ãi(k) := (xi(k), yi,0(k), yi,1(k), . . . , yi,m(k)) ∈ X ×
m∏
j=0

Yj
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and

(x∗
i (k), y∗i,0(k), y∗i,1(k), . . . , y∗i,m(k)) ∈ X∗ ×

m∏
j=0

Y ∗
j

(i = 0, 1, . . . ,m + 1) such that

m+1∑
i=0

‖ãi(k) − ai‖ =

m∑
i=0

⎛⎝‖xi(k) − x̄‖ +

m∑
j=0

‖yi,j(k) − ȳj‖

⎞⎠(3.3)

+ ‖xm+1(k) − x̄‖ + ‖ym+1,0(k) − (ȳ0 − skc0)‖ +

m∑
j=1

‖ym+1,j(k) − ȳj‖ <
1

k
,

(x∗
i (k), y∗i,0(k), . . . , y∗i,m(k)) ∈ Nc(Ai, ãi(k)) +

1

k

⎛⎝BX∗ ×
m∏
j=0

BY ∗
j

⎞⎠ ,(3.4)

m+1∑
i=0

max{‖x∗
i (k)‖, max{‖y∗i,j(k)‖ : j = 0, 1, . . . ,m}} = 1,(3.5)

and

m+1∑
i=0

(x∗
i (k), y∗i,0(k), y∗i,1(k), . . . , y∗i,m(k)) = 0.(3.6)

By the definitions of Am+1 and ãm+1(k), we see that Nc(Am+1, ãm+1(k)) is equal to
the following product:

Nc((x̄+δBX)∩Ω, xm+1(k))×Nc(ȳ0−skc0−C0, ym+1,0(k))×
m∏
j=1

Nc(ȳj−Cj , ym+1,j(k)).

By well-known relations

Nc(ȳ0 − skc0 −C0, ym+1,0(k)) ⊂ C+
0 and Nc(ȳj −Cj , ym+1,j(k)) ⊂ C+

j (1 ≤ j ≤ m),

it follows that

Nc(Am+1, ãm+1(k)) ⊂ Nc((x̄ + δBX) ∩ Ω, xm+1(k)) ×
m∏
j=0

C+
j .

We do the above for every natural number k, and by (3.3) we assume without loss
of generality that x̄ + δBX is a neighborhood of xm+1(k), and so Nc((x̄ + δBX) ∩
Ω, xm+1(k)) = Nc(Ω, xm+1(k)). Hence,

Nc(Am+1, ãm+1(k)) ⊂ Nc(Ω, xm+1(k)) ×
m∏
j=0

C+
j .

This and (3.4) imply that there exists (c∗0(k), c∗1(k), . . . , c∗m(k)) ∈
∏m

j=0 C
+
j such that

x∗
m+1(k) ∈ Nc(Ω, xm+1(k)) +

1

k
BX∗(3.7)
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and

‖y∗m+1,j(k) − c∗j (k)‖ ≤ 1

k
, j = 0, 1, . . . ,m.(3.8)

Moreover, for 0 ≤ i ≤ m, we have by the definition of Ai and ãi(k) that

(3.9)

Nc(Ai, ãi(k))

= {(x∗, y∗0 , . . . , y
∗
m) : (x∗, y∗i ) ∈ Nc(Gr(Fi), (xi(k), yi,i(k))) and y∗j = 0 ∀j 	= i}.

This and (3.4) imply that for 0 ≤ i ≤ m,

x∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
−y∗i,i(k) +

1

k
BY ∗

i

)
+

1

k
BX∗(3.10)

and

‖y∗i,j(k)‖ ≤ 1

k
, 0 ≤ j ≤ m and j 	= i.(3.11)

By (3.6), (3.8), and (3.11), one has

−y∗i,i(k) = y∗m+1,i(k) +

m∑
l=0,l 
=i

y∗l,i(k) ∈ c∗i (k) +
m + 1

k
BY ∗

i
, i = 0, 1, . . . ,m.(3.12)

This and (3.10) imply that for i = 0, 1, . . . ,m,

x∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
c∗i (k) +

m + 2

k
BY ∗

i

)
+

1

k
BX∗ .(3.13)

In the case when {
∑m

j=0 ‖c∗j (k)‖} does not converge to 0, without loss of generality

we assume that there exists r > 0 such that
∑m

j=0 ‖c∗j (k)‖ > r for all k (passing to
subsequences if necessary). It follows from (3.13), (3.7), and (3.6) that

x∗
i (k)

m∑
j=0

‖c∗j (k)‖
∈ D∗

cFi(xi(k), yi,i(k))

⎛⎜⎜⎝ c∗i (k)
m∑
j=0

‖c∗j (k)‖
+

m + 2

rk
BY ∗

i

⎞⎟⎟⎠+
1

rk
BX∗ , 0 ≤ i ≤ m,

x∗
m+1(k)

m∑
j=0

‖c∗j (k)‖
∈ Nc(Ω, xm+1(k)) +

1

rk
BX∗ and

m+1∑
i=0

x∗
i (k)

m∑
j=0

‖c∗j (k)‖
= 0.

By virtue of (3.3) and (3.5) and by considering large enough k, it follows that (i)
holds with M = m+2

r .
Next we consider the case when tk :=

∑m
j=0 ‖c∗j (k)‖ → 0. In this case, (3.8)

implies that

y∗m+1,j(k) → 0 for j = 0, 1, . . . ,m.

It follows from (3.11), (3.12), and (3.5) that
∑m+1

i=0 ‖x∗
i (k)‖ → 1. Thus, by (3.13),

(3.7), and (3.6), there exist

x̃∗
i (k) ∈ D∗

cFi(xi(k), yi,i(k))

(
c∗i (k) +

m + 2

k
BY ∗

i

)
for i = 0, 1, . . . ,m
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and

x̃∗
m+1(k) ∈ Nc(Ω, xm+1(k)) +

m + 2

k
BX∗

such that

rk :=

m+1∑
i=0

‖x̃∗
i (k)‖ → 1 and

m+1∑
i=0

x̃∗
i (k) = 0.

Therefore, for all k large enough,

x̃∗
i (k)

rk
∈ D∗

cFi(xi(k), yi,i(k))

((
c∗i (k)

rk
+

m + 2

krk

)
BY ∗

i

)
,

x̃∗
m+1(k)

rk
∈ Nc(Ω, xm+1(k)) +

m + 2

krk
BX∗ ,

m+1∑
i=0

∥∥∥∥ x̃∗
i (k)

rk

∥∥∥∥ = 1 and

m+1∑
i=0

x̃∗
i (k)

rk
= 0.

Noting that rk → 1 and ‖c∗i (k)‖ ≤ tk → 0, this implies that (ii) holds, and the proof
is completed.

In the special case when Fi(x) = 0 for all x ∈ X and i = 1, . . . ,m, (1.3) reduces
to the following problem:

C0 − minF0(x),(3.14)

x ∈ Ω,

and D∗
cFi(x, 0)(y∗i ) = 0 for all (x, y∗i ) ∈ X×Y ∗

i and i = 1, . . . ,m. Thus, the following
corollary is an immediate consequence of Theorem 3.1 and recaptures [28, Theorem
3.1] by putting our Ω = X.

Corollary 3.1. Let (x̄, ȳ) be a local Pareto solution of the constrained multiob-
jective optimization problem (3.14). Then one of the following two assertions holds.

(i) For any ε > 0 there exist u ∈ x̄+εBX , w ∈ Ω∩(x̄+εBX), y ∈ F0(u)∩(ȳ+εBY ),
and c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D∗
cF0(u, y)(c

∗ + εBY ∗) ∩MBX∗ + Nc(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist u ∈ x̄+εBX , w ∈ Ω∩(x̄+εBX), y ∈ F0(u)∩(ȳ+εBY ),

and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈ D∗
cF0(u, y)(εBY ∗) ∩ (−Nc(Ω, w) + εBX∗).

When X and each Yi are Asplund spaces, Theorem 3.1 can be strengthened to the
following theorem, Theorem 3.2, in which D∗

c and Nc(Ω, ·) are replaced, respectively,
by the Fréchet coderivative D̂∗ and the Fréchet normal cone N̂(Ω, ·) (recall that
N̂(A, a) ⊂ N(A, a) and Nc(A, a) is the weak∗-closed convex hull of N(A, a)). The
proof is the same as the proof of Theorem 3.1, but use Lemma 2.1 in place of Lemma
2.2.

Theorem 3.2. Let (x̄, ȳ0) be a local Pareto solution of the constrained multiob-
jective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
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Suppose that X and Yi (i = 0, 1, . . . ,m) are Asplund spaces. Then one of the following
assertions holds.

(i) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩
(ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D̂∗Fi(xi, yi)(c
∗
i +εBY ∗

i
)∩MBX∗+N̂(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist xi ∈ x̄ + εBX , w ∈ Ω ∩ (x̄ + εBX), yi ∈ Fi(xi) ∩

(ȳi + εBYi), x
∗
i ∈ D̂∗Fi(xi, yi)(εBY ∗

i
), and w∗ ∈ N̂(Ω, w) + εBX∗ such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Next we prove that (ii) in Theorem 3.2 cannot happen when each Fi is pseudo-
Lipschitz at (x̄, ȳi).

Corollary 3.2. Let (x̄, ȳ0) be a local Pareto solution of the constrained multi-
objective optimization problem (1.3) and ȳi be a point in Fi(x̄) ∩ −Ci (i = 1, . . . ,m).
Suppose that X and Yi (i = 0, 1, . . . ,m) are Asplund spaces and that each Fi is pseudo-
Lipschitz at (x̄, ȳi). Then for any ε > 0 there exist xi ∈ x̄+ εBX , w ∈ Ω∩ (x̄+ εBX),
yi ∈ Fi(xi) ∩ (ȳi + εBYi), and c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D̂∗Fi(xi, yi)(c
∗
i +εBY ∗

i
)∩MBX∗+N̂(Ω, w)∩MBX∗+εBX∗ ,

where M > 0 is a constant independent of ε.
Proof. Since each Fi is pseudo-Lipschitz at (x̄, ȳi), Proposition 2.3 implies that

there exist constants L, δ > 0 such that for any (x, yi) ∈ Gr(Fi)∩ (B(x̄, δ)×B(ȳi, δ))
and y∗i ∈ Y ∗,

sup{‖x∗‖ : x∗ ∈ D̂∗Fi(x, yi)(y
∗
i )} ≤ L‖y∗i ‖.(3.15)

We need only show that (i) of Theorem 3.2 holds. If this is not the case, Theorem 3.2
implies that there exist

xi ∈ B(x̄, δ), w ∈ Ω ∩B(x̄, δ), yi ∈ Fi(xi) ∩B(ȳi, δ),(3.16)

x∗
i ∈ D̂∗Fi(xi, yi)

(
BY ∗

i

4(m + 1)L

)
and w∗ ∈ N̂(Ω, w) + BX∗(3.17)

such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.(3.18)

By (3.15), (3.16), and (3.17), one has∥∥∥∥∥
m∑
i=0

x∗
i

∥∥∥∥∥ ≤
m∑
i=0

‖x∗
i ‖ ≤ 1

4
,

contradicting (3.18). This completes the proof.
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Let f : X → R ∪ {+∞} be a proper lower semicontinuous function and F (x) =
[f(x), +∞) for all x ∈ X. Then F is closed and Gr(F ) = epi(f). Recall (see [14,
Lemma 2.2]) that if r ∈ F (x̄) and X is an Asplund space, then the following assertions
hold.

(α) λ 	= 0 and x∗ ∈ D̂∗F (x̄, r)(λ) ⇐⇒ λ > 0, r = f(x̄), and x∗ ∈ ∂̂(λf)(x̄).
(β) For any x∗ ∈ D̂∗F (x̄, r)(0) there exist sequences {xk}, {x∗

k}, and {λk} such
that

x∗
k ∈ ∂̂(λkf)(xk), (xk, f(xk)) → (x̄, f(x̄)), λk ↓ 0, and ‖x∗

k − x∗‖ → 0.

Let g : X → R be a continuous function and G(x) = {g(x)} for all x ∈ X. The
following assertions are known (see [14, Lemma 2.3]).

(α′) D̂∗G(x, g(x))(λ) = ∂(λg)(x) for any λ 	= 0.
(β′) x∗ ∈ D̂∗G(x, g(x))(0) if and only if there exist sequences {xk}, {x∗

k}, and
{tk} such that

x∗
k ∈ ∂̂(tkg)(xk) ∪ ∂̂(−tkg)(xk), (xk, g(xk)) → (x̄, g(x̄)), tk ↓ 0, and ‖x∗

k − x∗‖ → 0.

As an application of Theorem 3.2, now we can establish fuzzy necessary optimality
conditions for scalar-objective optimization problem (1.1).

Theorem 3.3. Let X be an Asplund space and Ω be a closed subset of X. Let
f0, f1, . . . , fn : X → R ∪ {+∞} be proper lower semicontinuous and fn+1, . . . , fm :
X → R be continuous. Suppose that x̄ is a local solution of (1.1). Then one of the
following assertions hold.

(i) For any ε > 0 there exist λi ∈ R \ {0}, w ∈ (x̄+ εBX)∩Ω, and xi ∈ x̄+ εBX

with |fi(xi) − fi(x̄)| < ε such that λi > 0 for 0 ≤ i ≤ n,
∑m

i=0 |λi| = 1, and

0 ∈
m∑
i=0

∂̂(λifi)(xi) ∩MBX∗ + N̂(Ω, w) ∩MBX∗ + εBX∗ ,

where M > 0 is a constant independent of ε.
(ii) For any ε > 0 there exist w ∈ (x̄ + εBX) ∩ Ω, xi ∈ x̄ + εBX with |fi(xi) −

fi(x̄)| < ε, εi ∈ (−ε, ε) \ {0}, w∗ ∈ N̂(Ω, w) + εBX∗ , and x∗
i ∈ ∂̂(εifi)(xi) such that

εi > 0 for 0 ≤ i ≤ n,

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.

Proof. Let ε be an arbitrary positive number. By the lower semicontinuity as-
sumption, there exists δ ∈ (0, 1

2 ) such that

fi(x̄) − ε < fi(x) for any x ∈ x̄ + δBX and i = 0, 1, . . . , n.(3.19)

Let Y0 = Y1 = · · · = Ym = R. Let Ci = R+, Fi(x) = [fi(x), +∞) for i = 0, 1, . . . , n
and Ci = {0}, Fi(x) = {fi(x)} for i = n+ 1, . . . ,m. Then, each Fi is closed, (x̄, ȳ0) is
a local Pareto solution of (1.3), and ȳi := fi(x̄) ∈ Fi(x̄)∩−Ci for i = 1, . . . ,m. Hence,
one of the assertions (i) and (ii) in Theorem 3.2 holds. It suffices to show that (i) in
Theorem 3.2=⇒(i) and (ii) in Theorem 3.2=⇒(ii). As the arguments are similar, we
shall prove only that the implication (i) in Theorem 3.2=⇒(i). Suppose that (i) in
Theorem 3.2 holds. Let σ ∈ (0, min{ ε

4 , δ}), and take (α) into account. Then there
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exist w ∈ (x̄ + σBX) ∩ Ω, (ui, ri) ∈ (x̄ + σBX) × (fi(x̄) − σ, fi(x̄) + σ), and si ∈ R
such that

ri ≥ fi(ui) for 0 ≤ i ≤ n, ri = fi(ui) for n + 1 ≤ i ≤ m,

si ≥ 0 for i = 0, 1, . . . , n,

m∑
i=0

|si| ≥ 1 − σ,(3.20)

and

0 ∈
m∑
i=0

D̂∗Fi(ui, ri)(si) ∩KBX∗ + N̂(Ω, w) ∩KBX∗ + σBX∗ ,(3.21)

where K > 0 is a constant. By (3.19), one has

fi(x̄) − ε < f(ui) ≤ ri < fi(x̄) + σ < fi(x̄) + ε for i = 0, 1, . . . , n.(3.22)

Take u∗
i ∈ D̂Fi(ui, ri)(si) ∩KBX∗ (by (3.21)) such that

−
m∑
i=0

u∗
i ∈ N̂(Ω, w) ∩KBX∗ + σBX∗ .(3.23)

Let I0 := {0 ≤ i ≤ m : si = 0}. It follows from (α) and (α′) that

u∗
i ⊂ ∂̂(sifi)(ui) ∩KBX∗ for any i ∈ {0, 1, . . . ,m} \ I0.(3.24)

For any i ∈ {0, 1, . . . , n} ∩ I0, (3.22) and (β) imply that there exist ũi ∈ ui + σBX

with |fi(ũi) − fi(ui)| < ε − |fi(ui) − fi(x̄)|, ti > 0, and x∗
i ∈ ∂̂(tifi)(ũi) such that

‖x∗
i − u∗

i ‖ < σ
m . Hence, for any i ∈ {0, 1, . . . , n} ∩ I0,

‖ũi − x̄‖ ≤ ‖ũi − ui‖ + ‖ui − x̄‖ ≤ 2σ < ε, |fi(ũi) − fi(x̄)| < ε(3.25)

and

u∗
i ⊂ ∂̂(tifi)(ũi) ∩

(
K +

1

m

)
BX∗ +

σ

m
BX∗ .(3.26)

Moreover, for any j ∈ {n+1, . . . ,m}∩ I0, (β′) implies that there exist ũj ∈ uj +σBX

with |fj(ũj)−fj(uj)| < σ, tj ∈ R\{0}, and x∗
j ∈ ∂̂(tjfj)(ũj) such that ‖x∗

j−u∗
j‖ < σ

m .
Hence, for any j ∈ {n + 1, . . . ,m} ∩ I0,

‖ũj − x̄‖ < 2σ < ε, |fj(ũj) − fj(x̄)| < 2σ < ε(3.27)

and

u∗
j ⊂ ∂̂(tjfj)(ũj) ∩

(
K +

1

m

)
BX∗ +

σ

m
BX∗ .(3.28)

Let η :=
∑m

i=0 |si|+
∑

i∈I0
|ti|, λi := si

η if i ∈ {0, 1, . . . ,m} \ I0, and λi := ti
η if i ∈ I0,

and let xi := ui if i ∈ {0, 1, . . . ,m} \ I0 and xi := ũi if i ∈ I0. Then

η ≥ 1 − σ >
1

2
, λi > 0 for 0 ≤ i ≤ n,

m∑
i=0

|λi| = 1,

and dividing (3.23), (3.24), (3.26), and (3.28) by η, it follows that

0 ∈
m∑
i=0

∂̂(λifi)(ui) ∩
(

2K +
2

m

)
BX∗ + N̂(Ω, w) ∩ 2KBX∗ + εBX∗ .

It follows from (3.25) and (3.27) that (i) holds with M = 2K + 2
m . The proof is

completed.
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4. Lagrange multiplier rules. In this section, we provide some exact Lagrange
multiplier rules for the constrained multiobjective optimization problem (1.3). We will
need the following notions. Recall (see [28]) that a closed convex cone C in X is dually
compact if there exists a compact subset K of X such that

C+ ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ max{〈x∗, x〉 : x ∈ K}}.(4.1)

This condition is trivially satisfied if X is finite dimensional (because one can then
take K = BX). Note that if C has a nonempty interior, then there exists c0 ∈ C such
that

C+ ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ 〈x∗, c0〉}.

Thus,

int(C) 	= ∅ =⇒ C is dually compact.

It is known that if C is dually compact, then

c∗n ∈ C+ and c∗n
w∗
→ 0 =⇒ c∗n → 0.(4.2)

The concept C being dually compact is closely related to the locally compact concept
introduced in Loewen [12] (see [28, Proposition 3.1] for the details).

Following Mordukhovich [15] and Mordukhovich and Shao [17], we say that a
multifunction Φ from X to another Banach space Y is partially sequentially nor-
mally compact at (x, y) ∈ Gr(Φ) if for any (generalized) sequence {(xn, yn, x

∗
n, y

∗
n)}

satisfying

x∗
n ∈ D̂∗Φ(xn, yn)(y∗n), (xn, yn) → (x, y), ‖y∗n‖ → 0, and x∗

n
w∗
→ 0

one has ‖x∗
n‖ → 0.

Clearly, Φ is automatically partially sequentially normally compact at each point
of Gr(Φ) if X is finite dimensional. Moreover, Proposition 2.3 implies that Φ is
partially sequentially normally compact at (x, y) ∈ Gr(Φ) if Φ is pseudo-Lipschitz at
(x, y).

In the remainder of this paper, we make the following blanket assumptions.
Assumption 4.1. Each Fi is a closed multifunction.
Assumption 4.2. (x̄, ȳ0) ∈ Gr(F0) is a local Pareto solution of the constrained

multiobjective optimization problem (1.3) and ȳi ∈ Fi(x̄) ∩ −Ci (1 ≤ i ≤ m).
We first consider the case when X,Yi are Asplund spaces (thus, in particular (2.1)

is valid in these spaces).
Theorem 4.1. Let Assumptions 4.1 and 4.2 hold and X,Yi be Asplund spaces.

Suppose that each Ci is dually compact and that each Fi is partially sequentially nor-
mally compact at (x̄, ȳi). Then one of the following assertions holds.

(i) There exists c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).

(ii) There exist x∗
i ∈ D∗Fi(x̄, ȳi)(0) and w∗ ∈ N(Ω, x̄) such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.
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Proof. Since X,Yi are Asplund spaces, Assumptions 4.1 and 4.2 imply that one
of the assertions (i) and (ii) in Theorem 3.2 holds. Suppose that the assertion (i) in
Theorem 3.2 holds. Then, for any natural number k there exist

(xi(k), yi(k)) ∈ Gr(Fi) ∩
((

x̄ +
1

k
BX

)
×
(
ȳi +

1

k
BYi

))
,(4.3)

w(k) ∈
(
x̄ +

1

k
BX

)
∩ Ω and c∗i (k) ∈ C+

i(4.4)

such that
m∑
i=0

‖c∗i (k)‖ = 1(4.5)

and

0 ∈
m∑
i=0

D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
∩MBX∗(4.6)

+ N̂(Ω, w(k)) ∩MBX∗ +
1

k
BX∗ ,

where M > 0 is a constant independent of k. Hence there exist bounded sequences
{x∗

i (k)} and {x∗(k)} such that

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
,

x∗(k) ∈ N̂(Ω, w(k)) and x∗(k) +

m∑
i=0

x∗
i (k) → 0.

Since a bounded set in a dual space is relatively weak∗ compact, without loss of
generality we can assume that

x∗
i (k)

w∗
→ x∗

i and c∗i (k)
w∗
→ c∗i (i = 0, 1, . . . ,m).

It follows from (2.1), (4.3), and (4.4) that

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).

Noting that
∑m

i=0 ‖c∗i ‖ 	= 0 by (4.2) and (4.5), this implies that (i) is true.
Next suppose that assertion (ii) in Theorem 3.2 holds. Then for any natural

number k there exist

(4.7)

(xi(k), yi(k)) ∈ Gr(Fi) ∩
((

x̄ +
1

k
BX

)
×
(
ȳi +

1

k
BYi

))
, w(k) ∈

(
x̄ +

1

k
BX

)
∩ Ω,

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
1

k
BY ∗

i

)
and x∗(k) ∈ N̂(Ω, w(k))(4.8)

such that

‖x∗(k)‖ +

m∑
i=0

‖x∗
i (k)‖ → 1 and x∗(k) +

m∑
i=0

x∗
i (k) → 0.(4.9)
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Without loss of generality we assume that

x∗(k)
w∗
→ x∗ and x∗

i (k)
w∗
→ x∗

i (i = 0, 1, . . . ,m),

and hence it follows from (2.1) that

x∗
i ∈ D∗Fi(x̄, ȳi)(0), x∗ ∈ N(Ω, x̄), and x∗ +

m∑
i=0

x∗
i = 0.

Further ‖x∗‖+
∑m

i=0 ‖x∗
i ‖ 	= 0 by (4.9) and thanks to the assumption that each Fi is

partially sequentially normally compact at (x̄, ȳi). Thus (ii) holds, and the proof is
completed.

As already noted, every closed multifunction between two finite dimensional
spaces is partially sequentially normally compact at each point in its graph, and
every closed convex cone in a finite dimensional space is dually compact. Thus, the
following corollary is a consequence of Theorem 4.1.

Corollary 4.1. Let Assumptions 4.1 and 4.2 hold, and suppose that X,Yi are
finite dimensional. Then one of (i) and (ii) in Theorem 4.1 holds.

In the case when each Fi is pseudo-Lipschitz, we have the following sharp Lagrange
multiplier rule.

Theorem 4.2. Let Assumptions 4.1 and 4.2 hold and X,Yi be Asplund spaces.
Suppose that each Ci is dually compact and that each Fi is pseudo-Lipschitz at (x̄, ȳi).
Then there exists c∗i ∈ C+

i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).(4.10)

Proof. By Corollary 3.2, for any natural number k there exist xi(k) ∈ x̄ + 1
kBX ,

w(k) ∈ Ω ∩ (x̄ + 1
kBX), yi(k) ∈ Fi(xi) ∩ (ȳi + 1

kBYi
), and c∗i (k) ∈ C+

i such that

m∑
i=0

‖c∗i (k)‖ = 1(4.11)

and

0 ∈
m∑
i=0

D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
∩MBX∗ + N̂(Ω, w(k))∩MBX∗ +

1

k
BX∗ ,

where M > 0 is a constant independent of k. Hence there exist

x∗
i (k) ∈ D̂∗Fi(xi(k), yi(k))

(
c∗i (k) +

1

k
BY ∗

i

)
and x∗(k) ∈ N̂(Ω, w(k))

such that

max{‖x∗(k)‖, max{‖x∗
i (k)‖ : 0 ≤ i ≤ m}} ≤ M and x∗(k) +

m∑
i=0

x∗
i (k) → 0.

Without loss of generality, we can assume that

x∗(k)
w∗
→ x∗, x∗

i (k)
w∗
→ x∗

i , and c∗i (k)
w∗
→ c̃∗i for i = 0, 1, . . . ,m.(4.12)

Hence,

x∗ ∈ N(Ω, x̄), x∗
i ∈ D∗Fi(x̄, ȳi)(c̃

∗
i ) (i = 0, 1, . . . ,m), and x∗ +

m∑
i=0

x∗
i = 0,
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and so

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c̃
∗
i ) + N(Ω, x̄).(4.13)

Since each Ci is dually compact, (4.11), (4.12), and (4.2) imply that
∑m

i=0 ‖c̃∗i ‖ 	= 0.

It follows from (4.13) that (4.10) holds with c∗i =
c̃∗i∑m

j=0
‖c̃∗

j
‖ . The proof is com-

pleted.
Let x̄ be a local solution of single-objective optimization problem (1.1), and sup-

pose that each fi is locally Lipschitz at x̄. Let Fi and Ci be as in the proof of Theorem
3.3. Then x̄ is a local Pareto solution of (1.3), and each Fi is pseudo-Lipschitz at
(x̄, fi(x̄)). It is routine to verify that

D∗Fi(x̄, fi(x̄))(s) = ∂(sfi)(x̄) for 0 ≤ i ≤ n, s ≥ 0,

and

D∗Fi(x̄, fi(x̄))(t) = ∂(tfi)(x̄) for n + 1 ≤ i ≤ m, t ∈ R.

Thus, (4.10) reduces to (1.2).
In the remainder of this section, we consider the case when X,Yi are general

Banach spaces. In this case we need the notion of the normal closedness.
We say that Ω is normally closed at x ∈ Ω if for (generalized) sequences

xn → x, x∗
n ∈ Nc(Ω, xn), x∗

n
w∗
→ x∗ implies x∗ ∈ Nc(Ω, x)

(see [4, Corollary, p. 58]).
It is known that Ω is normally closed at each point of Ω if Ω is convex. Moreover,

if Ω is epi-Lipschitz around x ∈ Ω, then Ω is normally closed at x. We say that a
closed multifunction Φ : X → 2Y is normally closed at (x, y) ∈ Gr(Φ) if Gr(Φ) is
normally closed at (x, y) (see [28]).

Mimicking a corresponding notion introduced in [17], we say that Φ : X → 2Y is
partially sequentially normally compact at (x, y) ∈ Gr(Φ) in the Clarke sense if for
any (generalized) sequence {(xn, yn, x

∗
n, y

∗
n)} satisfying

x∗
n ∈ D∗

cΦ(xn, yn)(y∗n), (xn, yn) → (x, y), ‖y∗n‖ → 0, and x∗
n

w∗
→ 0

one has ‖x∗
n‖ → 0.

The following result can be proved in the same way as for Theorem 4.1 (but apply
Theorem 3.2 in place of Theorem 3.1).

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold, and suppose that each Ci is
dually compact. Suppose that each Fi is partially sequentially normally compact at
(x̄, ȳi) in the Clarke sense and that Ω and Fi are normally closed at x̄ and (x̄, ȳi),
respectively. Then one of the following assertions holds.

(i) There exist c∗i ∈ C+
i such that

m∑
i=0

‖c∗i ‖ = 1 and 0 ∈
m∑
i=0

D∗
cFi(x̄, ȳi)(c

∗
i ) + Nc(Ω, x̄).

(ii) There exist x∗
i ∈ D∗

cFi(x̄, ȳi)(0) and w∗ ∈ Nc(Ω, x̄) such that

‖w∗‖ +

m∑
i=0

‖x∗
i ‖ = 1 and w∗ +

m∑
i=0

x∗
i = 0.
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As in many classical situations, one can also provide a sufficient condition for
(x̄, ȳ0) to be a Pareto solution of (1.3), provided that a suitable convexity assumption
is made.

Proposition 4.1. Let each Fi be a closed convex multifunction and Ω be a closed
convex subset of X. Let ȳ0 ∈ F0(x̄) and ȳi ∈ Fi(x̄) ∩ −Ci for i = 1, . . . ,m. Assume
that there exists c∗i ∈ C+

i such that

〈c∗0, c〉 > 0 ∀c ∈ C0 \ {0},
m∑
i=1

〈c∗i , ȳi〉 = 0(4.14)

and

0 ∈
m∑
i=0

D∗Fi(x̄, ȳi)(c
∗
i ) + N(Ω, x̄).(4.15)

Then (x̄, ȳ0) is a Pareto solution of the constrained multiobjective optimization prob-
lem (1.3).

Proof. By (4.15) there exists x∗
i ∈ X∗ such that

x∗
i ∈ D∗Fi(x̄, ȳi)(c

∗
i ) and −

m∑
i=0

x∗
i ∈ N(Ω, x̄).

It follows from the convexity of Fi and Ω that

(4.16)

〈x∗
i , x〉 − 〈c∗i , yi〉 ≤ 〈x∗

i , x̄〉 − 〈c∗i , ȳi〉 ∀(x, yi) ∈ Gr(Fi) and i = 0, 1, . . . ,m

and 〈
−

m∑
i=0

x∗
i , x

〉
≤
〈
−

m∑
i=0

x∗
i , x̄

〉
∀x ∈ Ω.(4.17)

Summing up (4.16) over all i and making use of (4.17) and (4.14) we have

〈c∗0, ȳ0〉 ≤
m∑
i=0

〈c∗i , yi〉 for any x ∈ Ω, yi ∈ Fi(x), and i = 0, 1, . . . ,m.

Since c∗i ∈ C+
i , it follows that

〈c∗0, ȳ0〉 ≤ 〈c∗0, y0〉 ∀y0 ∈ F0

(
Ω ∩

m⋂
i=1

F−1
i (−Ci)

)
.

This and the inequality in (4.14) imply that ȳ0 ∈ E
(
F0

(
Ω ∩

⋂m
i=1 F

−1
i (−Ci)

)
, C0

)
.

The proof is completed.
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NEW REDUCTION TECHNIQUES FOR THE GROUP STEINER
TREE PROBLEM∗
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Abstract. The group Steiner tree problem consists of, given a graph G, a collection R of subsets
of V (G), and a positive cost ce for each edge e of G, finding a minimum-cost tree in G that contains
at least one vertex from each R ∈ R. We call the sets in R groups. The well-known Steiner tree
problem is the special case of the group Steiner tree problem in which each set in R is unitary. In
this paper, we present a general reduction test designed to remove group vertices, that is, vertices
belonging to some group. Through the use of these tests we can conclude that a given group vertex
can be considered a nonterminal and hence can be removed from its group. We also present some
computational results on instances from SteinLib [T. Koch, A. Martin, and S. Voss, SteinLib: An
updated library on Steiner tree problems in graphs, in Steiner Trees in Industry, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2001, pp. 285–325].
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1. Introduction.

1.1. The problem and known results. The Steiner tree problem consists of,
given a graph G with costs on its edges and a set of vertices called terminals, finding
a minimum-cost tree in G that connects all the terminals.

The group Steiner tree problem is a generalization of the Steiner tree problem
and was proposed by Reich and Widmayer [12] with applications to VLSI design in
mind. It is as follows:

Problem GST (G,R, c). Given a graph G, a collection R of subsets of V (G),
and a positive cost ce for each e ∈ E(G), find a minimum-cost tree T in G
containing at least one vertex of each R ∈ R.

The elements of R are called groups. Any vertex belonging to a group is said to
be a group vertex. All other vertices are nonterminals or Steiner vertices. We denote
by R̂ the set of all group vertices. A tree in G that contains at least one vertex from
each group is called a group Steiner tree.

We assume that the costs are all positive and that the groups are pairwise disjoint.
Such assumptions are reasonable in practice and make our exposition much simpler.
So, for a group vertex u, we denote by gr(u) the group which contains u. Also, we
assume that there are at least two groups and that at least one component of G
contains at least one vertex from each group (in other words, we assume that the
problem is feasible).

Notice that the Steiner tree problem is the special case of the group Steiner tree
problem in which every group has only one vertex. Therefore, since the Steiner tree

∗Received by the editors July 1, 2004; accepted for publication (in revised form) May 30, 2006;
published electronically December 26, 2006.
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problem is NP-hard, the group Steiner tree problem is also NP-hard. There are
also stronger complexity results related to the group Steiner tree problem. Ihler [8]
considered the complexity of several special cases of the problem. From a reduction
of set-cover to the GST [6, 8] and from strong results known for set-cover [5], it is
known that the group Steiner tree problem, even when G is restricted to a tree, cannot
be approximated in polynomial time by a factor better than (1 + o(1)) ln |R|, where
R is the collection of groups, unless NP ⊆ DTIME(nO(log log n)). Stronger results on
the hardness of approximating the group Steiner tree problem have been obtained by
Halperin and Krauthgamer [7], though under a different hypothesis.

Rohe and Zachariasen [13] considered the rectilinear case of the group Steiner
tree problem. They developed an exact algorithm for this special case of the problem
and presented reduction techniques, some of them based on existing reductions for
the Steiner tree problem. Duin, Volgenant, and Voss [4] use a simple reduction to
transform an instance of the group Steiner tree problem into an instance of the Steiner
tree problem and solve the latter problem. Details on how the group Steiner tree
problem arises in VLSI design can be found in the papers of Reich and Widmayer [12]
and Rohe and Zachariasen [13].

1.2. Our results. The group Steiner tree problem can be reduced to the Steiner
tree problem as follows: given an instance (G,R, c) of the GST, create a new vertex
vR in G for each R ∈ R, connecting vR to all the vertices in R by edges with a
conveniently large cost.

Examples can be constructed in which the addition of the artificial edges has a
negative impact on the lower bounds provided by formulations for the problem. The
performance of primal heuristics may also be poorer on the extended graph.

For that reason, we present in this paper some reduction techniques designed
specifically for the group Steiner tree problem. We concentrate on techniques for
removing group vertices, that is, methods that can allow us to conclude that a given
group vertex can be considered a nonterminal. The quality of many formulations for
the group Steiner tree problem depends on the size of the groups in question (cf. [1]),
and we have observed in practice that with smaller groups one can really obtain better
bounds.

The rest of the paper is structured as follows: in section 2 we present the concept
of bottleneck Steiner distances for the GST, which was generalized from the concept
of bottleneck distances for the Steiner tree problem by Rohe and Zachariasen [13]. We
also present in this section a simple test using the bottleneck distances. In section 3
we present a more powerful test based on expansion techniques. Finally, in section 4
we present some computational results obtained.

2. Bottleneck distances and a simple test.

2.1. Group bottleneck Steiner distances. In this section we present a gen-
eralization of the concept of bottleneck distances. The concept of bottleneck Steiner
distances was introduced by Duin and Volgenant [3] and still forms the base of the
most successful reduction tests for the Steiner tree problem. This concept was then
generalized by Rohe and Zachariasen [13] to deal with the GST.

If H is any graph with costs on its edges given by a function l and u, v ∈ V (H),
the bottleneck between u and v is given by

b(u, v) := min
P

max
e∈E(P )

le,

where the minimum is taken over all (u, v)-paths P in H.
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Fig. 1. (a) A graph G with costs on its edges. The black vertices form the set X. (b) The
graph KG[X]. On each edge we have the distance, according to the costs in (a), between each pair
of vertices of X. In gray we have the path in KG[X] that gives the bottleneck Steiner distance for
X between u and v. (c) A bottleneck Steiner walk for X between u and v. Below the walk we have
its elementary paths.

Consider now an instance (G,R, c) of the GST. We say that a set X ⊆ V (G) is
valid for R if X contains exactly one vertex of each group in R. For any collection R of
groups, we denote by ν(R) the collection of all sets that are valid for R. If we know a
valid set X ∈ ν(R) contained in some optimal solution of the problem GST (G,R, c),
solving the latter problem is the same as solving the Steiner tree problem in the same
graph, with the same costs, with X as the terminal set.

Now, denote by KG the complete graph with vertex set V (G). Let dG(u, v)
denote the cost of a minimum-cost (u, v)-path in G, with edge costs given by c. We
can view dG(u, v) as being the cost of the edge uv of KG. In this context, given a
valid set X, the bottleneck Steiner distance for X between vertices u, v ∈ V (G) is the
bottleneck between u and v in KG[X∪{u, v}], with edge costs in KG given by dG, and
is denoted by sX(u, v). Here, we denote by KG[A], where A ⊆ V (G), the subgraph
of KG induced by the vertices in A, that is, the graph having A as its vertex set and
containing every edge of KG that has both its endpoints in A.

From each (u, v)-path P in KG[X ∪ {u, v}] we can obtain a (u, v)-walk W in G
by concatenating minimum-cost paths in G corresponding to the edges of P . Such a
walk is divided into paths between u, consecutive vertices of X, and v; such paths are
called elementary. A (u, v)-walk W obtained from a (u, v)-path P in KG[X ∪ {u, v}]
such that sX(u, v) = max{dG(x, y) : xy ∈ E(P )} is called a bottleneck Steiner walk
for X. Note that, if W is a bottleneck Steiner walk for X, the cost of the greatest
elementary path of W is exactly sX(u, v). Figure 1 illustrates these definitions.

We are now ready to define the concept of group bottleneck Steiner distance.
Given an instance (G,R, c) of the GST, the group bottleneck Steiner distance between
vertices u, v ∈ V (G) is given by

s(u, v) := max
X∈ν(R)

sX(u, v).

Given a valid set X and vertices u, v ∈ V (G), we can compute sX(u, v) in poly-
nomial time (cf. Duin [2]). Rohe and Zachariasen [13] proved that the problem of
computing s(u, v) is NP-hard. In the same work, the authors presented two heuristics
for computing upper bounds for s(u, v).

2.2. A simple test. We now illustrate the use of the group bottleneck Steiner
distances introduced in the previous section. We first note that many of the reduction
methods devised for the Steiner tree problem that use bottleneck Steiner distances
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can be easily adapted to be used with the GST. Therefore, we do not concentrate
on tests that remove nonterminals or edges, but instead we concentrate on tests that
remove group vertices.

Given an instance (G,R, c) of the GST and a group vertex r, we wish to remove
r from its group. Then we may use other reduction methods to try to remove r from
the graph. To show that r may be regarded as a nonterminal, we need only show
an optimal solution of the problem that contains a vertex from the same group of r
different from r. If all the neighbors of r belong to the same group of it, then that is
easy: since we assume that there are at least two groups, every optimal solution that
uses r also uses some of its neighbors, that is, uses some vertex of gr(r) \ {r}.

The test we will present in this section generalizes the previous observation. To
present it, though, we need some notation. Consider a graph G and a set A of vertices
of G. We denote by NG(A) the set of neighbors of A in G, i.e.,

NG(A) := {v ∈ V (G) \A : v is adjacent to some vertex of A}.

If there is no risk of ambiguity, we drop the graph from the symbol, denoting the set of
neighbors simply by N(A). If u is a vertex, we may also write N(u) instead of N({u}).
Given two disjoint sets of vertices A and B of a graph G, we denote by δG(A,B) the
set of edges of G with one endpoint in A and the other in B. Analogously, if there is
no risk of ambiguity, we drop the graph from the symbol. Moreover, if u is a vertex
we may, for instance, write δ(u,B) instead of δ({u}, B).

Consider now an instance (G,R, c) of the GST. Again, denote by KG the complete
graph with vertex set V (G). Given a set A of vertices of G, we shall denote by τ(A)
the cost of a minimum spanning tree in KG[A], where the cost of the edge uv of KG[A]
equals s(u, v). Given a group vertex r and a set A of vertices such that r /∈ A, let

π(r,A) := min{dG(u, v) : u ∈ A, v ∈ gr(r) \ {r}};

that is, π(r,A) is the distance from A to the closest vertex of the same group of r
distinct from r itself. As is usual, if A ⊆ E(G), we write c(A) :=

∑
e∈A ce. Finally,

we have the following result.
Theorem 1. Consider an instance (G,R, c) of the GST. Let R ∈ R and r ∈ R.

If, for every U ⊆ N(r) \R, |U | ≥ 1, we have τ(U) + π(r, U) ≤ c(δ(r, U)), then r may
be regarded as a nonterminal.

To prove Theorem 1, we will need the following lemma, which will also be useful
later.

Lemma 2. Consider an instance (G,R, c) of the GST. Let F be a forest in G
and suppose F contains a valid set X. Let U ⊆ V (F ) be a set containing at least one
vertex from each component of F . There is a group Steiner tree T in G that contains
F , and its cost is at most c(E(F )) + τ(U).

Proof. Consider a minimum spanning tree in KG[U ] with cost τ(U). Let yz be
the smallest edge of this tree and consider a (y, z)-bottleneck Steiner walk W for X.
Traverse W from y to z. During the traversal, subpaths of W connecting vertices in
different components of F may be found. Since F contains a valid set, such subpaths
are subpaths of elementary paths of W and have cost at most sX(y, z) ≤ s(y, z).
When such a subpath is found, add it to F and continue with the traversal. After
doing this, if F is not yet connected, repeat the same procedure, choosing the second
smallest edge from the minimum spanning tree, and so on.

After we add at most |U |−1 paths to F it becomes connected and hence contains a
spanning tree T containing the original forest F . The total cost of the paths added to
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connect F is at most τ(U), and we have that the cost of T is at most c(E(F ))+ τ(U).
Since F contains a valid set, T also contains a valid set and is thus a group Steiner
tree.

With this, we can easily prove Theorem 1.
Proof of Theorem 1. To show that r may be regarded as a nonterminal we show

an optimal solution of GST (G,R, c) that contains some vertex of R other than r.
To this end, let T ∗ be an optimal solution of GST(G,R, c) and suppose that

r is the only vertex of R that occurs in T ∗; otherwise we have nothing to do. Let
U := NT∗(r) and T ′ := T ∗ − r. Let u ∈ U and r′ ∈ R \ {r} be such that dG(u, r′) =
π(r, U). Connect r′ to T ′ using a subpath of a minimum-cost (u, r′)-path such that
the resulting graph, say F , is a forest.

Note that F has at most |U | components and that each such component contains
at least one vertex of U . Notice, moreover, that F contains a valid set. From Lemma 2
we know that there is a group Steiner tree T̂ that contains F and whose cost is at
most

c(E(F )) + τ(U) ≤ c(E(T ∗)) + π(r, U) − c(δ(r, U)) + τ(U) ≤ c(E(T ∗)),

and hence T̂ is also an optimal solution. But it contains a vertex in R \ {r}, namely
r′, and we are done.

Notice that the test above is indeed a generalization of the observation we made
before. Moreover, it is similar to a test introduced by Duin and Volgenant [3] to
remove nonterminals in the Steiner tree problem.

3. An expansion approach.

3.1. An outline of the expansion test. In recent years, many reduction tests
have been designed for the Steiner tree problem using the idea of expansion [14, 11].
While the classical tests inspect only simple graph structures, like edges or vertices,
those tests inspect more general structures, like paths or trees.

Polzin and Daneshmand [11] give a general framework for expansion tests for
the Steiner tree problem (also described in the thesis [10]). Their test can be used to
eliminate edges and nonterminals, and if we use the group bottleneck Steiner distances
defined in section 2, we can use the same tests with the GST after some minor
adjustments. In this section we investigate how to use the same idea of expansion
presented in [11] in order to remove group vertices. The resulting test is much more
powerful than that presented in section 2.

To present our test, we first need to introduce some notation from [11]. Given a
tree T , we denote by L(T ) the set of leaves of T . Let T ′ be a subtree of T . The linking
set between T and T ′ is the set of vertices v of T ′ with at least one path from itself
to a leaf of T not containing any edge of T ′. In other words, the linking set is the set
of vertices that connects T ′ and T . If the linking set between T and T ′ is L(T ′), then
T ′ is said to be peripherally contained in T . Figure 2 illustrates these definitions.

Let (G,R, c) be an instance of the GST and consider a group vertex r ∈ R for
some R ∈ R. Let T be a tree in G. We shall say that the tree T respects r if T
contains r and every other group vertex that occurs in T is a leaf. Given a leaf u of
T , let

X (u, T ) := {uv ∈ E(G) : v /∈ V (T )}.

We call any nonempty subset of X (u, T ) an expansion of T through u.
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Fig. 2. The subtree in gray is not peripherally contained in the larger tree. The linking set,
which is composed in this case by the white vertices, is not entirely composed of leaves of the gray
subtree.

Our test is comprised of two recursive functions. The first function, Expansion-

Test-Leaf, receives a group vertex r and a tree T that respects r and of which r is
a leaf. It returns yes if the following assertion is true:

If T is peripherally contained in some optimal solution in which r is a leaf, then there
is an optimal solution containing a vertex of gr(r) other than r.

(3.1)

The other function is called Expansion-Test-Int. It receives a group vertex r and
a tree T that respects r and returns yes if the following assertion is true:

If T is peripherally contained in some optimal solution in which r is not a leaf, then
there is an optimal solution containing a vertex of gr(r) other than r.

(3.2)

The functions described above are very similar; thus we will present only an
outline of their code and comment on the differences later. The function Test-Tree

called in line 1 of the code below contains the specific test conditions: the call Test-

Tree (r, T ) returns yes if (3.1) (in case of Expansion-Test-Leaf), or (3.2) (in case
of Expansion-Test-Int), is satisfied by T . The implementation of such a function
will be discussed later.

Function Expansion-Test-Outline (r, T )

1 if Test-Tree (r, T ) = yes

2 then return yes

3 for each leaf u of T that is r or a nonterminal do

4 S ← yes

5 for each nonempty U ⊆ X (u, T ) do

6 if Expansion-Test-Outline (r, T + U) = no

7 then S ← no

8 if S = yes

9 then return yes

10 return no

We will delay the proof of correctness of our test until section 3.3. For now, it is
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convenient to observe that, throughout execution, the property that T respects r is
preserved.

Both functions have almost the same code. The only difference is that, in function
Expansion-Test-Leaf, we can only choose to expand through r if it has degree zero
in T (i.e., if T is only one vertex, r), as r must be a leaf in T + U . Moreover, the
expansions considered in this case must all be unitary. In function Expansion-Test-

Int, no such care is needed. Another important observation is that in line 5 we may
consider only expansions that do not introduce any other vertices of the same group
as r, as the test is trivially true for T + U if U contains an edge incident to a vertex
in gr(r) \ {r}.

It is now easy to combine both functions described in a test that determines if a
group vertex can be regarded as a nonterminal. Given a group vertex r, we call both
functions with r being the initial tree. If both functions return yes, then we know that
if r is contained in an optimal solution, there is an optimal solution containing another
vertex of gr(r) distinct from r itself; therefore r can be considered a nonterminal.

As for the running time of our test, it is heavily dependent on the degree of the
vertices through which we expand, as well as the maximum depth of the recursion.
In practice, we limit the depth of the recursion, truncating the test if necessary, and
we also choose not to expand through vertices of higher degree. A more detailed
discussion of such issues will be made in section 4.

3.2. Test conditions. In this section we discuss some possible implementations
of the function Test-Tree used in the expansion procedure.

From now on, suppose we are given an instance (G,R, c) of the GST, a group
vertex r ∈ R for some group R, and a tree T that respects r. One of those implemen-
tations is based on the following result.

Proposition 3. If τ(L(T ))+π(r, L(T )\{r}) ≤ c(E(T )), then if T is peripherally
contained in some optimal solution, there is an optimal solution containing some
vertex of R \ {r}.

Proof. Suppose T is peripherally contained in some optimal solution T ∗. Let I
be the set of internal vertices of T and T ′ := (T ∗−E(T ))− I. Let u ∈ L(T )\{r} and
r′ ∈ R \ {r} be such that dG(u, r′) = π(r, L(T ) \ {r}). Connect r′ to T ′ by means of
a subpath of a minimum-cost (u, r′)-path so that the resulting graph, which we will
denote by F , is a forest.

Note that F has at most |L(T )| components and that each such component con-
tains some vertex of L(T ) (this is true, since T is peripherally contained in T ∗).
Moreover, F contains a valid set, since it respects r. Using Lemma 2, it follows that
there is a group Steiner tree T̂ that contains F and has cost at most

c(E(F )) + τ(L(T )) ≤ c(E(T ∗)) + τ(L(T )) + π(r, L(T ) \ {r}) − c(E(T )) ≤ c(E(T ∗)),

being, then, an optimal solution to our problem. Since it contains a vertex of R \{r},
we are done.

If, additionally, r is a leaf in the tree in which T is peripherally contained, we
can weaken the hypothesis. In this case, we need not consider r a leaf of T ; that is,
we may use τ(L(T ) \ {r}) instead of τ(L(T )). This version of the test can be used
together with the function Expansion-Test-Leaf.

Another way of proving that assertion (3.1) or (3.2) is true is to show that T
is not peripherally contained in any optimal solution. Obviously, this assertion can
be modified in accordance with the function being considered. For instance, if we
are considering the function Expansion-Test-Leaf, we can show that T is not
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peripherally contained in any optimal solution in which r is a leaf. In the case r is
a leaf of T , we can use the tests presented in [11] with some minor modifications,
including the bound-based tests. For instance, we have the following result.

Proposition 4. If r is a leaf of T and τ(L(T )) < c(E(T )), then T is not
peripherally contained in any optimal solution.

Proof. Suppose that T is peripherally contained in an optimal solution T ∗. Let I
be the set of internal vertices of T and F := (T ∗ − E(T )) − I.

Now, since T is peripherally contained in T ∗, F is composed of exactly |L(T )|
components, each one containing exactly one vertex from L(T ). Moreover, since r is a
leaf of T and since T respects r, F contains a valid set. It then follows from Lemma 2
that there exists a group Steiner tree T̂ containing F , the cost of which is at most

c(E(T ∗)) + τ(L(T )) − c(E(T )) < c(E(T ∗)),

a contradiction.
Many tests presented in [11] allow one to conclude that there is an optimal solution

that does not contain T peripherally. It is important to notice again that Proposition 4
is stronger, allowing one to conclude that T is not peripherally contained in any
optimal solution. However, several of the tests presented in this same paper can be
altered as to allow us to reach the desired conclusion, as is the case of the result just
presented.

In the case where r is not a leaf of T we can use a modified version of Proposition 4.
Proposition 5. Suppose r is not a leaf of T and let p be the cost of a shortest

path in G connecting some leaf of T with r. If τ(L(T )) + p < c(E(T )), then T is not
peripherally contained in any optimal solution.

Proof. It is analogous to the proof of Proposition 4.
It is interesting to observe that we could, instead of using a path of cost p to

connect r with a leaf of T , require τ(L(T ) ∪ {r}) < c(E(T )), in which case Lemma 2
could be applied to reconnect the leaves of T and r after we remove T from some
optimal solution.

It is also worth pointing out how important it is to assume that T is peripherally
contained (instead of only contained) in some optimal solution. This allow us to
remove the edges of T and its internal vertices and even then have some information
about the structure of the remaining graph. Moreover, since we need only care about
reconnecting the leaves of T , we get stronger tests.

Figure 3 contains an example of an instance that can be reduced using the ex-
pansion test.

3.3. Correctness of the expansion test. The correctness of the expansion
test follows directly from the following proposition.

Proposition 6. Let T be a tree in G. If the tree T is peripherally contained in
some optimal solution T ∗ of the GST (G,R, c), then for each vertex u ∈ L(T ) which
is not a leaf of T ∗ there exists U ⊆ X (u, T ), U �= ∅, such that T + U is peripherally
contained in T ∗.

Proof. Let T ∗ be an optimal solution and assume it peripherally contains T .
Choose u ∈ L(T ) such that u is not a leaf of T ∗ and let U := {uv ∈ E(T ∗) : v /∈ V (T )}.
Since u is not a leaf in T ∗, U �= ∅. We claim that T + U is peripherally contained in
T ∗.

To prove the claim, consider an internal vertex of T + U . If this vertex is u, it
is immediate that any path from u to a leaf of T ∗ uses some edge of T + U (since it
uses some edge of T or some edge of U). If the internal vertex chosen is not u, then
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Fig. 3. In this figure we have an instance of the group Steiner tree problem. The intersections
between the segments are vertices and the segments themselves edges of our graph. All costs are
unitary. We have tree groups: •, ◦, and . The vertex in the center, which belongs to the group •,
can be removed by the expansion test but not by the simple test of section 2.2.

it is an internal vertex of T and, since T is peripherally contained in T ∗, every path
from this vertex to a leaf of T ∗ uses some edge of T and hence some edge of T + U .

Consider now a leaf u of T + U . Since T + U is a subtree of T ∗, and since T ∗ is
a tree, it is easy to see that there must be a path from u to a leaf of T ∗ using only
edges not in T + U . Therefore, T + U is peripherally contained in T ∗ and the claim
is proved.

Note that the above proposition makes it possible for us to expand through any
nonterminal leaf of a tree, since such a vertex cannot be a leaf in any optimal solution.
Note also that we do not mention the fact that T respects some group vertex r,
although such an assumption is important in the results of the previous section.

3.4. A supporting test. In this section we present a test that follows the same
idea of the test presented in Theorem 1. We will then show how to combine this test
with the idea of expansion to achieve more reductions. To present the test, we first
introduce some notation. Given an instance (G,R, c) of the GST and disjoint sets
A,B of vertices of G, we denote by δG(A,B) the set containing for each u ∈ B a least
cost edge from δG(A,B) incident to u, if such an edge exists.

Proposition 7. Let (G,R, c) be an instance of the GST, R ∈ R, and r ∈ R.
Let C ⊆ V (G) be such that C ∩ R̂ = {r}. If for every U ⊆ N(C) with |U | ≥ 1 we
have τ(U) + π(r, U) ≤ c(δ(C,U)), then there exists an optimal solution containing a
vertex of R \ {r}.

Proof. Let T ∗ be an optimal solution in which r occurs. Let C ′ := C ∩ V (T ∗)
and U := NT∗(C ′). Note that U ⊆ NG(C), and since C ∩ R̂ = {r}, U is nonempty.
Let T ′ := T ∗ − C ′. Choose u ∈ U and r′ ∈ R \ {r} such that dG(u, r′) = π(r, U).
Connect r′ to T ′ by means of a subpath of a minimum-cost (u, r′)-path, such that the
resulting graph, say F , is a forest.

The graph F has at most |U | components and each such component contains a
vertex of U . Moreover, since C ∩ R̂ = {r}, F contains a valid set. Using Lemma 2,
we know that there is a group Steiner tree T̂ that contains F and that its cost is at
most c(E(F )) + τ(U).

Now, we know that c(δT∗(C ′)) ≥ c(δG(C,U)). Hence, the cost of T̂ is at most
c(E(T ∗)) + τ(U) + π(r, U) − c(δT∗(C ′)) ≤ c(E(T ∗)). Therefore, T̂ is also an optimal
solution. Now, since it contains a vertex of R \ {r}, we are done.

We may combine this test with the expansion approach using the following idea.
In each call of Expansion-Test-Int we have a tree T and we wish to assert that (3.2)
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is true for T . If the tree T is such that V (T ) ∩ R̂ = {r}, then we can also check
whether V (T ) verifies the hypothesis of Proposition 7. If this is the case, then r can
be removed and there is no need to continue the expansion or to call the function
Expansion-Test-Leaf. In fact, in this case we can end the recursion right away.

4. Computational results. We have implemented all the above methods. We
did not implement any of the bound-based tests of [11] mainly because time-efficient
heuristics for finding lower bounds were unable to find good lower bounds for the
problem.

In our implementation, we observed that the time consumed by the expansion
test is highly dependent on the degree of the vertices through which we choose to
expand and on the depth of the recursion itself. Therefore, we limit these parameters
to a small constant. In our case, we expand only through vertices of degree at most 8
and we limit the depth of the recursion to 8. When using the test of section 3.4, we
consider only sets C for which |N(C)| is limited by a small constant (8, in our case).

The test described in section 3.4 is effective in many cases, and reductions can be
achieved by using it. We also attempted to use this test alone, together with another
mechanism of expansion. In this case the expansion can be carried out in many ways;
the only thing needed is to guarantee the necessary properties of the subset of vertices
being inspected in each step. For instance, we may run a breadth-first search from
r and, in each step of the search, test the set of vertices visited by the search. In
all cases, we observed that the combination of this test with the expansion scheme
presented earlier is far more effective.

The most important practical issue to consider, however, is the calculation of the
group bottleneck Steiner distances. If we have a fixed valid set X, we can compute
sX(u, v) for each pair u, v of vertices in time O(n2|X|) (cf. Duin [2]), given that we
have the distances in G already computed. Since computing the distances takes time
O(n3) (if the original graph is sparse, there are better algorithms), the whole process
takes time O(n3).

Rohe and Zachariasen [13] show that computing s(u, v) is NP-hard. They also
propose heuristics to compute upper bounds for s(u, v). We used those heuristics
in our implementation and verified that the bounds produced by them are good,
especially when the diameter of the groups is small. After removing group vertices, the
group bottleneck Steiner distances only decrease. This means that we need not update
the distances, though updates could lead to more reductions. In our implementation,
we noticed that frequent updates did little to improve the number of reductions, so
we try to remove as many group vertices as we can before updating. More specifically,
we run our reduction algorithm until we can no longer remove any vertex; then we
update the distances and try again.

Our results are summarized in Tables 1 and 2. The instances used are the same
as in [13]. We did not have access to the original instances, however, so our reduction
algorithm was tested upon instances that had already gone through a reduction pro-
cess. Therefore, the reductions we achieved are in addition to those already achieved
by the tests in [13]. The average number of group vertices removed was 6.5% for the
WRP3 collection and 5.98% for the WRP4 collection.

In our tables we do not show time consumption, though it was never above 10
minutes. By changing the parameters of our program, like the maximum depth of the
recursion, we observed that the time consumed increases too much, whereas there is
no significant increase in the number of reductions achieved. The tests were carried
out on a 1.1 GHz AMD Athlon with 512 Mb RAM memory.
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Table 1

This table shows the results of the reduction procedure for the WRP3 collection. Column “|R̂|”
has the number of group vertices of the original instance. Column “Exp.” contains the number of
group vertices removed by the expansion procedure alone. Column “Supp.” contains the number of
group vertices removed by the supporting test presented in section 3.4. The last column, “Total,”
has the total number of group vertices removed.

Reductions achieved: WRP3 collection

Instance |R̂| Exp. Supp. Total Instance |R̂| Exp. Supp. Total
wrp3-11 34 1 5 6 wrp3-50 229 3 7 10
wrp3-12 37 5 9 14 wrp3-52 144 4 8 12
wrp3-13 64 1 6 7 wrp3-53 161 2 15 17
wrp3-14 64 0 13 13 wrp3-55 185 3 9 12
wrp3-15 57 12 16 28 wrp3-56 149 0 8 8
wrp3-16 46 4 6 10 wrp3-60 296 0 3 3
wrp3-17 82 0 2 2 wrp3-62 174 2 6 8
wrp3-19 67 3 10 13 wrp3-64 244 3 5 8
wrp3-20 55 4 6 10 wrp3-66 216 1 2 3
wrp3-21 76 5 14 19 wrp3-67 215 5 14 19
wrp3-22 69 2 10 12 wrp3-69 192 1 7 8
wrp3-23 51 0 0 0 wrp3-70 294 6 16 22
wrp3-24 83 14 17 31 wrp3-71 266 4 11 15
wrp3-25 81 0 8 8 wrp3-73 192 3 9 12
wrp3-26 91 1 2 3 wrp3-74 183 2 10 12
wrp3-27 106 3 7 10 wrp3-75 213 2 6 8
wrp3-28 77 2 8 10 wrp3-76 255 6 18 24
wrp3-29 65 2 3 5 wrp3-78 367 3 12 15
wrp3-30 108 2 5 7 wrp3-79 175 1 1 2
wrp3-31 80 1 8 9 wrp3-80 224 4 11 15
wrp3-33 104 0 2 2 wrp3-83 336 1 5 6
wrp3-34 170 6 9 15 wrp3-84 290 2 4 6
wrp3-36 101 2 8 10 wrp3-85 197 0 0 0
wrp3-37 164 2 5 7 wrp3-86 235 4 13 17
wrp3-38 153 1 3 4 wrp3-88 253 2 6 8
wrp3-39 363 0 2 2 wrp3-91 266 7 11 18
wrp3-41 83 0 1 1 wrp3-92 409 1 6 7
wrp3-42 134 2 10 12 wrp3-94 351 4 16 20
wrp3-43 85 0 0 0 wrp3-95 327 2 48 50
wrp3-45 242 2 7 9 wrp3-96 396 2 10 12
wrp3-48 140 2 7 9 wrp3-98 420 12 23 35
wrp3-49 251 4 18 22 wrp3-99 348 12 17 29
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Table 2

Test results for the WRP4 collection. The meaning of the columns is the same as for Table 1.

Reductions achieved: WRP4 collection

Instance |R̂| Exp. Supp. Total Instance |R̂| Exp. Supp. Total
wrp4-11 41 1 2 3 wrp4-44 174 4 14 18
wrp4-13 41 0 9 9 wrp4-45 180 0 3 3
wrp4-14 52 3 4 7 wrp4-46 183 0 0 0
wrp4-15 57 1 4 5 wrp4-47 186 8 10 18
wrp4-16 47 2 8 10 wrp4-48 140 3 12 15
wrp4-17 64 12 20 32 wrp4-49 195 10 21 31
wrp4-18 53 1 6 7 wrp4-50 198 1 14 15
wrp4-19 51 1 4 5 wrp4-51 202 2 6 8
wrp4-21 107 10 17 27 wrp4-52 208 1 4 5
wrp4-22 86 0 3 3 wrp4-53 211 0 4 4
wrp4-23 91 0 0 0 wrp4-54 215 2 2 4
wrp4-24 120 19 27 46 wrp4-55 222 12 19 31
wrp4-25 88 3 8 11 wrp4-56 238 20 29 49
wrp4-26 104 2 6 8 wrp4-58 233 7 8 15
wrp4-27 107 0 0 0 wrp4-59 239 2 5 7
wrp4-28 110 0 0 0 wrp4-60 238 4 9 13
wrp4-29 114 0 0 0 wrp4-61 246 8 10 18
wrp4-30 118 0 3 3 wrp4-62 281 11 24 35
wrp4-31 124 1 3 4 wrp4-63 250 1 8 9
wrp4-32 130 1 5 6 wrp4-64 257 3 9 12
wrp4-33 97 1 5 6 wrp4-66 280 4 13 17
wrp4-34 136 0 0 0 wrp4-67 376 16 57 73
wrp4-35 139 0 0 0 wrp4-68 273 6 6 12
wrp4-36 143 0 0 0 wrp4-69 274 17 24 41
wrp4-37 148 0 0 0 wrp4-70 278 8 14 22
wrp4-38 150 0 0 0 wrp4-71 285 0 4 4
wrp4-39 200 24 55 79 wrp4-72 295 6 16 22
wrp4-40 158 5 5 10 wrp4-73 303 5 7 12
wrp4-41 164 0 0 0 wrp4-74 295 0 6 6
wrp4-42 168 0 0 0 wrp4-75 299 5 8 13
wrp4-43 170 15 16 31 wrp4-76 305 4 10 14
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Abstract. The image containment problem (ICP) is a minimum cost design problem concerning
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1. Introduction. The image containment problem (ICP) is a design problem
concerning the containment of polyhedra and, more specifically, of zonotopes.

Given two vectors d+ ∈ Q
q
+ and u+ ∈ Qm

+ , define the boxes D(d+)
.
= {d ∈ Rq :

0 ≤ d ≤ d+} and U(u+)
.
= {u ∈ Rm : 0 ≤ u ≤ u+}.

Image containment problem (ICP). Let B ∈ Qn×m and F ∈ Qn×q be two matrices
and d+ ∈ Q

q
+ and c ∈ Qm

+ be two vectors with strictly positive components. Find, when
it exists, a vector u+ ∈ Qm

+ of minimum cost cu+ such that

∀d ∈ D(d+) ∃u ∈ U(u+) : Fd = Bu.(1.1)

Denoting by FD(d+) = {x ∈ Rn : ∃d ∈ D(d+) s.t. x = Fd} and BU(u+) =
{x ∈ Rn : ∃u ∈ U(u+) s.t. x = Bu} the images of D(d+) and U(u+) through the
linear transformations induced by F and B, respectively, the ICP may be equivalently
expressed as

zICP = min cu+,

FD(d+) ⊆ BU(u+),

u+ ≥ 0.

So, the ICP is the problem of determining the minimum cost box U(u+) such
that its image in Rn through the linear transformation B contains the image FD(d+)
of the box D(d+). Note that the assumption d+ > 0 is not restrictive, since one can
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Fig. 1.1. An ICP instance and its optimal solution.

always eliminate possible null components of d+ (and the corresponding columns of
F ) without modifying the set FD(d+).

Both sets BU(u+) and FD(d+) are zonotopes, i.e., centrally symmetric polytopes
that are vector sums (Minkowsky sums) of a finite number of line segments (see [9, 14,
18]). Indeed we may write BU(u+) =

∑m
i=1[0, u

+
i ]Bi and FD(d+) =

∑q
j=1[0, d

+
j ]F j ,

where Bi and F j denote the generic columns of B and F , respectively, and [0, α],
α ∈ R+, denotes the interval with extremes 0 and α. Therefore, BU(u+) is a sum of
m line segments (called generators), where the ith segment has an end in the origin,
the direction of the column Bi of B, and length equal to u+

i ‖Bi‖. In this perspective,
the cost cu+ is a weighted sum of the lengths of the generators of BU(u+). In
particular, the sum of the lengths of the generators,

∑m
i=1 u

+
i ‖Bi‖, is called the total

length of the zonotope [10]. Figure 1.1 reports an ICP instance (Figure 1.1(a)) and
its minimum total length solution (Figure 1.1(b)) where the zonotope FD = ID
is represented as a shaded square and the unit directions Bi, i = 1, 2, 3, as dotted
vectors.

Since in the definition of the ICP the vector d+ is assigned, in the rest of the
paper we also use the notation D instead of D(d+). In addition, we refer to vectors
d ∈ D as demands.

The ICP is a particular case of the circumbody containment problem, a relevant
subject of computational convexity (see [7]). In this setting, the circumbody contain-
ment problem requires finding, given a class C of closed convex sets, an element of C
that contains a given convex body K and minimizes an assigned functional ω : C → R,
where ω is assumed nonnegative and monotone with respect to inclusion. The ICP
corresponds to the case where the elements of C are zonotopes of the form BU(u+),
u+ ∈ Rm

+ , the function ω is defined by ω(BU(u+)) = cu+, and K is a zonotope of the
form K = FD(d+).

Circumbody containment problems involving zonotopes were studied, for instance,
in [10] and [16]. In [10] the authors consider the problem of finding a minimum total
length zonotope containing k assigned points of Rn when the m directions of the gen-
erators are given and the center of the zonotope can be chosen arbitrarily. Assuming
k greater than mn−1, they show that the problem can be solved via linear program-
ming in O(kmn−1 + mO(n)). In [16] only zonotopes in R2 centered in the origin are
considered and a method to approximate a given zonotope by means of zonotopes
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with assigned unit generators is proposed. As stated by the authors, this method
converges to an optimal approximation with respect to the Hausdorff/integral metric.

Differently from the above cases, in the ICP the center Bu+

2 of the zonotope BU(u+)
depends on the optimal solution u+ and thus cannot be chosen arbitrarily nor is a
priori known.

The ICP may arise in several applicative contexts. It models, for instance, those
situations in which a system is subject to two kinds of actions: exogenous inputs
and internal decisions. In this context, the vectors d ∈ D represent exogenous inputs
(demands, disturbances, etc.) that are supposed unknown but bounded; i.e., they can
assume any nonnegative value not exceeding an assigned upper bound d+. Any input
d induces the effect Fd on the system. The vectors u ∈ U(u+) represent the internal
decisions that have to counteract the demand action by producing an effect Bu = Fd.
So the ICP consists of finding a minimum cost box U(u+) of decision vectors that can
counteract any possible demand. As shown in [4], the condition FD ⊆ BU(u+) is a
necessary and sufficient condition for the existence of feedback stabilizing strategies
for the system on an infinite time horizon. That paper also contains an applicative
example of the ICP in the context of manufacturing systems.

A particular case of the ICP, where B and F are the incidence matrices of two
networks G and H with the same node set, was introduced in [3] and called the
minimum cost network containment problem (MCNCP). Given a capacity vector
d+ on the arcs of H, the MCNCP is the problem of determining a minimum cost
capacity vector u+ on the arcs of G with the property that, for any flow d ∈ D(d+),
there exists a feasible flow u ∈ U(u+) in G that counteracts d, i.e., causes the same
imbalance Bu = Fd at the nodes. Actually, the MCNCP is coNP-hard [13]. An exact
algorithm for the MCNCP was proposed in [15], where the role of this problem in the
management of power transmission networks was also outlined.

The ICP may also be interpreted as a minimum cost substitution problem as in
the following example. Given a production-distribution system, let F be the incidence
matrix of the hypergraph representing the production and/or the distribution lines
and d+ be the vector whose components are the upper capacities of these lines. Then
the feasible system outputs y have the form y = Fd, 0 ≤ d ≤ d+, where d is a vector of
material flows. Suppose that the system has to be renewed and that the new structure
of the processes is represented by the matrix B. Then the condition FD(d+) ⊆
BU(u+) requires that the capacities u+ of the new lines allow the production of at
least the same set of outputs as the old system.

The ICP extends the MCNCP to the case of general matrices B and F and thus it
is coNP-hard as well. In this paper, we deal with a particular subset of ICP instances
for which a worst case demand (WCD) exists, in the sense stated in the following
definition.

Definition 1.1. An ICP instance is called worst case demand (WCD) instance

if there exists a vector d̂ ∈ D and an optimal solution û of {min cu : Bu = F d̂, u ≥ 0}
such that FD ⊆ BU(û). In this case the vector d̂ and the solution û are called worst
case demand and worst case hyperflow, respectively.

In other words, for WCD instances, the minimum cost one has to pay to counteract
the single demand d̂ is the same one has to pay to be able to counteract any demand
in D and one can choose u+ = û as the optimal solution of the ICP. In general,
an ICP instance is not WCD. For example, Figure 1.2 (a), (b), and (c) report,
respectively, the three minimum total length zonotopes that include, separately, each
of the three nontrivial vertices (0, 1), (1, 1), and (1, 0) of FD = ID for the instance
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Fig. 1.2. Optimal zonotopes including, separately, the three vertices of FD for the instance in
Figure 1.1(a).

in Figure 1.1(a). Clearly, FD is not contained in any of these three sets (nor in the
minimum total length zonotope that contains any assigned point of FD), and in fact
the instance is not WCD.

The main results of the paper are the following. First, we prove that the ICP
can be solved in polynomial time on the set of the WCD instances and that the
problem of recognizing whether an ICP instance is WCD can be solved in polynomial
time as well. In general, for assigned matrices B and F , we show that the WCD
property may depend on the choice of the cost vector c while it does not depend on
the vector d+. Then, as a second result, we provide some necessary and sufficient
conditions on the structure of the matrices B and F that make the corresponding
instances WCD independently of the particular cost vector c. In this case, we say
that B and F define a structurally worst case demand (SWCD) class of instances.
We first use the above conditions to show that any ICP class defined by a matrix
B whose columns are linearly independent is SWCD. Then we identify two other
families of SWCD classes that have significant interest from an applicative point of
view. The first family contains all the MCNCP classes of instances that are SWCD.
More precisely, we characterize the structure of the networks G and H that define a
class with this property. This result enables us to show, in particular, that the problem
of deciding whether a given class of MCNCP instances is SWCD is coNP-complete.
Thus, the more general problem of deciding whether an ICP class is SWCD is coNP-
complete as well. The second family is defined by matrices B that are pre-Leontief [2]
and nonnegative matrices F . This family includes, in particular, the case when B
describes either a network system or a system of generalized flows. We also prove
that the instances of the two families admit an integral optimal solution whenever d+

is an integral vector. This property does not in general hold, even for the MCNCP
instances [3].

The outline of the paper is the following. In section 2, we present some preliminary
results and assumptions concerning the ICP. In section 3, we show how to recognize
and solve WCD instances in polynomial time. In section 4, we introduce the SWCD
classes of instances and provide some necessary and sufficient conditions on the pairs
(B,F ) of matrices that define such classes. We also show that these conditions are
satisfied when B is a nonsingular matrix. In section 5, we analyze the two families
of SWCD classes mentioned above. Finally, in section 6, we discuss the possible
extension of the previous results to a particular generalization of the ICP.

Notation. The following notation will be used throughout the paper. Given an
n × m matrix A, we write A ≥ 0 and A > 0 to mean that all the entries of A are
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nonnegative and strictly positive, respectively. Given two integers i, k and a set of
integers β, we denote by Aik, A

k, and Aβ the (i, k)-entry of A, the kth column of A,
and the submatrix of A formed by the columns Ak, k ∈ β, respectively. Moreover,
we denote by lin{A} = 〈Ak : k = 1, . . . ,m〉 and cone{A} = cone{Ak : k = 1, . . . ,m}
the linear space and the convex cone, respectively, generated by the columns of A. If
m ≥ n, we call any n × n nonsingular submatrix B of A a basis submatrix. Given
two vectors a and b we write a � b (a � b) to mean that, componentwise, ak ≥ bk
(ak ≤ bk) and at least one inequality strictly holds, i.e., a �= b. Given a vector space
Rq, we denote by ej , j = 1, . . . , q, the vector defined by ejk = 0 if k �= j, ejj = 1 and by
e the vector with components ek = 1 for each k. Given a directed hypergraph H with
n nodes and m hyperarcs, we call the n×m matrix A whose kth column corresponds
to the hyperarc hk = (T,H) and has entries Aik = −1 if i ∈ T , Ajk = 1 if j ∈ H,
0 otherwise, the incidence matrix of H.

2. Preliminary results. Denote the generic ICP instance by the quadruple
(B,F, c, d+). The following lemma states a necessary and sufficient condition for the
feasibility of the ICP.

Lemma 2.1. An ICP instance (B,F, c, d+) admits a feasible solution if and only
if

cone{F j : j = 1, . . . , q} ⊆ cone{Bi : i = 1, . . . ,m}.(2.1)

Proof. If (B,F, c, d+) is feasible, then for each j = 1, . . . , q there exists uj ≥ 0 such
that F (0, . . . , 0, d+

j , 0, . . . , 0)T = d+
j F

j = Buj ; thus each F j is a conic combination of
the columns of B. This implies condition (2.1). Conversely, if condition (2.1) holds,
then FD is a bounded subset of cone{Bi : i = 1, . . . ,m} and thus there exists ū ≥ 0
such that FD ⊆ {Bu : 0 ≤ u ≤ ū}. Clearly, the vector ū is a feasible solution of the
ICP.

Lemma 2.2. Any feasible ICP instance (B,F, c, d+) with B ∈ Qn×m can be trans-
formed in an equivalent instance (B′, F ′, c, d+), B′ ∈ Qk×m, such that rank(B) =
rank(B′) = k.

Proof. Assume rank(B) = k < n and let V =
[
W
Z

]
be an n× n matrix where the

rows of the k × n matrix W span lin{B}, and the rows of the (n− k) × n matrix Z
span the orthogonal space lin{B}⊥. Since V is nonsingular, Bu = Fd if and only if
V Bu = V Fd. Moreover, ZBu = 0 for each u ∈ Rm and this implies, by Lemma 2.1,
ZFd = 0 for each d ∈ R

q
+. Therefore the condition FD ⊆ BU(u+) is equivalent to

the condition WFD ⊆ WBU(u+) and the instance (B,F, c, d+) is equivalent to the
instance (WB,WF, c, d+) where WB is a k ×m matrix of rank k.

Since in general the orthogonal space lin{F}⊥ is not contained in lin{B}⊥, the
argument followed in the proof of Lemma 2.2 cannot be used to assume that F is a
full rank matrix. For example, consider the case where B is the 2× 2 identity matrix
I, F = [1, 1]T , and d+ = 1. For the choice u+ = [2, 0] the zonotope BU(u+) =
[0, 2]e1 + [0, 0]e2 does not contain the segment FD(d+) = [0, 1]e while the projection
of BU(u+) onto the linear space lin{F} is equal to (and hence includes) FD(d+).

By Lemma 2.2 we can always assume that B is an n × m matrix with n ≤ m
and full rank. When B is a nonsingular square matrix, the solutions BU(u+) are
parallelotopes, i.e., zonotopes whose generators are linearly independent. If, in par-
ticular, the columns of B form an orthogonal basis, these parallelotopes are, possibly
not axis parallel, boxes. Then, if B is nonsingular, the ICP is the problem of finding
the minimum cost parallelotope with assigned generator directions and a vertex in
the origin that encloses the zonotope FD. The following result holds.
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Theorem 2.3. Any ICP instance (B,F, c, d+) where B is a nonsingular square
matrix can be solved in polynomial time.

Proof. For each u ∈ Rm, we can obtain the representation of the parallelo-
tope BU(u) in terms of a set of 2n hyperplanes as BU(u) = {x ∈ Rn : Aix ≤ bi,
i = 1, . . . , 2n} in polynomial time [14]. Therefore, the separation problem of finding
a vector d ∈ D such that Fd /∈ BU(u), if such a vector exists, can be solved in poly-
nomial time by solving the 2n linear programming problems max{AiFd : d ∈ D},
i = 1, . . . , 2n. Then the thesis follows by a well-known result of Grötschel, Lovász,
and Schrijver [8], stating the equivalence between the complexity of an optimization
problem and the corresponding separation problem.

3. WCD instances. In this section, we first reformulate the ICP as a linear
programming problem with an exponential number of variables and constraints. Then,
we introduce a lower bound and an upper bound for the latter problem and show that
an ICP instance is WCD if and only if these two bounds are equal.

Due to the convexity of the sets BU(u+) and FD, the ICP may be equivalently
expressed as a linear programming problem (with an exponential number of variables
and constraints) in the following form.

ICPLP :

zICP = min cu+,

Bur = Fdr ∀r : dr ∈ Ext{D},(3.1)

0 ≤ur ≤ u+ ∀r : dr ∈ Ext{D},

where Ext{D} is the set of the vertices of the set D.
A lower bound on the optimal value zICP can be found by solving, for any d ∈ D,

the following relaxation of (3.1).
Lower bound problem (LBP(d)):

zLBP (d) = min cu,

Bu = Fd,(3.2)

u ≥ 0.

According to Definition 1.1, an ICP instance is WCD if there exists a worst
case demand d̂ ∈ D such that problems ICPLP and LBP(d̂) have the same optimal
value and at least one common optimal solution (the so-called worst case hyperflow)
û. However, as shown in the following example, even in the WCD case, an optimal
solution of the problem LBP(d̂) may not be a worst case hyperflow.

Example 3.1. Consider the ICP instance (B,F, c, d+) where B and F are, respec-
tively, the incidence matrices of the networks G = (V,EG) and H = (V,EH) shown in
Figure 3.1. The two networks share the node set V = {1, 2, 3, 4, 5, 6}, while the two arc
sets are EG = {(1, 2), (1, 5), (2, 4), (3, 2), (3, 6), (4, 5), (4, 6)} and EH = {(1, 6), (3, 5)}.
Let cij = 1 for all (i, j) ∈ EG except for c15 = c36 = 3 and let D be the box defined
by d+ = (1, 1).

Both the settings

û12 = û32 = û45 = û46 = 1, û24 = 2, ûij = 0 otherwise(3.3)

and

ū15 = ū36 = 1, ūij = 0 otherwise(3.4)
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Fig. 3.1. Networks G and H in Example 3.1.

define optimal solutions (of cost 6) to problem (3.2) with d̂ = d+. Nevertheless, while
the solution û is feasible for the ICP, the solution ū is not, since no flow in U(ū) can
counteract, for instance, the demand d = (0, 1).

Now consider, for any d ∈ D, the following linear programming problem.

Upper bound problem (UBP(d)):

zUBP (d) = min cu,

Buj = Fdj , j = 1, . . . , q,

u =

q∑
j=1

uj ,(3.5)

uj ≥ 0, j = 1, . . . , q,

where dj , j = 1, . . . , q, denotes the vector of D defined by djk = 0 if k �= j and djj = dj .

It is immediate to verify that, for each d ∈ D, problem UBP(d) can be decomposed
in the sum of q independent problems LBP(dj), j = 1, . . . , q, and that zUBP (d) =∑q

j=1 zLBP (dj). Moreover, the following lemma holds.

Lemma 3.2. Given an ICP instance (B,F, c, d+), any feasible solution û =∑q
j=1 û

j of UBP(d+) is a feasible solution of the ICPLP . Thus, zICP ≤ zUBP (d+).

Proof. Any vertex d̄ of D may be written as a sum of vertices d+j for j in a suitable
set J ⊆ {1, . . . , q}. Then the vector ū =

∑
j∈J ûj is such that Bū =

∑
j∈J Bûj =∑

j∈J Fd+j = F d̄ and 0 ≤ ū ≤ û. Hence, F d̄ ∈ BU(û) for each d̄ ∈ Ext{D} and
FD ⊆ BU(û).

A particular consequence of the above lemma is that the existence of a feasible
solution uj of the problem LBP(d+j) for each j = 1, . . . , q is a necessary and sufficient
condition for the existence of a feasible solution of the correspondent ICP problem. It
is easy to realize that this condition is an alternative formulation of condition (2.1).

We have proved that for any ICP instance it holds that

zLBP (d+) ≤ zICP ≤ zUBP (d+).(3.6)
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The rest of this section is devoted to characterizing the WCD instances as those
instances for which both conditions in (3.6) hold as equalities. To this aim we need
the following lemma.

Lemma 3.3. If an ICP instance (B,F, c, d+) is WCD, then F d̂ = Fd+ for every

worst case demand d̂. In particular, d+ is a worst case demand.

Proof. Assume that d̂ is a worst case demand with F d̂ �= Fd+ and define the
vector d̄ as d̄

.
= d+ − d̂. Since d̂ �= d+, d̄ satisfies the relations 0 � d̄ ≤ d+. If û is

a worst case hyperflow, there exist two vectors u◦ and ū, 0 ≤ u◦, ū ≤ û, such that
Bu◦ = Fd+ and Bū = F d̄. From F d̂ �= Fd+ it follows that û �= u◦, and, in particular,
û � u◦. The latter condition, together with ū ≥ 0, implies ¯̄u

.
= ū + û − u◦ � 0 and

¯̄uj = 0 if ûj = 0. Moreover, from B(u◦ − û) = F (d+ − d̂) = F d̄ = Bū we obtain
B ¯̄u = 0. Then, there exists an α > 0 such that α¯̄u ≤ û, α¯̄u �= 0, and Bα¯̄u = αB ¯̄u = 0.
From B(û− α¯̄u) = Bû = F d̂ and 0 � û− α¯̄u � û it follows that û− α¯̄u is a feasible

solution of problem LBP(d̂). In addition, since c is a strictly positive vector, we have

c(û− α¯̄u) < cû in contradiction with the optimality of û to problem LBP(d̂).

We now prove the main result of this section.

Theorem 3.4. An ICP instance (B,F, c, d+) is WCD if and only if problems
LBP(d+) and UBP(d+) have the same optimal value. In this case, any optimal solu-
tion u∗ of UBP(d+) is also an optimal solution of ICPLP .

Proof. Necessity. Let û denote a worst case hyperflow. By Lemma 3.3, Bû = Fd+.
In addition, there exist vectors uj , j = 1, . . . , q, with 0 ≤ uj ≤ û and Buj = Fd+j .
Since

∑q
j=1 u

j is a feasible solution of UBP(d+), it is now sufficient to show that

cû = c
∑q

j=1 u
j . Assume, by contradiction, that cû < c

∑q
j=1 u

j , and consider the

vector ū = û−
∑q

j=1 u
j . Then cū < 0 and Bū = F (d+−

∑q
j=1 d

+j) = 0. Moreover, the

inequalities uj ≤ û, j = 1, . . . , q, imply that, componentwise, ūk < 0 only if ûk > 0.
Hence, there exists a sufficiently small α > 0 such that û + αū ≥ 0, c(û + αū) < cû,
and B(û + αū) = Fd+, in contradiction with the hypothesis that û, being a worst
case hyperflow, is an optimal solution of problem LBP(d+).

Sufficiency. The sufficiency follows immediately from Lemma 3.2.

As a consequence of the above theorem, we may state the following complexity
result.

Corollary 3.5. (i) The problem of verifying whether an ICP instance (B,F, c, d+)
is WCD can be solved in polynomial time.

(ii) The ICP can be solved in polynomial time on the set of the WCD instances.

Proof. Problems LBP(d+) and UBP(d+) are linear programming problems with a
polynomial number of variables and constraints; thus they can be solved in polynomial
time. Then, statements (i) and (ii) follow from Theorem 3.4.

To conclude this section, we analyze the quality of the upper bound zUBP (d+)
and of the lower bound zLBP (d+) in the general case.

Corollary 3.6. The optimal value of problem UBP(d+) is at most q times the
optimal value of problem ICPLP .

Proof. The thesis follows trivially from the inequalities zUBP ≤ qmaxj zLBP (d+j)
and maxj zLBP (d+j) ≤ zICP .

On the other side, as shown in the following example, the worst case ratio zICP

zLBP (d+)

can be arbitrarily large.

Example 3.7. Consider again the WCD instance in Example 3.1. If the costs
c15 and c36 change from 3 to ε with 0 < ε < 3, the instance is not WCD anymore.
Indeed, in this case, the only optimal solution of LBP(d+) is ū15 = ū36 = 1, ūij = 0
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otherwise, with zLBP (d+) = 2ε. On the other hand, the optimal solution of the ICP
is still the vector û in (3.3) and thus zICP = 6.

4. SWCD classes of instances. In this section, we consider the classes of
ICP instances that are WCD independently of the choice of the cost vector c and
the demand vector d+. In particular, we determine some necessary and sufficient
conditions that characterize this property.

First note that, as Examples 3.1 and 3.7 show, an ICP instance may or may not
be WCD depending on the cost vector c. The next lemma points out that, under the
assumption d+ > 0, the WCD property does not depend on the demand d+.

Lemma 4.1. If the ICP instance (B,F, c, d+), d+ > 0, is WCD, then each

instance (B,F, c, d̂), d̂ ≥ 0, is WCD.
Proof. By Theorem 3.4 there exists a common optimal solution u+ of problems

LBP(d+) and UBP(d+). Then, by linearity, αu+, α > 0, is a common optimal
solution of problems LBP(αd+) and UBP(αd+). As a consequence, any instance
(B,F, c, αd+), α > 0, is WCD and this observation allows us to assume without loss

of generality that d̂ � d+. Assume that the instance (B,F, c, d̂) is not WCD for some

0 ≤ d̂ � d+ and define d̄ = d+ − d̂ � 0. Since (B,F, c, d̂) is not WCD, the inequalities

zLBP (d̄) ≤ zUBP (d̄) and zLBP (d̂) < zUBP (d̂) hold. Moreover, since the sum of any two

optimal solutions of problems LBP (d̄) and LBP (d̂) is feasible for LBP(d+), we have

zLBP (d+) ≤ zLBP (d̄) + zLBP (d̂) and, consequently, zLBP (d+) < zUBP (d̄) + zUBP (d̂).
On the other hand, for each d ≥ 0, zUBP (d) =

∑q
j=1 zLBP (dj) and, by linearity,

zLBP (dj) = djzLBP (ej) for each j = 1, . . . , q. As a consequence, zUBP (d+) =∑q
j=1 d

+
j zLBP (ej) =

∑q
j=1(d̄j + d̂j)zLBP (ej) =

∑q
j=1 zLBP (d̄j) +

∑q
j=1 zLBP (d̂j) =

zUBP (d̄)+ zUBP (d̂). Therefore zLBP (d+) < zUBP (d+), in contradiction with the fact
that (B,F, c, d+) is a WCD instance.

Let (B,F ) denote the class of all the feasible ICP instances defined by the same
pair of matrices B and F and vectors c and d+ with strictly positive components. By
Lemma 2.1, (B,F ) either is empty or contains any instance (B,F, c, d+).

Definition 4.2. The class (B,F ) is a structurally worst case demand (SWCD)
class if all the instances (B,F, c, d+) ∈ (B,F ) are WCD.

As an immediate consequence of Lemma 4.1, a nonempty class (B,F ) is SWCD
if and only if any instance (B,F, c, e) is WCD.

The next theorem states some necessary and sufficient conditions that characterize
the pairs (B,F ) of matrices that define SWCD classes.

Theorem 4.3. Given a nonempty class (B,F ), the following statements are
equivalent:

(i) (B,F ) is SWCD.
(ii) Each extreme ray (ū, d̄) of the cone C = {(u, d) ∈ Rm+q : Bu = Fd, u ≥ 0,

d ≥ 0} is such that d̄j > 0 for at most one j, j = 1, . . . , q.
(iii) Each vertex of the polyhedron P = {u ∈ Rm : Bu = Fe, u ≥ 0} is determined

by a basis submatrix B of B such that B−1Fej ≥ 0 for each j = 1, . . . , q.
Proof. The statement holds trivially if q = 1, so we can assume q > 1. For d ≥ 0,

denote by γ(d) the number of nonnull components of d.
(i) ⇒ (ii) We show that, if there exists an extreme ray (ū, d̄) of C with γ(d̄) > 1,

then there exists an instance in (B,F ) that is not WCD. Let (ū, d̄) be an extreme ray
of C with γ(d̄) > 1. Then ū is a vertex of the polyhedron P (d̄) = {u ∈ Rm : Bu = F d̄,
u ≥ 0} and for each vertex û of P (d̄), û �= ū, we have ûk > 0 for at least one k such
that ūk = 0. In addition, r � 0 for each possible extreme ray r of P (d̄). So we can
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define a cost vector c > 0 such that cû > cū for each vertex û �= ū and cr > 0 for
each extreme ray r by setting ck = ε > 0 if ūk > 0, ck = 1 otherwise, and choosing
ε sufficiently small. Consider now the ICP instance (B,F, c, d̄). By the structure of
problem UBP(d̄), if û is an optimal solution of UBP(d̄) the vector (û, d̄) is the sum of
γ(d̄) > 1 elements of C. This implies that (û, d̄) is not an extreme ray of C and û �= ū.
Since ū is the unique optimal solution of problem LBP(d̄) it follows that cū < cû and
the instance (B,F, c, d̄) is not WCD by Theorem 3.4.

(ii) ⇒ (iii) We show that the thesis holds for each basis submatrix B = Bβ such
that ūβ = B−1Fe ≥ 0. Given a basis submatrix B = Bβ , define ū = [ūβ , ū{1,...,m}\β ] =

[B−1Fe, 0] and ūj = [ūj
β , ū

j
{1,...,m}\β ] = [B−1Fej , 0], j = 1, . . . , q. We prove the

statement by showing that (ū, e) ∈ C implies (ūj , ej) ∈ C for each j = 1, . . . , q. Since
ū ≥ 0, (ū, e) belongs to C. Moreover, since γ(e) = q > 1, (ū, e) is not an extreme
ray of C and we can write (ū, e) =

∑q
j=1(û

j , ej), where each (ûj , ej) is an extreme

ray of C. It remains to prove that ûj = ūj , j = 1, . . . , q. To this aim, observe that,
since ûj ≥ 0 and ū{1,...,m}\β = 0, we have ûj

{1,...,m}\β = ūj
{1,...,m}\β = 0. In this case,

Bûj = Bûj
β = Fej and finally ûj

β = B−1Fej = ūj
β for each j.

(iii) ⇒ (i) For any c > 0, let B be an optimal basis submatrix of problem LBP(e)
as in statement (iii). Then, by hypothesis, ū = [ūβ , ū{1,...,m}\β ] = [B−1Fe, 0] ≥ 0

implies ūj = [ūj
β , ū

j
{1,...,m}\β ] = [B−1Fej , 0] ≥ 0 for j = 1, . . . , q, and each ūj is

a feasible solution of the corresponding problem LBP(ej). Now, by linearity argu-
ments, zUBP (e) ≤ c

∑q
j=1 ū

j = c
∑q

j=1 B−1Fej = cB−1Fe = zLBP (e), which implies
zUBP (e) = zLBP (e). Then the instance (B,F, c, e) is WCD by Theorem 3.4. Since
the previous argument holds for any c > 0, the class (B,F ) is SWCD.

From a geometric perspective, Theorem 4.3 in point (iii) states that the class
(B,F ) is SWCD if and only if for each basis submatrix B of B the condition Fe ∈
cone{B} implies cone{F} ⊆ cone{B}. Moreover, as shown in the proof of part (ii) ⇒
(iii), the following property holds.

Corollary 4.4. Let (B,F ) be a nonempty SWCD class. Then for every instance
(B,F, c, d+) ∈ (B,F ) any feasible basic solution of problem LBP (d+) is feasible for
the ICP. As a consequence, any instance in (B,F ) admits an optimal solution that
is a parallelotope.

For a generic WCD instance, the optimal solution of the ICP obtained by solving
problem UBP (d+) is not in general a parallelotope. Instead, by the above result, if
the instance belongs to an SWCD class, an optimal parallelotope solution of the ICP
can always be found by solving problem LBP (d+).

Other consequences of Theorem 4.3 concern the properties of the ICP instances
defined by a nonsingular square matrix B. The next corollary strengthens the result in
Theorem 2.3; the following one considers the case of more general objective functions.

Corollary 4.5. Let B be a matrix whose columns are linearly independent.
Then any nonempty class (B,F ) is SWCD.

Proof. By Lemma 2.2, we can assume that B is a nonsingular square matrix, so B
contains itself as a unique basis submatrix. As each problem LBP (ej), j = 1, . . . , q,
is feasible by Lemma 2.1, this implies B−1Fej ≥ 0 for each j and the thesis follows
by Theorem 4.3 (iii).

Corollary 4.6. Given a nonempty class (B,F ), where B is a nonsingular
square matrix, let g(u), g : Rm → R, be a function not decreasing in any component
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of u. Then u+ = B−1Fd+ is an optimal solution of the problem

min{g(u+) : FD(d+) ⊆ BU(u+), u+ ≥ 0}.(4.1)

Proof. The vector ū = B−1Fd+ is the unique feasible solution of LBP (d+) and
thus ū ≤ u+ for each feasible solution u+ of problem (4.1). On the other hand, since
ū is a basic solution, ū is feasible for (4.1) by Corollary 4.4. Then the thesis follows
by the monotonicity of the function g.

A final consequence of Theorem 4.3 (iii) and Lemma 4.1 is that if (B,F ) is an
SWCD class, then any nonempty class (B̂, F̂ ), where B̂ and F̂ are obtained from B
and F , respectively, by deleting some of their columns, is SWCD as well.

5. Two families of SWCD classes. In this section, we introduce two partic-
ular families of SWCD classes. First, we characterize the classes of instances of the
minimum cost network containment problem (MCNCP) that enjoy the SWCD prop-
erty. As a corollary, we prove that the problem of verifying whether a given MCNCP
(ICP) class is SWCD is coNP-complete. Next, we prove that pre-Leontief matrices
B and nonnegative matrices F define SWCD classes. In both the cases the SWCD
property implies the integrality of the optimal basic solutions of the ICP problem.

5.1. The SWCD classes of MCNCP instances. As mentioned in the intro-
duction, the MCNCP instances are particular ICP instances defined by matrices B
and F that are the node-arc incidence matrices of two directed graphs with the same
set of nodes.

In the following, given a directed graph G = (V,E), a directed path in G is a
sequence i1a1i2 . . . ak−1ik of nodes and arcs without any repetition of nodes and such
that ar = (ir, ir+1) ∈ E for each 1 ≤ r ≤ k. A directed cycle in G is a directed path
together with the arc (ik, i1).

Definition 5.1. Given a class (B,F ) of MCNCP instances, let G be the directed
graph with incidence matrix [B| − F ]. We say that the class is 2F -cycle free if each
directed cycle of G includes at most one F -arc, i.e., at most one arc corresponding to
a column of −F .

Theorem 5.2. A class (B,F ) of MCNCP instances is SWCD if and only if it
is 2F -cycle free. In this case, every instance in (B,F ) defined by an integral vector
d+ admits an integral optimal solution.

Proof. In the case of MCNCP instances, any element of the cone C = {(u, d) ∈
Rm+q : Bu = Fd, u ≥ 0, d ≥ 0} corresponds to a circulation in G and, by the flow
decomposition theorem [1], it is the sum of cycle flows, that is, flows of the type αx,
where x is the incidence vector of a directed cycle of G and α ∈ R+. As a consequence,
(u, d) is an extreme ray of C if and only if it is a cycle flow. Then, by Theorem 4.3 (ii),
(B,F ) is SWCD if and only if any cycle in G contains at most one F -arc, that is,
G is 2F -cycle free. The second statement follows by the integrality property of the
optimal basic solutions of the min cost flow problem LBP(d+).

We remark that, as shown in [3], in general an MCNCP instance with integral
data may not admit an integral optimal solution.

As a consequence of the above theorem we obtain the following complexity result.
Theorem 5.3. Determining whether a given class (B,F ) of MCNCP instances

is SWCD is a coNP-complete problem.
Proof. We prove the statement by showing that the problem of deciding whether

a class (B,F ) of MCNCP instances is not SWCD is an NP-complete problem. We
first show that this problem is in NP. By definition, a class (B,F ) is not SWCD if
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Fig. 5.1. Hypergraphs G and H in Example 5.5.

it includes an instance that is not WCD. Then, any non-WCD instance in (B,F )
is a certificate that (B,F ) is not SWCD which can be checked in polynomial time
by Corollary 3.5. In order to prove that the problem is NP-complete, let us consider
a polynomial transformation from the 2-disjoint paths problem for directed graphs
(2DPP) defined as follows. Given a directed graph H = (V,E) and two assigned pairs
of nodes (s1, t1) and (s2, t2), find if there exist two node-disjoint paths connecting s1

to t1 and s2 to t2. As shown in [6], 2DPP is NP-complete. Given a 2DPP instance,
consider the MCNCP class of instances (B,F ) where B is the incidence matrix of the
graph H and F is the incidence matrix of the graph having node set V and arc set
{(s1, t2), (s2, t1)}. By Theorem 5.2, (B,F ) is not SWCD if and only if the directed
graph G having [B| −F ] as incidence matrix contains a directed cycle including both
the arcs (t2, s1) and (t1, s2). It is immediate to verify that this condition is equivalent
to the existence of two node-disjoint paths in H connecting s1 to t1 and s2 to t2.
Since the above transformation is polynomial, the thesis follows.

Since the MCNCP instances are particular ICP instances, the above result triv-
ially generalizes to the ICP problem.

Corollary 5.4. Determining whether a given class (B,F ) of ICP instances is
SWCD is a coNP-complete problem.

5.2. The classes of pre-Leontief instances. Let us now consider the case
where F is a nonnegative matrix. As the following simple example shows, this condi-
tion does not in general imply the SWCD property.

Example 5.5. Consider any instance (B,F, c, d+) where B is the incidence matrix
of the hypergraph G with node set V = {1, 2} and hyperarcs (∅, {1, 2}), (1, ∅), (2, ∅),
F = I is the incidence matrix of the hypergraph H having hyperarcs (∅, 1) and (∅, 2),
d+ = (1, 1), and c > 0 is any cost vector (see Figure 5.1). The solution (1, 0, 0) is
the unique feasible solution of problem LBP(d+). Nevertheless, there exists no u,
0 ≤ u ≤ (1, 0, 0), such that either Bu = (1, 0) or Bu = (0, 1). Indeed, for each cost
vector c > 0, the optimal solution of the ICP is given by û = (1, 1, 1).

Notwithstanding the previous example, Theorem 4.3 implies the following result.

Corollary 5.6. If F is a nonnegative matrix and each vertex of the polyhedron
P = {u ∈ Rm : Bu = Fe, u ≥ 0} is determined by a basis submatrix B that is inverse
nonnegative, i.e., B−1 ≥ 0, then the class (B,F ) is SWCD.

Proof. The thesis follows by Theorem 4.3 (iii), since the vectors B−1Fej , j =
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1, . . . , q, as products of nonnegative matrices, are nonnegative.
From a geometric point of view, the conditions stated in Corollary 5.6 simply

guarantee that the columns of F are contained in Rn
+ and Rn

+ ⊆ cone{B} for each basis
submatrix B of B that is feasible for problem LBP(e). So cone{F} ⊆ Rn

+ ⊆ cone{B}.
Due to the previous corollary, we are interested in matrices B whose basis sub-

matrices are inverse nonnegative. A fundamental class of matrices that enjoy this
property is defined by the pre-Leontief matrices [17].

Definition 5.7. A matrix B is said to be pre-Leontief if each column of B
contains at most one positive entry (which can be assumed without loss of generality
to be equal to 1). Moreover, B is said to be Leontief if each column has exactly one
positive element and there exists ū ≥ 0 such that Bū > 0.

Pre-Leontief matrices have been extensively studied for their interest in several
fields, such as, for instance, operations management, polyhedral combinatorics, logic,
and expert systems. An overview on their applications can be found, e.g., in [11,
12]. Any pre-Leontief matrix B can be seen as the incidence matrix of a directed
hypergraph whose hyperarcs have at most one head [11]. So this class includes, in
particular, the incidence matrices of directed graphs with generalized flows [1] and
hyperarborescences.

The algebraic properties of the linear programming problems defined by a pre-
Leontief constraint matrix and their algorithmic consequences were thoroughly inves-
tigated in [5, 11, 12, 17].

Definition 5.8. A problem of the form {min cu : Bu = b, u ≥ 0} where B is a
pre-Leontief (Leontief) matrix is called a pre-Leontief (Leontief) flow problem. If, in
addition, b ≥ 0, then the problem is called a pre-Leontief (Leontief) substitution flow
problem.

The following lemma reports some results concerning the structure of the ver-
tices of a pre-Leontief substitution flow problem obtained in [17] (and appearing also
in [11]).

Lemma 5.9. (i) If A is a pre-Leontief matrix, then after permuting the rows and
columns appropriately, A can be written as(

A1 A2

0 A3

)
,(5.1)

where A1 is Leontief and A3x = 0 for each x ≥ 0 such that A3x ≥ 0.
(ii) If x is a vertex of a pre-Leontief flow problem defined by the constraint matrix

A written as in (5.1) and right-hand side b = (b1, b2) ≥ 0, then x = (x1, x2), where
x1 is a vertex of {x1 ≥ 0 : A1x = b1} and x2 = 0 (so b2 = 0).

(iii) Any vertex x of a Leontief substitution flow problem is determined by a basis
submatrix B that is Leontief.

(iv) Any nonsingular square Leontief matrix has a nonnegative inverse.
(v) If a pre-Leontief substitution flow problem with integral constraint matrix and

integral right-hand side vector has an optimal solution, then it has an integral optimal
solution.

The above properties of pre-Leontief substitution flow problems carry to the fol-
lowing results.

Theorem 5.10. Let (B,F ) be a class of ICP instances where B is a pre-Leontief
matrix and F is a nonnegative matrix. Then (B,F ) is an SWCD class. Moreover,
every instance in (B,F ) defined by integral B, F , and d+ admits an integral optimal
solution.



1202 RAFFAELE PESENTI AND FRANCA RINALDI

Proof. Since B is a pre-Leontief matrix and F ≥ 0, problems LBP (e) and
LBP (ej), j = 1, . . . , q, are pre-Leontief substitution flow problems. If B is Leon-
tief, then the thesis follows by Lemma 5.9 (iii)–(iv) and Corollary 5.6. In the opposite
case, let B be partitioned as in (5.1) and denote by F1 and F2 the matrices formed
by the rows of F corresponding to the rows of A1 and A3, respectively. Since F ≥ 0
and e > 0, if problem LBP(e) is feasible, then F2 = 0 by Lemma 5.9 (ii). In this
case, by Lemma 5.9 (ii) and Theorem 4.3 (iii), the class (B,F ) is SWCD if and only
if the class (A1, F1) is SWCD and, A1 being a Leontief matrix, the thesis follows by
the argument above. The second statement is an immediate consequence of Lemma
5.9 (v).

6. Extensions to more general polyhedra. In this section, we discuss which
results of sections 3 and 4 can be generalized to the case where the set U(u+) intro-
duced in (1.1) has the more general form

UA(u+) = {u ∈ Rm : u ≥ 0, Au ≤ u+},(6.1)

where A is a given nonnegative matrix with at least a nonzero entry in each column.
Note that, when A is the identity matrix, UA(u+) = U(u+). This generalization was
already considered in [15] for the MCNCP. In this context, a set as in (6.1) defines
constraints, called bundle constraints, which impose upper bounds on the weighted
sum of flows on assigned subsets of arcs, and the corresponding upper bounds are
called generalized capacities.

Denote by (B,F, c, d+, A) the generic instance of the ICP where a set UA(u+) is
considered. We redefine the ICPLP problem as

zAICP = min cu+,

Bur = Fdr ∀r : dr ∈ Ext{D},
Aur ≤ u+ ∀r : dr ∈ Ext{D},(6.2)

ur ≥ 0 ∀r : dr ∈ Ext{D}.

Moreover, we say that (B,F, c, d+, A) is a WCD instance with respect to the
matrix A (WCD(A)) if there exists a demand d̄ such that the LPB(d) problem

zALBP (d) = min cũ,

Bu = Fd,

Au ≤ ũ,(6.3)

u ≥ 0

when d = d̄ has the same optimal value of (6.2) and at least one common optimal
solution u+ = ũ.

Unfortunately, as the following example shows, one cannot guarantee that, when
an instance is WCD(A), d+ is a worst case demand.

Example 6.1. Consider the ICP instance (B,F, c, e, A), where B and F are,
respectively, the incidence matrices of the networks G = (V,EG) and H = (V,EH)
with node set V = {1, 2, 3, 4} and arc sets EG = {(1, 2), (1, 4), (3, 2), (3, 4)} and EH =
{(1, 2), (3, 4)}. Let A be the matrix

A =

⎡⎢⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ ,
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so that u+ ∈ R4, and consider the cost vector c = (1, 1, 1, 1). First note that the
instance is WCD(A) and d̄ = (1, 0) is a worst case demand. Indeed, the optimal
solution of problem (6.3) when d = d̄ is u∗ = (1, 0, 0, 0), ũ∗ = (1, 1, 1, 1) of cost
zALBP (1, 0) = 4. Moreover, u+ = ũ∗ = (1, 1, 1, 1) is feasible for problem (6.2) and
thus zAICP = zALBP (1, 0) = 4. Now consider the maximal demand d+ = (1, 1). When
d = d+, the optimal solution of problem (6.3) is u = (0, 1, 1, 0), ũ = (0, 1, 1, 0) of cost
zALBP (1, 1) = 2 < zAICP , and thus d+ is not a worst case demand.

Notwithstanding the previous negative result, let us redefine problem UBP(d) as

zAUBP (d) = min cũ,

Buj = Fdj , j = 1, . . . , q,

u =

q∑
j=1

uj ,(6.4)

Au ≤ ũ,

uj ≥ 0, j = 1, . . . , q.

When d = d+, zAUBP (d+) is still an upper bound for zAICP . As a consequence, if
zAUBP (d+) = zALBP (d+), then d+ is a worst case demand and the instance is WCD(A).
This observation allows us to show the following result, which links SWCD classes of
ICP instances (as defined in section 4) with classes of WCD(A) instances.

Theorem 6.2. If a class (B,F ) is SWCD, then any instance (B,F, c, d+, A)
where A is a nonnegative matrix without null columns and c > 0 is WCD(A). More-
over, d+ is a worst case demand.

Proof. Given a nonnegative matrix A without null columns, an SWCD class
(B,F ), and a cost vector c > 0, let (u∗

LBP , ũ
∗
LBP ) and ((uj∗

UBP )qj=1, u
∗
UBP , ũ

∗
UBP )

denote the optimal solutions of problems (6.3) and (6.4), respectively, for the instance
(B,F, c, d+, A). Then, as it is easy to verify, ũ∗

LBP = Au∗
LBP and ũ∗

UBP = Au∗
UBP .

This implies that zALBP (d+) and zAUBP (d+) are, respectively, equal to the optimal
values zLBP (d+) and zUBP (d+) of problems LBP(d+) and UBP(d+) for the instance
(B,F, cA, d+). Since cA > 0, the instance (B,F, cA, d+) ∈ (B,F ) and thus is WCD.
So, by Theorem 3.4, the equality zALBP (d+) = zLBP (d+) = zUBP (d+) = zAUBP (d+)
holds and the instance (B,F, c, d+, A) is WCD(A).

The above theorem shows that an SWCD class of instances defines a correspon-
dent class of WCD(A) instances. However, the converse does not hold as the following
example shows.

Example 6.3. Consider the ICP instance (B,F, c, e, A), where B and F are,
respectively, the incidence matrices of the networks G = (V,EG) and H = (V,EH)
introduced in Example 6.1 and

A =

⎡⎢⎢⎣
1 1 1 0
0 1 0 0
0 0 1 0
0 1 1 1

⎤⎥⎥⎦ .

Let c = (c1, c2, c3, c4) > 0 be any nonnegative cost vector and d+ = e = (1, 1). Since
the optimal value of both problems (6.3) and (6.4) is zALBP (1, 1) = zAUBP (1, 1) = c1+c4
(with optimal solution u = (1, 0, 0, 1), ũ = (1, 0, 0, 1)), the maximal demand e is a
WCD and the instance is WCD(A) for any c > 0. However, for c = (2, 1, 1, 2), the
ICP instance (B,F, c, e) is not WCD since zLBP (1, 1) = 2 < zICP = 4.
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THE �LOJASIEWICZ INEQUALITY FOR NONSMOOTH
SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO

SUBGRADIENT DYNAMICAL SYSTEMS∗

JÉRÔME BOLTE† , ARIS DANIILIDIS‡ , AND ADRIAN LEWIS§

Abstract. Given a real-analytic function f : Rn → R and a critical point a ∈ Rn, the �Lojasiewicz
inequality asserts that there exists θ ∈ [ 1

2
, 1) such that the function |f − f(a)|θ ‖∇f‖−1 remains

bounded around a. In this paper, we extend the above result to a wide class of nonsmooth functions
(that possibly admit the value +∞), by establishing an analogous inequality in which the derivative
∇f(x) can be replaced by any element x∗ of the subdifferential ∂f(x) of f . Like its smooth version,
this result provides new insights into the convergence aspects of subgradient-type dynamical systems.
Provided that the function f is sufficiently regular (for instance, convex or lower-C2), the bounded
trajectories of the corresponding subgradient dynamical system can be shown to be of finite length.
Explicit estimates of the rate of convergence are also derived.

Key words. �Lojasiewicz inequality, subanalytic function, nonsmooth analysis, subdifferential,
dynamical system, descent method
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1. Introduction. Let U be a nonempty open subset of Rn equipped with its
canonical Euclidean norm || · ||, and let f : U → R be a real-analytic function.
According to the �Lojasiewicz gradient inequality [16, 17, 18], if a ∈ U is a critical
point of f , that is, ∇f(a) = 0, then there exists θ ∈ [0, 1) such that the function

|f − f(a)|θ
‖∇f‖(1)

remains bounded around the point a. (Throughout this work we set 00 = 1, and we
interpret λ/0 as +∞ if λ > 0 and 0 if λ = 0.)

Recently, Kurdyka [13, Theorem 1] has extended the above result to C1 functions
whose graphs belong to an o-minimal structure (see [8], for example), and thus in
particular to “globally subanalytic” functions. On the other hand, (1) might fail
for C∞ functions with no “adequate” geometric structure. Such functions can either
satisfy a weaker condition (i.e., θ = 1) or present wild oscillations around their critical
point, preventing any comparison between their value and the norm of their gradient.
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(Cerdanyola del Vallès), Spain (arisd@mat.uab.es; http://mat.uab.es/∼arisd). This author’s research
was partially supported by the CECM (Simon Fraser University), the C.M.M. (Universidad de Chile),
and the MEC grant MTM2005–08572–C03-03 (Spain).

§School of Operations Research and Industrial Engineering, Cornell University, 234 Rhodes Hall,
Ithaca, NY 14853 (aslewis@orie.cornell.edu; http://www.orie.cornell.edu/∼aslewis). This author’s
research was partially supported by National Science Foundation grant DMS-0504032.

1205
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The following one-dimensional examples illustrate failures of these two types (around
the critical point a = 0):

f(x) =

{
exp(−1/x2) if x �= 0,

0 if x = 0,
and g(x) =

{
exp(−1/x2) sin(1/x) if x �= 0,

0 if x = 0.

The aim of this note is to establish a nonsmooth version of the �Lojasiewicz in-
equality (1) for lower semicontinuous convex subanalytic functions (Theorem 3.3) and
for continuous subanalytic functions (Theorem 3.1). A first and simple illustration
is given by the example of the Euclidean norm function h(x) = ‖x‖, which satisfies
(1) for every θ ∈ [0, 1) around zero (which is a “generalized” critical point; see Def-
inition 2.11) but is not differentiable at 0. Behavior of this type is hereby shown
to hold true for a large class of nonsmooth functions, leading to the conclusion that
the �Lojasiewicz inequality is more linked to the underlying geometrical structure of f
than to its smoothness.

Given an extended-real-valued subanalytic function f : Rn → R ∪ {+∞}, our
approach to generalizing property (1) relies on a one-sided notion of generalized gra-
dients called subgradients. For both a mathematical and a historical account on this
notion, as well as for classical results in nonsmooth analysis, one is referred to the
monographs of Clarke et al. [7] and Rockafellar and Wets [20].

Subgradients are obtained according to a two-stage process. First the equality in
the definition of the usual gradient is relaxed into an inequality (Definition 2.10(i)):
this gives rise to the notion of Fréchet subgradients. Then, by a closure operation, the
so-called limiting subdifferential ∂f can be defined (Definition 2.10(ii)). This notion
constitutes the basis for the generalization of the �Lojasiewicz inequality to nonsmooth
functions. Let us also mention that in this formalism Fermat’s rule reads as follows:
if a is a local minimizer of f , then ∂f(a) 	 0; conversely, if a ∈ Rn is such that
∂f(a) 	 0, the point a is called a critical point.

Variational analysis and subdifferential calculus provide a framework for the
modeling of unilateral constraints in mechanics and in partial differential equations
[11, 6, 9]. Such a calculus is also central in optimization. In particular it provides
variational tools to treat constrained and unconstrained minimization problems on
an equal theoretical level. This stems from the simple fact that minimizing f over a
closed set C amounts to minimizing f+δC over Rn, where δC is the indicator function
of C; that is

δC(x) =

{
0 if x ∈ C,
+∞ otherwise.

(2)

Those domains have as a common topic the behavior at infinity of dynamical
systems governed by subdifferential operators; see [15] for an insight in optimization.
An important motivation that drove us to transpose the �Lojasiewicz result into a
nonsmooth context is precisely its expected consequences in the asymptotic analysis
of such subgradient-type dynamical systems. Those are modeled on the following type
of differential inclusion:

ẋ(t) ∈ −∂f(x(t)), t ≥ 0, x(0) ∈ Rn,

where for any x ∈ Rn, ∂f(x) denotes the set of limiting subgradients. The above
differential inclusion generalizes the classical gradient dynamical system

ẋ(t) = −∇f(x(t)), t ≥ 0, x(0) ∈ Rn.(3)
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In his pioneering work on real-analytic functions [16, 17], �Lojasiewicz provided the
main ingredient—namely, (1)—that allows us to derive the convergence of all bounded
trajectories of (3) to critical points. As can be seen from a counterexample due to Palis
and De Melo [19, p. 14], the set of cluster points of a bounded trajectory generated by
the gradient of a C∞ function is, in general, far from being a singleton. Those famous
results illustrate the importance of gradient vector fields of functions satisfying the
�Lojasiewicz inequality. An even more striking feature is that the trajectories converge
“in direction” when approaching critical points. This fact had been conjectured by
Thom (around 1972; see [22]) for real-analytic functions, and established by Kurdyka,
Mostowski, and Parusiński in [14]. The subanalytic generalized Thom conjecture
remains open even in the smooth case (see [13, Conjecture F]).

In section 4 we extend �Lojasiewicz results to a nonsmooth setting (f is a subana-
lytic proximal retract), by showing that all bounded trajectories have a finite length
(Theorem 4.5). We also provide estimates of the asymptotic convergence rate towards
the critical points (Theorem 4.7).

For related results on this topic, see [1] ; for other applications to partial differen-
tial equations, see the works of Simon [21] and Haraux [12].

2. Preliminaries. The key ingredients for the nonsmooth extension of the �Loja-
siewicz inequality are subanalyticity of the function f and notions of generalized
differentiation provided by variational analysis.

2.1. Subanalytic sets and stability properties. We recall the following def-
inition.

Definition 2.1 (subanalyticity). (i) A subset A of Rn is called semianalytic
if each point of Rn admits a neighborhood V for which A ∩ V assumes the following
form:

p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where the functions fij , gij : V �→ R are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
(ii) The set A is called subanalytic if each point of Rn admits a neighborhood V

such that

A ∩ V = {x ∈ Rn : (x, y) ∈ B},

where B is a bounded semianalytic subset of Rn × Rm for some m ≥ 1.
(iii) Given m,n ∈ N∗, a function f : Rn → R∪{+∞} (respectively, a point-to-set

operator T : Rn ⇒ Rm) is called subanalytic if its graph is a subanalytic subset of
Rn × R (respectively, of Rn × Rm).

Recall that the graphs of f and T , denoted respectively by Gr f and GrT , are
defined by

Gr f := {(x, λ) ∈ Rn × R : f(x) = λ}, Gr T := {(x, y) ∈ Rn × Rm : y ∈ T (x)}.

Some of the elementary properties of subanalytic sets have been gathered below (see,
e.g., [4, 10, 18]):

– Subanalytic sets are closed under locally finite union and intersection. The
complement of a subanalytic set is subanalytic (Gabrielov theorem).

– If A is subanalytic, then so are its closure clA, its interior intA, and its
boundary bdA.
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– Given a subanalytic set S, the distance dS(x) := inf {‖x − a‖ : a ∈ S} is a
subanalytic function.

– Path connectedness (see, e.g., [10, Facts 1.10–1.12]): Any subanalytic set
has a locally finite number of connected components. Each component is
subanalytic and subanalytically path connected; that is, every two points can
be joined by a continuous subanalytic path that lies entirely in the set.

– Curve selection lemma (see, e.g., [4, Lemma 6.3]): If A is a subanalytic subset
of Rn and a ∈ bdA, then there exists an analytic path z : (−1, 1) → Rn

satisfying z(0) = a and z((0, 1)) ⊂ A.
The image and the preimage of a subanalytic set are not in general subanalytic

sets. This is essentially due to the fact that the image of an unbounded subanalytic
set by a linear projection may fail to be subanalytic. Consider, for instance, the set
{( 1

n+1 , n) : n ∈ N}, whose projection onto R × {0} is not subanalytic at 0.
To remedy to this lack of stability, let us introduce a stronger analytic-like notion

called global subanalyticity (see [10] and references therein).

For each n ∈ N, set Cn = (−1, 1)n and define τn by

τn(x1, . . . , xn) =

(
x1

1 + x2
1

, . . . ,
xn

1 + x2
n

)
∈ Cn.

Definition 2.2 (global subanalyticity; see, e.g., [10, p. 506]). (i) A subset S of
Rn is called globally subanalytic if its image under τn is a subanalytic subset of Rn.

(ii) An extended-real-valued function (respectively, a multivalued mapping) is called
globally subanalytic if its graph is globally subanalytic.

Globally subanalytic sets are subanalytic, and conversely any bounded subana-
lytic set is globally subanalytic. Typical examples of subanalytic sets which are not
globally subanalytic are the set of integers Z, the graph of the sinus function, the
spiral {(t cos t, t sin t) ∈ R2 : t ≥ 0}, etc. The class of semialgebraic sets (e.g., [3, 8])
provides an important subclass of globally subanalytic sets. Recall that a set A ⊂ Rn

is called semialgebraic if it assumes the following form:

A =

p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij , gij : Rn �→ R are polynomial functions for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
(Readers who are unfamiliar with subanalytic geometry might in a first reading replace
“subanalytic” and “globally subanalytic” by “semialgebraic” in the statements that
follow.)

A major fact concerning the class of globally subanalytic sets is its stability under
linear projections.

Theorem 2.3 (projection theorem; see, e.g., [10, Example 4, p. 505]). Let
Π(x1, . . . , xn+1) = (x1, . . . , xn) be the canonical projection from Rn+1 onto Rn. If
S is a globally subanalytic subset of Rn+1, then so is Π(S) in Rn.

Among the numerous consequences of the above result in terms of stability, the
following properties are crucial to our main results:

– The image or the preimage of a globally subanalytic set by a globally sub-
analytic function (respectively, globally subanalytic multivalued operator) is
globally subanalytic (see, e.g., [10, p. 504]).

– Monotonicity lemma (e.g., [10, Fact 4.1]): Take α < β in R. If ϕ : (α, β) → R

is a globally subanalytic function, then there is a partition t0 := α < t1 <
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· · · < tl+1 := β of (α, β) such that ϕ|(ti,ti+1) is C∞ and either constant or
strictly monotone, for i ∈ {0, . . . , l}. Moreover ([13], e.g.), ϕ admits a Puiseux
development at t = α; that is, there exists δ > 0, a positive integer k, l ∈ Z,
and {an}n≥l ⊂ R such that

ϕ(t) =
∑
n≥l

an(t− α)n/k for all t ∈ (α, α + δ).

– �Lojasiewicz factorization lemma (e.g., [4, Theorem 6.4]): Let K ⊂ Rn be a
compact set and f, g : K → R two continuous (globally) subanalytic func-
tions. If f−1(0) ⊂ g−1(0), then there exist c > 0 and a positive integer r such
that |g(x)|r ≤ c |f(x)| for all x ∈ K.

2.2. Notions from nonsmooth analysis and further stability results.
Throughout this paper, we essentially deal with nondifferentiable functions defined on
Rn with values in R ∪ {+∞}. We denote by dom f the domain of the function, that
is, the subset of Rn on which f is finite. In a similar way, the domain of a point-to-set
operator T : Rn ⇒ Rn, denoted by dom T , is defined as the subset of Rn on which T
is nonempty. The epigraph and the strict epigraph of f are respectively defined by

epi f := {(x, λ) ∈ Rn × R : λ ≥ f(x)}, epis f := {(x, λ) ∈ Rn × R : λ > f(x)},

while the epigraphical sum of two extended-real-valued functions f, g : Rn → R ∪
{+∞} is the function defined by

Rn 	 u �−→ h(u) = inf {f(v) + g(v − u) : v ∈ Rn} ∈ [−∞,+∞].

The terminology stems from the fact that the strict epigraph of h is the Minkowski
sum of the strict epigraphs of f and g.

Even if f : Rn → R ∪ {+∞} is subanalytic, its domain and its epigraph may fail
to be subanalytic sets.

Example 2.4. Consider the function f : R → R ∪ {+∞} whose graph is given by
the set S := {( 1

n , n)}. Then the domain of f is not subanalytic, whereas its graph is.
If g : R → R ∪ {+∞} has −S := {(− 1

n ,−n) : n ∈ N} as its graph, both its domain
and epigraph are not subanalytic.

Additional geometrical properties like convexity are also not sufficient to obtain
regularity on the domain. This is shown in the example below.

Example 2.5. Let {qn}n≥1 be an enumeration of the rationals {qn}, and define
h : R2 → R ∪ {+∞} in polar coordinates by

h(r, θ) =

⎧⎨⎩
0 if r ∈ [0, 1),
n if r = 1 and θ = qn (mod 2π),
+∞ otherwise.

Then h is convex and subanalytic, but its domain is not subanalytic.
As expected, such a behavior can be avoided by requiring the function to be glob-

ally subanalytic. The following two results are basic consequences of the projection
theorem.

Proposition 2.6. Let f : Rn → R ∪ {+∞} be a globally subanalytic function.
Then the domain, the epigraph, and the strict epigraph of f are globally subanalytic
sets.



1210 JÉRÔME BOLTE, ARIS DANIILIDIS, AND ADRIAN LEWIS

Proposition 2.7. Let f : Rn → R ∪ {+∞} be a subanalytic function which is
relatively bounded on its domain; that is, {f(x) : x ∈ dom f ∩B} is bounded for every
bounded subset B of Rn. Then the domain, the epigraph, and the strict epigraph of f
are subanalytic sets.

Remark 2.8. Observe that Propositions 2.6 and 2.7 involve distinct assumptions
and provide different results. This can be seen by considering, for instance, the
subanalytic functions f(x) = x−1 with dom f = (0,+∞) and g := δ N .

The case for which functions under consideration are convex but not necessarily
continuous requires more attention.

Proposition 2.9. Let f : Rn → R ∪ {+∞} be a lower semicontinuous convex
and subanalytic function such that infRn f ∈ R. Define h : Rn → R ∪ {+∞} as the
epigraphical sum of f and the square function 1

2 || · ||2, that is,

h(x) = inf

{
f(u) +

1

2
||x− u||2 : u ∈ Rn

}
, x ∈ Rn.

Then h is a C1 subanalytic function.
Proof. The proof consists mainly of showing that the epigraphical sum of a

convex function with a coercive function is a “graphically local” operation. The
fact that h takes finite values and is a C1 function is a classical result (see [20], for
example). Therefore it suffices to prove that h+ δB is subanalytic for every bounded
subset B of Rn. Let us fix some nonempty bounded set B of Rn, and let us set
M = sup{h(x) : x ∈ B}. Thanks to the continuity of h we have M < +∞.

The infimum in the definition of h(x) is always attained at a unique point denoted
J(x), and the mapping J : Rn → Rn so defined is a nonexpansive mapping (see [6]).
Moreover, the function f is bounded on the bounded set J(B). Indeed, if u = J(b)
for some b ∈ B, the definition of J implies that

f(u) = f(J(b)) = h(b) − 1

2
||b− J(b)||2 < M.

Let C be some ball containing the bounded set J(B), and let fM : Rn → R∪{+∞}
be the function whose graph is given by Gr f ∩ (C × [infRn f,M ]). By definition the
function fM has a bounded subanalytic graph, and it is therefore globally subanalytic.
According to the above considerations the values of h on B coincide with those of the
function

ĥ(x) := inf

{
fM (u) +

1

2
||x− u||2 : u ∈ Rn

}
, x ∈ Rn.

The strict epigraph of ĥ is the sum of the strict epigraphs of the bounded sub-
analytic function fM and the square function u �→ 1

2 ||x − u||2 (which is globally

subanalytic for it is semialgebraic). This yields that ĥ (and consequently h + δB) is
globally subanalytic; hence h is subanalytic.

The notion of subdifferential—that is, an appropriate multivalued operator play-
ing the role of the usual gradient mapping—is crucial for our considerations. In what
follows we denote by 〈·, ·〉 the usual Euclidean product of Rn.

Definition 2.10 (subdifferential; see, e.g., [20, Definition 8.3]). (i) The Fréchet

subdifferential ∂̂f(x) of a lower semicontinuous function f at x ∈ Rn is given by

∂̂f(x) =

{
x∗ ∈ Rn : lim inf

y→x,y �=x

f(y) − f(x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0

}
whenever x ∈ dom f , and by ∂̂f(x) = ∅ otherwise.
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(ii) The limiting subdifferential at x ∈ Rn, denoted by ∂f(x), is the set of all clus-

ter points of sequences {x∗
n}n≥1 such that x∗

n ∈ ∂̂f(xn) and (xn, f(xn)) → (x, f(x))
as n → +∞.

If the function f is of class C1, the above notion coincides with the usual concept
of gradient; that is, ∂f(x) = ∂̂f(x) = {∇f(x)}. For a general lower semicontinuous
function, the limiting subdifferential ∂f(x) (thus, a fortiori the Fréchet subdifferential

∂̂f(x)) can possibly be empty at several points x ∈ dom f . Nevertheless (see, e.g.,

[20, Chapter 8]), both the domain of ∂̂f and (a fortiori) the domain of ∂f are dense
in the domain of f .

Using the limiting subdifferential ∂f , we define the nonsmooth slope of f by

mf (x) := inf{‖x∗‖ : x∗ ∈ ∂f(x)}.(4)

By definition, mf (x) = +∞ whenever ∂f(x) = ∅.
Let us recall that if f is continuous, the operator ∂f : Rn ⇒ Rn has a closed

graph. This is also the case for a lower semicontinuous convex function, where both
∂f(x) and ∂̂f(x) coincide with the classical subdifferential of convex analysis; that is,

∂f(x) = ∂̂f(x) = {x∗ ∈ Rn : f(·) − 〈x∗, ·〉 has a global minimum at x} .(5)

We are ready to state the notion of generalized critical point (in the sense of variational
analysis).

Definition 2.11 (critical point). A point a ∈ Rn is said to be a (generalized)
critical point of the function f : Rn → R ∪ {+∞} if it belongs to the set

crit f := {x ∈ Rn : 0 ∈ ∂f(x)}.

Remark 2.12. If f is lower semicontinuous convex or if dom f is closed and
f | domf is continuous, then the graph of ∂f is closed, which implies that the set crit f
of the critical points of f is closed. In that case, let us also observe that the slope
mf (x) is a lower semicontinuous function, and that

crit f = m−1
f (0).

The following result illustrates further the properties of stability of subanalytic
sets recalled in subsections 2.1 and 2.2.

Proposition 2.13. Let f be an extended-real-valued function.
(i) If f is globally subanalytic, then the operators ∂̂f and ∂f , the function mf ,

and the set crit f are globally subanalytic.
(ii) If f is subanalytic and relatively bounded on its domain, then the operators

∂̂f and ∂f , the function mf , and the set crit f are subanalytic.
Proof. The local nature of the Fréchet and the limiting subdifferential allows us

to restrict our proof to the globally subanalytic function fB := f + δB , where B is
some nontrivial ball. It suffices therefore to establish (i).

Thanks to the projection theorem (Theorem 2.3), the proof becomes a rou-
tine application of [8, Theorem 1.13], which asserts that if Φ(x1, . . . , xn) is a first
order formula (in the language of the subanalytic structure of Rn), then the set
{(x1, . . . , xn) ∈ Rn : Φ(x1, . . . , xn)} is definable, or in other words, it belongs to
the structure.1

1Global subanalytic sets form a model-complete first order theory. In fact, whether or not a
structure is “model complete” depends only on the theory of the structure, that is, the set of the
sentences (i.e., quantifier-free formulas) of its language which are true in this theory. We refer to [23,
p. 1052] for more details.
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As an illustration of this standard technique, let us prove that the operator ∂̂f :
Rn ⇒ Rn is globally subanalytic. To this end, set A = epi f , Γ = Gr f , and D =
dom f , which are all globally subanalytic sets. According to Definition 2.10(ii) the

graph Gr ∂̂f of the Fréchet subdifferential ∂̂f(x) is the set of (x, x∗) ∈ Rn × Rn such
that

∀ε > 0,∃δ > 0,∀(y, β) ∈ (B(x, δ) × R) ∩A ⇒ (x, β − 〈x∗, y − x〉 + ε‖y − x‖) ∈ A,

where B(x, δ) denotes the open ball of center x and radius δ > 0. Since the above
first order formula involves only globally subanalytic sets (namely, the subanalytic

sets B(x, δ),R, and A), it follows that Gr ∂̂f is subanalytic.
Subanalyticity of the graphs of the operator ∂f and of the function mf can be

proved similarly. Finally, crit f being the inverse image of (the subanalytic set) {0}
by mf , it is a subanalytic set.

Similarly one obtains the following corollary.
Corollary 2.14. Under the assumptions of Proposition 2.13(ii), the restrictions

of the multivalued mappings ∂̂f , ∂f , and of the slope function mf to any bounded
subanalytic subset of Rn are globally subanalytic.

Remark 2.15. The assumptions (and consequently the results) of the statements
(i) and (ii) of Proposition 2.13 are of different natures. For example, let us consider
the lower semicontinuous convex function f : R2 → R ∪ {+∞}, defined by

f(x, y) =

⎧⎨⎩
x2/y if y > 0,
0 if x = y = 0,
+∞ elsewhere.

Then Proposition 2.13(i) applies, but not (ii), since f is not relatively bounded on
dom f .

3. Main results.

3.1. The �Lojasiewicz inequality for subanalytic continuous functions.
Assuming f subanalytic, and having a closed domain relative to which it is continuous,
the set crit f is closed (Remark 2.12) and subanalytic (Proposition 2.13), so it has
a locally finite number of connected components (see subsection 2.1). For any a in
crit f , let us denote by (crit f)a the connected component of crit f containing a. In
[5, Theorem 13] it has been established that

f is constant on (crit f)a .(6)

The proof of (6) relies on a fundamental structural result about subanalytic functions
(stratification) and on the Paw�lucki generalization of the Puiseux lemma; see [5].
Nevertheless, (6) can be easily proved for continuous functions that also satisfy

∂̂f(x) = ∂f(x) for all x ∈ Rn.(7)

Indeed, given x and y in some connected component Si of crit f , we consider the
continuous subanalytic path z : [0, 1] → Si with z(0) = x and z(1) = y, and the

subanalytic function h(t) = (f ◦ z)(t) (see subsection 2.1). Since 0 ∈ ∂̂f(z(t)) for
all t ∈ [0, 1], from the “monotonicity lemma” and the chain rule for the Fréchet
subdifferential [20, Theorem 10.6] we get h′(t) = 0 for almost all t. It follows that h
is constant on [0, 1], whence f(x) = f(y).
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Examples of continuous functions that satisfy (7) are C1 functions (for which

∂f(x) = ∂̂f(x) = {∇f(x)}), proximal retracts (or lower-C2 functions; see [20, Defi-
nition 10.29] and section 4), or more generally subdifferentially regular functions [20,
Definition 7.25].

The main result of subsection 3.1 can now be stated as follows.
Theorem 3.1. Let f : Rn → R ∪ {+∞} be a subanalytic function with closed

domain, and assume that f | domf is continuous. Let a ∈ Rn be a critical point of f .
Then there exists an exponent θ ∈ [0, 1) such that the function

|f − f(a)|θ
mf

(8)

is bounded around a.
Note that we have adopted here the following conventions: 00 = 1 and ∞/∞ =

0/0 = 0.
Proof. Let us set S = crit f and Sa = (crit f)a . Replacing if necessary f by

g(x) = f(x) − f(a), there is no loss of generality to assume f(a) = 0, so that (6)
implies Sa ⊂ f−1(0).

We may also assume that f is globally subanalytic and that the set Sa is com-
pact. Indeed, if this is not the case, then we replace the function f by the glob-
ally subanalytic function g defined (for some R > 0) by g(x) = f(x) + δB̄(a,R)(x),

where δB̄(a,R) denotes the indicator function of the closed ball B̄(a,R). Then g has
a closed domain relative to which it is continuous, a is a critical point for g, and
(crit g)a ∩ B(a,R) = Sa ∩ B(a,R). Establishing (8) for f is thus the equivalent of
doing so for the globally subanalytic function g.

It is also sufficient to establish separately that the function x �→ [mf (x)]
−1 |f(x)|θ

is bounded when x varies inside the subanalytic set f−1((0,+∞]), and subsequently
to do the same when x varies in f−1((−∞, 0]). Since this latter assertion will follow by
reproducing essentially the same arguments, we may assume with no loss of generality
that f ≥ 0.

Let us choose Δ > 0 so that the compact set U = {x ∈ Rn : dSa(x) ≤ Δ}∩dom f
separates Sa from the other connected components of S. Note that U is a globally
subanalytic set (see subsection 2.1). We claim that for all x̄ in the boundary of Sa we
have

lim
x→x̄

x∈U�Sa

f(x)

mf (x)
= 0.(9)

If the above limit were not zero, there would exist a sequence {(xp, x
∗
p)} in Gr ∂f and

r > 0 with xp → x̄ as p → +∞ and such that f(xp) > r||x∗
p|| > 0 for all p. By the

definition of the limiting subdifferential there exists a sequence (yp, y
∗
p) ∈ Gr ∂̂f such

that f(yp) > r||y∗p|| > 0, where yp converges to x̄. This proves that for some r > 0
the point x̄ belongs to the closure of the set

F = {x ∈ U�Sa : ∃x∗ ∈ ∂̂f(x), f(x) > r ||x∗|| > 0}.

Owing to Proposition 2.13 (i) the latter set is globally subanalytic, so by the “curve
selection lemma” (subsection 2.1) there exists an analytic curve z : (−1, 1) → Rn

with z(0) = x̄ and z((0, 1)) ⊂ F . Hence for all small t > 0 there exists a nonzero

subgradient z∗(t) ∈ ∂̂f(z(t)) satisfying

f(z(t)) > r ‖z∗(t)‖ > 0.(10)
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Thanks to the continuity of f | domf at x̄ = z(0) the subanalytic function

[0, 1) 	 t �→ h(t) = (f ◦ z)(t)

is continuous at t = 0, and (6) implies that h(0) = f(x̄) = 0. Applying the “mono-
tonicity lemma” (subsection 2.1) to the globally subanalytic function h and the chain
rule calculus for the Fréchet subdifferential [20, Theorem 10.6], we get for t small
enough that |h′(t)| ≤ M ‖z∗(t)‖, where M = max {‖ż(t)‖ : t ∈ (−1/2, 1/2)}. Then
by applying (10), it follows that

h(t)

|h′(t) | > rM−1 > 0 for all small t > 0.(11)

Considering the Puiseux development of h around t = 0 (see subsection 2.1), we
conclude that for some positive rational q and some c > 0 we have h(t) = ctq + o(tq)
for all small t > 0. By differentiating the Puiseux development of h at t = 0 and
substituting into (11), we obtain a contradiction.

Let us now establish (8). To this end, let us consider the globally subanalytic
function

ϕ(t) = inf {mf (x) : x ∈ U ∩ f−1(t)} if t ∈ R+.

Clearly ϕ(0) = 0, while from the definition of U , it ensues that 0 < ϕ(t) ≤ +∞ for
all small t > 0. If for every δ > 0 the function ϕ assumes at least one infinite value in
the interval (0, δ), then the subanalyticity of dom ϕ guarantees that 0 is an isolated
point in dom ϕ. In this case (8) holds trivially. We may thus assume that ϕ is finite
around 0. Evoking again the “monotonicity lemma” (subsection 2.1), we deduce that

l = lim
t→0+

ϕ ∈ [0,+∞].

In case l �= 0, equation (8) follows easily (with θ = 0), so we may assume l = 0 and ϕ
continuous. In this case, we consider the Puiseux expansion of ϕ, which has the form

ϕ(t) =

+∞∑
n=0

ant
n
k for all small t > 0,

where k is a positive integer. Let n0 ∈ N∗ be the first integer such that an0 �= 0, and
let us set η = n0

k . Then

ϕ(t) = ctη + o(tη),(12)

where c := an0 > 0. Unless (8) holds trivially, we may assume by (6) that there exists
a sequence {xν}ν ⊂ U�Sa such that xν → a, mf (xν) → 0, and f(xν) ≥ 0. Let us
consider the globally subanalytic set

A = {x ∈ U�Sa : mf (x) = ϕ(f(x)), f(x) ≥ 0} �= ∅.

We claim that

clA ∩ Sa �= ∅.(13)

Indeed, if (13) were not true, then by a standard compactness argument, there
would exist an open neighborhood V around Sa such that Sa ⊂ V ∩ dom f ⊂ U
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and A ∩ V = ∅. Setting tν = f(xν) (for the sequence {xν}ν mentioned above)
and considering yν ∈ U such that mf (yν) = ϕ(tν) (by Remark 2.12, mf is lower
semicontinuous) and f(yν) = tν , we would obtain {yν}ν ⊂ U�V . By compactness,
we could then assume that yν → y ∈ U�V , which would yield (by continuity of ϕ)
that mf (y) = 0, that is, y ∈ Sa, and a contradiction follows.

Thus (13) holds, and there exists an analytic curve z : (−1, 1) → Rn with z(0) :=
b ∈ Sa and z((0, 1)) ⊂ A. As s ↘ 0+ we get (by continuity of f and ϕ) that
f(z(s)) → 0 and mf (z(s)) = ϕ(f(z(s))) → 0. We deduce from (12) that

mf (z(s)) = c(f(z(s)))η + o((f(z(s))η),

so (9) implies that η < 1. Take θ ∈ (η, 1) and apply (12) to obtain the existence of
t0 > 0 such that ϕ(t) ≥ ctθ for all t ∈ [0, t0). By using the continuity of f | dom f at
a, it follows that there exists μ > 0 such that |f(x)| < t0 for all x ∈ dom f ∩B(a, μ).
Finally, to obtain (8), we simply observe that

mf (x) ≥ ϕ(f(x)) ≥ cf(x)θ for all x ∈ B(a, μ).

The proof is complete.
Remark 3.2. Let us note that (8) still holds around any point a ∈ dom f�crit f .

Indeed, if a /∈ crit f , then mf (x) is bounded below away from 0 in a neighborhood of a,
so (8) follows from the continuity of f . In this case, the assumption of subanalyticity
is obviously not needed.

3.2. The �Lojasiewicz inequality for subanalytic lower semicontinuous
convex functions. In this subsection we are interested in lower semicontinuous con-
vex subanalytic functions f : Rn → R ∪ {+∞} which are somewhere finite, that is,
convex functions for which dom f �= ∅. In this case, in view of (5), the set of critical
points crit f is closed and convex and coincides with the set of minimizers of f .

Before proceeding let us recall classical facts from convex analysis (e.g., [20]).
Let us denote by g the epigraphical sum of f and 1

2‖ · ‖2 (see Proposition 2.9). The
function g : Rn → R is finite-valued, and C1 and enjoys the following properties:

(a) g ≤ f.
(b) The set of critical points of g is exactly the set of critical points of f .
(c) The infimum values of f and g coincide; i.e., infRn f = infRn g.
The properties of g are related to the so-called Moreau regularizing process; for

more details and further results, see [20].
We are ready to state the main result of this subsection.
Theorem 3.3. Let f : Rn → R ∪ {+∞} be a lower semicontinuous convex

subanalytic function with crit f �= ∅. For any bounded set K there exists an exponent
θ ∈ [0, 1) such that the function

|f − min f |θ
mf

(14)

is bounded on K.
Proof. By Proposition 2.9, the function g defined above is subanalytic and con-

tinuous. Applying (b) and the results of the preceding section, we see that S := crit f
is subanalytic. Let us show how g may be used to derive a growth condition for f .
For any x ∈ K, the equivalence

dS(x) = 0 ⇐⇒ |g(x) − min g| = 0,
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combined with the �Lojasiewicz factorization lemma (subsection 2.1) for the continuous
subanalytic functions |g−min g| and dS (restricted to the bounded set K), yields the
existence of r > 1 and c > 0 such that

c [dS(x)]
r ≤ |g(x) − min g| for all x ∈ K.

On the other hand, the properties (a), (b), (c) of g imply that

|f(x) − min f | ≥ |g(x) − min g| for all x ∈ Rn,

so that

[dS(x)] ≤ c−1/r |f(x) − min f |1/r.(15)

Moreover, since f is convex we get for all a in S and all (x, x∗) ∈ Gr ∂f

f(a) ≥ f(x) + 〈x∗, a− x〉.

Thus for all (x, x∗) ∈ Gr ∂f it follows that |f(x) − f(a)| ≤ ‖x∗‖ ‖x − a‖, and by
taking the infimum over all a ∈ S, we obtain

|f(x) − min f | ≤ ‖x∗‖ dS(x).(16)

We therefore deduce from (15) that for all x ∈ K and all (x, x∗) ∈ Gr ∂f

|f(x) − min f | ≤ c−1/r ‖x∗‖ · |f(x) − min f |1/r.

By setting θ = 1 − r−1, the latter inequality implies |f(x) − min f |θ ≤ c−1/r mf (x)
for all x ∈ K, and (14) follows.

Remark 3.4. The lower semicontinuous convex function f considered in Remark
2.15 provides an example where Theorem 3.3 applies while Theorem 3.1 does not.

Remark 3.5. A careful examination of the proof of Theorem 3.3 shows that the
important assumption is not subanalyticity of the function, but rather the growth
condition near critical values that subanalyticity implies. Indeed, let K be a compact
set and f be any lower semicontinuous convex function f that satisfies

|f(x) − min f | ≥ c dS(x)r for all x ∈ K,(17)

where c > 0, r ≥ 1 and with S = crit f �= ∅. The argument of Theorem 3.3 may be
then slightly modified in order to derive a �Lojasiewicz inequality around any critical
point a belonging to the interior of K.

Remark 3.6. From relation (16), which is true for all lower semicontinuous convex
functions, a weaker version of (14) can be deduced. Indeed, if f is convex (but not
necessarily subanalytic), then the function

|f − min f |
mf

is bounded around any critical point of f .
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Remark 3.7. By using elementary arguments it can be shown that f satisfies the
�Lojasiewicz inequality around any point a ∈ dom f (cf. Remark 3.2).

4. Applications to dynamical systems. Throughout this section, unless
otherwise stated, we make the following assumptions:

(H1) f is either lower semicontinuous convex or lower-C2 with dom f = Rn.
(H2) f is somewhere finite (dom f �= ∅) and bounded from below.

We recall (see [20, Definition 10.29], for example) that a function f is called
lower-C2 if for every x0 ∈ dom f there exist a neighborhood U of x0, a compact
topological space S, and a jointly continuous function F : U × S → R satisfying
f(x) = maxs∈S F (x, s) for all x ∈ U and such that the (partial) derivatives ∇xF (·, ·)
and ∇2

xF (·, ·) exist and are jointly continuous.

A lower-C2 function f is locally Lipschitz and locally representable as a difference
of a convex continuous and a convex quadratic function [20, Theorem 10.33]. In
particular, it satisfies

∂f = ∂̂f.(18)

Note that (18) is also true for a lower semicontinuous convex function (see relation
(5)).

As mentioned in the introduction, an important motivation for establishing the
�Lojasiewicz inequality for classes of nonsmooth functions is the expected asymptotic
properties of the corresponding subgradient dynamical systems. This latter term
refers to differential inclusions of the form

ẋ(t) + ∂f(x(t)) 	 0,

where ∂f : Rn ⇒ Rn is the limiting subdifferential of f . A trajectory of the above
dynamical system is any absolutely continuous curve x : [0, T ) → Rn that satisfies⎧⎨⎩

ẋ(t) + ∂f(x(t))	 0 a.e. on (0, T ),

∂f(x(t)) �= ∅ for all t ∈ [0, T ),
(G)

where the notation “a.e.” stands for “almost everywhere” in the sense of the Lebesgue
measure of R. Let us also recall that an absolutely continuous function (or curve) x(t)
is a.e. differentiable and can be entirely determined, up to a constant, by integration
of its classical derivative. A trajectory x(t) is called maximal if there is no possible
extension of its domain compatible with (G).

The following existence-uniqueness result is known to hold (see [6, Theorem 3.2,
p. 57] or [2, Chapter 3.4] for the convex case, and [6, Proposition 3.12, p. 106] for the
convex case with Lipschitz perturbation; see also [9] for related work).

Existence of trajectories. Under the assumptions (H1) and (H2), for every x0 ∈
Rn such that ∂f(x0) �= ∅, there exists a unique trajectory x : [0, T ) → Rn of (G)
satisfying

(T ) x(0) = x0.

In addition, the function h := f ◦ x is absolutely continuous.
Let us now recall some classical consequences of (18) and of the above existence

result. For the sake of completeness, some elementary proofs are provided.
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Corollary 4.1. Let x : [0, T ) → Rn be a trajectory of (G) satisfying (T ).
(i) For almost all t ∈ (0, T )

d

dt
(f ◦ x)(t) = 〈ẋ(t), x∗〉 for all x∗ ∈ ∂f(x(t)).

(ii) For almost all t ∈ (0, T ), the function x∗ �→ 〈ẋ(t), x∗〉 is constant on ∂f(x(t)).

(iii) The trajectory x can be extended to a maximal trajectory x̂ ∈ W 1,2(R+ ; Rn).
Proof. Set h = f ◦ x and note that the absolutely continuous functions h and

x are simultaneously differentiable on (0, T )�N , where N is a set of measure zero.

Let t ∈ (0, T )�N . Since x(t) ∈ dom ∂f and ∂f(x(t)) = ∂̂f(x(t)), one may adapt the
ideas of [6, Lemma 3.3, p. 73] (chain rule) to obtain

∂h(t) = {h′(t)} =

{
d

dt
(f ◦ x)(t)

}
= { 〈ẋ(t), x∗〉, x∗ ∈ ∂f(x(t))} .

Thus (i) and (ii) follow.
To establish (iii) let us first prove that x ∈ W 1,2 ((0, T ) ; Rn). Thanks to (G), we

deduce from (i) that

d

dt
(f ◦ x)(t) = −‖ẋ(t)‖2 for all (0, T ).

Hence f is a Lyapunov function of the dynamical system (G), and∫ T

0

‖ẋ(t)‖2dt = f(x0) − f(x(T )) < +∞;

that is, ẋ ∈ L2((0, T ) ; Rn). Note that ẋ(t) remains bounded as t converges to T . (For
a lower semicontinuous convex function f this is a classical result (see [2, p. 147], for
example); if f is lower-C2, this follows from (G) and the fact that ∂f is locally bounded
around T .) Since the graph of ∂f is closed (Remark 2.12) we get x(T ) ∈ dom ∂f .
Thus, thanks to the existence result (T ), the initial trajectory is in fact extendible to
a semiopen interval [0, T + δ), for some δ > 0, containing [0, T ]. A standard argument
shows that the maximal extension of x(t) is defined in (0,+∞).

An interesting hidden property of (G) is the following.
Corollary 4.2. Let x be a maximal trajectory of (G) satisfying (T ). Then for

almost all t ∈ R+

‖ẋ(t)‖ = mf (x(t)) and
d

dt
(f ◦ x)(t) = − [mf (x(t))]

2
.

Proof. From (G), we obtain the existence of a curve t �→ g(t) ∈ ∂f(x(t)) such that

ẋ(t) = −g(t) a.e. on R+.

Combining this with Corollary 4.1(ii), we get that for almost all t in R+

‖g(t)‖2 = 〈g(t), x∗〉 for all x∗ ∈ ∂f(x(t)),

which yields via a standard argument that ‖g(t)‖ = mf (x(t)). Now evoking Corollary
4.1(i) finishes the proof.

Remark 4.3. Corollary 4.2 says that the trajectories of (G) (the existence of which
is guaranteed under the assumptions (H1) and (H2)) are necessarily “slow solutions”
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(see [2, p. 139]) of the differential inclusion (G). In particular, if the trajectory x(t)
meets a critical point of f , that is, if there exists t0 > 0 such that mf (x(t0)) = 0,
then Corollary 4.2 guarantees that the trajectory stops there; that is, x(t) = x(t0) for

all t ≥ t0. In this case, the trajectory has a finite length equal to
∫ t0
0

‖ẋ(s)‖ds.
Another consequence of Corollary 4.2 is that (G) defines a descent method in

the sense that f decreases along any trajectory. Although compactness implies that
bounded trajectories have at least one cluster point as t → +∞, those might not
converge towards one of them—and a fortiori, have an infinite length. The next
result shows that this cannot happen if f is assumed subanalytic (or more generally,
if f satisfies the �Lojasiewicz inequality). Indeed, via a “�Lojasiewicz-type” argument
(e.g., [14]) we establish successively that the tail of the trajectory is trapped inside
a convenient ball of its cluster point, that this tail necessarily has a finite length,
and finally that the trajectory converges to this cluster point. In the remainder, in
addition to (H1) and (H2), the following is also assumed:

(H3) f is a subanalytic function.
Let us give some examples of subanalytic functions related with optimization

problems.
Example 4.4. - (supremum operations) Let g : Rn × Rp → R be an analytic

function, and let K be a compact subanalytic subset of Rp. Then

f(x) = sup
y∈K

g(x, y)

is a lower-C2 subanalytic function (see [4], for example). If in addition x �→ g(x, y) is
convex for all y, then f is convex.

- (constraints sets) Let gi : Rn → R, i ∈ {1, . . . ,m}, be a family of analytic
functions. The feasible set

C := {x ∈ Rn : gi(x) ≤ 0, ∀i ∈ {1, . . . ,m} }

together with its indicator function are subanalytic objects.
- (Barrier and penalty functions) Those can be used to minimize convex functions

via parametric versions of (G). Typical examples on R are the functions h1 : x > 0 �→
x−p (p ≥ 1), h2 : x ≥ 0 �→ −xν , (ν ∈ (0, 1)), h3(x) = x2 if x ≤ 0 and h3(x) = 0
otherwise.

We are now ready to state the following result.
Theorem 4.5. Assume that a function f satisfies (H1)–(H3). Then any bounded

maximal trajectory of (G) has a finite length and converges to some critical point of
f .

Proof. Let {x(t)}t≥0 be a bounded maximal trajectory of (G). By Corollary 4.1,
the trajectory is defined over all R+. Using (H2) and Corollary 4.2(iii), we conclude
that there exists β ∈ R such that limt→+∞ f(x(t)) = β. Replacing f by f − β and
using the basic rules of subdifferential calculus, we may assume that β = 0.

In view of Remark 4.3, we may also assume that f(x(t)) �= 0 for all t > 0.
Consequently, the function t �→ (f ◦ x)(t) is positive and strictly decreasing to 0 as
t → +∞. Moreover, by compactness, there exists some cluster point a ∈ Rn for the
trajectory x(t). So there exists an increasing sequence (tn)n≥1 with tn → +∞ such
that

lim
tn→+∞

x(tn) = a.(19)



1220 JÉRÔME BOLTE, ARIS DANIILIDIS, AND ADRIAN LEWIS

By continuity of (f ◦ x) we deduce that f(a) = 0. Using (T ), (19), and the fact
that ∂f has a closed graph (see Remark 2.12), we deduce that a ∈ dom ∂f . We do
not know yet whether a is critical or not, but nevertheless, the �Lojasiewicz inequality
holds around a. Indeed, if a ∈ crit f , then use Theorem 3.1 or Theorem 3.3, and if
a /∈ crit f , then just recall Remarks 3.2 and 3.7. It follows that there exist c > 0,
θ ∈ [0, 1), and ε > 0 (defining an open neighborhood B(a, ε) of a) such that

|f(x)|θ ≤ cmf (x) for all x ∈ B(a, ε).(20)

Let us consider the (positive, absolutely continuous) function h̃ = (f ◦ x)1−θ. Since
x(t) → a and since the function h̃ is strictly decreasing and converges to 0 (as t →
+∞), there exists t0 > 0 such that for all t ≥ t0

|h̃(t) − h̃(t0)|
c−1(1 − θ)

≤ ε

3
,(21)

with

‖x(t0) − a‖ ≤ ε

3
.(22)

Let us set

Tout := inf { t ≥ t0, x(t) /∈ B(a, ε) }.(23)

By continuity of the trajectory we have t0 < Tout ≤ +∞.
Claim Tout = +∞ (that is, the tail of the trajectory remains trapped in B(a, ε)).
Proof of the claim. For almost all t ∈ [t0, Tout) we have

d

dt
h̃(t) = (1 − θ) f(x(t))−θ d

dt
(f ◦ x)(t)

≤ −(1 − θ) f(x(t))−θ [mf (x(t))]
2

≤ −(1 − θ) c−1 mf (x(t)),

where we have successively used Corollary 4.2 and (20). By integration, we obtain for
all t ∈ [t0, Tout) ∫ t

t0

mf (x(s))ds ≤ −
[
h̃(t) − h̃(t0)

c−1(1 − θ)

]
,(24)

which according to (21) and Corollary 4.2, yields∫ t

t0

‖ẋ(s)‖ds ≤ ε

3
for all t ∈ [t0, Tout].(25)

To see that Tout = +∞, we just argue by contradiction. If Tout < +∞, then using
(22) and (25), we obtain

‖x(Tout) − a‖ ≤
∣∣∣∣∣
(
x(t0) +

∫ Tout

t0

‖ẋ(s)‖ds
)

− a

∣∣∣∣∣ ≤ 2ε

3
.

The latter obviously contradicts (23). Thus Tout = +∞, and the claim is proved.
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Resorting to (25) again, we conclude that
∫ +∞
t0

‖ẋ(s)‖ds ≤ ε
3 , so x(t) has a finite

length and hence converges. Thus limt→+∞ x(t) = a, and mf (x(t)) admits 0 as a
limit point. By using the closedness of Gr ∂f , we conclude that a is a critical point
of f .

Remark 4.6 (generalized gradient conjecture). The “gradient conjecture” of
Thom [22] can obviously be reformulated in this nonsmooth setting. For any bounded
trajectory x(·) of (G), let us set x∞ := limt→+∞ x(t). Is it true that

t �→ x(t) − x∞
||x(t) − x∞||

has a limit as t goes to infinity? For real-analytic functions this conjecture has been
proved by Kurdyka, Mostowski, and Parusiński [14].

Before we proceed to an estimate of the rate of convergence, let us introduce some
terminology.

• We define

σ(t) =

∫ +∞

t

‖ẋ(s)‖ds for all t ∈ R+(26)

to be the tail length function for the trajectory x(t).
• A �Lojasiewicz exponent of the function f at a point a ∈ Rn of its domain is

any number θ ∈ [0, 1) for which the �Lojasiewicz inequality holds around a.
Let us finally point out some facts arising from the proof of Theorem 4.5. Replac-

ing h̃(t) by [f(x(t)]
1−θ

and mf (x(s)) by ‖ẋ(s)‖ (see Corollary 4.2) in (24) and letting
t → +∞, we deduce ∫ +∞

t0

‖ẋ(s)‖ds ≤ c

(1 − θ)
f(x(t0))

1−θ.

The above inequality remains true for every t ≥ t0 (in view of the Claim). Thus
assuming θ > 0 and evoking again (20) and Corollary 4.2, we obtain (for k = c1/θ)∫ +∞

t

‖ẋ(s)‖ds ≤ k

(1 − θ)
‖ẋ(t)‖ 1−θ

θ for all t ≥ t0.(27)

We are now ready to state the following result.
Theorem 4.7. Under the assumptions (H1)–(H3), let x(t) be a bounded maximal

trajectory of (G). Then x(t) converges to some critical point a ∈ Rn of f . Let θ ∈ [0, 1)
be a �Lojasiewicz exponent at this point. Then there exist k > 0, k′ > 0, and t0 ≥ 0
such that for all t ≥ t0 the following estimates hold:

– If θ ∈ ( 1
2 , 1), then ‖x(t) − a‖ ≤ k(t + 1)−( 1−θ

2θ−1 ).
– If θ = 1

2 , then ‖x(t) − a‖ ≤ k exp(−k′t).
– If θ ∈ [0, 1

2 ), then x(t) converges in finite time.
Proof. We can always assume that θ > 0. (If θ = 0, we replace it by some

θ′ ∈ (0, 1/2), and we proceed as below.)
Let U be a neighborhood of a in which the �Lojasiewicz inequality holds. Since

x(t) converges to a there exists t0 ≥ 0 such that x(t) ∈ U for every t ≥ t0. In
particular, (27) holds. Let us now consider the tail length function σ(t) defined in
(26). Note that

‖x(t) − a‖ ≤ σ(t).(28)
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Since σ̇(t) = −‖ẋ(s)‖ for all t ≥ t0, inequality (27) yields

σ(t) ≤ k

(1 − θ)
[−σ̇(t)]

1−θ
θ .(29)

Thus σ(t) is an absolutely continuous function and satisfies the following differential
inequality:

σ̇(t) ≤ −L [σ(t)]
θ

1−θ for all t ≥ t0,(30)

where L is a positive constant. To obtain the announced estimates it suffices to
solve the following differential equation—considering separately the cases θ ∈ (1/2, 1),
θ = 1/2, and θ ∈ (0, 1/2):⎧⎨⎩ ẏ(t) = −L [y(t)]

θ
1−θ for all t ≥ t0,

y(t0) = σ(t0).

(31)

The announced estimates then follow from (28) and the fact that σ(t) ≤ y(t) for all
t ≥ t0. (Indeed, if σ(t̄) = y(t̄) for some t̄ ≥ t0, then a comparison of (30) and (31)
shows that σ̇(t̄) ≤ ẏ(t̄).) The proof is complete.

Remark 4.8. The results of this section can be generalized to a wider setting as
follows. Let f : Rn → R ∪ {+∞} be a lower semicontinuous function complying with
the following requirements:

(i) dom f �= ∅ and ∂̂f = ∂f .
(ii) either f is convex or f | domf is continuous.
(iii) f has the �Lojasiewicz property; that is, property (8) holds around any critical

point.
If we assume in addition that, for all initial conditions x0 ∈ dom ∂f , the dif-

ferential inclusion (G) has a (unique) global solution x such that f ◦ x is absolutely
continuous, then both Theorems 4.5 and 4.7 can be extended in this wider setting.

Prominent examples of functions meeting the above-mentioned conditions are con-
tinuous subanalytic φ-convex functions [9], or lower semicontinuous convex functions
satisfying some growth condition of the type (17).
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Abstract. We introduce and study a special class of nonconvex quadratic problems in which the
objective and constraint functions have the form f(X) = Tr(XT AX)+2Tr(BT X)+c,X ∈ RRn×r.
The latter formulation is termed quadratic matrix programming (QMP) of order r. We construct
a specially devised semidefinite relaxation (SDR) and dual for the QMP problem and show that
under some mild conditions strong duality holds for QMP problems with at most r constraints.
Using a result on the equivalence of two characterizations of the nonnegativity property of quadratic
functions of the above form, we are able to compare the constructed SDR and dual problems to other
known SDRs and dual formulations of the problem. An application to robust least squares problems
is discussed.
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1. Introduction. This work is concerned with nonconvex quadratic optimiza-
tion problems of the form

min Tr(XTA0X) + 2Tr(BT
0 X) + c0

s.t. Tr(XTAiX) + 2Tr(BT
i X) + ci ≤ αi, i ∈ I,(1)

Tr(XTAjX) + 2Tr(BT
j X) + cj = αj , j ∈ E ,

X ∈ Rn×r,

with Ai = AT
i ∈ Rn×n,Bi ∈ Rn×r, αi, ci ∈ R, i ∈ {0} ∪ I ∪ E . Problems of the above

type arise naturally in several applications such as robust least squares [9], and in
problems involving orthogonal constraints such as the orthogonal procrustes problem
[17] (see the discussion in section 2).

Problem (1) is called a quadratic matrix programming (QMP) problem of order
r. Correspondingly, the objective and constraint functions are called quadratic matrix
(QM) functions. It can be shown that every QM function is in particular a quadratic
function with nr variables; see the discussion in section 2.1. Thus, the family of
QMP problems is a special case of quadratically constrained quadratic programming
(QCQP) problems. However, it is worthwhile to study these problems independently
since, as we shall see, they enjoy stronger results than those currently known for the
general QCQP problem. For example, we will establish strong duality results for
QMP problems with at most r constraints (see section 3.2).

Strong duality is known to hold for only a few classes of nonconvex QCQP. The
simplest and best-known example is the trust region problem, which consists of min-
imizing an indefinite quadratic function over a ball and admits an exact semidefi-
nite relaxation (SDR); see [13, 8]. Extensions of this problem were considered in
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[12, 18, 5, 16]. In general these results cannot be extended to QCQP problems in-
volving two constraints [19, 20]. An exception is the case in which all the functions
involved (objective plus two constraints) are homogenous quadratic functions. In this
case, it was proven in [19] that under mild conditions the semidefinite relaxation is
tight. Another interesting tractable class of QCQP problems was considered in [1] in
the context of quadratic problems with orthogonal constraints.

In this paper strong duality/tightness of the SDR is shown to hold for the class
of QMP problems of order r with at most r constraints. In section 3 we construct an
SDR and dual formulations for the QMP problem originating from a homogenization
procedure specially devised to QMP problems. Using the SDR formulation combined
with known results on the existence of low-rank solutions of semidefinite programs
[3, 2, 14, 15], the strong duality result is shown to follow. Moreover, an algorithm for
extracting a solution to the QMP problem from its associated SDR is described. In
section 4 an alternative SDR and dual construction are discussed. These constructions
stem from the standard construction of SDR and dual for QCQP problems. Using
a result on the equivalence of two linear matrix inequality (LMI) representations of
the claim on nonnegativity of a QM function, we are able to prove that the two SDR
and dual formulations are equivalent. Finally, in section 5 we present an application
of our results in the field of robust optimization.

Notation. For simplicity, instead of inf/sup we use min/max; however, this does
not mean that we assume that the optimum is attained and/or finite. Vectors are
denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase
letters, e.g., A. For two matrices A and B, A � B (A � B) means that A − B is
positive definite (semidefinite). Sn = {A ∈ Rn×n : A = AT } is the set of symmetric
n × n matrices, and Sn

+ = {A ∈ Rn×n : A � 0} is the set all real n × n symmetric
positive semidefinite matrices. 0n×m is the n×m matrix of zeros, and Ir is the r× r
identity matrix. For a matrix M , vec(M) denotes the vector obtained by stacking
the columns of M . For a square matrix U , [U ]r denotes the southeast r×r submatrix
of U ; i.e., if U = (uij)

n+r
i,j=1, then [U ]r = (uij)

n+r
i,j=n+1. For two matrices A and B,

A ⊗ B denotes the corresponding Kronecker product. Er
ij is the r × r matrix with

1 at the ijth component and 0 elsewhere, and δij is the Kronecker delta, i.e., δii = 1
and δij = 0 for i �= j. The value of the optimal objective function of an optimization
problem

(P) : min{f(x) : x ∈ C}

is denoted by val(P). The optimization problem (P) is called bounded below if the
minimum is finite, and termed solvable in the case where the minimum is finite and
attained (similar definitions for maximum problems). We follow the MATLAB con-
vention and use “;” for adjoining scalars, vectors, or matrices in a column. We also use
some standard abbreviations such as SDP (semidefinite programming), LMI (linear
matrix inequality), SDR (semidefinite relaxation), and QCQP (quadratically con-
strained quadratic programming), and some nonstandard abbreviations such as QM
(quadratic matrix) and QMP (quadratic matrix programming).

2. Quadratic matrix problems.

2.1. Quadratic matrix functions: Definition and basic properties. We
begin by recalling that a quadratic function g : Rn → R is a function of the form

(2) g(x) = xTAx + 2bTx + c,
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where A ∈ Sn, b ∈ Rn, and c ∈ R. We will also use the term “quadratic vector
function” instead of “quadratic function” to distinguish it from the term “quadratic
matrix function” defined below.

A quadratic matrix (QM) function of order r is a function f : Rn×r → R of the
form

(3) f(X) = Tr(XTAX) + 2Tr(BTX) + c, X ∈ Rn×r,

where A ∈ Sn, B ∈ Rn×r, and c ∈ R. If B = 0n×r, c = 0, then f is called
a homogenous QM function or a QM form. We note that every quadratic vector
function is a QM function of order one. The opposite statement is also true: every
QM function is in particular a quadratic vector function. Indeed, the function f from
(3) can be written as follows:

(4) f(X) = fV (vec(X)),

where fV : Rnr → R is defined by

(5) fV (z) = zT (Ir ⊗ A)z + 2vec(B)Tz + c.

The function fV is called the vectorized function of f . From the above relation we
can immediately deduce that f is (strictly) convex if and only if A � 0 (A � 0).1

2.2. QM problems. Our main objective is to study quadratic matrix program-
ming (QMP) problems in which the goal is to minimize a QM objective function
subject to equality and inequality QM constraints:

(QMP) min f0(X)

s.t. fi(X) ≤ αi, i ∈ I,(6)

fj(X) = αj , j ∈ E ,
X ∈ Rn×r,

where fi : Rn×r → R, i ∈ I ∪ E ∪ {0}, are QM functions of order r given by

fi(X) = Tr(XTAiX) + 2Tr(BT
i X) + ci, X ∈ Rn×r,

with Ai ∈ Sn,Bi ∈ Rn×r, and ci ∈ R, i ∈ {0} ∪ I ∪ E . The index sets {0}, I, E are
pairwise disjoint sets of nonnegative integers.

In the case where all the functions fi, i ∈ I ∪ E ∪ {0}, are homogeneous QM
functions of order r, the QMP problem (6) is called a homogenous QMP problem (of
order r). By using the correspondence (4), we can represent the QMP problem as the
QCQP problem:

min fV
0 (z)

s.t. fV
i (z) ≤ αi, i ∈ I,(7)

fV
j (z) = αj , j ∈ E ,

z ∈ Rnr,

which will be called the vectorized QMP problem.

1Indeed, Ir ⊗ A and A have the same eigenvalues (but with different multiplicities) [10].
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The QMP problem appears in several fields of applications. Here we present two
examples in which the QMP problem naturally arises.

Example 1. In the orthogonal procrustes problem [17] we seek to find a square
matrix X which solves the following optimization problem:

min ‖AX − B‖2
F

s.t. XTX = Ir,

X ∈ Rr×r,

where A ∈ Rn×r,B ∈ Rn×r. The orthogonal procrustes problem can be rewritten as
a QMP problem with r2 equality constraints:

min Tr(XTATAX) − 2Tr(BTAX) + ‖B‖2
F

s.t. Tr(XT (Er
ij + Er

ij)X) = 2δij , 1 ≤ i, j ≤ r,

X ∈ Rr×r.

We note that although the orthogonal procrustes problem can be solved efficiently
[17], it is not clear whether the unbalanced orthogonal procrustes problem—in which
X is not square—is tractable [7].

Example 2. The robust least squares (RLS) problem was introduced and studied
in [9, 6].2 Consider a linear system Ax ≈ b, where A ∈ Rr×n, b ∈ Rr, and x ∈ Rn.
Assume that the matrix A is not fixed but rather given by a family of matrices3

A+ΔT , where A is a known nominal value and Δ ∈ Rn×r is an unknown perturbation
matrix known to reside in a compact uncertainty set U . The RLS approach to this
problem is to seek a vector x ∈ Rn that minimizes the worst case data error with
respect to all possible values of Δ ∈ U :

(8) min
x

max
Δ∈U

‖b − (A + ΔT )x‖2.

Now, by making some simple algebraic manipulation, we can rewrite the objective
function in (8) as

‖b− (A +ΔT )x‖2 = Tr(ΔTxxTΔ) + 2Tr((b−Ax)xTΔ) + Tr((b−Ax)(b−Ax)T ),

so that the inner maximization problem in (8) takes the following form:

(9) max{Tr(ΔTQΔ) + 2Tr(FTΔ) + c : Δ ∈ U},

where Q,F, and c depend on x and are given by

(10) Q = xxT ∈ Sn, F = x(b − Ax)T ∈ Rn×r, c = ‖b − Ax‖2 ∈ R.

In [9] the uncertainty set Δ was chosen to be a simple Frobenius norm constraint,
i.e.,

U = {Δ ∈ Rn×r : Tr(ΔTΔ) ≤ ρ}.

2Here we study the unstructured case.
3The perturbation matrix appears in a transpose form so that the derived QM function will

have the form (3). Furthermore, for the sake of simplicity we do not consider uncertainties in the
RHS vector b, although such uncertainties can be incorporated into our analysis in a straightforward
manner.
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The inner maximization problem (9) with the above choice of U is a QMP problem
of order r with a single inequality constraint.

The fact that the uncertainty set U was given in [9] by a single quadratic constraint
was a crucial element in establishing the tractability of the RLS problem. In fact,
it is well known that in the structured case, the inner maximization problem of the
RLS problem becomes NP-hard when the uncertainty set is given by an intersection of
ellipsoids. Nonetheless, in section 5, using the results developed in sections 3 and 4, we
will show that more complicated choices of U can be considered. In particular, we will
prove in section 5 that the RLS problem remains tractable in the case where U is given
by a set of at most r QM inequality constraints. The latter form of the uncertainty set
can model, for example, the situation where each column of the perturbation matrix
ΔT has a separate norm constraint.

3. Semidefinite relaxations of the QMP problem and strong duality
results. We begin by constructing an SDR for the QMP problem. A natural approach
for constructing such an SDR is to consider the SDR of the vectorized problem (7)
(recall that problem (7) is a (QCQP)). However, this approach, which is discussed
in detail in section 4, does not seem to offer useful theoretical insights into questions
such as strong duality/tightness of SDR. For that reason we construct a new scheme,
specifically devised to obtain an SDR for QMP problems (see section 3.1). Using the
derived SDR, we will show in section 3.2 that, under some mild conditions, strong
duality holds for QMP problems of order r with at most r constraints.

3.1. An SDR of the QMP problem. Recall that the homogenized version a
quadratic vector function g given by (2) is the quadratic form gH : Rn+1 → R defined
by

gH(x; t) = xTAx + 2bTxt + ct2.(11)

The matrix associated with the quadratic form gH is denoted by

(12) M(g) =

(
A b

bT c

)
.

We consider the following generalization of the above homogenization procedure to
QM functions of order r: let f be the QM function given by (3); the homogenized QM
function is denoted by fH : R(n+r)×r → R and given by

(13) fH(Y; Z) ≡ Tr(YTAY)+2Tr(ZTBTY)+
c

r
Tr(ZTZ), Y ∈ Rn×r,Z ∈ Rr×r,

which is a homogenous QM function of order r corresponding to the matrix

(14) M(f) ≡
(

A B

BT c
rIr

)
.

In the case r = 1, definitions (13) and (14) coincide with the definitions of the ho-
mogenization of a quadratic function (11) and its associated matrix (12), respectively.
The operator M will be used throughout the paper.

The homogenous function fH satisfies the following easily verifiable properties,
which will become useful in what follows:

fH(Y; Ir) = f(Y) for every Y ∈ Rn×r,(15)

fH(Y; Z) = f(YZT ) for every Y ∈ Rn×r,Z ∈ Rr×r such that ZTZ = Ir.(16)
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Using the above homogenization procedure for QM functions, we are able to
construct (see Lemma 3.1 below) a homogeneous QMP problem of order r, equivalent
to the (nonhomogeneous) QMP problem (6).

Lemma 3.1. Consider the following homogenized version of the QMP problem
(6):

min fH
0 (Y; Z)

s.t. fH
i (Y; Z) ≤ αi, i ∈ I,(17)

fH
j (Y; Z) = αj , j ∈ E ,
ψij(Y; Z) = 2δij , 1 ≤ i ≤ j ≤ r,

Y ∈ Rn×r,Z ∈ Rr×r,

where ψij(Y; Z) = Tr(ZT (Er
ij + Er

ji)Z) and δij is the Kronecker delta.
1. Suppose that the QMP problem (6) is solvable, and let X∗ be an optimal

solution of (QMP). Then problem (17) is solvable, (X∗; Ir) is an optimal
solution of (17), and val(QMP) = val(17).

2. Suppose that problem (17) is solvable, and let (Y∗; Z∗) be an optimal solution
of (17). Then problem (QMP) is solvable, X∗ = Y∗(Z∗)T is an optimal
solution of (QMP), and val(QMP) = val(17).

Proof. First note that the system of equalities

Tr(ZT (Er
ij + Er

ji)Z) = 2δij , 1 ≤ i ≤ j ≤ r,

can be written as

Tr((Er
ij + Er

ji)ZZT ) = 2δij , 1 ≤ i ≤ j ≤ r,

which, by using the symmetry of the matrix ZZT , is equivalent to

ZTZ = ZZT = Ir.

1. Let X∗ be an optimal solution of (QMP). For every (Y; Z), (Y ∈ Rn×r,Z ∈
Rr×r) in the feasible set of (17) (and in particular ZTZ = Ir) we have

fH
0 (Y,Z)

(16)
= f0(YZT ) ≥ f0(X

∗)
(15)
= fH

0 (X∗; Ir).

Therefore, (X∗; Ir) is an optimal solution of (17) and val(QMP) = val(17).
2. Let (Y∗; Z∗), (Y ∈ Rn×r,Z ∈ Rr×r) be an optimal solution of (17), and set

X∗ = Y∗(Z∗)T . Then for every X ∈ Rn×r which is in the feasible set of (QMP) we
have

f0(X)
(15)
= fH

0 (X; I) ≥ fH
0 (Y∗; Z∗)

(16)
= f0(Y

∗(Z∗)T ) = f0(X
∗),

and thus X∗ is an optimal solution of (QMP) and val(QMP) = val(17).
Corollary 3.2. The QMP problem (6) is solvable if and only if problem (17) is

solvable, and in that case val(QMP) = val(17).
We will now exploit the homogenized QMP problem (17) in order to formulate

a semidefinite relaxation. By denoting W = (Y; Z) ∈ R(n+r)×r, we conclude that
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problem (17) can be written as

min Tr(M(f0)WW T )

s.t. Tr(M(fi)WW T ) ≤ αi, i ∈ I,

Tr(M(fj)WW T ) = αj , j ∈ E ,
Tr(N ijWW T ) = 2δij , 1 ≤ i ≤ j ≤ r,

W ∈ R(n+r)×r,

where the operator M is defined in (14) and

N ij =

(
0n×n 0n×r

0r×n Er
ij + Er

ji

)
, 1 ≤ i ≤ j ≤ r.

Making the change of variables U = WW T ∈ Sn+r
+ , we conclude that problem (17)

can be equivalently written as

min Tr(M(f0)U)

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,

Tr(M(fj)U) = αj , j ∈ E ,
Tr(N ijU) = 2δij , 1 ≤ i ≤ j ≤ r,

U ∈ Sn+r
+ , rank(U) ≤ r.

Omitting the “hard” constraint rank(U) ≤ r, we finally arrive at the following SDR
of the QMP problem (6):

(SDRM) min Tr(M(f0)U)

s.t. Tr(M(fi)U) ≤ αi, i ∈ I,(18)

Tr(M(fj)U) = αj , j ∈ E ,
Tr(N ijU) = 2δij , 1 ≤ i ≤ j ≤ r,

U ∈ Sn+r
+ .

The dual problem to the SDR problem (SDRM) is given by

(DM) max
λi,Φ

−
∑

i∈I∪E
λiαi − Tr(Φ)

s.t. M(f0) +
∑

i∈I∪E
λiM(fi) +

(
0n×n 0n×r

0r×n Φ

)
� 0,(19)

Φ ∈ Sr,

λi ≥ 0, i ∈ I.

The symmetric matrix Φ = (φij)
r
i,j=1 contains the Lagrange multipliers associated

with the equality constraints Tr(N ijU) = 2δij . Specifically, for every 1 ≤ i ≤ r,
1
2φii is the multiplier corresponding to the constraint Tr(N iiU) = 2, and φij(=
φji) is the multiplier associated with Tr(N ijU) = 0 for 1 ≤ i < j ≤ r. By the
conic duality theorem [4] it follows that if (DM) is strictly feasible and bounded
above, then (SDRM) is solvable and val(SDRM) = val(DM). For that reason we seek
to find a simple condition under which (DM) is strictly feasible. The following lemma
establishes such a condition.
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Lemma 3.3. Suppose that the following condition is satisfied:

(20) ∃γi ∈ R, i ∈ I ∪ E, for which γi ≥ 0, i ∈ I, such that A0 +
∑

i∈I∪E
γiAi � 0.

Then problem (DM) is strictly feasible.
Proof. Let γi ∈ R, i ∈ I ∪ E , be numbers satisfying (20), and let ε > 0 be a small

enough number for which A0 +
∑

i∈I∪E(γi + ε)Ai � 0. Define γ̃i ≡ γi + ε. Evidently,
γ̃i > 0 for i ∈ I. Now, for every symmetric r × r matrix Φ we have

M(f0)+
∑

i∈I∪E
γ̃iM(fi) +

(
0n×n 0n×r

0r×n Φ

)
(21)

=

(
A0 +

∑
γ̃iAi B0 +

∑
γ̃iBi

(B0 +
∑

γ̃iBi)
T 1

r (c0 +
∑

γ̃ici) Ir + Φ

)
,

where all the summations are over i ∈ I ∪ E . Since A0 +
∑

γ̃iAi � 0, then by the
Schur complement, the matrix on the RHS of (21) is positive definite if and only if

Φ �
(
B0 +

∑
γ̃iBi

)T (
A0 +

∑
γ̃iAi

)−1 (
B0 +

∑
γ̃iBi

)
− 1

r

(
c0 +

∑
γ̃ici

)
Ir.

Let Φ̃ ∈ Sr be an arbitrary matrix satisfying the latter LMI. Thus, for λi = γ̃i, i ∈
I ∪ E , and Φ = Φ̃ we have that all the inequalities in (19) (regular and generalized)
are strictly satisfied.

Remark 3.1. Conditions similar to (20) are very common in the analysis of QCQP
problems; see, e.g., [5, 18, 12, 19, 16]. This condition is automatically satisfied when
at least one of the constraints or the objective function is strictly convex (see also [19,
Proposition 2.1]).

3.2. Tightness of the SDR of the QMP problem. In this section we will
show that, under some mild conditions, QMP problems of order r with at most r
constraints have a tight SDR, and that strong duality holds. To show this, we need to
verify that problem (SDRM) possesses a solution with rank smaller than or equal to r.
This prompts us to consider questions concerning the existence of low-rank solutions
to SDP problems—a subject extensively studied by Pataki [14, 15] and Barvinok
[2, 3]; see also [11] for related results concerning the convexity of the image of several
homogenous QMs.

Let us consider a general-form SDP problem:

min Tr(C0U)

s.t. Tr(CiU) ≤ αi, i ∈ I1,(22)

Tr(CjU) = αj , j ∈ E1,

U ∈ Sn
+,

where I1 and E1 are disjoint index sets, Ci ∈ Sn, i ∈ {0} ∪ I1 ∪ E1, and αi ∈ R, i ∈
I1 ∪E1. Pataki showed [15] that if the number of constraints is smaller than an upper
bound which is a certain quadratic function of r, then there exists a solution with rank
no larger than r (see Theorem 3.4 below). The proof of this result is constructive and
is based on a simple rank reduction procedure4 for finding extreme points of convex

4The SDP considered in [15] consists only of inequality constraints. However, the same analysis
establishes the validity of Theorem 3.4.
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sets of the form Sn
+∩A, where A is an affine space. For the sake of completeness, and

since the rank reduction procedure is a subroutine of the algorithm for solving the
QMP problem, we recall both the claim (Theorem 3.4 below) and the rank reduction
procedure (see Algorithm RED in the appendix).

Theorem 3.4 (see [15]). Suppose that problem (22) is solvable and that |I1| +
|E1| ≤ ( r+2

2 ), where r is a positive integer. Then problem (22) has a solution X∗ for
which rank(X∗) ≤ r.

Proof. Let X∗
0 be an optimal solution of problem (22). Apply Algorithm RED

(see the appendix) with input X∗
0 and obtain an optimal solution X∗ with rank(X∗)

≤ r.
Equipped with the latter result, we are now able to show that QMP problems of

order r with at most r constraints possess a tight SDR under some mild conditions.
Theorem 3.5 (tight SDR for the QMP problem). If problem (SDRM) is solvable

and |I| + |E| ≤ r, then problem (QMP) is solvable and val(SDRM) = val(QMP).
Proof. It is sufficient to show that problem (SDRM) has a solution with rank

smaller than or equal to r. The number of constraints in (SDRM) is equal to |I|+|E|+
( r+1

2 ), where the last term stands for the number of pairs (i, j) for which 1 ≤ i ≤ j ≤ r.
Thus, using |I| + |E| ≤ r, we conclude that the number of constraints in (SDRM) is
bounded above by

r +

(
r + 1

2

)
=

(
r + 2

2

)
− 1.

Invoking Theorem 3.4, the result follows.
As a conclusion from the conic duality theorem [4] we can now deduce the fol-

lowing corollary that guarantees tightness of the SDR and strong duality under the
conditions that the QMP problem (6) is feasible and that condition (20) is valid.

Corollary 3.6 (strong duality for QMP problems). Consider the QMP prob-
lem (6) with |I| + |E| ≤ r, its semidefinite relaxation (SDRM) (problem (18)) and
its dual (DM) (problem (19)). Suppose that condition (20) holds true and that the
QMP problem is feasible. Then problems (QMP) and (SDRM) are solvable and
val(QMP)= val(SDRM)= val(DM).

Proof. By Lemma 3.3, the validity of condition (20) implies that the dual prob-
lem (DM) is strictly feasible. Moreover, since the primal SDP problem (SDRM) is
feasible, it follows that the dual problem (DM) is bounded above. Thus, by the
conic duality theorem [4], we conclude that problem (SDRM) is solvable and that
val(SDRM) = val(DM). Since problem (SDRM) is solvable we conclude, by Theorem
3.5, that val(QMP) = val(SDRM).

Remark 3.2. In the special case r = 1, Corollary 3.6 recovers the well-known
strong duality/tightness of SDR results for QCQPs with a single quadratic constraint
(see, e.g., [12, 5, 18, 16]).

It is interesting to note that we can also describe an algorithm for extracting the
solution of a QMP problem (satisfying the condition in Corollary 3.6) from its SDR,
which is based on the rank reduction algorithm of [15], as follows.

Algorithm SOL-QMP.

Step 1. Solve the SDP problem (SDRM) and obtain an optimal solution U∗ ∈ Sn+r
+ .

Step 2. Invoke Algorithm RED (see the appendix) with input U∗, and produce an
optimal solution U∗

1 ∈ Sn+r
+ for which rank(U∗

1) ≤ r.

Step 3. Calculate a decomposition: U∗
1 = WW T , where W ∈ R(n+r)×r.

Step 4. Let W = (Y; Z), where Y ∈ Rn×r and Z ∈ Rr×r. Return an optimal
solution X∗ = YZT to the QMP problem.
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4. The vectorized semidefinite relaxation and dual of the QMP prob-
lem. In the previous section we considered a semidefinite relaxation that was based on
a homogenization procedure specifically designed for QM functions. In this section we
examine an alternative (and natural) approach in which we begin by transforming the
problem into a “standard” QCQP and then use the usual relaxation technique. This
approach produces the vectorized SDR and vectorized dual problems. We will prove
that the two constructions are equivalent in some sense. In establishing this result we
rely on the tight SDR result of section 3 and a result on two LMI representations of
the property of nonnegativity of a QM function over Rn×r.

Our alternative SDR is constructed by following two steps.
Step 1. Transform the QMP problem (6) into the vectorized QMP problem (7).
Step 2. Formulate the corresponding SDR of the homogenized problem (7):

(SDRV ) min Tr(M(fV
0 )Z)

s.t. Tr(M(fV
i ))Z) ≤ αi, i ∈ I,(23)

Tr(M(fV
j )Z) = αj , j ∈ E ,

Znr+1,nr+1 = 1,

Z ∈ Snr+1
+

(recall that, since fV
i is a QM function of order one, M (fV

i ) ≡
( Ir⊗Ai

vec(Bi)
T

vec(Bi)
ci

)
.

Problem (SDRV) is an SDP problem, and its dual is given by

(DV) max−
∑

i∈I∪E
λiαi − t

s.t. M(fV
0 ) +

∑
i∈I∪E

λiM(fV
i ) + t

(
0nr,nr 0nr,1

01,nr 1

)
� 0,(24)

λi ≥ 0, i ∈ I.

It can be shown that problem (DV) is in fact a Lagrangian dual of the QMP problem
(6), and therefore the SDR (SDRV) can be interpreted as a bidual (i.e., dual of
the dual) of the primal QMP problem. Problems (SDRV) and (DV) are called the
vectorized semidefinite relaxation and dual of the QMP problem (respectively).

The pair of problems (SDRM)/(SDRV) and (DM)/(DV) seem quite different both
with respect to the number of variables and the sizes of the related matrices. However,
we will show in what follows (cf. Theorem 4.3) that these pairs of problems are
equivalent in some sense.

Lemma 4.2 below presents two different LMI characterizations of the nonnegativ-
ity of a QM function over the entire space. This lemma is a key ingredient in proving
the equivalence between the different dual/SDR problems. The proof of Lemma 4.2
relies on the following well-known result.

Lemma 4.1 (see [4, p. 163]). A quadratic inequality with a (symmetric) n × n
matrix A,

xTAx + 2bTx + c ≥ 0,

is valid for all x ∈ Rn if and only if(
A b

bT c

)
� 0.
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Lemma 4.2. Let f be a QM function given in (3). Then the following three
statements are equivalent:

(i) f(X) ≥ 0 for every X ∈ Rn×r.
(ii) There exists Φ ∈ Sr for which Tr(Φ) ≤ 0 such that(

A B

BT c
rIr + Φ

)
� 0.

(iii) (
Ir ⊗ A vec(B)

vec(B)T c

)
� 0.

Proof. (i⇔iii) By (4), the first statement is equivalent to the statement

fV (z) ≥ 0 for every z ∈ Rnr,

which, by Lemma 4.1, is the same as the third statement.
(i⇔ii) We begin by showing the following identity between subsets of R:

(25) F = W,

where (recall that [U ]r denotes the southeast r × r submatrix of U)

F = {f(X) : X ∈ Rn×r},
W = {Tr(M(f)U) : U ∈ Sn+r

+ , [U ]r = Ir}.

The inclusion F ⊆ W is clear. We will show that the reverse inclusion (W ⊆ F ) holds
true. Let α ∈ W , and consider the QMP problem

min 0

s.t. f(X) = α,(26)

X ∈ Rn×r.

Note that this is exactly the QMP problem (6) with r = 1, I = ∅, E = {1},
α1 = α, f0 ≡ 0, and f1 = f . The corresponding SDR of the QMP problem (26) is
given by

min 0

s.t. Tr(M(f)U) = α,(27)

U ∈ Sn+r
+ , [U ]r = Ir.

Since α ∈ W it follows that problem (27) is solvable (recall that the objective function
is identically zero, and hence “solvability” is the same as “feasibility”). Invoking
Theorem 3.5, we conclude that problem (26) is also feasible. Hence, α ∈ F . The
identity F = W implies that statement (i) is the same as

(28) min{Tr(M(f)U) : U ∈ Sn+r
+ , [U ]r = Ir} ≥ 0.

The latter SDP problem is strictly feasible (U = In+r � 0 is feasible) and bounded
below (by zero) and thus, by the conic duality theorem, we conclude that the dual
problem, given in this case by

max
Φ∈Sr

{
−Tr(Φ) :

(
A B

BT c
rIr + Φ

)
� 0

}
,
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is solvable and has value equal to the value of the primal problem. Therefore, state-
ment (28) is equivalent to the existence of a symmetric r × r matrix Φ for which(

A B

BT c
rIr + Φ

)
� 0

and Tr(Φ) ≤ 0.
We are now ready to prove the main result of this section, namely, that the values

of the two dual problems (DM) and (DV) and the two SDR problems (SDRM) and
(SDRV) are all equal to each other under some mild conditions.

Theorem 4.3. Consider the SDRs (SDRM) and (SDRV) (problems (18) and
(23)) and the dual problems (DM) and (DV) (problems (19) and (24)) of the QMP
problem (6). Suppose that condition (20) is satisfied and that (QMP) is feasible. Then
(SDRM) and (SDRV) are solvable and

val(DM) = val(DV) = val(SDRM) = val(SDRV).

Furthermore, if {λi}i∈I∪E and Φ is an optimal solution of (DM), then an optimal
solution to (DV) is given by {λi}i∈I∪E , t, where t = Tr(Φ).

Proof. Since condition (20) is assumed to hold true then, by Lemma 3.3, the
dual problem (DM) is strictly feasible, and an argument similar to the one used in
the proof of Lemma 3.3 shows that (DV) is also strictly feasible. Thus, by the conic
duality Theorem [4], both problems (SDRM) and (SDRV) are solvable, and we have
the equality val(DM) = val(SDRM) as well as val(DV) = val(SDRV). We are left with
the task of proving that val(DM) = val(DV). Consider the LMI constraint in problem
(DV), which can explicitly be written as follows:

(29)

⎛⎝ Ir ⊗ (A0 +
∑

λiAi) vec
(
B0 +

∑
λiBi

)
vec

(
B0 +

∑
λiBi

)T

c0 +
∑

λici + t

⎞⎠ � 0,

where the summations are over i ∈ I ∪ E . By the equivalence of the second and third
part of Lemma 4.2 we have that the above LMI holds true if and only if there exists
Z ∈ Sr such that(

A0 +
∑

λiAi B0 +
∑

λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici + t)Ir + Z

)
� 0,

and Tr(Z) ≤ 0. Making the change of variables Φ = Z + t
rIr, we deduce that the

LMI (29) is equivalent to the existence of a matrix Φ ∈ Sr such that

(30)

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

and

(31) Tr(Φ) ≤ t.

Replacing the LMI in problem (24) with the LMIs (30) and (31), problem (DV)
is transformed into

max
λi,Φ,t

−
∑

i∈I∪E
λiαi − t

s.t.

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

λi ≥ 0, i ∈ I,
Tr(Φ) ≤ t.
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It is clear that any optimal solution of the last problem satisfies t = Tr(Φ), and thus
the problem is the same as

max
λi,Φ

−
∑

i∈I∪E
λiαi − Tr(Φ)

s.t.

(
A0 +

∑
λiAi B0 +

∑
λiBi

(B0 +
∑

λiBi)
T 1

r (c0 +
∑

λici)Ir + Φ

)
� 0,

λi ≥ 0, i ∈ I,

which is identical to problem (DM).
Combining the latter result with the strong duality result, Corollary 3.6, the

following corollary immediately follows.
Corollary 4.4. Consider the QMP problem (6) with |I|+ |E| ≤ r, its vectorized

semidefinite relaxation (SDRV) (problem (23)), and its vectorized dual (DV) (problem
(24)). Suppose that condition (20) holds true and that the QMP problem is feasible.
Then problems (QMP) and (SDRV) are solvable and val(QMP) = val(SDRV) = val(DV).

5. An application to robust least squares. We continue the example from
section 2.2. Suppose that the uncertainty set U associated with the matrix A is given
by multiple norm constraints:

(32) U = {Δ ∈ Rn×r : ‖LiΔ‖2 ≤ ρi, i = 1, . . . ,m},

where Li ∈ Rki×n for some positive integers k1, . . . , km and ρi > 0, i = 1, . . . ,m. The
above form of the uncertainty set is more general then the standard single-constraint
form, and it can thus be used to describe more complicated scenarios of uncertainties.
For example, by setting ki = n,m = n, and Li = En

ii, we model the situation in which
the uncertainty associated with each column of the matrix A has a separate norm
constraint.

Assume that there exist nonnegative numbers γ1, . . . , γm such that

m∑
i=1

γiL
T
i Li � 0.

If m ≤ r, then the conditions of Corollary 4.4 are satisfied, and as a consequence the
inner maximization problem (9) is equal to the value of the dual problem given by

min
t,λi

m∑
i=1

λiρi + t

s.t.

(
Ir ⊗ (−Q +

∑m
i=1 λiL

T
i Li) − vec(F)

− vec(F)T −c + t

)
� 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Here we considered the equivalent vectorized dual because it is not clear how to derive
an SDP formulation from the nonvectorized dual. Now, using the identities (see [10])

Ir ⊗ Q
(10)
= Ir ⊗ xxT = (Ir ⊗ x)(Ir ⊗ x)T ,

vec(F)
(10)
= vec(x(Ax − b)T ) = (Ir ⊗ x)(Ax − b),
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the dual problem is transformed into

min
t,λi

m∑
i=1

λiρi + t

s.t.

(
−(Ir ⊗ x)(Ir ⊗ x)T +

∑m
i=1 λi(Ir ⊗ (LT

i Li)) −(Ir ⊗ x)(Ax − b)
−(Ax − b)T (Ir ⊗ x)T −‖Ax − b‖2 + t

)
� 0,

λi ≥ 0, i = 1, 2, . . . ,m,

which, by the Schur complement can be written as

min
t,λi

m∑
i=1

λiρi + t

s.t.

⎛⎝ Ir (Ir ⊗ x)T Ax − b
Ir ⊗ x

∑m
i=1 λi(Ir ⊗ (LT

i Li)) 0
(Ax − b)T 0 t

⎞⎠ � 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Finally, we arrive at the following SDP formulation of the RLS problem (8):

min
t,λi,x

m∑
i=1

λiρi + t

s.t.

⎛⎝ Ir (Ir ⊗ x)T Ax − b
Ir ⊗ x

∑m
i=1 λi(Ir ⊗ (LT

i Li)) 0
(Ax − b)T 0 t

⎞⎠ � 0,

λi ≥ 0, i = 1, 2, . . . ,m.

Appendix. A rank reduction algorithm for solvable semidefinite prob-
lems. We review here the rank reduction algorithm of [15] for solving SDP problems
of the form (22).5 The underlying assumption that guarantees the validity of the
process is that problem (22) is solvable and that |I1| + |E1| ≤ ( r+2

2 ) − 1.
Algorithm RED.

Input: X0, an optimal solution to problem (22).
Output: An optimal solution X∗ to problem (22) satisfying rank(X∗) ≤ r.

1. If rank(X0) ≤ r, then go to step 3. Else go to step 2.
2. While rank(X0) > r, repeat steps (a)–(e):

(a) Set d ← rank(X0).
(b) Compute a decomposition of X0: X0 = UUT , where U ∈ Rn×d.
(c) Find a nontrivial solution6 Z0 for the set of homogenous linear equations

in the d× d symmetric variables matrix Z (Z = ZT ):

Tr(UTCiUZ) = 0, i ∈ I1 ∪ E1.

(d) If Z0 � 0, then set W ← −Z0. Else set W ← Z0.
(e) Set X0 ← U(I + βW )UT , where β = −1/λmin(W ).

3. Set X∗ ← X0 and STOP.

5Note that in [15], the SDP problem contains only inequality constraints. However, it is imme-
diately seen that exactly the same rank reduction algorithm also works here.

6Using the relations |I1| + |E1| ≤ ( r+2
2

) − 1, d > r, it is easy to see that the homogenous system
has more variables than equations and, as a result, has a nonzero solution.



1238 AMIR BECK

Note that the algorithm does not make use of the matrix C0 corresponding to
the objective function in (22). Indeed, it can be shown that since the input to the
algorithm is an optimal solution of the SDP problem (22), then the value Tr(C0X0)
remains constant throughout the process.
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MAXIMAL MONOTONICITY FOR THE PRECOMPOSITION WITH
A LINEAR OPERATOR∗
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Abstract. We give the weakest constraint qualification known to us that ensures the maximal
monotonicity of the operator A∗ ◦ T ◦A when A is a linear continuous mapping between two reflex-
ive Banach spaces and T is a maximal monotone operator. As a special case we get the weakest
constraint qualification that guarantees the maximal monotonicity of the sum of two maximal mono-
tone operators on a reflexive Banach space. Then we give a weak constraint qualification assuring
the Brézis–Haraux-type approximation of the range of the subdifferential of the precomposition to
A of a proper convex lower semicontinuous function in nonreflexive Banach spaces, extending and
correcting in a special case an older result due to Riahi.

Key words. maximal monotone operator, Fitzpatrick function, subdifferential, Brézis–Haraux-
type approximation
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1. Introduction. The literature on maximal monotone operators is quite rich,
especially in recent years when their connections to convex analysis, underlined with
the help of some functions (see [12], [15], [16], [21], [23], [24]), were more and more
intensively studied and used. One of the most interesting problems which involves
both maximal monotone operators and convex analysis is the one of finding sufficient
conditions that ensure the maximal monotonicity of the operator A∗ ◦ T ◦ A when
A is a linear continuous mapping between two reflexive Banach spaces and T is a
maximal monotone operator. From the papers dealing with this problem we refer
here to [1], [6], [13], [15], and [24], the latter unifying the results concerning this issue
from the others and giving four equivalent constraint qualifications, the weakest in
the literature known to us. Finding a weaker sufficient condition under which the sum
of two maximal monotone operators on reflexive Banach spaces is maximal monotone
has been an older challenge for many mathematicians, the problem having existed for
more than four decades. From Browder [3] and Rockafellar [20] in the 1960’s to the
recent papers of Simons and Zălinescu [23], Borwein [1], and Zălinescu [24], the con-
ditions imposed on two maximal monotone operators in order to ensure the maximal
monotonicity of their sum became weaker and weaker, the latter paper containing
the weakest constraint qualification known to us so far that guarantees the mentioned
result. We mention here also Simons’ book [21], where many sufficient conditions
for the mentioned problem are recalled, compared, and unified. This book and the
lecture notes [17] due to Phelps are excellent references for anyone interested in max-
imal monotone operators. Within this paper we give a constraint qualification that
guarantees the maximal monotonicity of A∗ ◦T ◦A and is satisfied also by some A and
T that violate the other sufficient conditions known to us, already mentioned. This
condition uses the so-called Fitzpatrick function and has been developed from the one
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introduced by two of the authors in [2] for the Fenchel duality. For a special choice of
A and T we obtain the weakest sufficient condition known to us that guarantees the
maximal monotonicity of the sum of two maximal monotone operators.

Another result in maximal monotonicity for whose fulfillment we give a weaker
sufficient condition is the one concerning the so-called Brézis–Haraux-type approxi-
mation of the range of ∂(f ◦ A), where f is a proper convex lower semicontinuous
function defined on the image space of A with extended real values. Here we work
in nonreflexive Banach spaces. Something similar has been done by Pennanen in [14]
when the image space of A is reflexive. As a special case we recover and correct
a result due to Riahi (see [18]) concerning the Brézis–Haraux-type approximation
(see [21]) of the range of the sum of the subdifferentials of two lower semicontinuous
functions by the sum of the ranges of the two subdifferentials, for which we give a
weaker constraint qualification than in the original paper.

The paper is structured as follows. The next section contains necessary prelimi-
naries, notions, and results used later; then we deal with the maximal monotonicity
of A∗ ◦ T ◦ A and of the sum of two maximal monotone operators. Section 4 deals
with the mentioned Brézis–Haraux-type approximations and is followed by a short
summary of the results proved within the paper.

2. Preliminaries. In this section we introduce and recall some notions and re-
sults in order to make the paper self-contained. Even if the main results in the
paper are given in (reflexive) Banach spaces, some of the preliminaries are valid also
for more general spaces, and thus we begin by considering a nontrivial locally con-
vex topological space X and its continuous dual space X∗, endowed with the weak∗

topology w(X∗, X). By 〈x∗, x〉 we denote the value of the linear continuous func-
tional x∗ ∈ X∗ at x ∈ X. For a subset C of X we have the indicator function
δC : X → R = R ∪ {±∞}, defined by

δC(x) =

{
0 if x ∈ C,
+∞ otherwise,

and we denote by int(C) and cl(C) its interior, respectively, its closure in the cor-
responding topology. For C we define also the linear hull lin(C) as the intersection
of all the linear subspaces of X containing C and the affine hull aff(C) which is the
intersection of all the affine subsets of X containing C. For C ⊆ X convex we denote
the intrinsic relative algebraic interior of C by icC. One has x ∈ic C if and only if
∪λ>0 λ(C − x) is a closed linear subspace of X. We consider also the first projection,
i.e., the function pr1 : X×Y → X, for Y some nontrivial locally convex space, defined
as follows: pr1(x, y) = x for any (x, y) ∈ X × Y .

Given a function f : X → R, we denote its domain by dom(f) = {x ∈ X : f(x) <
+∞} and its epigraph by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r}. For x ∈ X such that
f(x) ∈ R we define the subdifferential of f at x by ∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥
〈x∗, y− x〉}. We call f proper if f(x) > −∞ ∀x ∈ X and dom(f) = ∅. The conjugate
of the function f is f∗ : X∗ → R introduced by

f∗(y) = sup
{
〈y, x〉 − f(x) : x ∈ X

}
.

Between a function and its conjugate there is Young’s inequality

f∗(y) + f(x) ≥ 〈y, x〉 ∀x ∈ X y ∈ X∗.

Consider also the identity function on X defined as follows: idX : X → X, idX(x) = x
∀x ∈ X. When f : X → R and g : Y → R, we define the function f×g : X×Y → R×R
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through f × g(x, y) = (f(x), g(y)), (x, y) ∈ X × Y . When f, g : X → R are proper
functions, we have the infimal convolution of f and g defined by

f�g : X → R, f�g(a) = inf{f(x) + g(a− x) : x ∈ X}.

Given a linear continuous mapping A : X → Y , we have its image-set Im(A) = AX =
{Ax : x ∈ X} ⊆ Y and its adjoint A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for
any (x, y∗) ∈ X × Y ∗. For the proper function f : X → R we define also the infimal
function of f through A as Af : Y → R, Af(y) = inf

{
f(x) : x ∈ X, Ax = y

}
, y ∈ Y .

Throughout the present paper when an infimum or a supremum is attained we write
min, respectively, max instead of inf and sup.

Further we give some results concerning the composition of a function with a
linear continuous operator.

Lemma 1 (cf. [8, Theorem 2.7]). Let X and Y be nontrivial locally convex spaces,
A : X → Y a linear continuous mapping, and f : Y → R a proper, convex, and lower
semicontinuous function such that f ◦A is proper on X. Then

epi((f ◦A)∗) = cl(epi(A∗f∗)),(1)

where the closure is taken in the product topology of (X∗, τ) × R, for every locally
convex topology τ on X∗ giving X as dual.

Remark 1. Significant choices for τ in the preceding lemma are the weak∗ topol-
ogy w(X∗, X) on X∗ or the norm topology of X∗ in case X is a reflexive Banach
space.

Lemma 2 (cf. [2, Theorem 2.4]). Let X and Y be nontrivial locally convex spaces,
τ a compatible topology on X∗, A : X → Y a linear continuous mapping, and f :
Y → R a proper function. Then

cl(epi(A∗f∗)) = cl(A∗ × idR(epi(f∗))),(2)

where the closure is taken in the product topology of (X∗, τ) × R.
Taking into (1) and (2) the closure in the product topology of (X∗, τ) × R, with

τ any locally convex topology on X∗ giving X as dual, we get

epi((f ◦A)∗) = cl(epi(A∗f∗)) = cl(A∗ × idR(epi(f∗))).(3)

Definition 1. A set M ⊆ X is said to be closed regarding the subspace Z ⊆ X
if M ∩ Z = cl(M) ∩ Z.

Proposition 1. Let X, Y , and U be nontrivial locally convex spaces, A : X → Y
a linear continuous mapping, and f : Y → R a proper, convex, and lower semicontin-
uous function such that f ◦A is proper on X. Consider, moreover, a linear mapping
M : U → X∗. Let τ be any locally convex topology on X∗ giving X as dual. The
following statements are equivalent.

(a) A∗ × idR(epi(f∗)) is closed regarding the subspace Im(M)× R in the product
topology of (X∗, τ) × R.

(b) (f ◦A)∗(Mu) = min
{
f∗(y∗) : A∗y∗ = Mu

}
∀u ∈ U .

Proof. Because f is proper, convex, and lower semicontinuous, A linear and
continuous, and f ◦ A proper it follows that (f ◦ A)∗ is proper, convex, and lower
semicontinuous.

(a) ⇒ (b) Let u ∈ U . For any y∗ ∈ Y ∗ fulfilling A∗y∗ = Mu we have

f∗(y∗) ≥ sup
x∈X

{〈y∗, Ax〉 − f(Ax)} = sup
x∈X

{〈Mu, x〉 − (f ◦A)(x)} = (f ◦A)∗(Mu),
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and so we conclude that

inf
{
f∗(y∗) : A∗y∗ = Mu

}
≥ (f ◦A)∗(Mu).(4)

If (f ◦ A)∗(Mu) = +∞, then (4) yields f∗(y∗) = +∞ = (f ◦ A)∗(Mu) for any
y∗ ∈ Y ∗ such that A∗y∗ = Mu. Consider further the case (f ◦ A)∗(Mu) ∈ R. It
follows that (Mu, (f ◦ A)∗(Mu)) ∈ epi((f ◦ A)∗), and it is clear that it belongs also
to Im(M) × R. By (3), (a) gives

(A∗ × idR(epi(f∗))) ∩ (Im(M) × R) = cl(A∗ × idR(epi(f∗))) ∩ (Im(M) × R)

= epi((f ◦A)∗) ∩ (Im(M) × R),

and so there is some ȳ∗ ∈ Y ∗ such that A∗ȳ∗ = Mu and (ȳ∗, (f ◦A)∗(Mu)) ∈ epi(f∗)
or, equivalently, f∗(ȳ∗) ≤ (f ◦A)∗(Mu). Thus by (4) we get

min
{
f∗(y∗) : A∗y∗ = Mu

}
= (f ◦A)∗(Mu).(5)

(b) ⇒ (a) From (3) one gets epi((f ◦A)∗) ⊇ A∗ × idR(epi(f∗)), followed by

epi((f ◦A)∗) ∩ (Im(M) × R) ⊇ (A∗ × idR(epi(f∗))) ∩ (Im(M) × R).

For any pair (x∗, r) ∈ epi((f ◦ A)∗) ∩ (Im(M) × R) there is some u ∈ U such that
x∗ = Mu and we have (f ◦ A)∗(x∗) = (f ◦ A)∗(Mu) ≤ r. The hypothesis (b)
grants the existence of an ȳ∗ ∈ Y ∗ satisfying both A∗ȳ∗ = Mu = x∗ and f∗(ȳ∗) =
(f ◦A)∗(Mu) ≤ r, i.e., (ȳ∗, r) ∈ epi(f∗). Thus (x∗, r) = (A∗ȳ∗, r) ∈ A∗× idR(epi(f∗)),
and as one thus gets

epi((f ◦A)∗) ∩ (Im(M) × R) ⊆ (A∗ × idR(epi(f∗))) ∩ (Im(M) × R),

the conclusion follows by (3).
Corollary 1 (cf. [2, Theorem 3.3]). Let X and Y be nontrivial locally convex

spaces, A : X → Y a linear continuous mapping, and f : Y → R a proper, convex,
and lower semicontinuous function such that f ◦ A is proper. Let τ be any locally
convex topology on X∗ giving X as dual. Then

(i) A∗ × idR(epi(f∗)) is closed in the product topology of (X∗, τ)×R if and only
if for any x∗ ∈ X∗ one has

(f ◦A)∗(x∗) = min{f∗(y∗) : A∗y∗ = x∗};

(ii) if A∗ × idR(epi(f∗)) is closed in the product topology of (X∗, τ)×R, then for
any x ∈ dom(f ◦A) one has ∂(f ◦A)(x) = A∗∂f(Ax).

Proof. (i) follows from Proposition 1 when taking U = X∗ and M = idX∗ , while
for (ii) we refer the reader to [2] and [11].

Remark 2. Let τ be any locally convex topology on X∗ giving X as dual. We know
that A∗ × idR(epi(f∗)) ⊆ epi(A∗f∗) ⊆ epi((f ◦A)∗) (see Lemmas 1 and 2). From (3)
it follows that A∗ × idR(epi(f∗)) is closed in the product topology of (X∗, τ) × R if
and only if

A∗ × idR(epi(f∗)) = epi(A∗f∗) = epi((f ◦A)∗).

The second part of this section in devoted to monotone operators and some of
their properties. Consider further X a Banach space equipped with the norm ‖ · ‖,
while the norm on X∗ is ‖ · ‖∗.
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Definition 2 (cf. [20]). A multifunction T : X ⇒ X∗ is called a monotone
operator, provided that for any x, y ∈ X one has

〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ T (x) and y∗ ∈ T (y).

Definition 3 (cf. [20]). For any monotone operator T : X ⇒ X∗ we have

• its effective domain D(T ) = {x ∈ X : T (x) = ∅},
• its range R(T ) = ∪{T (x) : x ∈ X},
• its graph G(T ) = {(x, x∗) : x ∈ X, x∗ ∈ T (x)}.

Definition 4 (cf. [20]). A monotone operator T : X ⇒ X∗ is called maximal
when its graph is not properly included in the graph of any other monotone operator
T ′ : X ⇒ X∗.

The subdifferential of a proper convex lower semicontinuous function on X is
a typical example of a maximal monotone operator (see [19]). As we shall see in
section 4, it belongs to many other classes of operators, too. We introduce also the
duality map J : X ⇒ X∗ defined as follows:

J(x) =
1

2
∂‖x‖2 =

{
x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗, x〉

}
∀x ∈ X,

because it gives the following criterion for the maximal monotonicity of a monotone
operator T : X ⇒ X∗.

Proposition 2 (cf. [1], [21]). A monotone operator T on a reflexive Banach
space X is maximal if and only if the mapping T (x+ ·) + J(·) is surjective ∀x ∈ X.

As underlined by many authors (see [1], [12], [15], [16], [21], [23], [24]), there are
strong connections between the maximal monotone operators and convex analysis.
They are best noticeable by the Fitzpatrick function associated with the monotone
operators (see [7]). Rediscovered after some years, it proved to be crucial in treating
the problem of maximal monotonicity of the sum of maximal monotone operators
within the latest papers on the subject [1], [16], [23], [24]. To a monotone operator
T : X ⇒ X∗ Fitzpatrick attached the function

ϕT : X ×X∗ → R, ϕT (x, x∗) = sup
{
〈y∗, x〉 + 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ T (y)

}
.

For any monotone operator T it is quite clear that ϕT is a convex lower semicontinuous
function as a supremum of a family of continuous affine functions. An important result
regarding the Fitzpatrick function and its conjugate in reflexive Banach spaces follows.

Proposition 3 (cf. [5], [7], [15], [23]). Let T be a maximal monotone operator
on a reflexive Banach space X. Then for any pair (x, x∗) ∈ X ×X∗ we have

ϕ∗
T (x∗, x) ≥ ϕT (x, x∗) ≥ 〈x∗, x〉.

Moreover, ϕ∗
T (x∗, x) = ϕT (x, x∗) = 〈x∗, x〉 if and only if (x, x∗) ∈ G(T ).

3. Maximal monotonicity for the precomposition with a linear opera-
tor. Within this section X and Y will be reflexive Banach spaces. Given the maximal
monotone operator T on Y and the linear continuous mapping A : X → Y , such
that A−1

(
pr1(dom(ϕT ))

)
= ∅, we introduce the operator TA : X ⇒ X∗ defined by

TA(x) = A∗ ◦T ◦A(x), x ∈ X, which is monotone but not always maximal monotone.
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3.1. Maximal monotonicity for TA. Various conditions which ensure the
maximal monotonicity of TA were given in many recent papers, among which we
mention [1], [6], [13], [15], and [24]. We prove, using an idea due to Borwein [1],
that TA is maximal monotone, provided that the following constraint qualification is
fulfilled:

A∗ × idY × idR(epi(ϕ∗
T )) is closed regarding the subspace X∗ × Im(A) × R.(CQ)

Theorem 1. If (CQ) is fulfilled, then TA is a maximal monotone operator.
Proof. Let us fix some z ∈ X and z∗ ∈ X∗ and consider f, g : X × X∗ → R,

defined by

f(x, x∗) = inf{ϕT (A(x + z), y∗) − 〈y∗, Az〉 : A∗y∗ = x∗ + z∗}

and

g(x, x∗) =
1

2
‖x‖2 +

1

2
‖x∗‖2

∗ − 〈z∗, x〉, (x, x∗) ∈ X ×X∗.

As f and g are convex and the latter is continuous we can apply Fenchel’s duality
theorem (see [25]) that guarantees the existence of some pair (x̄∗, x̄) ∈ X∗ ×X such
that

inf
(x,x∗)∈X×X∗

{f(x, x∗) + g(x, x∗)} = max
(x∗,x)∈X∗×X

{−f∗(x∗, x) − g∗(−x∗,−x)}

= −f∗(x̄∗, x̄) − g∗(−x̄∗,−x̄).(6)

Let us calculate the conjugates of f and g. Before this we introduce the linear con-
tinuous operator B = A× idY ∗ . For any (w∗, w) ∈ X∗ ×X we have

f∗(w∗, w) = sup
x∈X,
x∗∈X∗

{
〈w∗, x〉 + 〈x∗, w〉 − inf

A∗y∗=x∗+z∗
{ϕT (A(x + z), y∗) − 〈y∗, Az〉}

}
= sup

(x,x∗)∈X×X∗, y∗∈Y ∗,
A∗y∗=x∗+z∗

{〈w∗, x〉 + 〈x∗, w〉 − ϕT (A(x + z), y∗) + 〈y∗, Az〉}

= sup
x∈X, y∗∈Y ∗,
u=x+z∈X

{〈w∗, u− z〉 + 〈A∗y∗ − z∗, w〉 − ϕT (A(u), y∗) + 〈A∗y∗, z〉}

= sup
u∈X,
y∗∈Y ∗

{〈w∗, u〉 + 〈y∗, A(w + z)〉 − (ϕT ◦B)(u, y∗)} − 〈w∗, z〉 − 〈z∗, w〉

= (ϕT ◦B)∗(w∗, A(w + z)) − 〈w∗, z〉 − 〈z∗, w〉

and

g∗(w∗, w) = sup
x∈X,
x∗∈X∗

{
〈w∗, x〉 + 〈x∗, w〉 − 1

2
‖x‖2 − 1

2
‖x∗‖2

∗ + 〈z∗, x〉
}

=
1

2
‖w∗ + z∗‖2

∗ +
1

2
‖w‖2.

Proposition 1 ensures that (CQ) is equivalent to the fact that for any (w∗, w) ∈ X∗×X
one has

(ϕT ◦B)∗(w∗, Aw) = min
(y∗,y)∈Y ∗×Y

{ϕ∗
T (y∗, y) : B∗(y∗, y) = (w∗, Aw)}.
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For any (x, x∗) ∈ X×X∗ and y∗ ∈ Y ∗ such that A∗y∗ = x∗+z∗, by Proposition 3,
we have

ϕT (A(x + z), y∗) − 〈y∗, Az〉 ≥ 〈y∗, Ax + Az〉 − 〈y∗, Az〉 = 〈A∗y∗, x〉 = 〈x∗, x〉 + 〈z∗, x〉,

and so f(x, x∗) ≥ 〈x∗, x〉+〈z∗, x〉. Since g(x, x∗) ≥ −〈x∗, x〉−〈z∗, x〉 we get f(x, x∗)+
g(x, x∗) ≥ 0. Thus inf(x,x∗)∈X×X∗{f(x, x∗)+g(x, x∗)} ≥ 0, and taking it into (6) one
gets f∗(x̄∗, x̄) + g∗(−x̄∗,−x̄) ≤ 0, i.e.,

(ϕT ◦B)∗(x̄∗, A(x̄ + z)) − 〈x̄∗, z〉 − 〈z∗, x̄〉 +
1

2
‖−x̄∗ + z∗‖2

∗ +
1

2
‖−x̄‖2 ≤ 0.(7)

From Proposition 1 we have

(ϕT ◦B)∗(x̄∗, A(x̄ + z)) = min
(y∗,y)∈Y ∗×Y

{ϕ∗
T (y∗, y) : B∗(y∗, y) = (x̄∗, A(x̄ + z))},

with the minimum attained at some (ȳ∗, ȳ) ∈ Y ∗×Y . As the adjoint operator of B is
B∗ : Y ∗×Y → X∗×Y , B∗(y∗, y) = (A∗y∗, y), it follows that B∗(ȳ∗, ȳ) = (A∗ȳ∗, ȳ) =
(x̄∗, A(x̄ + z)). Taking the last two relations into (7) we have

0 ≥ ϕ∗
T (ȳ∗, ȳ) − 〈x̄∗, z〉 − 〈z∗, x̄〉 +

1

2
‖x̄∗ − z∗‖2

∗ +
1

2
‖x̄‖2

= ϕ∗
T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, Az〉 − 〈ȳ∗, Ax̄〉 + 〈ȳ∗, Ax̄〉 − 〈z∗, x̄〉 +

1

2
‖x̄‖2

+
1

2
‖A∗ȳ∗ − z∗‖2

∗ =
(
ϕ∗
T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, A(x̄ + z)〉

)
+

(
〈A∗ȳ∗ − z∗, x̄〉 +

1

2
‖A∗ȳ∗ − z∗‖2

∗ +
1

2
‖x̄‖2

)
≥ 0,

where the last inequality comes from Proposition 3. Thus the inequalities above must
be fulfilled as equalities, and so

ϕ∗
T (ȳ∗, A(x̄ + z)) − 〈ȳ∗, A(x̄ + z)〉 = 0;

i.e., by Proposition 3, ȳ∗ ∈ T ◦A(x̄ + z) and

〈A∗ȳ∗ − z∗, x̄〉 +
1

2
‖A∗ȳ∗ − z∗‖2

∗ +
1

2
‖x̄‖2 = 0,

i.e., z∗−A∗ȳ∗ ∈ ∂ 1
2‖·‖2(x̄). Further one has A∗ȳ∗ ∈ A∗◦T ◦A(z+ x̄) = TA(z+ x̄) and

z∗ − A∗ȳ∗ ∈ J(x̄), and so z∗ ∈ TA(z + x̄) + J(x̄). As z and z∗ have been arbitrarily
chosen, Proposition 2 yields the conclusion.

Remark 3. We compare in the following the constraint qualification (CQ) to
some generalized interior-point regularity conditions given in the literature in order
to ensure the maximality of the monotone operator TA. Under the condition in [6]
one gets the fulfillment of the ones considered in [1] and [15], which imply the ones in
[13] and [24], that are actually equivalent (according to Theorem 7 in [24]) to⋃

λ>0

λ(D(T ) − Im(A)) is a closed linear subspace.(CQZ)

By Corollary 3.6 in [16] this is nothing but 0 ∈ic (pr1(dom(ϕT )) − Im(A)) or,
equivalently, ∪λ>0 λ(pr1(dom(ϕT )) − Im(A)) is a closed linear subspace. This is ac-
tually the same with ∪λ>0 λ

(
dom(ϕT )− Im(A)× Y ∗) being a closed linear subspace,
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and so, taking into account that B = A× idY ∗ , 0 ∈ic (dom(ϕT )−Im(B)). This yields,
by Theorem 2.3.8(vii) in [25],

(ϕT ◦B)∗(w∗, Aw) = min
(y∗,y)∈Y ∗×Y

{ϕ∗
T (y∗, y) : B∗(y∗, y) = (w∗, Aw)},

which is equivalent to (CQ). Therefore (CQZ) ⇒ (CQ). A counterexample to show
that it is possible to have (CQ) satisfied and (CQZ) violated is given later.

Remark 4. The maximal monotonicity of TA is valid also when imposing the
constraint qualification

A∗ × idY × idR(epi(ϕ∗
T )) is closed.(C̃Q)

The only difference in the proof is that we use Corollary 1(i) instead of Proposition 1.

One may notice that we have (CQZ) ⇒ (C̃Q) ⇒ (CQ); i.e., (C̃Q) is still weaker than
(CQZ).

The remaining part of the section is dedicated to the proof of the fact that (CQ)
is indeed weaker than (CQZ).

Example 1. Let X = R and Y = R×R. Then X∗ = R and Y ∗ = R×R. Consider
the operator T : R × R → 2R×R defined by

T (x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−∞, 0] × {0} if x = 0, y < 0,
(−∞, 0] × [0,+∞) if x = y = 0,
{x} × {0} if x > 0, y < 0,
{x} × [0,+∞) if x > 0, y = 0,
∅ otherwise.

It is not difficult to notice that, considering the following proper, convex, and lower
semicontinuous functions f, g : R → R, f(x) = (1/2)x2 + δ[0,+∞)(x), and g = δ(−∞,0],

for any (x, y) ∈ R × R we have T (x, y) =
(
∂f(x), ∂g(y)

)
, and thus T is a maximal

monotone operator. Taking A : R → R × R, Ax = (x, x), one gets, for any x ∈ R,

TA(x) = A∗ ◦ T ◦A(x) = ∂f(x) + ∂g(x) =

{
R if x = 0,
∅ otherwise,

and thus TA is a maximal monotone operator, too.
Let us calculate the conjugate of ϕT to see if (CQ) is fulfilled. We have

∀(x, y, x∗, y∗) ∈ R × R × R × R

ϕT (x, y, x∗, y∗) =

⎧⎪⎨⎪⎩
(

x+x∗

2

)2

if x ≥ 0, x + x∗ > 0, y ≤ 0, y∗ ≥ 0,

0 if x ≥ 0, x + x∗ ≤ 0, y ≤ 0, y∗ ≥ 0, and
+∞ otherwise,

ϕ∗
T (x∗, y∗, x, y) =

{
x2 if x ≥ 0, x ≥ x∗, y∗ ≥ 0, y ≤ 0,
+∞ otherwise.

Thus the epigraph of the conjugate is

epi(ϕ∗
T ) =

⋃
x≥0

(
(−∞, x] × [0,+∞) × {x} × (−∞, 0] × [x2,+∞)

)
,

and so

A∗ × idR×R × idR(epi(ϕ∗
T )) = R ×

⋃
x≥0

(
{x} × (−∞, 0] × [x2,+∞)

)
,
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which is closed; i.e., (C̃Q) is valid. Thus it is closed regarding the subspace R ×
Im(A) × R = R × ΔR × R, too; i.e., (CQ) is satisfied for the chosen T and A. Here
we used the notation ΔX = {(x, x) : x ∈ X}, in case X = R.

Let us calculate now ∪λ>0 λ(D(T ) − Im(A)) in order to check the validity of
(CQZ). It is clear that D(T ) = [0,+∞) × (−∞, 0] and Im(A) = ΔR. We have
D(T ) − Im(A) = {[x,+∞) × (−∞, x] : x ∈ R}, and so⋃

λ>0

λ(D(T ) − Im(A)) = {[x,+∞) × (−∞, x] : x ∈ R} = {(x, y) ∈ R : x ≥ y},

which is not a subspace, and thus (CQZ) is violated. Therefore, even if (CQZ) implies
(CQ), the reverse implication does not always hold; i.e., (CQ) is indeed weaker than
(CQZ).

3.2. Maximal monotonicity for the sum of two maximal monotone op-
erators. An important special case of the problem treated in Theorem 1 is the situ-
ation when the sum of two maximal monotone operators is maximal monotone. This
case is obtained from the general one by taking Y = X × X, A(x) = (x, x) for any
x ∈ X and T : X × X → X∗ × X∗, T (x, y) = (T1(x), T2(y)) when (x, y) ∈ X × X,
where T1 and T2 are maximal monotone operators on X. It is a simple verifica-
tion to show that T is maximal monotone. Having these choices, for any x ∈ X we
have TA(x) = T1(x) + T2(x). Moreover, the condition on the domain of ϕT becomes
pr1(dom(ϕT1)) ∩ pr1(dom(ϕT2

)) = ∅.
The literature concerning the maximal monotonicity of T1 +T2 is richer than the

one in the more general case. Let us mention here, alongside the papers already cited
above, also [3], [20], and [23]. A comprehensive study on this problem is available
in [21] (see also [24]), where many sufficient conditions for the maximal monotonicity
of the sum of two maximal monotone operators are compared and classified.

Our constraint qualification (CQ) becomes in this special case

{(x∗ + y∗, x, y, r) : ϕ∗
T1

(x∗, x) + ϕ∗
T2

(y∗, y) ≤ r} is closed regarding the
subspace X∗ × ΔX × R.

(CQs)

Introducing the function (see [23])

ρ : X ×X∗ → R, ρ(v, v∗) = inf
x∗,y∗∈X∗

{ϕT1(v, x
∗) + ϕT2(v, y

∗) : x∗ + y∗ = v∗},

by using Proposition 1, one can show that (CQs) is equivalent to

ρ∗(w∗, w) = min
x,y∈X,

x∗,y∗∈X∗

{ϕ∗
T1

(x∗, x) + ϕ∗
T2

(y∗, y) : x∗ + y∗ = w∗, x = y = w}

= min
x∗,y∗∈X∗,
x∗+y∗=w∗

{ϕ∗
T1

(x∗, w) + ϕ∗
T2

(y∗, w)}.

In [23] Simons and Zălinescu prove that a sufficient condition for having this
equality fulfilled is ⋃

λ>0

(
pr1(dom(ϕT1)) − pr1(dom(ϕT2))

)
being a closed linear subspace, which was the weakest constraint qualification guar-
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anteeing the maximal monotonicity of T1 + T2 known so far. Consequently, (CQ)
delivers the weakest constraint qualification for the maximal monotonicity of sum of
two maximal monotone operators.

Theorem 2. Let T1 and T2 be maximal monotone operators on X such that
pr1(dom(ϕT1))∩ pr1(dom(ϕT2

)) = ∅. If (CQs) is fulfilled, then T1 + T2 is a maximal
monotone operator on X.

Remark 5. The other constraint qualification we gave, (C̃Q), becomes in this
case

{(x∗ + y∗, x, y, r) : ϕ∗
T1

(x∗, x) + ϕ∗
T2

(y∗, y) ≤ r} is closed.(C̃Q
s
)

One can prove that (C̃Q
s
) is weaker than the other constraint qualifications men-

tioned within this subsection, except (CQs), which is implied by it.

Remark 6. One of the reviewers suggested that we try to obtain a constraint
qualification for the maximal monotonicity of the precomposition with a linear oper-
ator assuming (CQs) to be known, by using the approach in [16]. For an appropriate
choice of the monotone operators in the sum we have obtained Theorem 1 from The-
orem 2. Let us notice that the same applies when using the approach in [9], quite
different from the one in [16], for expressing the precomposition via a sum of monotone
operators.

4. Brézis–Haraux-type approximation of the range of the subdifferen-
tial of the precomposition with a linear operator. Within this part X and Y
are considered Banach spaces, unless otherwise specified. Let us mention that, unlike
in the previous section, here we do not ask these spaces to be, moreover, reflexive. We
rectify, weaken, and generalize a statement due to Riahi [18] concerning the so-called
Brézis–Haraux-type approximation of the range of the sum of the subdifferentials of
two proper convex lower semicontinuous functions, giving it for the operator TA intro-
duced in the previous section. Riahi’s statement is recovered as a special case, under
a weaker sufficient condition than in the original paper.

4.1. Some preliminaries. We need to introduce some notions and to recall
some results which are dealt with only within this part. First, we define the so-called
monotone operators of dense type, originally introduced by Gossez in [10], of type 3∗,
also known as star monotone and of type (BH), and operators of type (NI). Let us
stress once again that we work in nonreflexive Banach spaces.

Before this we need to introduce τ1 as being the weakest topology on X∗∗ which
renders continuous the following real functions:

X∗∗ → R : x∗∗ �→ 〈x∗∗, x∗〉 ∀x∗ ∈ X∗,

X∗∗ → R : x∗∗ �→ ‖x∗∗‖.

The topology τ considered in X∗∗ × X∗ will be the product topology of τ1 and the
strong (norm) topology of X∗ (see [10]) .

Definition 5 (cf. [10]). A monotone operator T : Y ⇒ Y ∗ is called of dense
type, provided that the closure operator T : Y ∗∗ ⇒ Y ∗ that is defined as follows:

G(T ) = {(x∗∗, x∗) ∈ Y ∗∗ × Y ∗ : ∃(xi, x
∗
i )i ∈ G(T ) with (x̂i, x

∗
i )

τ→ (x∗∗, x∗)}

is maximal monotone.
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Different from Riahi in [18], where these operators are called densely maximal
monotone, we decided to call them of dense type as originally done by Gossez in [10].
By Lemme 2.1 in the same paper, for a monotone operator T : Y ⇒ Y ∗ of dense type,
one has (x∗∗, x∗) ∈ G(T ) if and only if 〈x∗∗ − ŷ, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(T ).

Definition 6 (cf. [6], [14], [18]). A monotone operator T : Y ⇒ Y ∗ is called
3∗-monotone if ∀x∗ ∈ R(T ) and x ∈ D(T ) there is some β(x∗, x) ∈ R such that
infy∗∈T (y)〈x∗ − y∗, x− y〉 ≥ β(x∗, x).

Definition 7 (cf. [21], [22]). An operator T : Y ⇒ Y ∗ is called of type (NI) if
∀(x∗∗, x∗) ∈ Y ∗∗ × Y ∗ one has infy∗∈T (y)〈ŷ − x∗∗, y∗ − x∗〉 ≤ 0.

Some necessary results follow.
Lemma 3 (cf. [18]). Given the operator T : Y ⇒ Y ∗ of dense type and the

nonempty subset E ⊆ Y ∗ such that for any x∗ ∈ E there is some x ∈ Y fulfilling
infy∗∈T (y)〈y∗ − x∗, y − x〉 > −∞, one has E ⊆ cl(R(T )) and int(E) ⊆ R(T ).

Proposition 4. If T : Y ⇒ Y ∗ is 3∗-monotone and A : X → Y is a linear
continuous mapping such that TA is of dense type, then

(i) A∗(R(T )) ⊆ cl(R(TA)),
(ii) int(A∗(R(T ))) ⊆ R(TA).
Proof. As T is 3∗-monotone, we have for any s ∈ D(T ) and any s∗ ∈ R(T ) that

there is some β(s∗, s) ∈ R such that β(s∗, s) ≤ infx∗∈T (x)〈s∗ − x∗, s− x〉.
To apply Lemma 3 for E = A∗(R(T )) and TA, we need to verify if they satisfy

its hypothesis. Take some u∗ ∈ A∗(R(T )), and thus there is an v∗ ∈ R(T ) such that
u∗ = A∗v∗. We have for any u ∈ X

inf
x∗∈TA(x)

〈x∗ − u∗, x− u〉 = inf
t∗∈T◦A(x)

〈A∗t∗ −A∗v∗, x− u〉

= inf
t∗∈T◦A(x)

〈t∗ − v∗, A(x− u)〉 ≥ inf
t∗∈T (t)

〈t∗ − v∗, t−Au)〉 ≥ β(v∗, Au) > −∞.

Having this fulfilled for any u, we apply Lemma 3 which yields (i) and (ii).
Proposition 5 (cf. [10, Remark 1]). In reflexive Banach spaces every maximal

monotone operator is of dense type and coincides with its closure operator.
The last result we give here carries the 3∗-monotonicity from T to TA.
Proposition 6. If T : Y ⇒ Y ∗ is 3∗-monotone and A : X → Y is a linear

continuous mapping, then TA is 3∗-monotone, too.
Proof. Take x∗ ∈ R(TA); i.e., there is some z ∈ X such that x∗ ∈ A∗ ◦ T ◦ A(z).

Thus there exists a z∗ ∈ T ◦A(z) satisfying x∗ = A∗z∗. Clearly, z∗ ∈ R(T ). Consider
also an x ∈ D(TA) and denote u = Ax ∈ D(T ). When y∗ ∈ TA(y) there is some
t∗ ∈ T ◦A(y) such that y∗ = A∗t∗. We have

inf
y∗∈TA(y)

〈x∗ − y∗, x− y〉 = inf
t∗∈T◦A(y)

〈A∗z∗ −A∗t∗, x− y〉

= inf
t∗∈T◦A(y)

〈z∗ − t∗, A(x− y)〉

≥ inf
t∗∈T (v)

〈z∗ − t∗, u− v〉 ≥ β(z∗, u) ∈ R,

as T is 3∗-monotone. Therefore TA is 3∗-monotone, too.

4.2. Rectifying and extending Riahi’s results. We give here the main re-
sults in this section concerning the so-called Brézis–Haraux-type approximation (see
[21]) of the range of the operator TA (respectively, of the subdifferential of the precom-
position of a linear continuous mapping with a proper convex lower semicontinuous
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function). Some results related to them were obtained by Pennanen in [14] but in
reflexive spaces.

Theorem 3. If T : Y ⇒ Y ∗ is 3∗-monotone and A : X → Y is a linear
continuous mapping such that TA is of dense type, then

(i) cl(A∗(R(T ))) = cl(R(TA)),
(ii) int(R(TA)) ⊆ int(A∗(R(T ))) ⊆ int(R(TA)).

Proof. By Proposition 4(i) we have also cl(A∗(R(T ))) ⊆ cl(R(TA)) and int(A∗(R
(T ))) ⊆ int(R(TA)). Take some x∗ ∈ R(TA). Then there are some x ∈ X and y∗ ∈ T ◦
A(x) ⊆ R(T ) such that x∗ = A∗y∗. Thus x∗ ∈ A∗(R(T )), and so R(TA) ⊆ A∗(R(T )),
and so the same inclusion stands also between the closures (respectively, the interiors)
of these sets. Relations (i) and (ii) follow immediately by Proposition 4.

Remark 7. The previous statement generalizes Theorem 1 in [18], which can be
obtained for Y = X × X, Ax = (x, x), and T = (T1, T2). The next consequence
extends Corollary 1 in [18] which arises for the same choice of Y , A, and T .

Corollary 2. Assume X to be, moreover, reflexive and let T : Y ⇒ Y ∗

be 3∗-monotone and A : X → Y a linear continuous mapping such that TA is
maximal monotone. Then one has cl(A∗(R(T ))) = cl(R(TA)) and int(R(TA)) =
int(A∗(R(T ))).

Proof. As X is reflexive, Proposition 5 yields that TA is of dense type and that
TA and TA coincide. We apply Theorem 3, which yields the conclusion.

The next statement generalizes Corollary 2 in [18], providing, moreover, a weaker
constraint qualification under which one can assert the Brézis–Haraux-type approx-
imation of the range of the sum of the subdifferentials of two proper convex lower
semicontinuous functions. First, we give the constraint qualification that guarantees
our more general result,

A∗ × idR(epi(f∗)) is closed in the product topology of (X∗, w(X∗, X)) × R.(CQ)

Theorem 4. Let the proper convex lower semicontinuous function f : Y → R

and the linear continuous operator A : X → Y such that f ◦A be proper and assume
(CQ) to be valid. Then one has

(i) cl(A∗(R(∂f))) = cl(R(∂(f ◦A))),
(ii) int(R(∂(f ◦A))) ⊆ int(A∗(R(∂f))) ⊆ int(D(∂(A∗f∗))).

Proof. By Corollary 1(ii) we know that (CQ) implies A∗◦∂f◦A = ∂(f◦A). Again,
f ◦ A is proper, convex, and lower semicontinuous, and so by Théoréme 3.1 in [10]
we know that ∂(f ◦ A) is an operator of dense type, while according to Theorem B
in [19] (see also [14], [18]) ∂f is 3∗-monotone. Applying Theorem 3 for T = ∂f we
get cl(A∗(R(∂f))) = cl(R(A∗ ◦ ∂f ◦ A)), which with (CQ) yields (i), and int(R(A∗ ◦
∂f ◦A)) ⊆ int(A∗(R(∂f))) ⊆ int(R(A∗ ◦ ∂f ◦A)). Using (CQ) the latter becomes

int(R(∂(f ◦A))) ⊆ int(A∗(R(∂f))) ⊆ int(R(∂(f ◦A))).(8)

As from Corollary 1(i) one may deduce that under (CQ) A∗f∗ = (f ◦ A)∗, by
Théoréme 3.1 in [10] we get R(∂(f ◦A)) = D(∂(f ◦ A)∗) = D(∂(A∗f∗)). Taking
this into (8) we get (ii).

When one takes Y = X × X, Ax = (x, x), and f(x, y) = g(x) + h(y), where
x, y ∈ X, the constraint qualification (CQ) becomes (see [2])

epi(g∗) + epi(h∗) is closed in the product topology of (X∗, w(X∗, X)) × R.(CQ
s
)
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Corollary 3. Let g and h be two proper convex lower semicontinuous functions
on the Banach space X with extended real values such that dom(g) ∩ dom(h) = ∅.
Assume (CQ

s
) satisfied. Then one has

(i) cl(R(∂g) + R(∂h)) = cl(R(∂(g + h))),
(ii) int(R(∂(g + h))) ⊆ int(R(∂g) + R(∂h)) ⊆ int(D(∂(g∗�h∗))).
A similar result has been obtained by Riahi in Corollary 2 in [18]. There he said

that under the constraint qualification⋃
t>0

t(dom(g) − dom(h)) is a closed linear subspace of X,(CQR)

one gets cl(R(∂g) + R(∂h)) = cl(R(∂(g + h))) and int(R(∂g) + R(∂h)) = int(D(∂
(g∗�h∗))).

We prove that the latter is not always true when (CQR) stands. For a proper,
convex, and lower semicontinuous function g : X → R Riahi’s relation would become
int(R(∂g)) = int(D(∂g∗)), which is equivalent, by Théoréme 3.1 in [10] to

int(R(∂g)) = int(R(∂g)).(9)

From the above mentioned theorem we also have that ∂g is a monotone operator of
dense type, and it is also known that it is maximal monotone, too. According to
Simons [22] ∂g is also of type (NI). Finally, by Lemme 2.1 in [10] and by Theo-
rem 20 in [22], we get that int(R(∂g)) is convex, and so (9) yields int(R(∂g)) convex.
Unfortunately this is not always true, as Example 2.21 in [17], originally given by
Fitzpatrick, shows. Take X = c0, which is a Banach space with the usual supremum
norm, and g(x) = ‖x‖+ ‖x− (1, 0, 0, . . . )‖, a proper, convex, and continuous function
on c0. Skipping the calculatory details, it follows that int(R(∂g)) is not convex, unlike
intR(∂g). Thus (9) is false and the same happens to Riahi’s allegation.

Remark 8. As proven in Proposition 3.1 in [4] (see also [2]), (CQR) implies
(CQ

s
), but the converse is not true, as shown by Example 3.1 in the same paper.

Therefore our Corollary 3 extends, by weakening the constraint qualification, and
corrects Corollary 2 in [18].

5. Conclusions. Given a maximal monotone operator T on the reflexive Banach
space Y and the linear continuous operator A : X → Y , where X is a reflexive Banach
space, too, we give a sufficient condition for the maximal monotonicity of A∗ ◦ T ◦A
weaker than the generalized interior-point regularity conditions known to us from the
literature. Moreover, when Y , A, and T are chosen such that the assertion turns
into the maximal monotonicity of the sum of two maximal monotone operators on a
reflexive Banach space X, we prove that our constraint qualification is actually the
weakest condition guaranteeing the mentioned result known to us. In the second part
of the paper, where we work in nonreflexive Banach spaces, we rectify and extend a
result due to Riahi, giving a weak constraint qualification in order to ensure the so-
called Brézis–Haraux-type approximation of the range of ∂(f ◦ A), where f : Y → R

is a proper convex lower semicontinuous function. For a special choice of functions
we prove that the corrected version of Riahi’s results holds under a weaker constraint
qualification than required by him.

Acknowledgments. The authors are grateful to the anonymous reviewers for
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monotone operators of dense type and of type (D).
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Abstract. In [M. Fukushima and P. Tseng, SIAM J. Optim., 12 (2002), pp. 724–739], an ε-active
set algorithm was proposed for solving a mathematical program with a smooth objective function
and linear inequality/complementarity constraints. It is asserted therein that, under a uniform LICQ
on the ε-feasible set, this algorithm generates iterates whose cluster points are B-stationary points of
the problem. However, the proof has a gap and shows only that each cluster point is an M-stationary
point. We discuss this gap and show that B-stationarity can be achieved if the algorithm is modified
and an additional error bound condition holds.
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1. Introduction. In a recent paper by the authors [3], an ε-active set algo-
rithm was proposed for solving the following mathematical program with equilibrium
constraints (MPEC):

minimize f(z)

subject to Gi(z) ≥ 0, i = 1, . . . ,m,

Hi(z) ≥ 0, i = 1, . . . ,m,

Gi(z)Hi(z) = 0, i = 1, . . . ,m,

gj(z) ≤ 0, j = 1, . . . , p,

hl(z) = 0, l = 1, . . . , q,

(1)

where f is a real-valued continuously differentiable function on �n and Gi, Hi, gj , hl

are real-valued affine functions on �n. In Theorem 4.1(a) of [3], it is asserted that
every cluster point of iterates generated by the algorithm is a B-stationary point of
(1). However, the proof has a gap and shows only that every cluster point is an
M-stationary point. We will discuss this gap and a modified algorithm that achieves
B-stationarity under an additional error bound condition.

The gap occurs on [3, page 734] in the line “If νk → 0, then |K′| = ∞, δk → 0, and
the updating formula for εk would imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′

would be a KKT point of the relaxed problem R(z̄), which is a B-stationary point of
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MPEC (1) under the uniform LICQ.” In particular, we have for all k ∈ K′ that

vki ≥ −νk and wk
i ≥ −νk ∀ i ∈ Âk ∩ B̂k,(2)

where Âk, B̂k are given by [3, eq. (7)] and vki , wk
i are multipliers associated with ẑk

(see [3, eqs. (5), (6)]).1 Thus, if a subsequence {ẑk}k∈K′′ (K′′ ⊆ K′) converges to
some z̄, then by further passing to a subsequence if necessary, we can assume that
the index sets Âk and B̂k are constant (i.e., Âk = Ā, B̂k = B̄ for some Ā, B̄) for all
k ∈ K′′. Since z̄ satisfies the uniform LICQ, {(vki )i∈Ā, (w

k
i )i∈B̄}k∈K′′ also converges

to some (v̄i)i∈Ā, (w̄i)i∈B̄ .2 By (2),

v̄i ≥ 0 and w̄i ≥ 0 ∀ i ∈ Ā ∩ B̄.

This together with [3, eqs. (5), (6)] implies that z̄ is an M-stationary point (see [4, 5]
and (5) below). If in addition

Ā ∩ B̄ = A0(z̄) ∩B0(z̄),(3)

then z̄ is a B-stationary point of (1). In general, however, we can only assert that
Ā ∩ B̄ ⊆ A0(z̄) ∩B0(z̄). This is the gap.

2. A modified ε-active set algorithm. We now describe a way, based on the
active set identification approach of Facchinei, Fischer, and Kanzow [1], to modify the
ε-active set algorithm so that (3) holds under an additional error bound condition.
To simplify the notation, we will consider only the complementarity constraints, i.e.,
we assume p = q = 0 in (1). The general case can be treated analogously. The
Lagrangian associated with (1) is

L(z, v, w) := f(z) +

m∑
i=1

(Gi(z)vi + Hi(z)wi).

We assume that there exists a computable continuous function R : �n × �m ×
�m → [0,∞) providing a local Hölder error bound at each M-stationary point z̄ that
is not B-stationary, i.e., there exist scalars τ > 0, γ > 0, and δ > 0 (depending on z̄)
such that

‖(z, v, w) − (z̄, v̄, w̄)‖ ≤ τR(z, v, w)γ whenever ‖(z, v, w) − (z̄, v̄, w̄)‖ ≤ δ,(4)

where the multiplier vectors v̄, w̄ satisfy

∇zL(z̄, v̄, w̄) = 0,

{
v̄i ⊥ Gi(z̄) ≥ 0
w̄i ⊥ Hi(z̄) ≥ 0

}
, Gi(z̄)Hi(z̄) = 0,

{
v̄iw̄i ≥ 0

v̄i ≥ 0 or w̄i ≥ 0

}
∀i.

(5)
Here, a ⊥ b means ab = 0. Due to uniform LICQ, v̄, w̄ are uniquely determined by z̄.
In fact, (5) characterizes M-stationarity for any z̄ ∈ �n. We also assume that

R(z̄, v̄, w̄) = 0 ⇐⇒ (z̄, v̄, w̄) satisfies (5).(6)

1Throughout, we use the same notation as [3].
2This follows from [3, eq. (6)], ‖rk‖1 ≤ δk → 0 (see [3, eq. (5)]), and the fact that if bk = Ckuk

for all k and bk → b ∈ �q , Ck → C ∈ �q×p with C having linearly independent columns, then
uk → u ∈ �p with u being the unique solution of b = Cu.
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The “residual” function R(z, v, w) can be constructed analogous to the NLP and
NCP cases [1, 2]. In particular, consider

R(z, v, w) := ‖∇zL(z, v, w)‖ +

m∑
i=1

(
|min{Gi(z), |vi|}| + |min{Hi(z), |wi|}|

+ |Gi(z)Hi(z)| + |min{0, viwi}| + |min{0, vi}min{0, wi}|
)
.

(7)

Then, R is continuous and satisfies (6). Arguing as in the proof of Corollary 6.6.4
in [2], we have that the local error bound (4) holds if the M-stationary point z̄ is
isolated and f and ∇f are continuous and subanalytic (G and H, by being affine, are
automatically continuous and subanalytic). A referee suggests that the assumption
of z̄ being isolated is benign when G and H are affine. In particular, it is readily
shown that the M-stationary points of (1) are isolated if f is strictly convex on the
null space of the active constraint gradients. Alternatively, it can be shown that the
local error bound (4) holds with γ = 1 if a certain second-order sufficient condition
holds at z̄. This is a topic for further research.

Let θ : (0,∞) → (0,∞) be any continuous nondecreasing function satisfying
limt↓0 t/θ(t

γ) = 0 for any γ > 0. An example is θ(t) = −C/ log(min{t, 0.9}) with
C > 0. Using (4), (6) and following [1, 2], the function

Θ(z, v, w) := θ(R(z, v, w))

has the active set identification property that, for any M-stationary point z̄ that is
not B-stationary and corresponding multiplier vectors v̄, w̄, we have

lim
(z,v,w)→(z̄,v̄,w̄)

Gi(z)

Θ(z, v, w)
=

{
0 if Gi(z̄) = 0,
∞ if Gi(z̄) > 0,

and similarly with “Gi” replaced by “Hi.”
Let us define

Āk :=

{
i ∈ {1, . . . ,m} :

Gi(ẑ
k)

Θ(ẑk, vk, wk)
≤ 1

}
,

B̄k :=

{
i ∈ {1, . . . ,m} :

Hi(ẑ
k)

Θ(ẑk, vk, wk)
≤ 1

}
,

where the ith component of vk is vki if i ∈ Âk and is zero otherwise (and wk is
defined analogously). Since (ẑk, vk, wk) satisfies [3, eqs. (4)–(6)], if (2) holds, then
R(ẑk, vk, wk) would tend to zero as ẑk → z̄ and εk, δk, νk tend to zero and, for ẑk

sufficiently near z̄, we would have (vk, wk) sufficiently near (v̄, w̄) (due to [3, A2]) and

Āk = A0(z̄), B̄k = B0(z̄),(8)

as well as

Aε(ẑ
k) ⊇ Āk ⊇ Âk, Bε(ẑ

k) ⊇ B̄k ⊇ B̂k,(9)

where ε ≥ 0 is defined as in [3] (see page 727 therein).3 Let

ε̄k := max

{
εk,max

i∈Āk
Gi(ẑ

k),max
i∈B̄k

Hi(ẑ
k)

}
.(10)

3The first containment in (9) holds whenever Θ(ẑk, vk, wk) ≤ ε, which in turn holds whenever
R(ẑk, vk, wk) is sufficiently small. By (8) and [3, eq. (7)], the second containment in (9) holds
whenever A0(z̄) ⊇ Aεk (ẑk), which in turn holds whenever ẑk is near z̄ and εk is sufficiently small.
The other two containments can be argued similarly.
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Since ε̄k ≥ εk, [3, eq. (4)] implies that ẑk ∈ Fε̄k [Ak, Bk] for all k. In fact, it can be
seen that ẑk remains an approximate KKT point of the subproblem [3, eq. (3)] (in the
sense of [3, eqs. (4)–(6)]) when εk is replaced by ε̄k and Âk, B̂k are correspondingly
replaced by Aε̄k(ẑk), Bε̄k(ẑk). Thus, we can modify Step 2 of the ε-active set algorithm
by possibly making this replacement when we are in case (c) and (9) holds.

The modified ε-active set algorithm for MPEC (1).

This is the same as the ε-active set algorithm in [3, pp. 730–731], except that
when we are in case (c) in Step 2, we do the following: If

(9) holds, Āk ∩ B̄k �= Âk ∩ B̂k, ε̄k < ε̄(11)

(ε̄ is a threshold which initially can be any positive scalar below ε), then
repeat Step 2 with εk replaced by ε̄k (and with Âk, B̂k redefined accordingly,
i.e., they are replaced by Aε̄k(ẑk), Bε̄k(ẑk) in Step 2, (9), (11)), and update
ε̄ ← ε̄/2. Otherwise, if εk ≤ εtol and νk ≤ νtol, then terminate; otherwise,
determine νk+1 and z̃k by [3, eq. (14)], and proceed to Step 3.

If (11) holds, then εk < ε̄k,
4 which in turn implies Āk = Aε̄k(ẑk) and B̄k =

Bε̄k(ẑk).5 Thus, when Step 2 is repeated, the second relation in (11) is violated.
Theorem 2.1. Under assumptions [3, A1–A3], the following results hold for the

sequence {(zk, ẑk, z̃k, εk, νk)} generated by the modified ε-active set algorithm, with
K̄ := {k : at iteration k, Step 2 is repeated}.

(a) Suppose that each M-stationary point z̄ of MPEC (1) that is not B-stationary
satisfies (4), where (v̄, w̄) satisfies (5) and R satisfies (6). If ε0 > 0, ν0 > 0, εtol =
νtol = 0, f is Lipschitz continuous with constant L on a set Z containing {zk} and
{z̃k}, and |K̄| < ∞ (respectively, |K̄| = ∞), then εk ↓ 0, νk ↓ 0, and every cluster
point of {ẑk} (respectively, {ẑk}k∈K̄) is a B-stationary point of MPEC (1).

(b) If ε0 = ν0 = 0 and f is quadratic, then there exists a k̄ ∈ {0, 1, . . .} such that
ẑk̄ is a B-stationary point of MPEC (1).

Proof. The first paragraph of the proof is identical to the proof of [3, Thm. 4.1], ex-
cept we define K := {k : We enter Step 3 from case (a) or (b) in Step 2 at iteration k}
and K′ := {k : We enter Step 3 from case (c) in Step 2 at iteration k}. The proof of
(b) is identical to the proof of [3, Thm. 4.1(b)]. We prove (a) below.

(a) Suppose νk → 0. Then |K′| = ∞, δk → 0, and the updating formulas for
εk and ε̄ imply εk → 0, so any cluster point z̄ of {ẑk}k∈K′ is an M-stationary point
of MPEC (1). First, suppose |K̄| < ∞, so that ε̄ > 0 is constant after a while. Let
{ẑk}k∈K′′ (K′′ ⊆ K′) be any subsequence converging to z̄. Since [3, eqs. (4)–(6)] and
(2) hold for all k ∈ K′′, we have from [3, A2] and the same argument as in section
1 that {(vk, wk)}k∈K′′ → (v̄, w̄) satisfying (5). By (6), R(z̄, v̄, w̄) = 0. Since R is
continuous, {R(ẑk, vk, wk)}k∈K′′ → 0. If z̄ is not B-stationary for (1), then the error
bound (4) would hold and this would imply that (8) and (9) hold for all k ∈ K′′

sufficiently large. Moreover, {ε̄k}k∈K′′ → 0, so that ε̄k < ε̄ for all k ∈ K′′ sufficiently

4If εk = ε̄k, then (10) and [3, eq. (7)] would imply Āk ⊆ Âk and B̄k ⊆ B̂k, so (9) would yield

Āk = Âk and B̄k = B̂k, contradicting (11).
5Why? Since εk < ε̄k, we have from (10) and the definition of Āk and B̄k that

ε̄k = max

{
max
i∈Āk

Gi(ẑ
k), max

i∈B̄k
Hi(ẑ

k)

}
≤ Θ(ẑk, vk, wk).

Thus, if i 	∈ Āk, then Gi(ẑ
k) > Θ(ẑk, vk, wk) ≥ ε̄k. By (10), if i ∈ Āk, then Gi(ẑ

k) ≤ ε̄k. This shows
that Āk = Aε̄k (ẑk). An analogous argument shows that B̄k = Bε̄k (ẑk).
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large. Thus, at each such iteration k ∈ K′′, we would have upon entering Step 3 that
Āk ∩ B̄k = Âk ∩ B̂k (since (11) must be violated). Then it would follow from (2) and
(8) that z̄ is a B-stationary point of (1), a contradiction. Second, suppose |K̄| = ∞.
Then, as we discussed earlier, for each iteration k ∈ K̄, the second relation in (11) is
violated upon entering Step 3, i.e., Āk ∩ B̄k = Âk ∩ B̂k. Then, an argument similar
to the one above shows that every cluster point z̄ of {ẑk}k∈K̄ is a B-stationary point
of (1).

Suppose instead νk �→ 0, so that |K′| < ∞, |K| = ∞, and ν = limk→∞ νk > 0.
The remainder of the proof is identical to the proof of [3, Thm. 4.1(a)], except that,
due to εk being replaced by ε̄k in Step 2 for all iterations k ∈ K̄, instead of [3, eq.
(22)] we have

f(zk+1) ≤ f(z̃k) + 2Lτm(εk − εk+1 + Δk) ∀ k,

where Δk := ε̄k if k ∈ K̄ and Δk := 0 otherwise. Since (11) holds at each iteration
k ∈ K̄ and ε̄ is halved at each such iteration, it follows that

∑∞
k=0 Δk =

∑
k∈K̄ ε̄k < ∞.

Then it can be argued similarly as in the proof of [3, Thm. 4.1(a)] that {f(zk)}
converges and so on.

We illustrate the assumptions of Theorem 2.1 with the following example of (1):

minimize f(z) subject to z1 ≥ 0, z2 ≥ 0, z1z2 = 0.

This example satisfies assumption [3, A2] for any ε ≥ 0. If f(z) = (z2)
p (p ≥ 1),

then assumption [3, A1] also holds and each M-stationary point, which is of the form
(z̄1, 0) with z̄1 ≥ 0, is B-stationary. If f(z) = z4

1 + z2
2 − z2, then assumptions [3, A1,

A3] also hold and the M-stationary points, (0, 0) and (0, 1
2 ), are isolated with (0, 1

2 )
B-stationary. For R given by (7), the error bound (4) holds at (0, 0). However, if
f(z) = z2

2−z2, then the M-stationary point z̄ = (0, 0), with multipliers v̄ = 0, w̄ = −1,
is not B-stationary and is not isolated. Moreover, for any continuous R satisfying (6),
the error bound (4) does not hold at (0, 0). This is because, for any fixed δ > 0, (δ, 0) is
M-stationary with multipliers v = 0, w = −1, so R((δ, x2), 0,−1) → R(δ, 0), 0,−1) = 0
as x2 → 0. But ‖((δ, x2), 0,−1) − ((0, 0), 0,−1)‖ → δ as x2 → 0.
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